JP2010056531A - Method of manufacturing semiconductor chip laminated body - Google Patents

Method of manufacturing semiconductor chip laminated body Download PDF

Info

Publication number
JP2010056531A
JP2010056531A JP2009169194A JP2009169194A JP2010056531A JP 2010056531 A JP2010056531 A JP 2010056531A JP 2009169194 A JP2009169194 A JP 2009169194A JP 2009169194 A JP2009169194 A JP 2009169194A JP 2010056531 A JP2010056531 A JP 2010056531A
Authority
JP
Japan
Prior art keywords
semiconductor chip
adhesive layer
wafer
adhesive
interlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009169194A
Other languages
Japanese (ja)
Other versions
JP5525200B2 (en
Inventor
Yoshu Ri
洋洙 李
Taihei Sugita
大平 杉田
Yuichi Sumii
佑一 炭井
Sayaka Wakioka
さやか 脇岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2009169194A priority Critical patent/JP5525200B2/en
Publication of JP2010056531A publication Critical patent/JP2010056531A/en
Application granted granted Critical
Publication of JP5525200B2 publication Critical patent/JP5525200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Dicing (AREA)
  • Wire Bonding (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor chip laminated body extremely easily providing a semiconductor chip with an interlayer adhesive adhering thereto, and manufacturing a high lamination type semiconductor chip laminated body high in connection reliability even by semiconductor chips each having a projecting electrode. <P>SOLUTION: This method of manufacturing the semiconductor chip laminated body includes processes of: sticking an interlayer sticking adhesive layer 22 of an adhesive sheet and a wafer 1 having projecting electrodes 12 on a surface thereof to each other; grinding the wafer; half-curing the interlayer sticking adhesive layer by irradiating the adhesive sheet with an energy ray; providing the wafer with a half-cured interlayer sticking adhesive layer stuck thereto by peeling a base material film 21 from the adhesive sheet; segmenting the wafer by dicing it; and providing a semiconductor chip laminated body by sticking the semiconductor chip with the half-cured interlayer sticking adhesive layer stuck thereto to a substrate or another semiconductor through the half-cured interlayer sticking adhesive layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、極めて簡便に薄研削された層間接着剤が付着した半導体チップを得ることができ、凸状電極を有する半導体チップであっても接続信頼性の高い高積層型の半導体チップ積層体を製造することができる半導体チップ積層体の製造方法に関する。 The present invention makes it possible to obtain a semiconductor chip to which a thinly ground interlayer adhesive is adhered very easily, and a highly laminated semiconductor chip laminate having a high connection reliability even with a semiconductor chip having a convex electrode. The present invention relates to a method for manufacturing a semiconductor chip laminate that can be manufactured.

近年、半導体の高集積化が進展し、複数の薄研削したICチップを積層したスタックドチップ等も提案されている。同時に半導体の高集積実装方法も種々の方法が提案されており、現在では、通常ICチップ間の接着は層間接着剤を用いてなされることが多い(特許文献1、2等)。 In recent years, high integration of semiconductors has progressed, and a stacked chip in which a plurality of thinly ground IC chips are stacked has been proposed. At the same time, various methods for highly integrated mounting of semiconductors have been proposed, and at present, bonding between IC chips is usually performed using an interlayer adhesive (Patent Documents 1 and 2, etc.).

このようなスタックドチップは通常、以下のようにして製造される。まず、ウエハにバックグラインドテープと呼ばれる粘着テープを貼付し、この状態でウエハを所定の厚さにまで研削する。研削終了後にバックグラインドテープを剥離する。次いで、層間接着剤をウエハの表面に塗工した後、他のウエハや基板等と積層する。しかしながら、このような工程は極めて煩雑であるという問題点があった。 Such a stacked chip is usually manufactured as follows. First, an adhesive tape called a back grind tape is attached to the wafer, and in this state, the wafer is ground to a predetermined thickness. The back grind tape is peeled off after grinding. Next, an interlayer adhesive is applied to the surface of the wafer, and then laminated with another wafer, a substrate, or the like. However, such a process has a problem that it is extremely complicated.

これに対して特許文献3には、基材と、前記基材上に形成された層間接着用接着剤層とからなる粘着シートの層間接着用接着剤層とウエハとを貼り合わせる工程1、ウエハを、粘着シートに固定した状態で研削する工程2、研削後のウエハから、層間接着剤用接着剤層を残して基材を剥離して、層間接着用接着剤層が付着したウエハを得る工程3を有する半導体の製造方法が記載されている。特許文献3の方法によれば、確かに簡便に薄研削された層間接着剤付きのウエハを得ることができる。 On the other hand, Patent Document 3 discloses a process 1 for bonding an adhesive layer for an adhesive sheet of a pressure-sensitive adhesive sheet composed of a base material and an adhesive layer for interlayer adhesive formed on the base material to the wafer. Step 2 of grinding with the adhesive sheet fixed to the pressure-sensitive adhesive sheet, Step of removing the substrate from the ground wafer, leaving the adhesive layer for the interlayer adhesive, and obtaining the wafer having the adhesive layer for the interlayer adhesive attached thereto 3 is described. According to the method of Patent Document 3, it is possible to obtain a wafer with an interlayer adhesive that has been thinly ground easily and surely.

しかしながら、特許文献3の方法により半導体チップ積層体を製造しようとすると、層間接着剤付きのウエハをダイシングして個片化する際に、層間接着剤層を綺麗に切断できなかったり、層間接着剤層に起因するヒゲが発生したり、また、層間接着剤層に切削くずが付着してしまったりすることがあった。また、ダイシング時に使用する水によって層間接着剤層の接着力が低下してしまうこともあった。特に、表面に凸状電極を有する半導体チップの場合には、電極が層間接着剤層からうまく露出せず、接続信頼性が劣ることがあるという問題もあった。 However, when a semiconductor chip laminate is manufactured by the method of Patent Document 3, when the wafer with the interlayer adhesive is diced into individual pieces, the interlayer adhesive layer cannot be cut cleanly, or the interlayer adhesive There was a case where the beard due to the layer was generated, or the cutting waste adhered to the interlayer adhesive layer. Moreover, the adhesive force of the interlayer adhesive layer may be reduced by water used during dicing. In particular, in the case of a semiconductor chip having a convex electrode on the surface, there is also a problem that the electrode is not well exposed from the interlayer adhesive layer, and the connection reliability is inferior.

特開2005−126658号公報JP 2005-126658 A 特開2003−231875号公報JP 2003-231875 A 特開2008−016624号公報JP 2008-016624 A

本発明は、極めて簡便に薄研削された層間接着剤が付着した半導体チップを得ることができ、凸状電極を有する半導体チップであっても接続信頼性の高い高積層型の半導体チップ積層体を製造することができる半導体チップ積層体の製造方法を提供することを目的とする。 The present invention makes it possible to obtain a semiconductor chip to which a thinly ground interlayer adhesive is adhered very easily, and a highly laminated semiconductor chip laminate having a high connection reliability even with a semiconductor chip having a convex electrode. It aims at providing the manufacturing method of the semiconductor chip laminated body which can be manufactured.

本発明は、基材フィルムと層間接着用接着剤層とからなる接着シートを用いて表面に凸状電極を有する半導体チップを積層した半導体チップ積層体を製造する方法であって、前記接着シートの層間接着用接着剤層と、表面に凸状電極を有するウエハの前記凸状電極が形成された面とを貼り合わせる工程1と、前記ウエハを前記接着シートに固定した状態で研削する工程2と、前記研削後のウエハに貼り合せられた前記接着シートにエネルギー線を照射して前記層間接着用接着剤層を半硬化させる工程3と、前記研削後のウエハに貼り合せられた前記接着シートから基材フィルムを剥離して、半硬化した層間接着用接着剤層が付着したウエハを得る工程4と、前記半硬化した層間接着用接着剤層が付着したウエハをダイシングして、半硬化した層間接着用接着剤層が付着した半導体チップに個片化する工程5と、前記半硬化した層間接着用接着剤層が付着した半導体チップを、半硬化した層間接着用接着剤層を介して基板又は他の半導体に接着して半導体チップ積層体を得る工程6とを有する半導体チップ積層体の製造方法である。
以下に本発明を詳述する。
The present invention is a method for producing a semiconductor chip laminate in which semiconductor chips having convex electrodes on the surface are laminated using an adhesive sheet comprising a base film and an adhesive layer for interlayer adhesion, A process 1 for bonding an adhesive layer for interlayer adhesion and a surface of the wafer having a convex electrode on the surface thereof on which the convex electrode is formed, and a process 2 for grinding the wafer while being fixed to the adhesive sheet. From the step 3 of semi-curing the adhesive layer for interlayer adhesion by irradiating the adhesive sheet bonded to the ground wafer with energy rays, and from the adhesive sheet bonded to the ground wafer The base film is peeled off to obtain a wafer to which a semi-cured interlayer adhesive layer is adhered, and the wafer to which the semi-cured interlayer adhesive layer is diced and semi-cured. Step 5 for separating the semiconductor chip to which the indirect wearing adhesive layer is attached, and the semiconductor chip to which the semi-cured interlayer adhesive adhesive layer is attached through the semi-cured interlayer adhesive adhesive layer to the substrate or And a step 6 of obtaining a semiconductor chip laminate by bonding to another semiconductor.
The present invention is described in detail below.

本発明の半導体チップ積層体の製造方法においては、基材フィルムと層間接着用接着剤層(以下、単に「接着剤層」ともいう)とからなる接着シートを用いる。
上記基材フィルムとしては特に限定されないが、例えば、アクリル、オレフィン、ポリカーボネート、塩化ビニル、ABS、ポリエチレンテレフタレート(PET)、ナイロン、ウレタン、ポリイミド等の透明な樹脂からなるシート、網目状の構造を有するシート、孔が開けられたシート等が挙げられる。
In the method for producing a semiconductor chip laminate of the present invention, an adhesive sheet comprising a base film and an interlayer adhesive layer (hereinafter also simply referred to as “adhesive layer”) is used.
Although it does not specifically limit as said base film, For example, the sheet | seat which consists of transparent resin, such as an acryl, an olefin, a polycarbonate, vinyl chloride, ABS, a polyethylene terephthalate (PET), nylon, urethane, a polyimide, It has a network-like structure. Examples thereof include a sheet and a sheet having holes.

上記基材フィルムは、表面に離型処理が施されていてもよいし、施されていなくてもよい。通常は離型処理されているほうが剥離しやすいが、本発明の半導体チップ積層体の製造造方法においては、離型処理が施されていなくとも、後述の通り接着剤層を半硬化させた後で剥離するため、基材フィルムを剥離することは充分に可能である。また、離型処理を施さない場合には、離型剤を用いた処理を行わないことにより、接着剤に離型剤が移行する恐れがなく、接着剤層は、より高い接着力を発揮することができる。 The base film may or may not be subjected to a release treatment on the surface. Usually, it is easier to peel off after being subjected to a mold release treatment. However, in the method for producing a semiconductor chip laminate of the present invention, after the adhesive layer is semi-cured as described later even if the mold release treatment is not performed. Therefore, it is possible to peel the substrate film. Further, when the mold release treatment is not performed, the mold release agent is not transferred to the adhesive by not performing the treatment using the mold release agent, and the adhesive layer exhibits a higher adhesive force. be able to.

上記基材フィルムの厚みとしては特に限定されないが、好ましい下限は12μm、好ましい上限は300μmである。上記基材フィルムの厚みが12μm未満であると、保護テープとしてウエハを保護したり、平坦化させたりする能力が不足することがある。上記基材フィルムの厚みが300μmを超えると、基材フィルムを剥離する際にウエハに過剰な応力を発生させることがある。 Although it does not specifically limit as thickness of the said base film, A preferable minimum is 12 micrometers and a preferable upper limit is 300 micrometers. If the thickness of the substrate film is less than 12 μm, the ability to protect or flatten the wafer as a protective tape may be insufficient. When the thickness of the base film exceeds 300 μm, excessive stress may be generated on the wafer when the base film is peeled off.

上記接着剤層としては、充分な接着力を有し、かつ、エネルギー線を照射することにより半硬化させることができるものであれば特に限定されない。上記接着剤層は、半硬化させた後、更に加熱等を行うことにより完全に硬化させることができるものが好ましい。
このような接着剤層としては、例えば、光硬化性化合物、熱硬化性化合物、光重合開始剤及び熱硬化剤を含有する光熱硬化性接着剤組成物からなるものが好適である。
The adhesive layer is not particularly limited as long as it has sufficient adhesive force and can be semi-cured by irradiation with energy rays. The adhesive layer is preferably one that can be completely cured by further heating after semi-curing.
As such an adhesive layer, for example, a layer made of a photothermosetting adhesive composition containing a photocurable compound, a thermosetting compound, a photopolymerization initiator and a thermosetting agent is suitable.

上記光硬化性化合物としては特に限定されないが、光硬化性官能基を有するアクリル樹脂が好ましい。
上記光硬化性官能基を有するアクリル樹脂としては特に限定されず、例えば、イソボルニル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ブチル(メタ)アクリレート、メチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、(メタ)アクリル酸等のアクリル成分からなる分子量5万〜60万程度の重合体又は共重合体に、ウレタン結合、エステル結合、エーテル結合等の連結基を介して、アリル基、(メタ)アクリル基等の光硬化性官能基を導入した樹脂等が挙げられる。
また、上記光硬化性化合物として、例えば、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタン(メタ)アクリレートジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の低分子の多官能アクリル樹脂を用いてもよい。
これらの光硬化性官能基を有するアクリル樹脂は、単独で用いられてもよく、2種以上が併用されてもよい。
Although it does not specifically limit as said photocurable compound, The acrylic resin which has a photocurable functional group is preferable.
The acrylic resin having the photocurable functional group is not particularly limited. For example, isobornyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, butyl (meth) acrylate, methyl (meth) acrylate, hydroxyethyl (meth) Linkage group such as urethane bond, ester bond, ether bond, etc. to a polymer or copolymer having a molecular weight of about 50,000 to 600,000 consisting of acrylic components such as acrylate, 4-hydroxybutyl (meth) acrylate, (meth) acrylic acid, etc. Through which a photocurable functional group such as an allyl group or a (meth) acryl group is introduced.
Examples of the photocurable compound include pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane (meth) acrylate di (meth) acrylate, dipentaerythritol tri (meth) acrylate, Low molecular polyfunctionality such as ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate An acrylic resin may be used.
These acrylic resins having a photocurable functional group may be used alone or in combination of two or more.

上記光硬化性官能基を有するアクリル樹脂は、二重結合当量が0.1〜5meq/gであることが好ましい。上記二重結合当量が0.1meq/g未満であると、接着剤層にエネルギー線を照射しても充分に半硬化させることができないことがある。上記二重結合当量が5meq/gを超えると、後述する基板又は他の半導体との接着時に、接着剤層が充分な接着力を発揮することができないことがある。 The acrylic resin having the photocurable functional group preferably has a double bond equivalent of 0.1 to 5 meq / g. When the double bond equivalent is less than 0.1 meq / g, the adhesive layer may not be sufficiently semi-cured even when irradiated with energy rays. When the double bond equivalent exceeds 5 meq / g, the adhesive layer may not be able to exert a sufficient adhesive force when adhered to a substrate or other semiconductor described later.

上記光硬化性官能基を有するアクリル樹脂は、更に、熱硬化性官能基を有することが好ましい。熱硬化性官能基を有することにより、後述する基板又は他の半導体との接着時に、上記光硬化性官能基を有するアクリル樹脂と後述する熱硬化性化合物とが反応して、より均一な硬化物を得ることができる。そのため、硬化物の耐熱性や接着性が向上し、より接続信頼性の高い半導体チップ積層体を製造することができる。
上記熱硬化性官能基としては特に限定されず、例えば、水酸基、カルボン酸基、アミノ基、イミノ基、オキセタニル基、エポキシ基、メルカプト基、イソシアネート基等が挙げられる。なかでも、エポキシ基が特に好ましい。
このような光硬化性官能基と熱硬化性官能基とを有するアクリル樹脂としては特に限定されないが、例えば、共重合成分として上述したアクリル成分に加えてグリシジル(メタ)アクリレート等を含有する共重合体に、上述のように連結基を介して光硬化性官能基を導入した樹脂や、上述したアクリル成分からなる重合体又は共重合体に、ウレタン結合、エステル結合、エーテル結合などの連結基を介して、光硬化性官能基に加えてエポキシ基を導入した樹脂等が挙げられる。これらのアクリル樹脂は、単独で用いられてもよく、2種以上が併用されてもよい。
The acrylic resin having a photocurable functional group preferably further has a thermosetting functional group. By having the thermosetting functional group, the acrylic resin having the photocurable functional group reacts with the thermosetting compound described later when adhering to the substrate or other semiconductor described later, and a more uniform cured product. Can be obtained. Therefore, the heat resistance and adhesiveness of the cured product are improved, and a semiconductor chip laminated body with higher connection reliability can be manufactured.
The thermosetting functional group is not particularly limited, and examples thereof include a hydroxyl group, a carboxylic acid group, an amino group, an imino group, an oxetanyl group, an epoxy group, a mercapto group, and an isocyanate group. Of these, an epoxy group is particularly preferable.
Although it does not specifically limit as an acrylic resin which has such a photocurable functional group and a thermosetting functional group, For example, in addition to the acrylic component mentioned above as a copolymerization component, the copolymer containing glycidyl (meth) acrylate etc. To the polymer, a resin having a photocurable functional group introduced via a linking group as described above, or a polymer or copolymer composed of the above-described acrylic component, a linking group such as a urethane bond, an ester bond, or an ether bond is added. And a resin having an epoxy group introduced in addition to the photocurable functional group. These acrylic resins may be used independently and 2 or more types may be used together.

上記熱硬化性化合物としては特に限定されないが、エポキシ樹脂を含有することが好ましい。
上記エポキシ樹脂としては特に限定されないが、多環式炭化水素骨格を主鎖に有するエポキシ樹脂を含有することが好ましい。多環式炭化水素骨格を主鎖に有するエポキシ樹脂を含有する光熱硬化性接着剤組成物の硬化物は、剛直で分子の運動が阻害されるものとなり、優れた機械的強度や耐熱性を発現するとともに、吸水性も低くなるため優れた耐湿性を発現することができる。
Although it does not specifically limit as said thermosetting compound, It is preferable to contain an epoxy resin.
Although it does not specifically limit as said epoxy resin, It is preferable to contain the epoxy resin which has a polycyclic hydrocarbon frame | skeleton in a principal chain. The cured product of the photothermosetting adhesive composition containing an epoxy resin with a polycyclic hydrocarbon skeleton in the main chain is rigid and impedes molecular movement, and exhibits excellent mechanical strength and heat resistance. In addition, since the water absorption is also reduced, excellent moisture resistance can be exhibited.

上記多環式炭化水素骨格を主鎖に有するエポキシ樹脂としては特に限定されないが、例えば、ジシクロペンタジエンジオキシド、ジシクロペンタジエン骨格を有するフェノールノボラックエポキシ樹脂等のジシクロペンタジエン骨格を有するエポキシ樹脂(以下、「ジシクロペンタジエン型エポキシ樹脂」と記す)、1−グリシジルナフタレン、2−グリシジルナフタレン、1,2−ジグリジジルナフタレン、1,5−ジグリシジルナフタレン、1,6−ジグリシジルナフタレン、1,7−ジグリシジルナフタレン、2,7−ジグリシジルナフタレン、トリグリシジルナフタレン、1,2,5,6−テトラグリシジルナフタレン等のナフタレン骨格を有するエポキシ樹脂(以下、「ナフタレン型エポキシ樹脂」と記す)、テトラヒドロキシフェニルエタン型エポキシ樹脂、テトラキス(グリシジルオキシフェニル)エタン、3,4−エポキシ−6−メチルシクロヘキシルメチル−3,4−エポキシ−6−メチルシクロヘキサンカルボネート等が挙げられる。なかでも、ジシクロペンタジエン骨格を有するエポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂が好適である。これらの多環式炭化水素骨格を主鎖に有するエポキシ樹脂は、単独で用いられてもよく、2種類以上が併用されてもよく、また、Bis−A型エポキシ樹脂、Bis−F型エポキシ樹脂等の汎用されるエポキシ樹脂と併用されてもよい。 The epoxy resin having a polycyclic hydrocarbon skeleton in the main chain is not particularly limited. For example, an epoxy resin having a dicyclopentadiene skeleton such as dicyclopentadiene dioxide and a phenol novolac epoxy resin having a dicyclopentadiene skeleton ( (Hereinafter referred to as “dicyclopentadiene type epoxy resin”), 1-glycidylnaphthalene, 2-glycidylnaphthalene, 1,2-diglycidylnaphthalene, 1,5-diglycidylnaphthalene, 1,6-diglycidylnaphthalene, 1, Epoxy resins having a naphthalene skeleton such as 7-diglycidylnaphthalene, 2,7-diglycidylnaphthalene, triglycidylnaphthalene, 1,2,5,6-tetraglycidylnaphthalene (hereinafter referred to as “naphthalene type epoxy resin”), Tetrahydroxyph Niruetan type epoxy resins, tetrakis (glycidyloxyphenyl) ethane, 3,4-epoxy-6-methylcyclohexyl-3,4-epoxy-6-methylcyclohexane carbonate, and the like. Of these, epoxy resins having a dicyclopentadiene skeleton and epoxy resins having a naphthalene skeleton are suitable. These epoxy resins having a polycyclic hydrocarbon skeleton in the main chain may be used singly or in combination of two or more, and also include Bis-A type epoxy resin and Bis-F type epoxy resin. It may be used in combination with a commonly used epoxy resin.

上記ナフタレン骨格を有するエポキシ樹脂は、下記一般式(1)で表される化合物を含有することが好ましい。下記一般式(1)で表される化合物を用いることにより、接着剤層の線膨張係数を下げることができ、硬化物の耐熱性や接着性が向上して、より接続信頼性の高い半導体チップ積層体を製造することができる。 The epoxy resin having a naphthalene skeleton preferably contains a compound represented by the following general formula (1). By using the compound represented by the following general formula (1), the linear expansion coefficient of the adhesive layer can be lowered, the heat resistance and adhesiveness of the cured product are improved, and a semiconductor chip with higher connection reliability. A laminate can be manufactured.

Figure 2010056531
Figure 2010056531

一般式(1)中、R及びRは、それぞれ、水素原子、ハロゲン原子、アルキル基、アリール基又はフェニル基を表し、n及びmは、それぞれ、0又は1である。 In General Formula (1), R 1 and R 2 each represent a hydrogen atom, a halogen atom, an alkyl group, an aryl group, or a phenyl group, and n and m are 0 or 1, respectively.

上記熱硬化性化合物が上記一般式(1)で表される化合物を含有する場合、上記一般式(1)で表される化合物の配合量としては特に限定されないが、熱硬化性化合物全体のうち、3〜90重量%であることが好ましい。上記一般式(1)で表される化合物の配合量が3重量%未満であると、接着剤層の線膨張係数を下げる効果が充分に得られなかったり、接着力が低下したりすることがある。上記一般式(1)で表される化合物の配合量が90重量%を超えると、該一般式(1)で表される化合物と光熱硬化性接着剤組成物中の他の配合成分とが相分離し、接着シートを作製する際の塗工性が低下したり、接着剤層の吸水率が高くなったりすることがある。上記一般式(1)で表される化合物の配合量は、熱硬化性化合物全体のうち、5〜80重量%であることがより好ましい。 When the said thermosetting compound contains the compound represented by the said General formula (1), it is not specifically limited as a compounding quantity of the compound represented by the said General formula (1), Of the whole thermosetting compounds 3 to 90% by weight is preferable. If the compounding amount of the compound represented by the general formula (1) is less than 3% by weight, the effect of lowering the linear expansion coefficient of the adhesive layer may not be sufficiently obtained, or the adhesive force may be reduced. is there. When the compounding amount of the compound represented by the general formula (1) exceeds 90% by weight, the compound represented by the general formula (1) and the other compounding components in the photothermosetting adhesive composition are in phase. It may separate and the applicability | paintability at the time of producing an adhesive sheet may fall, or the water absorption rate of an adhesive bond layer may become high. As for the compounding quantity of the compound represented by the said General formula (1), it is more preferable that it is 5 to 80 weight% among the whole thermosetting compounds.

上記光硬化性化合物と熱硬化性化合物との配合比としては特に限定されないが、上記熱硬化性化合物の100重量部に対する上記光硬化性化合物の配合量の好ましい下限は20重量部、好ましい上限は40重量部である。上記光硬化性化合物の配合量が20重量部未満であると、エネルギー線を照射しても半硬化させることによる形状保持効果が不充分となることがある。上記光硬化性化合物の配合量が40重量部を超えると、得られる硬化物の耐熱性が不足することがある。 The compounding ratio of the photocurable compound and the thermosetting compound is not particularly limited, but the preferable lower limit of the compounding amount of the photocurable compound with respect to 100 parts by weight of the thermosetting compound is 20 parts by weight, and the preferable upper limit is 40 parts by weight. If the amount of the photocurable compound is less than 20 parts by weight, the shape retention effect due to semi-curing may be insufficient even when irradiated with energy rays. When the compounding quantity of the said photocurable compound exceeds 40 weight part, the heat resistance of the hardened | cured material obtained may be insufficient.

上記光重合性開始剤としては特に限定はされないが、例えば、250〜800nmの波長の光を照射することにより活性化されるものが挙げられる。このような光重合開始剤としては、例えば、メトキシアセトフェノン等のアセトフェノン誘導体化合物や、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインエーテル系化合物や、ベンジルジメチルケタール、アセトフェノンジエチルケタール等のケタール誘導体化合物や、フォスフィンオキシド誘導体化合物や、ビス(η5−シクロペンタジエニル)チタノセン誘導体化合物、ベンゾフェノン、ミヒラーケトン、クロロチオキサントン、トデシルチオキサントン、ジメチルチオキサントン、ジエチルチオキサントン、α−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシメチルフェニルプロパン等の光ラジカル重合開始剤が挙げられる。これらの光重合開始剤は、単独で用いられてもよく、2種以上が併用されてもよい。 Although it does not specifically limit as said photopolymerizable initiator, For example, what is activated by irradiating light with a wavelength of 250-800 nm is mentioned. Examples of such a photopolymerization initiator include acetophenone derivative compounds such as methoxyacetophenone, benzoin ether compounds such as benzoin propyl ether and benzoin isobutyl ether, ketal derivative compounds such as benzyldimethyl ketal and acetophenone diethyl ketal, Phosphine oxide derivative compound, bis (η5-cyclopentadienyl) titanocene derivative compound, benzophenone, Michler ketone, chlorothioxanthone, todecylthioxanthone, dimethylthioxanthone, diethylthioxanthone, α-hydroxycyclohexyl phenyl ketone, 2-hydroxymethylphenylpropane And photo radical polymerization initiators such as These photoinitiators may be used independently and 2 or more types may be used together.

上記光重合開始剤の配合量としては特に限定はされないが、上記光硬化性化合物100重量部に対して好ましい下限は0.05重量部、好ましい上限は5重量部である。上記光重合開始剤の配合量が0.05重量部未満であると、エネルギー線を照射しても半硬化させることができないことがある。上記光重合開始剤は5重量部を超えて配合しても特に光硬化性に寄与しない。 The blending amount of the photopolymerization initiator is not particularly limited, but a preferable lower limit is 0.05 parts by weight and a preferable upper limit is 5 parts by weight with respect to 100 parts by weight of the photocurable compound. If the amount of the photopolymerization initiator is less than 0.05 parts by weight, it may not be possible to be semi-cured even when irradiated with energy rays. Even if it mixes more than 5 weight part, the said photoinitiator does not contribute to photocurability especially.

上記熱硬化剤としては、特に限定されず、例えば上記熱硬化性化合物がエポキシ樹脂を含有する場合には、トリアルキルテトラヒドロ無水フタル酸等の加熱硬化型酸無水物系硬化剤、フェノール系硬化剤、アミン系硬化剤、ジシアンジアミド等の潜在性硬化剤、カチオン系触媒型硬化剤等が挙げられる。これらのエポキシ樹脂用硬化剤は、単独で用いられてもよく、2種類以上が併用されてもよい。なかでも、酸無水物系硬化剤が好適である。熱硬化剤として酸無水物系硬化剤を含有すると、熱硬化速度が速いため、硬化物にボイドが発生するのを効果的に低減することができ、得られる半導体チップ積層体を接着信頼性の高いものとすることができる。 The thermosetting agent is not particularly limited. For example, when the thermosetting compound contains an epoxy resin, a thermosetting acid anhydride-based curing agent such as trialkyltetrahydrophthalic anhydride, a phenol-based curing agent. And latent curing agents such as amine-based curing agents and dicyandiamide, and cationic catalyst-type curing agents. These epoxy resin curing agents may be used alone or in combination of two or more. Of these, acid anhydride curing agents are preferred. When an acid anhydride-based curing agent is contained as a thermosetting agent, since the thermosetting speed is high, generation of voids in the cured product can be effectively reduced, and the resulting semiconductor chip laminate can be bonded reliably. Can be expensive.

上記熱硬化剤の配合量としては特に限定されないが、熱硬化性化合物の官能基と等量反応する熱硬化剤を用いる場合には、熱硬化性化合物の官能基量に対して、好ましい下限が90当量、好ましい上限が110当量である。上記熱硬化剤の配合量が90当量未満であると、加熱しても充分に硬化しないことがある。上記熱硬化剤は110当量を超えて配合しても特に熱硬化性に寄与しない。
また、上記熱硬化剤の配合量は、触媒として機能する熱硬化剤を用いる場合には、熱硬化性化合物100重量部に対して、好ましい下限が1重量部、好ましい上限が20重量部である。上記熱硬化剤の配合量が1重量部未満であると、加熱しても充分に硬化しないことがある。上記熱硬化剤は20重量部を超えて配合しても特に熱硬化性に寄与しない。
The amount of the thermosetting agent is not particularly limited, but when using a thermosetting agent that reacts with the functional group of the thermosetting compound in an equivalent amount, the preferred lower limit is relative to the functional group amount of the thermosetting compound. 90 equivalents and a preferred upper limit is 110 equivalents. When the blending amount of the thermosetting agent is less than 90 equivalents, it may not be cured sufficiently even when heated. Even if it mix | blends the said thermosetting agent exceeding 110 equivalent, it does not contribute to thermosetting especially.
Moreover, when using the thermosetting agent which functions as a catalyst, the preferable minimum is 1 weight part and a preferable upper limit is 20 weight part with respect to 100 weight part of thermosetting compounds. . When the blending amount of the thermosetting agent is less than 1 part by weight, it may not be cured sufficiently even when heated. Even if it mix | blends the said thermosetting agent exceeding 20 weight part, it does not contribute to thermosetting especially.

上記光熱硬化性接着剤組成物は、更に、上記エポキシ樹脂と反応する官能基を有する固形ポリマーを含有してもよい。
上記エポキシ樹脂と反応する官能基を有する固形ポリマーとしては特に限定されないが、例えば、アミノ基、ウレタン基、イミド基、水酸基、カルボキシル基、エポキシ基等を有する樹脂が挙げられ、なかでも、エポキシ基を有する高分子ポリマーが好ましい。エポキシ基を有する高分子ポリマーを含有すると、その硬化物は、優れた可撓性を発現することができる。このような光熱硬化性接着剤組成物からなる接着剤層により接着を行うことにより、上記多環式炭化水素骨格を主鎖に有するエポキシ樹脂に由来する優れた機械的強度、優れた耐熱性、優れた耐湿性等と、上記エポキシ基を有する高分子ポリマーに由来する優れた可撓性とが発揮され、得られた半導体チップ積層体は、耐冷熱サイクル性、耐ハンダリフロー性、寸法安定性等に優れるものとなり、高い接着信頼性や高い接続信頼性を発現することとなる。
The photothermosetting adhesive composition may further contain a solid polymer having a functional group that reacts with the epoxy resin.
Although it does not specifically limit as a solid polymer which has a functional group which reacts with the said epoxy resin, For example, resin which has an amino group, a urethane group, an imide group, a hydroxyl group, a carboxyl group, an epoxy group etc. is mentioned, Especially, an epoxy group is mentioned. High molecular polymers having When a polymer having an epoxy group is contained, the cured product can exhibit excellent flexibility. By performing adhesion with an adhesive layer comprising such a photothermosetting adhesive composition, excellent mechanical strength derived from an epoxy resin having the above polycyclic hydrocarbon skeleton in the main chain, excellent heat resistance, Excellent moisture resistance, etc. and excellent flexibility derived from the above polymer having an epoxy group are exhibited, and the obtained semiconductor chip laminated body has a thermal cycle resistance, solder reflow resistance, and dimensional stability. Etc., and high adhesion reliability and high connection reliability will be exhibited.

上記エポキシ基を有する高分子ポリマーとしては、末端及び/又は側鎖(ペンダント位)にエポキシ基を有する高分子ポリマーであればよく、特に限定されるものではないが、例えば、エポキシ基含有アクリルゴム、エポキシ基含有ブタジエンゴム、ビスフェノール型高分子量エポキシ樹脂、エポキシ基含有フェノキシ樹脂、エポキシ基含有アクリル樹脂、エポキシ基含有ウレタン樹脂、エポキシ基含有ポリエステル樹脂等が挙げられる。これらのエポキシ基を有する高分子ポリマーは、単独で用いられてもよく、2種類以上が併用されてもよい。なかでも、エポキシ基を多く含む高分子ポリマーを得ることができ、硬化物の機械的強度や耐熱性がより優れたものとなることから、エポキシ基含有アクリル樹脂が好適である。 The polymer having an epoxy group is not particularly limited as long as it is a polymer having an epoxy group at a terminal and / or side chain (pendant position). For example, an epoxy group-containing acrylic rubber And epoxy group-containing butadiene rubber, bisphenol-type high molecular weight epoxy resin, epoxy group-containing phenoxy resin, epoxy group-containing acrylic resin, epoxy group-containing urethane resin, epoxy group-containing polyester resin, and the like. These polymer polymers having an epoxy group may be used alone or in combination of two or more. Among them, an epoxy group-containing acrylic resin is suitable because a polymer containing a large amount of epoxy groups can be obtained and the cured product has better mechanical strength and heat resistance.

上記光熱硬化性接着剤組成物は、接着剤層の硬化速度や硬化物の物性等を調整する目的で、更に硬化促進剤を含有してもよい。
上記硬化促進剤としては特に限定されず、例えば、イミダゾール系硬化促進剤、3級アミン系硬化促進剤等が挙げられる。これらの硬化促進剤は、単独で用いてもよく、2種以上を併用してもよい。なかでも、硬化速度や硬化物の物性等の調整をするための反応系の制御をしやすいことから、イミダゾール系硬化促進剤が好適である。
The photothermosetting adhesive composition may further contain a curing accelerator for the purpose of adjusting the curing rate of the adhesive layer and the physical properties of the cured product.
It does not specifically limit as said hardening accelerator, For example, an imidazole series hardening accelerator, a tertiary amine type hardening accelerator, etc. are mentioned. These hardening accelerators may be used independently and may use 2 or more types together. Among these, an imidazole-based curing accelerator is preferable because it is easy to control the reaction system for adjusting the curing speed and the physical properties of the cured product.

上記イミダゾール系硬化促進剤としては特に限定されず、例えば、イミダゾールの1位をシアノエチル基で保護した1−シアノエチル−2−フェニルイミダゾールや、イソシアヌル酸で塩基性を保護したもの(商品名「2MA−OK」、四国化成工業社製)等が挙げられる。これらのイミダゾール系硬化促進剤は、単独で用いてもよく、2種以上を併用してもよい。 The imidazole curing accelerator is not particularly limited, and examples thereof include 1-cyanoethyl-2-phenylimidazole in which the 1-position of imidazole is protected with a cyanoethyl group, and those whose basicity is protected with isocyanuric acid (trade name “2MA- OK ”, manufactured by Shikoku Kasei Kogyo Co., Ltd.). These imidazole type hardening accelerators may be used independently and may use 2 or more types together.

上記接着剤層の厚さとしては特に限定されないが、好ましい下限は5μm、好ましい上限は150μmである。上記接着剤層の厚さが5μm未満であると、充分な接着力が得られないことがある。上記接着剤層の厚さが150μmを超えると、得られる半導体チップ積層体の厚さが厚くなってしまうことがある。 Although it does not specifically limit as thickness of the said adhesive bond layer, A preferable minimum is 5 micrometers and a preferable upper limit is 150 micrometers. If the thickness of the adhesive layer is less than 5 μm, sufficient adhesive strength may not be obtained. When the thickness of the adhesive layer exceeds 150 μm, the resulting semiconductor chip laminate may be thick.

上記接着シートを作製する方法としては特に限定されず、溶媒で希釈した上記光熱硬化性接着剤組成物を、上記基材フィルム上にコンマコート、グラビアコート、キャスティング等の方法により塗工して、乾燥させる方法等が挙げられる。
上記溶媒としては特に限定されないが、メチルエチルケトン、酢酸エチル、アセトン、メチルイソブチルケトン、2−エトキシエタノール、トルエン、メタノール、エタノール等の比較的低沸点の溶剤が好ましい。また、塗工性を向上させる目的で、これらの比較的低沸点の溶剤と、ジメチルアセトアミド、ジメチルホルムアミド、メチルピロリドン、シクロヘキサン、乳酸エチル等の高沸点溶剤とを併用してもよい。更に、必要に応じて界面活性剤を少量添加してもよい。
The method for producing the adhesive sheet is not particularly limited, and the photothermosetting adhesive composition diluted with a solvent is applied onto the base film by a method such as comma coating, gravure coating, casting, The method of drying etc. are mentioned.
Although it does not specifically limit as said solvent, Solvents with comparatively low boiling points, such as methyl ethyl ketone, ethyl acetate, acetone, methyl isobutyl ketone, 2-ethoxyethanol, toluene, methanol, ethanol, are preferable. For the purpose of improving the coatability, these relatively low boiling solvents may be used in combination with high boiling solvents such as dimethylacetamide, dimethylformamide, methylpyrrolidone, cyclohexane, and ethyl lactate. Furthermore, you may add a small amount of surfactant as needed.

図1に本発明の半導体チップ積層体の製造方法を説明する模式図を示した。図1を適宜参照しながら、本発明の半導体チップ積層体の製造方法について説明する。
本発明の半導体チップ積層体の製造方法においては、まず、上記接着シートの層間接着用接着剤層と、表面に凸状電極を有するウエハの該凸状電極が形成された面とを貼り合わせる工程1を行う。
FIG. 1 shows a schematic diagram for explaining a method for producing a semiconductor chip laminate according to the present invention. The manufacturing method of the semiconductor chip laminated body of the present invention will be described with reference to FIG. 1 as appropriate.
In the method for producing a semiconductor chip laminated body of the present invention, first, the step of bonding the adhesive layer for interlayer adhesion of the adhesive sheet and the surface of the wafer having the convex electrode on the surface thereof to which the convex electrode is formed. 1 is done.

上記ウエハとしては特に限定されず、例えば、シリコン、ガリウム砒素等の半導体からなるものが挙げられる。
上記ウエハには、金、銅、銀−錫半田、アルミニウム、ニッケル等からなる凸状電極が形成されている。本発明の半導体チップ積層体の製造方法によれば、表面に凸状電極を有するウエハであっても、高い接続信頼性を発揮させることができる。
図1において、ウエハ1の表面に凸状電極12が形成されている(図1(a))。
The wafer is not particularly limited, and examples thereof include those made of a semiconductor such as silicon or gallium arsenide.
A convex electrode made of gold, copper, silver-tin solder, aluminum, nickel or the like is formed on the wafer. According to the method for manufacturing a semiconductor chip laminated body of the present invention, even a wafer having a convex electrode on the surface can exhibit high connection reliability.
In FIG. 1, convex electrodes 12 are formed on the surface of a wafer 1 (FIG. 1 (a)).

貼り合わせは、常温、常圧下で行ってもよいが、より密着性を向上するためには、室温〜100℃の範囲内の温度で加熱しながら、1torr程度の真空下で貼り合わせることが好ましい。また、貼り合わせにはラミネーターを用いることが好ましい。
図1においては、ウエハ1の凸状電極12が形成された面に、基材フィルム21と層間接着用接着剤層22が形成された接着シート2を、ラミネーター3を用いて貼り付けている(図1(b))。
Bonding may be performed at normal temperature and normal pressure, but in order to further improve the adhesion, it is preferable that the bonding is performed under a vacuum of about 1 torr while heating at a temperature in the range of room temperature to 100 ° C. . Moreover, it is preferable to use a laminator for bonding.
In FIG. 1, the adhesive sheet 2 in which the base film 21 and the adhesive layer 22 for interlayer adhesion were formed is affixed on the surface in which the convex electrode 12 of the wafer 1 was formed using the laminator 3 ( FIG. 1 (b)).

本発明の半導体チップ積層体の製造方法においては、次いで、上記ウエハを上記接着シートに固定した状態で研削する工程2を行う。
工程2により、ウエハを所望の厚みに研削する。研削の方法としては特に限定されず、従来公知の方法を用いることができる。例えば、市販の研削装置(例えば、Disco社製のDFG8540等)を利用し、2400rpmの回転で0.2〜3μm/sの研削量の条件にて研削を行い、最終的にはCMPで仕上げるように行う方法等が挙げられる。
図1においては、研削装置4を用いてウエハ1を所定の厚さにまで研削している(図1(c)、(d))。
In the method for manufacturing a semiconductor chip laminated body according to the present invention, next, the step 2 of grinding in a state where the wafer is fixed to the adhesive sheet is performed.
In step 2, the wafer is ground to a desired thickness. The grinding method is not particularly limited, and a conventionally known method can be used. For example, using a commercially available grinding device (for example, DFG 8540 manufactured by Disco Corporation), grinding is performed at a rotation amount of 2400 rpm and a grinding amount of 0.2 to 3 μm / s, and finally, it is finished by CMP. And the like.
In FIG. 1, the wafer 1 is ground to a predetermined thickness by using a grinding device 4 (FIGS. 1C and 1D).

上記ウエハは表面に凸状電極を有するものであり、該凸状電極は上記接着シートの接着剤層中に埋もれており、凸状電極の形状が接着剤層表面の形状に影響している。しかし、工程2の研削時の押圧によって凸状電極の表面から接着剤が除かれ、接着剤層が平坦化されて、電極の高さと接着剤層の厚みがほぼ等しくなる。これにより、基材フィルム剥離後に凸状電極の表面が接着剤層上に露出しやすく、得られる半導体チップ積層体の接続信頼性が向上する。 The wafer has a convex electrode on the surface, and the convex electrode is buried in the adhesive layer of the adhesive sheet, and the shape of the convex electrode affects the shape of the surface of the adhesive layer. However, the adhesive is removed from the surface of the convex electrode by pressing during grinding in step 2, the adhesive layer is flattened, and the height of the electrode is substantially equal to the thickness of the adhesive layer. Thereby, the surface of a convex electrode tends to be exposed on an adhesive bond layer after peeling a base film, and the connection reliability of the obtained semiconductor chip laminated body improves.

本発明の半導体チップ積層体の製造方法においては、次いで、研削後のウエハに貼り合せられた接着シートにエネルギー線を照射して層間接着用接着剤層を半硬化させる工程3を行う(図1(e))。
エネルギー線を照射して接着剤層を半硬化させることにより、接着剤層の粘着力が低下し基材フィルムの剥離が容易になる。一方、「半硬化」であることから、接着剤層は、後述する基板又は他の半導体との接着時には充分な接着力を発揮することができる。
In the method for producing a semiconductor chip laminate of the present invention, next, Step 3 is performed in which the adhesive sheet bonded to the ground wafer is irradiated with energy rays to semi-cure the adhesive layer for interlayer adhesion (FIG. 1). (E)).
By irradiating energy rays and semi-curing the adhesive layer, the adhesive strength of the adhesive layer is reduced and the substrate film can be easily peeled off. On the other hand, since it is “semi-cured”, the adhesive layer can exhibit a sufficient adhesive force when adhered to a substrate or other semiconductor described later.

本明細書において半硬化とは、ゲル分率が10〜60重量%であることを意味する。ゲル分率が10重量%未満であると、接着剤層としての形状保持力が不足したり、基材フィルムを剥離する際に糊残りしやすくなったりすることがある。ゲル分率が60重量%を超えると、接着剤層の流動性が不充分となり、ボンディングが困難となる。
上記ゲル分率は、例えば、酢酸メチルやメチルエチルケトン等の、光熱硬化性接着剤組成物を充分に溶解できる溶解度を有する溶剤に半硬化した組成物を浸透させ、充分な時間撹拌し、メッシュにろ過した後、乾燥して得られる未溶解物の量から算出することができる。
In the present specification, semi-cured means that the gel fraction is 10 to 60% by weight. If the gel fraction is less than 10% by weight, the shape retention force as the adhesive layer may be insufficient, or adhesive residue may be easily left when the base film is peeled off. If the gel fraction exceeds 60% by weight, the fluidity of the adhesive layer becomes insufficient and bonding becomes difficult.
The gel fraction is, for example, infiltrated with a semi-cured composition in a solvent that has sufficient solubility to dissolve the photothermosetting adhesive composition, such as methyl acetate or methyl ethyl ketone, stirred for a sufficient time, and filtered through a mesh Then, it can be calculated from the amount of undissolved material obtained by drying.

このような半硬化状態は、例えば、上記接着剤層が光硬化性化合物として上記光硬化性官能基を有するアクリル樹脂を含有する場合には、エネルギー線の照射量を調整することにより容易に達成することができる。即ち、エネルギー線照射により発生したラジカルが、上記光硬化性官能基で連鎖反応し、三次元ネットワーク構造を形成してゲル化する。 Such a semi-cured state is easily achieved, for example, by adjusting the dose of energy rays when the adhesive layer contains an acrylic resin having the photocurable functional group as a photocurable compound. can do. That is, radicals generated by irradiation with energy rays are chain-reacted with the photocurable functional group to form a three-dimensional network structure and gel.

上記エネルギー線の照射量は特に限定されないが、好ましい下限は100mJ/cm、好ましい上限は10000mJ/cmである。上記エネルギー線の照射量が100mJ/cm未満であると、接着剤層のゲル分率が低くなり、接着剤層としての形状保持力が不足することがある。上記エネルギー線の照射量が10000mJ/cmを超えると、飽和状態となるため接着剤層の物性にはほとんど影響がなく、製造タクトの観点からは好ましくない。
また、上記エネルギー線を照射する方法は特に限定されないが、例えば、基材フィルム側から、超高圧水銀灯を用いて、365nm付近の紫外線をウエハ面への照度が60mW/cmとなるよう照度を調節して20秒間照射する(積算光量1200mJ/cm)方法等が挙げられる。
The dose of the energy ray is not particularly limited, preferable lower limit is 100 mJ / cm 2, the upper limit is preferably 10000 mJ / cm 2. When the irradiation amount of the energy rays is less than 100 mJ / cm 2 , the gel fraction of the adhesive layer is lowered, and the shape retention force as the adhesive layer may be insufficient. When the irradiation amount of the energy rays exceeds 10,000 mJ / cm 2 , the saturated state is reached, so that the physical properties of the adhesive layer are hardly affected, which is not preferable from the viewpoint of manufacturing tact.
Moreover, the method of irradiating the energy beam is not particularly limited. For example, from the base film side, using an ultrahigh pressure mercury lamp, the illuminance is set so that the illuminance on the wafer surface becomes 60 mW / cm 2 with ultraviolet light around 365 nm. Examples include a method of adjusting and irradiating for 20 seconds (integrated light amount 1200 mJ / cm 2 ).

本発明の半導体チップ積層体の製造方法においては、次いで、研削後のウエハに貼り合せられた接着シートから基材フィルムを剥離して、半硬化した層間接着用接着剤層が付着したウエハを得る工程4を行う(図1(f))。
工程3のエネルギー線の照射により上記接着シートの接着剤層が半硬化していることから、極めて容易に基材フィルムを剥離することができる。また、このときに電極表面に残存する接着剤層を除去することも可能である。
In the method for producing a semiconductor chip laminate of the present invention, the base film is then peeled from the adhesive sheet bonded to the ground wafer to obtain a wafer to which a semi-cured adhesive layer for interlayer adhesion is adhered. Step 4 is performed (FIG. 1 (f)).
Since the adhesive layer of the said adhesive sheet is semi-hardened by irradiation of the energy beam of process 3, a base film can be peeled off very easily. At this time, it is also possible to remove the adhesive layer remaining on the electrode surface.

本発明の半導体チップ積層体の製造方法においては、次いで、半硬化した層間接着用接着剤層が付着したウエハをダイシングして、半硬化した層間接着用接着剤層が付着した半導体チップに個片化する工程5を行う(図1(g))。
上記ダイシングの方法としては特に限定されず、例えば、従来公知の砥石等を用いて切断分離する方法等を用いることができる。
In the method for manufacturing a semiconductor chip laminate according to the present invention, the wafer to which the semi-cured interlayer adhesive adhesive layer is then diced is separated into semiconductor chips to which the semi-cured interlayer adhesive adhesive layer is adhered. Step 5 is performed (FIG. 1G).
The dicing method is not particularly limited, and for example, a method of cutting and separating using a conventionally known grindstone or the like can be used.

工程3のエネルギー線の照射により上記接着シートの接着剤層が半硬化していることから、接着剤層に起因するヒゲが発生することなく、接着剤層ごと綺麗に、容易に切断することができる。また、接着剤層が半硬化していることにより、切削くずが接着剤層に付着するのを抑制することができる。更に、ダイシング時に使用する水によって接着剤層が劣化してしまうこともない。 Since the adhesive layer of the adhesive sheet is semi-cured by the irradiation of energy rays in step 3, the adhesive layer can be cut cleanly and easily without generating the beard due to the adhesive layer. it can. Moreover, it can suppress that the cutting waste adheres to an adhesive bond layer because the adhesive bond layer is semi-hardened. Furthermore, the adhesive layer is not deteriorated by water used during dicing.

本発明の半導体チップ積層体の製造方法においては、次いで、半硬化した層間接着用接着剤層が付着した半導体チップを、半硬化した層間接着用接着剤層を介して基板又は他の半導体に接着して半導体チップ積層体を得る工程6を行う(図1(h))。
半硬化状態の接着剤層は、なお充分な接着力を有していることから、得られた半硬化した接着剤層が付着した半導体チップを、接着剤層を介して基板又は他の半導体に接着することは充分に可能である。
なお、本明細書において半導体チップ積層体とは、基板に半導体チップを1つだけ接着したものと、複数の半導体チップを接着積層したものとの両方を含む。
In the method for producing a semiconductor chip laminate of the present invention, the semiconductor chip to which the semi-cured interlayer adhesive adhesive layer is adhered is then bonded to a substrate or another semiconductor through the semi-cured interlayer adhesive adhesive layer. Then, Step 6 for obtaining a semiconductor chip laminated body is performed (FIG. 1H).
Since the semi-cured adhesive layer still has sufficient adhesive strength, the obtained semiconductor chip to which the semi-cured adhesive layer is adhered is attached to the substrate or other semiconductor via the adhesive layer. Adhesion is sufficiently possible.
In this specification, the semiconductor chip stacked body includes both a structure in which only one semiconductor chip is bonded to a substrate and a structure in which a plurality of semiconductor chips are bonded and stacked.

工程6により得られた半導体チップ積層体を、更に、接着後に加熱等することにより接着剤層を完全に硬化させる工程7を行うことにより、より安定した接着を実現することができる。 More stable adhesion can be realized by performing Step 7 of further completely curing the adhesive layer by heating the semiconductor chip laminated body obtained in Step 6 after the adhesion.

上記の説明においては、半硬化した層間接着用接着剤層が付着したウエハを得る工程4を行った後、該半硬化した層間接着用接着剤層が付着したウエハをダイシングして、半硬化した層間接着用接着剤層が付着した半導体チップに個片化する工程5を行った。
この他の態様として、工程4で得られた半硬化した層間接着用接着剤層が付着したウエハを、接着剤層を介して他のウエハに積層してウエハ積層体を作製し、得られたウエハ積層体を一括的にダイシングして、半硬化した層間接着用接着剤層が付着した半導体チップ積層体を得てもよい。
In the above description, after performing step 4 of obtaining a wafer to which a semi-cured interlayer adhesive adhesive layer is adhered, the wafer to which the semi-cured interlayer adhesive adhesive layer is adhered is diced and semi-cured. Step 5 was performed to separate the semiconductor chip to which the adhesive layer for interlayer adhesion was attached.
As another embodiment, the wafer having the semi-cured adhesive layer for interlayer adhesion obtained in Step 4 was laminated on another wafer through the adhesive layer to produce a wafer laminate. The wafer laminated body may be diced collectively to obtain a semiconductor chip laminated body having a semi-cured adhesive layer for interlayer adhesion attached thereto.

本発明によれば、極めて簡便に薄研削された層間接着剤が付着した半導体チップを得ることができ、凸状電極を有する半導体チップであっても接続信頼性の高い高積層型の半導体チップ積層体を製造することができる半導体チップ積層体の製造方法を提供することができる。 According to the present invention, a semiconductor chip to which a thinly ground interlayer adhesive is attached can be obtained very easily, and a highly laminated semiconductor chip stack having high connection reliability even for a semiconductor chip having a convex electrode. The manufacturing method of the semiconductor chip laminated body which can manufacture a body can be provided.

本発明の半導体チップ積層体の製造方法を説明する模式図である。It is a schematic diagram explaining the manufacturing method of the semiconductor chip laminated body of this invention.

以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1〜3)
(1)光熱硬化性接着剤組成物の調製
表1の組成に従って、下記に示す各材料をメチルエチルケトンに加え、ホモディスパーを用いて攪拌混合して、光熱硬化性接着剤組成物を調製した。
(熱硬化性化合物)
・ジシクロペンタジエン型エポキシ樹脂(HP−7200HH、DIC社製)
・ナフタレン型エポキシ樹脂(上記一般式(1)において、R及びRがH、m及びnが1である化合物、EXA−4710、DIC社製)
・レゾルシノール型エポキシ樹脂(EX201P、ナガセケムテクス社製)
(Examples 1-3)
(1) Preparation of photothermosetting adhesive composition According to the composition shown in Table 1, the materials shown below were added to methyl ethyl ketone and stirred and mixed using a homodisper to prepare a photothermosetting adhesive composition.
(Thermosetting compound)
・ Dicyclopentadiene type epoxy resin (HP-7200HH, manufactured by DIC)
-Naphthalene type epoxy resin (in the above general formula (1), R 1 and R 2 are H, m and n are 1 compounds, EXA-4710, manufactured by DIC)
Resorcinol type epoxy resin (EX201P, manufactured by Nagase ChemteX Corporation)

(光硬化性化合物)
・光硬化性官能基を有するアクリル樹脂(2−エチルヘキシルアクリレートと、イソボルニルアクリレートと、ヒドロキシエチルアクリレートとの共重合体に2−メタクリロイルオキシエチルイソシアネートを付加させたもの、分子量30万、二重結合当量0.9meq/g、SK−2−37、新中村化学社製)
・光硬化性官能基と熱硬化性官能基とを有するアクリル樹脂(2−エチルヘキシルアクリレートと、イソボルニルアクリレートと、ヒドロキシエチルアクリレートと、グリシジルメタクリレートとの共重合体に2−メタクリロイルオキシエチルイソシアネートを付加させたもの、分子量52万、二重結合当量0.9meq/g、エポキシ当量1650、SK−2−78、新中村化学社製)
(Photocurable compound)
-Acrylic resin having a photocurable functional group (2-ethylhexyl acrylate, isobornyl acrylate, hydroxyethyl acrylate copolymer added with 2-methacryloyloxyethyl isocyanate, molecular weight 300,000, double (Binding equivalent 0.9 meq / g, SK-2-37, manufactured by Shin-Nakamura Chemical Co., Ltd.)
-Acrylic resin having a photocurable functional group and a thermosetting functional group (2-methacryloyloxyethylisocyanate is a copolymer of 2-ethylhexyl acrylate, isobornyl acrylate, hydroxyethyl acrylate, and glycidyl methacrylate. Added, molecular weight 520,000, double bond equivalent 0.9 meq / g, epoxy equivalent 1650, SK-2-78, manufactured by Shin-Nakamura Chemical Co., Ltd.)

(光重合開始剤)
・光ラジカル発生剤(Esacure1001、Lamberti社製)
(Photopolymerization initiator)
Photoradical generator (Esacure 1001, manufactured by Lamberti)

(熱硬化剤)
・酸無水物(YH−307、ジャパンエポキシレジン社製)
(Thermosetting agent)
・ Acid anhydride (YH-307, manufactured by Japan Epoxy Resin Co., Ltd.)

(その他)
・アクリル樹脂(イソブチルメタクリレートと、ヒドロキシエチルメタクリレートとの共重合体、分子量10万、SK−2−47、新中村化学社製)
・イミダゾール化合物(2MA−OK、四国化成工業社製)
・応力緩和ゴム系高分子(AC4030、ガンツ化成社製)
・ヒュームドシリカ(MT10、トクヤマ社製)
・イミダゾールシランカップリング剤(SP−1000、日鉱マテリアル社製)
(Other)
・ Acrylic resin (copolymer of isobutyl methacrylate and hydroxyethyl methacrylate, molecular weight 100,000, SK-2-47, manufactured by Shin-Nakamura Chemical Co., Ltd.)
・ Imidazole compound (2MA-OK, manufactured by Shikoku Chemicals)
・ Stress relaxation rubber polymer (AC4030, manufactured by Ganz Kasei Co., Ltd.)
-Fumed silica (MT10, manufactured by Tokuyama)
・ Imidazolesilane coupling agent (SP-1000, manufactured by Nikko Materials)

(2)接着シートの調製
厚さ50μmのポリエチレンテレフタレート(PET)からなる基材フィルム上に、コンマコート法により得られた光熱硬化性接着剤組成物を厚さ40μmとなるように塗工し、乾燥させて接着シートを得た。使用するまで光熱硬化性接着剤組成物からなる接着剤層の表面をPETフィルムで保護した。
(2) Preparation of adhesive sheet On a base film made of polyethylene terephthalate (PET) having a thickness of 50 μm, a photothermographic adhesive composition obtained by a comma coating method was applied to a thickness of 40 μm, An adhesive sheet was obtained by drying. Until use, the surface of the adhesive layer composed of the photothermosetting adhesive composition was protected with a PET film.

(3)半導体チップ積層体の製造
直径20cm、厚み700μmであり、表面に高さ40μm、幅100μm×100μmの正方形の銅バンプが400μmピッチで多数形成されている半導体ウエハ(シリコンウエハ)を用意した。
(3) Manufacturing of semiconductor chip laminate A semiconductor wafer (silicon wafer) having a diameter of 20 cm, a thickness of 700 μm, and a large number of square copper bumps having a height of 40 μm and a width of 100 μm × 100 μm formed at a pitch of 400 μm was prepared. .

接着シートの接着剤層を保護するPETフィルムを剥がし、ラミネーターを用いて半導体ウエハに真空下(1torr)で貼り付けた。
次いで、これを研削装置に取りつけ、半導体ウエハの厚さが約100μmになるまで研削した。このとき、研削の摩擦熱により半導体ウエハの温度が上昇しないように、半導体ウエハに水を散布しながら作業を行った。研磨後はCMP(Chemical Mechanical Polishing)プロセスでアルカリのシリカ分散水溶液による研磨で鏡面化加工を行った。
The PET film that protects the adhesive layer of the adhesive sheet was peeled off and attached to the semiconductor wafer under vacuum (1 torr) using a laminator.
Next, this was attached to a grinding apparatus and ground until the thickness of the semiconductor wafer became about 100 μm. At this time, the operation was performed while water was sprayed on the semiconductor wafer so that the temperature of the semiconductor wafer did not increase due to frictional heat of grinding. After polishing, mirror polishing was performed by polishing with an aqueous solution of silica dispersed in an alkali in a CMP (Chemical Mechanical Polishing) process.

研磨装置から半導体ウエハを取り外し、半導体ウエハの接着シートが貼付されていない側の面にダイシングテープ「PEテープ♯6318−B」(積水化学社製、厚み70μm、基材ポリエチレン、粘着材ゴム系粘着材10μm)を貼り付け、ダイシングフレームにマウントした。
接着シートの基材フィルム側から、超高圧水銀灯を用いて、365nm付近の紫外線を、半導体ウエハ面への照度が60mW/cmとなるよう照度を調節して20秒間照射した(積算光量1200mJ/cm)。
紫外線により半硬化した接着剤層から基材フィルムを剥離して、研削済の半導体ウエハ上に接着剤層が転写されたウエハが得られた。
The semiconductor wafer is removed from the polishing apparatus, and a dicing tape “PE tape # 6318-B” (manufactured by Sekisui Chemical Co., Ltd., thickness 70 μm, base polyethylene, adhesive rubber-based adhesive is applied to the surface of the semiconductor wafer where the adhesive sheet is not attached. Material 10 μm) was pasted and mounted on a dicing frame.
From the base film side of the adhesive sheet, using an ultra-high pressure mercury lamp, ultraviolet rays of around 365 nm were irradiated for 20 seconds while adjusting the illuminance so that the illuminance on the semiconductor wafer surface was 60 mW / cm 2 (integrated light amount 1200 mJ / cm 2 ).
The base film was peeled from the adhesive layer semi-cured by ultraviolet rays, and a wafer was obtained in which the adhesive layer was transferred onto a ground semiconductor wafer.

ダイシング装置DFD651(ディスコ社製)を用いて、送り速度50mm/秒で、半導体ウエハを10mm×10mmのチップサイズに分割して個片化し、半硬化した接着剤層が付着した半導体チップを得た。 Using a dicing machine DFD651 (manufactured by Disco Corporation), the semiconductor wafer was divided into 10 mm × 10 mm chip sizes at a feed rate of 50 mm / second, and a semiconductor chip with a semi-cured adhesive layer adhered was obtained. .

得られた半硬化した接着剤層が付着した半導体チップを熱風乾燥炉内にて80℃で10分間乾燥後、ボンディング装置(澁谷工業社製、DB−100)を用いて荷重0.15MPa、温度230℃で10秒間圧着して積層させた。これを繰り返し5層の半導体チップを積層した後、180℃で60分間かけて硬化させ、半導体チップ積層体を得た。 The semiconductor chip to which the semi-cured adhesive layer was adhered was dried at 80 ° C. for 10 minutes in a hot air drying furnace, and then a load of 0.15 MPa and a temperature using a bonding apparatus (DB-100, manufactured by Shibuya Kogyo Co., Ltd.) The laminate was formed by pressure bonding at 230 ° C. for 10 seconds. This was repeated, and 5 layers of semiconductor chips were stacked and then cured at 180 ° C. for 60 minutes to obtain a semiconductor chip stack.

(評価)
半導体チップ積層体の製造工程で得られたウエハ、半導体チップ、又は、得られた半導体チップ積層体について、以下の基準で評価を行った。結果を表1に示した。
(1)ダイシング性能評価
個片化した半硬化した接着剤層が付着した半導体チップを顕微鏡を用いて観察した。各チップと接着剤層とがダイシングに沿って綺麗にカットされており、接着剤層に起因するヒゲがなく、切削くずが接着剤層に付着しない場合を「○」と、各チップと接着剤層とがダイシングに沿って綺麗にカットされているものの、接着剤層に起因するヒゲがあったり、切削くずが接着剤層に付着している場合を「△」と、各チップと接着剤層が綺麗にカットされておらず、接着剤層に起因するヒゲあり、切削くずが接着剤層に付着している場合を「×」と評価した。
(Evaluation)
The wafer, the semiconductor chip, or the obtained semiconductor chip laminated body obtained in the manufacturing process of the semiconductor chip laminated body was evaluated according to the following criteria. The results are shown in Table 1.
(1) Dicing performance evaluation The semiconductor chip to which the separated semi-cured adhesive layer was adhered was observed using a microscope. When each chip and adhesive layer are cut cleanly along the dicing, there is no whisker due to the adhesive layer, and cutting waste does not adhere to the adhesive layer, “○”, and each chip and adhesive If the layer is cut cleanly along the dicing, but there is a beard due to the adhesive layer, or if cutting scraps are attached to the adhesive layer, "△", each chip and the adhesive layer Was not cut cleanly, there was a beard due to the adhesive layer, and a case where cutting waste adhered to the adhesive layer was evaluated as “x”.

(2)半導体チップのボンディング評価
半硬化した接着剤層が付着した半導体チップをボンディング装置を利用して、230℃、100N、10秒間の条件でプラスチックス基板上にボンディングし、接着性能を確認した。チップと基板との間に空気がかまず、綺麗な接着面ができ、また、チップの面上に接着剤層が盛り上がることがない場合を「○」と、チップと基板との間に空気がかまないものの、チップの面上に接着剤層が盛り上がりボンダーのヘッドを接着剤が汚染している場合を「△」と、チップと基板との間に空気がかんでいるとともに、チップの面上に接着剤層が盛り上がりボンダーのヘッドを接着剤が汚染している場合を「×」と評価した。
(2) Bonding evaluation of semiconductor chip A semiconductor chip with a semi-cured adhesive layer adhered was bonded on a plastic substrate under the conditions of 230 ° C., 100 N for 10 seconds using a bonding apparatus, and the adhesion performance was confirmed. . If the air does not flow between the chip and the substrate, a clean adhesive surface is created, and if the adhesive layer does not rise on the surface of the chip, “○” indicates that there is no air between the chip and the substrate. Although it does not matter, if the adhesive layer rises on the surface of the chip and the adhesive is contaminating the bonder head, “△” indicates that air is trapped between the chip and the substrate, and the chip surface The case where the adhesive layer was raised and the bonder head was contaminated with the adhesive was evaluated as “x”.

(3)半田耐熱性評価
半導体チップ積層体を、125℃で6時間乾燥させ、次いで30℃、80%湿度の条件下で48時間の湿潤処理を行った後、ハンダリフロー260℃、30秒間の条件で処理を行った。このリフロー処理後の各半導体チップ積層体の層間について、層間が剥離しているか否かについて超音波探傷装置(SAT)により観察を行った。
10個の半導体チップ積層体サンプルについて剥離の有無を確認し、剥離が見られたサンプルが0個であった場合を「○」と、剥離が見られたサンプルが1〜2個であった場合を「△」と、剥離が見られたサンプルが3個以上であった場合を「×」として半田耐熱性評価を行った。
(3) Solder heat resistance evaluation The semiconductor chip laminate was dried at 125 ° C. for 6 hours, then subjected to a wet treatment for 48 hours under conditions of 30 ° C. and 80% humidity, and then solder reflow at 260 ° C. for 30 seconds. Processing was performed under conditions. With respect to the layers of each semiconductor chip laminated body after the reflow treatment, whether or not the layers were separated was observed with an ultrasonic flaw detector (SAT).
When the presence or absence of peeling was confirmed with respect to 10 semiconductor chip laminate samples, the case where peeling was found was 0, and the case where peeling was found was 1 or 2 Was evaluated as “Δ”, and the case where three or more samples were observed to be peeled off was evaluated as “×”.

(4)TCT評価
得られた半導体チップ積層体について、−55℃、9分間と、125℃、9分間とを1サイクルとする温度サイクル試験を行い、適当なサイクル数を経た後で半導体チップ積層体を取り出し、導通抵抗値の変化を確認した。導通抵抗値が10%以上変化したときのサイクル数を評価した。
(4) TCT evaluation The obtained semiconductor chip laminated body is subjected to a temperature cycle test in which one cycle is −55 ° C., 9 minutes, and 125 ° C., 9 minutes. The body was taken out and the change in conduction resistance value was confirmed. The number of cycles when the conduction resistance value changed by 10% or more was evaluated.

(5)接着力評価
半硬化した接着剤層が付着したウエハをダイシングにより5mm×5mmに個片化し、半硬化した接着剤層が付着した半導体チップを得た。この半導体チップを、ボンディング装置を用いて230℃、10秒間の条件で半導体ウエハ上にボンディングし、更に、180℃、60分間の条件で硬化させてサンプルを得た。得られたサンプルについて、ダイシェアテスターを用いて、100μm/sの速度で260℃におけるダイシェア強度を測定した。
(5) Adhesive strength evaluation The wafer to which the semi-cured adhesive layer was adhered was separated into 5 mm × 5 mm by dicing, and a semiconductor chip to which the semi-cured adhesive layer was adhered was obtained. This semiconductor chip was bonded on a semiconductor wafer at 230 ° C. for 10 seconds using a bonding apparatus, and further cured at 180 ° C. for 60 minutes to obtain a sample. About the obtained sample, the die shear strength in 260 degreeC was measured at the speed | rate of 100 micrometers / s using the die shear tester.

(比較例1)
表1の組成に従って、上記に示した各材料をメチルエチルケトンに加え、ホモディスパーを用いて攪拌混合して、硬化性接着剤組成物を調製した。これは、実施例1〜3の組成から紫外線で硬化する成分を除き、代わりに紫外線で硬化しないアクリル樹脂(SK−2−47、新中村化学社製)を添加したものである。
得られた硬化性接着剤組成物を用い、紫外線を照射する工程を省いた以外は実施例1〜3と同様にして、接着シートを調製し、これを用いて半導体チップ積層体を製造し、評価を行った。
(Comparative Example 1)
According to the composition of Table 1, each of the materials shown above was added to methyl ethyl ketone and stirred and mixed using a homodisper to prepare a curable adhesive composition. This is obtained by adding an acrylic resin (SK-2-47, manufactured by Shin-Nakamura Chemical Co., Ltd.) that is not cured with ultraviolet rays, except for the components that are cured with ultraviolet rays from the compositions of Examples 1 to 3.
Using the obtained curable adhesive composition, except that the step of irradiating ultraviolet rays was omitted, an adhesive sheet was prepared in the same manner as in Examples 1 to 3, and a semiconductor chip laminate was produced using this, Evaluation was performed.

Figure 2010056531
Figure 2010056531

本発明によれば、極めて簡便に薄研削された層間接着剤が付着した半導体チップを得ることができ、凸状電極を有する半導体チップであっても接続信頼性の高い高積層型の半導体チップ積層体を製造することができる半導体チップ積層体の製造方法を提供することができる。 According to the present invention, a semiconductor chip to which a thinly ground interlayer adhesive is attached can be obtained very easily, and a highly laminated semiconductor chip stack having high connection reliability even for a semiconductor chip having a convex electrode. The manufacturing method of the semiconductor chip laminated body which can manufacture a body can be provided.

1 表面に凸状電極を有するウエハ
12 凸状電極
2 接着シート
21 基材フィルム
22 層間接着用接着剤層
3 ラミネーター
4 研削装置
5 砥石
6 基板又は他の半導体
DESCRIPTION OF SYMBOLS 1 Wafer which has convex electrode on surface 12 Convex electrode 2 Adhesive sheet 21 Base film 22 Adhesive layer for interlayer adhesion 3 Laminator 4 Grinding device 5 Grinding stone 6 Substrate or other semiconductor

Claims (9)

基材フィルムと層間接着用接着剤層とからなる接着シートを用いて表面に凸状電極を有する半導体チップを積層した半導体チップ積層体を製造する方法であって、
前記接着シートの層間接着用接着剤層と、表面に凸状電極を有するウエハの前記凸状電極が形成された面とを貼り合わせる工程1と、
前記ウエハを前記接着シートに固定した状態で研削する工程2と、
前記研削後のウエハに貼り合せられた前記接着シートにエネルギー線を照射して前記層間接着用接着剤層を半硬化させる工程3と、
前記研削後のウエハに貼り合せられた前記接着シートから基材フィルムを剥離して、半硬化した層間接着用接着剤層が付着したウエハを得る工程4と、
前記半硬化した層間接着用接着剤層が付着したウエハをダイシングして、半硬化した層間接着用接着剤層が付着した半導体チップに個片化する工程5と、
前記半硬化した層間接着用接着剤層が付着した半導体チップを、半硬化した層間接着用接着剤層を介して基板又は他の半導体に接着して半導体チップ積層体を得る工程6とを有する
ことを特徴とする半導体チップ積層体の製造方法。
A method for producing a semiconductor chip laminate in which a semiconductor chip having a convex electrode on the surface is laminated using an adhesive sheet comprising a base film and an adhesive layer for interlayer adhesion,
Bonding the adhesive layer for interlayer adhesion of the adhesive sheet and the surface on which the convex electrode of the wafer having the convex electrode is bonded to the surface;
Grinding 2 in a state where the wafer is fixed to the adhesive sheet;
Step 3 of semi-curing the adhesive layer for interlayer adhesion by irradiating the adhesive sheet bonded to the ground wafer with energy rays;
Step 4 of removing the base film from the adhesive sheet bonded to the ground wafer to obtain a wafer to which a semi-cured adhesive layer for interlayer adhesion is attached;
A step 5 of dicing the wafer to which the semi-cured interlayer adhesive adhesive layer is attached, and separating the wafer into individual semiconductor chips to which the semi-cured interlayer adhesive adhesive layer is attached;
A step 6 of obtaining a semiconductor chip laminate by adhering the semiconductor chip to which the semi-cured interlayer adhesive layer is adhered to a substrate or another semiconductor through the semi-cured interlayer adhesive layer. A method for producing a semiconductor chip laminate, comprising:
更に、工程6により得られた半導体チップ積層体を、加熱することにより層間接着用接着剤層を完全に硬化させる工程7を有することを特徴とする請求項1記載の半導体チップ積層体の製造方法。 2. The method of manufacturing a semiconductor chip laminate according to claim 1, further comprising a step 7 of completely curing the adhesive layer for interlayer adhesion by heating the semiconductor chip laminate obtained in step 6. . 層間接着用接着剤層は、光硬化性化合物、熱硬化性化合物、光重合開始剤及び熱硬化剤を含有する光熱硬化性接着剤組成物からなることを特徴とする請求項1又は2記載の半導体チップ積層体の製造方法。 The adhesive layer for interlayer adhesion consists of a photothermosetting adhesive composition containing a photocurable compound, a thermosetting compound, a photopolymerization initiator, and a thermosetting agent, according to claim 1 or 2. Manufacturing method of semiconductor chip laminated body. 光硬化性化合物は、光硬化性官能基を有するアクリル樹脂であることを特徴とする請求項3記載の半導体チップ積層体の製造方法。 4. The method for producing a semiconductor chip laminate according to claim 3, wherein the photocurable compound is an acrylic resin having a photocurable functional group. 光硬化性官能基を有するアクリル樹脂は、更に、熱硬化性官能基を有することを特徴とする請求項4記載の半導体チップ積層体の製造方法。 The method for producing a semiconductor chip laminate according to claim 4, wherein the acrylic resin having a photocurable functional group further has a thermosetting functional group. 熱硬化性化合物は、エポキシ樹脂を含有することを特徴とする請求項3、4又は5記載の半導体チップ積層体の製造方法。 The method for producing a semiconductor chip laminate according to claim 3, wherein the thermosetting compound contains an epoxy resin. エポキシ樹脂は、多環式炭化水素骨格を主鎖に有するエポキシ樹脂であることを特徴とする請求項6記載の半導体チップ積層体の製造方法。 7. The method for producing a semiconductor chip laminate according to claim 6, wherein the epoxy resin is an epoxy resin having a polycyclic hydrocarbon skeleton in the main chain. 多環式炭化水素骨格を主鎖に有するエポキシ樹脂は、ジシクロペンタジエン骨格を有するエポキシ樹脂及び/又はナフタレン骨格を有するエポキシ樹脂を含有することを特徴とする請求項7記載の半導体チップ積層体の製造方法。 8. The semiconductor chip laminate according to claim 7, wherein the epoxy resin having a polycyclic hydrocarbon skeleton in the main chain contains an epoxy resin having a dicyclopentadiene skeleton and / or an epoxy resin having a naphthalene skeleton. Production method. ナフタレン骨格を有するエポキシ樹脂は、下記一般式(1)で表される化合物を含有することを特徴とする請求項8記載の半導体チップ積層体の製造方法。
Figure 2010056531
一般式(1)中、R及びRは、それぞれ、水素原子、ハロゲン原子、アルキル基、アリール基又はフェニル基を表し、n及びmは、それぞれ、0又は1である。
The method for producing a semiconductor chip laminate according to claim 8, wherein the epoxy resin having a naphthalene skeleton contains a compound represented by the following general formula (1).
Figure 2010056531
In General Formula (1), R 1 and R 2 each represent a hydrogen atom, a halogen atom, an alkyl group, an aryl group, or a phenyl group, and n and m are 0 or 1, respectively.
JP2009169194A 2008-07-28 2009-07-17 Manufacturing method of semiconductor chip laminated body Expired - Fee Related JP5525200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009169194A JP5525200B2 (en) 2008-07-28 2009-07-17 Manufacturing method of semiconductor chip laminated body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008193908 2008-07-28
JP2008193908 2008-07-28
JP2009169194A JP5525200B2 (en) 2008-07-28 2009-07-17 Manufacturing method of semiconductor chip laminated body

Publications (2)

Publication Number Publication Date
JP2010056531A true JP2010056531A (en) 2010-03-11
JP5525200B2 JP5525200B2 (en) 2014-06-18

Family

ID=42072073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009169194A Expired - Fee Related JP5525200B2 (en) 2008-07-28 2009-07-17 Manufacturing method of semiconductor chip laminated body

Country Status (1)

Country Link
JP (1) JP5525200B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026431A1 (en) * 2010-08-23 2012-03-01 積水化学工業株式会社 Bonding sheet and method for mounting semiconductor chip
JP2012049456A (en) * 2010-08-30 2012-03-08 Disco Abrasive Syst Ltd Tape sticking method and tape sticking device
JP2012054344A (en) * 2010-08-31 2012-03-15 Tokyo Electron Ltd Pickup method and pickup device
JP2015157895A (en) * 2014-02-24 2015-09-03 住友ベークライト株式会社 Pressure sensitive adhesive sheet-integrated adhesive sheet for wafer processing and electronic apparatus
WO2015162807A1 (en) * 2014-04-22 2015-10-29 デクセリアルズ株式会社 Semiconductor device manufacturing method
JP2017098413A (en) * 2015-11-24 2017-06-01 デクセリアルズ株式会社 Repair method and connection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144140A (en) * 1999-11-12 2001-05-25 Lintec Corp Method of manufacturing semiconductor device
JP2006261529A (en) * 2005-03-18 2006-09-28 Lintec Corp Underfill tape for flip chip mount and manufacturing method of semiconductor device
JP2008159755A (en) * 2006-12-22 2008-07-10 Sekisui Chem Co Ltd Manufacturing method of semiconductor device
JP2010258239A (en) * 2009-04-24 2010-11-11 Sekisui Chem Co Ltd Insulating adhesive sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144140A (en) * 1999-11-12 2001-05-25 Lintec Corp Method of manufacturing semiconductor device
JP2006261529A (en) * 2005-03-18 2006-09-28 Lintec Corp Underfill tape for flip chip mount and manufacturing method of semiconductor device
JP2008159755A (en) * 2006-12-22 2008-07-10 Sekisui Chem Co Ltd Manufacturing method of semiconductor device
JP2010258239A (en) * 2009-04-24 2010-11-11 Sekisui Chem Co Ltd Insulating adhesive sheet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026431A1 (en) * 2010-08-23 2012-03-01 積水化学工業株式会社 Bonding sheet and method for mounting semiconductor chip
JP2012049456A (en) * 2010-08-30 2012-03-08 Disco Abrasive Syst Ltd Tape sticking method and tape sticking device
JP2012054344A (en) * 2010-08-31 2012-03-15 Tokyo Electron Ltd Pickup method and pickup device
JP2015157895A (en) * 2014-02-24 2015-09-03 住友ベークライト株式会社 Pressure sensitive adhesive sheet-integrated adhesive sheet for wafer processing and electronic apparatus
WO2015162807A1 (en) * 2014-04-22 2015-10-29 デクセリアルズ株式会社 Semiconductor device manufacturing method
JP2015207718A (en) * 2014-04-22 2015-11-19 デクセリアルズ株式会社 Semiconductor device manufacturing method
KR20160141707A (en) * 2014-04-22 2016-12-09 데쿠세리아루즈 가부시키가이샤 Semiconductor device manufacturing method
TWI625776B (en) * 2014-04-22 2018-06-01 Dexerials Corp Semiconductor device manufacturing method, semiconductor device, and protective tape
KR102326106B1 (en) 2014-04-22 2021-11-15 데쿠세리아루즈 가부시키가이샤 Semiconductor device manufacturing method
JP2017098413A (en) * 2015-11-24 2017-06-01 デクセリアルズ株式会社 Repair method and connection method

Also Published As

Publication number Publication date
JP5525200B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
KR101920091B1 (en) Bonding sheet and method for mounting semiconductor chip
JP5725329B2 (en) Dicing die bonding film and semiconductor device with excellent burr characteristics and reliability
JPWO2005112091A1 (en) Adhesive sheet, semiconductor device using the same, and manufacturing method thereof
JP5158864B2 (en) Wafer processing tape
JP5525200B2 (en) Manufacturing method of semiconductor chip laminated body
TW202141603A (en) Sheet for production of semiconductor device and method for producing semiconductor chip with film-form adhesive
JP5395701B2 (en) Adhesive sheet substrate, adhesive sheet and semiconductor chip mounting method
JP5951207B2 (en) Dicing die bonding sheet
JP5476033B2 (en) Mounting method of semiconductor chip
JP2010258239A (en) Insulating adhesive sheet
TWI809132B (en) Manufacturing method of semiconductor chip and manufacturing method of semiconductor device
JP2019075449A (en) Dicing die bonding sheet and manufacturing method of semiconductor chip
JP2007073647A (en) Die attaching film with dicing sheet function, manufacturing method of semiconductor device using the same, and semiconductor device
JP3710457B2 (en) Die attach film with dicing sheet function, semiconductor device manufacturing method using the same, and semiconductor device
JP2022125110A (en) Die bonding sheet and method for manufacturing semiconductor chip with film type adhesive
JP4785095B2 (en) Wafer processing tape
JP2011198914A (en) Adhesive composition for semiconductor, adhesive sheet for semiconductor, and method of manufacturing semiconductor device
JP2016194020A (en) Adhesive for dicing film integrated type semiconductor
WO2023145610A1 (en) Curable resin film, composite sheet, semiconductor chip, and semiconductor chip manufacturing method
JP2011159815A (en) Method of manufacturing semiconductor chip with adhesive layer
JP5589500B2 (en) Adhesive film, dicing tape integrated adhesive film, and semiconductor device manufacturing method
JP5578911B2 (en) Wafer processing tape
JP2007005611A (en) Adhesive tape for fixing semiconductor wafer
KR20230116660A (en) Curable resin film, composite sheet, semiconductor chip, and method for manufacturing semiconductor chip
JP2023110879A (en) Curable resin film, composite sheet, semiconductor chip, and method of manufacturing semiconductor chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140411

R151 Written notification of patent or utility model registration

Ref document number: 5525200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees