JP2010048820A - 磁歪式トルクセンサの製造方法 - Google Patents

磁歪式トルクセンサの製造方法 Download PDF

Info

Publication number
JP2010048820A
JP2010048820A JP2009272322A JP2009272322A JP2010048820A JP 2010048820 A JP2010048820 A JP 2010048820A JP 2009272322 A JP2009272322 A JP 2009272322A JP 2009272322 A JP2009272322 A JP 2009272322A JP 2010048820 A JP2010048820 A JP 2010048820A
Authority
JP
Japan
Prior art keywords
torque
magnetostrictive
steering
magnetostrictive film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009272322A
Other languages
English (en)
Other versions
JP4659115B2 (ja
Inventor
Yasuo Shimizu
康夫 清水
Yoshito Nakamura
義人 中村
Shunichiro Sueyoshi
俊一郎 末吉
Nobuhiko Yoshimoto
信彦 吉本
Koji Kobayashi
幸司 小林
Yuichi Fukuda
祐一 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009272322A priority Critical patent/JP4659115B2/ja
Publication of JP2010048820A publication Critical patent/JP2010048820A/ja
Application granted granted Critical
Publication of JP4659115B2 publication Critical patent/JP4659115B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

【課題】ヒステリシスが小さく、電動パワーステアリング装置の操舵フィーリングを向上することができる磁歪式トルクセンサの製造方法を提供する。
【解決手段】磁歪式トルクセンサの製造方法は、シャフト部109bに磁歪膜12,13を設ける磁歪膜堆積工程と、次に磁歪膜12,13に歪みを発生させた後、高周波加熱により所定時間加熱したことによって、磁歪膜12,13の歪みを加熱前よりも抜けた状態にする加熱工程と、次にシャフト部109bに所定の捩りトルクを加えた状態で磁歪膜12,13を冷却する冷却工程と、次に捩りトルクを解放することによって磁歪膜12,13に磁気異方性を設けるトルク解放工程と、によって、シャフト部109bに磁気異方性を有する磁歪膜を設ける製造方法である。
【選択図】図1

Description

本発明は、磁歪式トルクセンサの製造方法に関し、特に、自動車用の電動パワーステアリング装置の操舵トルクを検出するのに最適な磁歪式トルクセンサの製造方法に関するものである。
図17は、従来の電動パワーステアリング装置の全体構成図である。電動パワーステアリング装置100は、ハンドル(ステアリングホイール)101からの操舵トルクを検出する操舵トルク検出装置(トルクセンサ)102と、運転者の操舵に対して動力補助するモータ103と、このモータ103の回転トルクを倍力する減速装置(動力伝達機構)104と、少なくとも操舵トルク検出装置102の信号を基本にして、例えば車速センサ105などに基づいてモータを駆動制御する制御装置106、およびハンドル101の回転により前輪107の向きを変えるラック・ピニオン機構108などによって構成されている。
電動パワーステアリング装置100は、ステアリングホイール(ハンドル)101に連結されるステアリング軸109a等に対して補助用の操舵力(操舵トルク)を与えるように構成されている。ステアリング軸109aはステアリング軸109bと自在軸継手109cを介して連結されており、ステアリング軸109aの上端はステアリングホイール101に連結され、ステアリング軸109bの下端にはピニオンギヤ110が取り付けられている。ピニオンギヤ110に対して、これに噛み合うラックギヤ111aを設けたラック軸111が配置されている。ピニオンギヤ110とラックギヤ111aによってラック・ピニオン機構108が形成される。ラック軸111の両端にはタイロッド112が設けられ、各タイロッド112の外側端には前輪107が取り付けられる。上記ステアリング軸109bに対し動力伝達機構104を介してモータ103が設けられている。動力伝達機構104は、ウォームギヤ104aとウォームホイール104bによって形成されている。モータ103は、操舵トルクを補助する回転力(トルク)を出力し、この回転力を、動力伝達機構104を経由して、ステアリング軸109b,109aに与える。またステアリング軸109bには操舵トルク検出装置(トルクセンサ)102が設けられている。操舵トルク検出装置102は、運転者がステアリングホイール101を操作することによって生じる操舵トルクをステアリング軸109a,109bに加えたとき、ステアリング軸109a,bに加わる当該操舵トルクを検出する。105は車両の車速を検出する車速検出部であり、106はコンピュータで構成される制御装置である。制御装置106は、操舵トルク検出装置102から出力される操舵トルク信号Tと車速検出部105から出力される車速信号Vを取り入れ、操舵トルクに係る情報を車速に係る情報に基づいて、モータ103の回転動作を制御する駆動制御信号SG1を出力する。上記のラック・ピニオン機構108等は図16中で図示しないギヤボックス113に収納されている。
上記において電動パワーステアリング装置100は、通常のステアリング系の装置構成に対し、操舵トルク検出装置102、車速検出部105、制御装置106、モータ103、動力伝達機構104を付加することによって構成されている。
上記構成において、運転者が操作した時の操舵トルクを操舵トルク検出装置102により検出し、制御装置106を介してこのトルクセンサ信号を基に車速信号等に応じてモータ103を駆動制御する。このときのモータ発生トルクを倍力装置(動力伝達機構)104により、トルク倍力してラック・ピニオン機構108のピニオン軸に作用させて運転者の操舵トルク負担を軽減している。
すなわち、運転者がステアリングホイール101を操作して自動車の走行運転中に走行方向の操舵を行うとき、ステアリング軸109a,109bに加えられた操舵トルクに基づく回転力はラック・ピニオン機構108を介してラック軸111の軸方向の直線運動に変換され、さらにタイロッド112を介して前輪107の走行方向を変化させようとする。このときにおいて、同時に、ステアリング軸109bに付設された操舵トルク検出装置102は、ステアリングホイール101での運転者による操舵に応じた操舵トルクを検出して電気的な操舵トルク信号Tに変換し、この操舵トルク信号Tを制御装置106へ出力する。また、車速検出部105は、車両の車速を検出して車速信号Vに変換し、この車速信号Vを制御装置106へ出力する。制御装置106は、操舵トルク信号T、車速信号Vに基づいてモータ103を駆動するためのモータ電流を発生する。モータ電流によって駆動されるモータ103は、動力伝達機構104を介して補助操舵力をステアリング軸109b,109aに作用させる。以上のごとくモータ103を駆動することにより、ステアリングホイール101に加えられる運転者による操舵力が軽減される。
例えば、操舵トルクをTH、アシスト量AHの係数を、例えば一定のkAとすると、AH=kA×THであるから、負荷であるピニオントルクをTPとすると、
[数1]
TP=TH+AH
=TH+kA×TH (1)
という関係が成り立つから、操舵トルクTHは(2)式のように表される。
[数2]
TH=TP/(1+kA) (2)
したがって、操舵トルクTHは、ピニオントルクTPの1/(1+kA)、(kAは0より大、またはkA=0)となり軽減される。
図18は、電動パワーステアリング装置100の機械的機構の要部と電気系の具体的構成を示す。ラック軸111の左端部および右端部の一部は断面で示されている。ラック軸111は、車幅方向(図18中左右方向)に配置される筒状ハウジング131の内部に軸方向へスライド可能に収容されている。ハウジング131から突出したラック軸111の両端にはボールジョイント132がネジ結合され、これらのボールジョイント132に左右のタイロッド112が連結されている。ハウジング131は、図示しない車体に取り付けるためのブラケット133を備えると共に、両端部にストッパ134を備えている。
図18において、135はイグニションスイッチ、136は車載バッテリ、137は車両エンジンに付設された交流発電機(ACG)である。交流発電機137は車両エンジンの動作で発電を開始する。制御装置106に対してバッテリ136または交流発電機137から必要な電力が供給される。制御装置106はモータ103に付設されている。また138はラック軸の移動時にストッパ134に当たるラックエンドであり、139はギヤボックスの内部を水、泥、埃等から保護するためのダストシール用ブーツである。
図19は図18中のA−A線断面図である。図19では、ステアリング軸109bの支持構造、操舵トルク検出装置102、動力伝達機構104、ラック・ピニオン機構108の具体的構成が明示される。
図19において、上記ギヤボックス113を形成するハウジング113aにおいてステアリング軸109bは4つの軸受け部141a,141b,141c,141dによって回転自在に支持されている。ハウジング113aの内部にはラック・ピニオン機構108と動力伝達機構104が収納され、さらに上部には操舵トルク検出部(トルクセンサ)102が付設されている。また、操舵トルク検出装置102では、ステアリング軸(回転軸)109bに磁歪膜102b,102cが形成され、それらの周りにはコイル102d,102f,102e,102fと、それらを囲むヨーク部102gによってステアリング軸109bを取り囲んでいる。ハウジング113aの上部開口はリッド143で塞がれ、リッド143はボルトで固定されている。ステアリング軸109bの下端部に設けられたピニオン110は軸受け部141a,141bの間に位置している。ラック軸111は、ラックガイド145で案内され、かつ圧縮されたスプリング146で付勢されピニオン110側へ押さえ付けられている。動力伝達機構104は、モータ103の出力軸に結合される伝動軸148に固定されたウォームギヤ104aとステアリング軸109bに固定されたウォームホイール104bとによって形成される。操舵トルク検出装置102はリッド143に取り付けられている。
上記したようにトルクセンサ102は、ステアリング・ギヤボックス113内に設けられており、ステアリング軸109bに作用する操舵トルクを検出し、その検出値は制御装置106へ入力されて、モータ103に適切な補助操舵トルクを発生させるための基準信号として供給される。
このような電動パワーステアリング装置100の操舵トルクセンサ102としては、ステアリング軸に負荷される操舵トルクを、トーションバーを使って捩れ角を増大させて、その捩れ角を検出したり、この捩れ角を軸方向変位に変換してこの変位を検出する形式と異なって、直接的に検出する方式として、磁歪式トルクセンサが知られている。
この磁歪式トルクセンサは、図18で示したように、ハンドル101に連結されるステアリング軸109bが軸受け141cと141dを介してギヤボックス113に回転自在に支持されており、これらの軸受け141cと141dの間のステアリング軸表面部に例えばニッケル鉄メッキのような磁歪膜が所定の厚さで2ヶ所(102bと102c)施され、しかもそれぞれ逆方向の磁気異方性が与えられ、例えば後で説明する図20に示すような逆磁歪特性が付与されている。
図20は、上記のような磁歪式トルクセンサ102における励磁コイルと検出コイルと磁歪膜との配置関係の模式図である。ステアリング軸109bの表面に形成された磁歪膜102bとその磁歪膜102bに間隔を設けて形成された磁歪膜102cとが設けられており、それらの磁歪膜の近傍に微小の空隙を介して配置された励磁コイル102fと、その励磁コイル102fには、励磁電圧供給源102hが接続されている。また、磁歪膜102bの近傍には微小の空隙を介して検出コイル102dが設けられ、磁歪膜102cの近傍には微小の空隙を介して検出コイル102eが設けられている。
図20で示した磁歪式トルクセンサ102において、ステアリング軸109bにトルクが作用したときに、磁歪膜102b,102cにもトルクが作用し、このトルクに応じて磁歪膜102b,102cに逆磁歪効果が生じる。そのため、励磁電圧供給源102hから励磁コイル102fに高周波の交流電圧(励磁電圧)を供給したときに、トルクに基づく磁歪膜102b,102cの逆磁歪効果による磁界の変化を検出コイル102d,102eによりインピーダンスあるいは誘導電圧の変化として検出することができる。このインピーダンスあるいは誘導電圧の変化からステアリング軸109bに加えられたトルクを検出することができることになる。
このような逆磁歪特性の一例を図21に示す。図21において、横軸は操舵入力トルク、縦軸は励磁コイルに交流電圧を印加した時の検出コイルによって検出されるインピーダンスあるいは誘導電圧を示している。曲線C100は、検出コイル102dによって検出されるインピーダンスあるいは誘導電圧の変化を示し、曲線C101は、検出コイル102eによって検出されるインピーダンスあるいは誘導電圧の変化を示している。検出コイル102dによる検出では、操舵トルクが負から正になるにつれてインピーダンスあるいは誘導電圧は増加し、操舵トルクが正の値T1となったときインピーダンスあるいは誘導電圧はピーク値P1をとり、操舵トルクがT1以上では減少する。また、検出コイル102eによる検出では、操舵トルクが正から負になるにつれてインピーダンスあるいは誘導電圧は増加し、操舵トルクが負の値−T1のときインピーダンスあるいは誘導電圧はピーク値P1をとり、さらに操舵トルクを負の方向に増加すると減少する。図21に示すように、検出コイル102dで得られる操舵トルク−インピーダンス(誘導電圧)特性と検出コイル102eで得られる操舵トルク−インピーダンス(誘導電圧)特性は略凸形状を示し、検出コイル102dで得られる操舵トルク−インピーダンス(誘導電圧)特性と検出コイル102eで得られる操舵トルク−インピーダンス(誘導電圧)特性は、先に述べた磁歪膜の上下2箇所でそれぞれ逆方向となる磁気異方性を反映して縦軸に対してほぼ対称的になる。また、直線L100は、検出コイル102dにより検出された特性曲線C100から検出コイル102eにより検出された特性曲線C101を引いた値を示すものであり、理想的には操舵トルクがゼロのときにその値はゼロとなり、操舵トルクの範囲Rにおいては、操舵トルクの変化にほぼ直線的に変化することを示す。磁歪式トルクセンサはこのような特性曲線C100,C101の中でも、特にトルク中立点付近のほぼ一定勾配とみなされる領域を使用することで、入力トルクの方向と大きさに対応した検出信号を出力している。また、直線L100の特性を利用することで、検出コイル102d,102eの値から操舵トルクを検出することができる。
磁気異方性を与える方法として、例えば特許文献1のように、ステアリング軸(回転軸)109bに磁歪膜を40μmの厚さでメッキ処理した後に捩りトルクを2kgm作用させて応力を付与して、150〜550℃にて10分から20時間熱処理しているものが提案されている。
特開平2002−82000公報
しかしながら、上記従来の磁歪式トルクセンサ102は、操舵トルクの検出値が不安定であると共にヒステリシスが大きいばかりか、熱処理に時間がかかり、生産性にも課題があった。図22は、このような実際の逆磁歪特性の一例を示したグラフである。図22において、横軸は操舵入力トルク、縦軸は励磁コイルに交流電圧を印加した時の検出コイルによって検出されるインピーダンスあるいは誘導電圧を示している。曲線C102は、検出コイル102dにより検出された実際の特性曲線(図21の曲線C100に対応)から検出コイル102eにより検出された実際の特性曲線(図21の曲線C101に対応)を引いた値(A−B)を示すものである。これは、図21における直線L100に対応するものである。図22で示すように、実際には曲線C102は、操舵トルクがゼロのときに(A−B)値はゼロとならず、ヒステリシスが生じていることが分かる。それゆえ、このような磁歪式トルクセンサを電動パワーステアリング装置に採用した場合は、操舵フィーリングを低下させるという課題があり実用化することができなかった。
また、逆磁歪特性は、図23に示すように、熱処理前のメッキで形成された磁歪膜の特性の影響を受けるという課題があった。図23は、磁歪膜の熱処理前の逆磁歪特性と磁歪膜の熱処理後の逆磁歪特性の測定結果を示す。図23(a)、(b)は、それぞれ磁歪膜102b,102cの熱処理前の特性であり、実線で描かれた曲線は時計回りのトルクの印加であり、点線で描かれた曲線は、反時計回りのトルクの印加である。このとき、磁歪膜102bの方が、磁歪膜102cに比べてヒステリシスが大きいことが分かる。また、図23(c)、(d)は、それぞれ、300℃1時間で熱処理した場合の磁歪膜102bと磁歪膜102cの逆磁歪特性であり、実線で描かれた曲線は時計回りのトルクの印加であり、点線で描かれた曲線は、反時計回りのトルクの印加である。このとき、磁歪膜102bの方が、磁歪膜102cに比べてヒステリシスが大きいことが分かる。
このように、例えば、磁歪膜102bの場合の熱処理前のヒステリシスが大きいと熱処理後も大きく、逆に磁歪膜102cのように熱処理前のヒステリシスが比較的に小さいと熱処理後も小さくなることが分かった。このように、熱処理後の逆磁歪特性は、熱処理前の逆磁歪特性の影響を受けてしまうので、熱処理前のメッキ特性の影響を受けないで常にヒステリシスの小さい製造方法が望まれていた。
本発明の目的は、上記問題を解決するため、ヒステリシスが小さく、電動パワーステアリング装置の操舵フィーリングを向上することができる磁歪式トルクセンサの製造方法を提供することにある。
本発明に係る磁歪式トルクセンサの製造方法は、上記の目的を達成するために、次のように構成される。
第1の磁歪式トルクセンサの製造方法(請求項1に対応)は、シャフト部に磁歪膜を設ける磁歪膜付与工程と、シャフト部に所定の捩りトルクを加えた状態で所定時間加熱し、磁歪膜の歪みをほぼ抜けた状態にする加熱工程と、捩りトルクを解放することによって磁歪膜に磁気異方性を設けるトルク解放工程と、によって、シャフト部に磁気異方性を有する磁歪膜を設けることで特徴づけられる。
第1の磁歪式トルクセンサの製造方法によれば、シャフト部に磁歪膜を設ける磁歪膜付与工程と、シャフト部に所定の捩りトルクを加えた状態で所定時間加熱し、磁歪膜の歪みをほぼ抜けた状態にする加熱工程と、捩りトルクを解放することによって磁歪膜に磁気異方性を設けるトルク解放工程と、によって、シャフト部に磁気異方性を有する磁歪膜を設けるため、シャフト部に設けた磁歪膜に、捩りトルクを付与して電磁誘導加熱(高周波加熱)により所定時間加熱したことにより、シャフト部の磁歪膜に大きな残留引っ張り歪みと捩り歪みとを同時に付与することができ、これにより検出値のヒステリシスを小さくすることができ、しかも高周波加熱後は、この処理前のメッキ特性の影響を受けないので逆磁歪特性が安定している。
本発明に係る磁歪式トルクセンサとこの磁歪式トルクセンサを搭載した電動パワーステアリング装置を示す図である。 本発明に係る磁歪式トルクセンサにおける励磁コイルと検出コイルと磁歪膜との配置関係の模式図である。 本発明に係る磁歪式トルクセンサにおける逆磁歪特性を示すグラフである。 本発明に係る磁歪式トルクセンサの製造方法を示すフローチャートである。 磁歪膜を熱処理するときの方法を示す模式図である。 加熱時間とトルクの印加の時間変化を示すグラフである。 磁歪膜の熱処理を行った後のトルクセンサの特性曲線を示すグラフである。 磁歪膜の高周波加熱を行う前と後の逆磁歪特性を示すグラフである。 高周波加熱の時の、加熱される部分について説明する図である。 熱処理での磁歪膜の状態のモデルを示す図である。 従来の熱処理での磁歪膜の状態のモデルを示す図である。 従来の熱処理での磁歪膜の状態のモデルを示す図である。 従来の熱処理での磁歪膜の状態のモデルを示す図である。 本発明の熱処理での磁歪膜の状態のモデルを示す図である。 本発明の熱処理での磁歪膜の状態のモデルを示す図である。 本発明の熱処理での磁歪膜の状態のモデルを示す図である。 電動パワーステアリング装置の全体構成図である。 電動パワーステアリング装置の機械的機構の要部と電気系の具体的構成を示す図である。 図18中のA−A線断面図である。 磁歪式トルクセンサにおける励磁コイルと検出コイルと磁歪膜との配置関係の模式図である。 逆磁歪特性の理想的な一例を示すグラフである。 逆磁歪特性の実際の一例を示すグラフである。 熱処理前後の逆磁歪特性の実際の一例を示すグラフである。
以下、本発明の好適な実施形態を添付図面に基づいて説明する。
図1は、本発明に係る磁歪式トルクセンサの製造方法で製造した磁歪式トルクセンサとこの磁歪式トルクセンサを搭載した電動パワーステアリング装置10を示す図である。図1は、図19で示した電動パワーステアリング装置100に対応するものであり、磁歪膜の熱処理方法以外は、構成は同様であるので対応する構成要素には同じ符号を付し、磁歪式トルクセンサ以外の説明は省略する。
磁歪式トルクセンサ11は、ハンドル101に連結されるステアリング軸(回転軸)109bが軸受け141a,141b,141c,141dを介してハウジング113aに回転自在に支持されている。そして、軸受け141cと141dの間のステアリング軸(回転軸)109bの表面部に例えばニッケル鉄メッキのような正の磁歪定数を示す磁歪材が所定の膜厚(例えば30ミクロン以下)で、2ヶ所(12と13)施され、しかもそれぞれ逆方向の磁気異方性が、回転軸109bに所定のトルクを印加し高周波加熱により加熱し室温に戻し、トルクを取り去ることにより付与している。これにより、後述する機構によって、磁歪膜に捩りトルクが印加されていない場合においても、常に引っ張り応力がかかっており、引っ張りのひずみが加わっているため、逆磁歪特性でのヒステリシスが小さくなっている。
図2は、上記のようなトルクセンサ11における励磁コイルと検出コイルと磁歪膜との配置関係の模式図である。ステアリング軸109bの表面に形成されたトルクを印加しながら高周波加熱を行った磁歪膜12とその磁歪膜12に間隔を設けて形成されたやはりトルクを印加しながら高周波加熱を行った磁歪膜13とが設けられており、それらの磁歪膜の近傍に微小の空隙を介して配置された励磁コイル102fと、その励磁コイル102fには、励磁電圧供給源102hが接続されている。また、磁歪膜12の近傍には微小の空隙を介して検出コイル102dが設けられ、磁歪膜13の近傍には微小の空隙を介して検出コイル102eが設けられている。
図2で示した磁歪式トルクセンサ11において、ステアリング軸109bにトルクが作用したときに、磁歪膜12,13にもトルクが作用し、このトルクに応じて磁歪膜12,13に逆磁歪効果が生じる。そのため、励磁電圧供給源102hから励磁コイル102fに高周波の交流電圧(励磁電圧)を供給したときに、トルクに基づく磁歪膜12,13の逆磁歪効果による磁界の変化を検出コイル102d,102eによりインピーダンスあるいは誘導電圧の変化として検出することができる。このとき、捩りトルク以外にも常に引っ張り応力が磁歪膜に印加された状態となっているため、ヒステリシスが小さい特性が得られ、このインピーダンスあるいは誘導電圧の変化からステアリング軸109bに加えられたトルクを検出することができることになる。
このような本発明に係る磁歪式トルクセンサにおける逆磁歪特性を図3に示す。図3において、横軸は操舵入力トルク、縦軸は励磁コイルに交流電圧を印加した時の検出コイルによって検出されるインピーダンスあるいは誘導電圧を示している。曲線C10は、検出コイル102dによって検出されるインピーダンスあるいは誘導電圧の変化を示し、曲線C11は、検出コイル102eによって検出されるインピーダンスあるいは誘導電圧の変化を示している。検出コイル102dによる検出では、操舵トルクが負から正になるにつれてインピーダンスあるいは誘導電圧は増加し、操舵トルクが正の値T1となったときインピーダンスあるいは誘導電圧はピーク値P10をとり、操舵トルクがT1以上では減少する。また、逆にそのトルクを大きくした状態から、トルクを減少させていき、トルクがゼロになったときも引っ張り応力が加わっているため、磁歪膜の磁化状態は安定しており、トルクに対する磁気特性の変化も安定している。そのため、ヒステリシスは小さくなる。また、検出コイル102eによる検出では、操舵トルクが正から負になるにつれてインピーダンスあるいは誘導電圧は増加し、操舵トルクが負の値−T1のときインピーダンスあるいは誘導電圧はピーク値P10をとり、さらに操舵トルクを負の方向に増加すると減少する。また、トルクが負の方向で増加した状態から、減少させるとき、磁歪膜内の磁区の方向は変化するが、そのとき、トルクがゼロになっても引っ張り応力がかかっているために、磁歪膜の磁化状態は安定しており、トルクに対する磁気特性の変化も安定しているため、ヒステリシスは少なくなる。図3に示すように、検出コイル102dで得られる操舵トルク−インピーダンス(誘導電圧)特性と検出コイル102eで得られる操舵トルク−インピーダンス(誘導電圧)特性はヒステリシスの小さな、略凸形状を示し、検出コイル102dで得られる操舵トルク−インピーダンス(誘導電圧)特性と検出コイル102eで得られる操舵トルク−インピーダンス(誘導電圧)特性は、先に述べた磁歪膜の上下2箇所でそれぞれ逆方向となる磁気異方性を反映して縦軸に対してほぼ対称的になる。また、直線L10は、検出コイル102dにより検出された特性曲線C10から検出コイル102eにより検出された特性曲線C11を引いた値を示すものであり、操舵トルクがゼロのときにその値はゼロとなり、操舵トルクの範囲Rにおいては、操舵トルクの変化にほぼ直線的に変化することを示す。そして、ヒステリシスは小さい特性となっている。磁歪式トルクセンサはこのような特性曲線C10,C11の中でも、特にトルク中立点付近のほぼ一定勾配とみなされる領域を使用することで、入力トルクの方向と大きさに対応した検出信号を出力することができる。また、直線L10の特性を利用することで、検出コイル102d,102eの値から操舵トルクを検出することができる。そして、このようなヒステリシスの小さい逆磁歪特性を有する磁歪式トルクセンサを電動パワーステアリング装置を備えた車両のステアリング系で発生するトルクを検出するセンサとして搭載することにより、ハンドル戻りの良好な操舵フィールを付与することができる。
次に、本発明の磁歪式トルクセンサの製造方法について述べる。磁歪式トルクセンサは、回転軸に磁歪膜を形成した後、回転軸に所定の捩りトルクを加えた状態で熱処理を行い、磁歪膜に所定方向の磁気異方性を設ける。このときの熱処理は高周波加熱によって所定時間加熱する。また、好ましくは磁歪膜は主成分が鉄ニッケルからなり、所定の捩りトルクは50Nm以上かつ100Nm以下である。
図4は、本発明に係る磁歪式トルクセンサの製造方法を示すフローチャートである。この磁歪式トルクセンサの製造方法は、磁歪膜堆積工程(ステップST10)と、トルク印加高周波加熱工程(ステップST11)と、トルク解放工程(ステップST12)と、コイル配置工程(ステップST13)と、からなる。
磁歪膜堆積工程(ステップST10)は、回転軸に磁歪膜を設ける工程であり、回転軸12bに磁歪膜をめっき法で形成する。トルク印加高周波加熱工程(ステップST11)は、回転軸に所定の捩りトルクを加えた状態で高周波加熱によって所定時間加熱する工程であり、めっき法で磁歪膜を形成した回転軸に所定の捩りトルクを加えた状態で、磁歪膜の周囲をコイルで囲み、このコイルに高周波の電流を流し、磁歪膜を加熱する。トルク解放工程(ステップST12)は、捩りトルクを解放することによって磁歪膜に磁気異方性を設ける工程であり、ステップST12の工程後に自然に冷却した後に、捩りトルクを取り除く。これにより、磁歪膜に磁気異方性が設けられる。コイル配置工程(ステップST13)は、磁磁歪膜周囲に磁歪特性の変化を検出する多重巻きコイルを配置する工程である。以上の工程により、磁歪式トルクセンサが形成される。以下に上記の工程のうち主要な工程であるトルク印加高周波加熱工程の詳細を重点的に述べる。
回転軸の材質は、例えばクロムモリブデン鋼鋼材(JIS−G−4105,記号;SCM)である。磁歪膜は、回転軸の外周面にめっき法で形成したNi−Fe系の合金膜である。この合金膜の厚みは好ましくは30μm以下である。Ni−Fe系の合金膜は、Niを概ね20重量%含んだ場合と、概ね50重量%含んだ場合に、磁歪定数が大きくなるので磁歪効果が高まる傾向にあり、このようなNi含有量の材料を使用することが望ましい。例えば、Ni−Fe系の合金膜として、Niを50〜60重量%含み、残りがFeである材料を使用する。なお、磁歪膜は強磁性体の膜であればよく、パーマロイ(Ni;約78重量%、Fe;残り)やスーパーマロイ(Ni;78重量%、Mo;5重量%、Fe;残り)の膜であってもよい。ここで、Niはニッケル、Feは鉄、Moはモリブデンである。
図5は、磁歪膜を熱処理するときの方法を示す模式図である。図5(a)は、磁歪膜12の熱処理を示し、図5(b)は、磁歪膜13の熱処理を示す。回転軸109bに鉄ニッケルをめっきし、磁歪膜12,13を形成する。ここで、回転軸109bの磁歪膜12と13は、100Nmのトルクを矢印で示すように負荷しながら誘導子であるコイル14とコイル15に500kHz〜2MHz程度の高周波の電流をTU=1〜10秒の間流して、磁歪膜12と13を図5のように加熱する。
図6は、加熱時間とトルクの印加の時間変化を示すグラフである。横軸は時間であり、縦軸は、印加するトルクあるいは温度である。高周波を印加する前にトルクを印加する。その後、高周波を時間TU(1〜10秒)印加する。それにより、磁歪膜の温度がTp(300℃)まで上がり、その後、減少する。温度が減少し、温度Tになったときに、トルク印加を停止する。
図7は、上記の方法で磁歪膜を熱処理を行った後の、トルクセンサの逆磁歪特性曲線を示す。図7(a)は、高周波を1秒間印加したものであり、横軸はトルクであり、縦軸はインピーダンスである。曲線C20はコイル102dからの出力であり、曲線C21は、コイル102eからの出力である。曲線C20は、トルクが負から増加すると、インピーダンスは増加し、約10kgmでピークを持ち、それ以上のトルクで減少する。また、曲線C21では、−10kgmのトルクでピークをとり、それ以上のトルクで減少する。そして、トルクを逆に変化させたときも同様の曲線になり、ヒステリシスはほとんどない。また、図7(b)は、高周波を3秒印加したものであり、図7(a)で示した特性とほぼ同じであり、図7(c)は、高周波を5秒印加したものであり、このときも図7(a)で示した特性とほぼ同様である。このように、ピーク温度TP=300℃になるように通電時間をTU=1秒、3秒、5秒に変えてもヒステリシスの小さい安定した特性が得られている。
図8は、磁歪膜に高周波加熱を行う前と、高周波加熱を行った後の逆磁歪特性である。図8(a)は、磁歪膜に高周波加熱による熱処理を行う前の逆磁歪特性である。このとき、トルクを増加させ、また、減少させると、曲線C30のようになり、ヒステリシスが見られ、また、トルクがゼロ付近で、窪みが見られる。図8(b)は、磁歪膜の高周波加熱後(300℃)の磁歪膜特性であり、曲線C31はトルク印加を増加させ、その後減少させたときのグラフである。インピーダンスは初期特性よりも小さな値となるが、ヒステリシスが小さくなり、また、窪みが無くなったことが分かる。このように、図8に示すように電磁誘導加熱(高周波加熱)であれば、熱処理前の磁歪膜の逆磁歪特性においてヒステリシスが大きくても、熱処理後はヒステリシスが小さくなり、熱処理前の磁歪膜の逆磁歪特性の影響を受けない。
次に、以上のようにヒステリシスの小さい逆磁歪特性曲線が得られる理由について考察する。
図9は、ステアリング軸109bにめっきした磁歪膜12,13の高周波加熱をする時の、加熱される部分について説明する図である。回転軸109bに磁歪膜12と13がめっきで形成されている。このとき、上記のように高周波加熱すると、高周波に曝された部分にうず電流が生じ、それにより加熱されるが、これは、図9に示すように、メッキ生成された磁歪膜12と13の部分12Aと13Aが加熱され回転軸109bの深部はほとんど加熱されない。そのために大きな引っ張り歪みと捩りトルクによる歪みが同時に残留される。
これをモデルで表現すると図10〜図16のようになる。まず、従来の熱処理での状態を説明する。 図10は、磁歪膜12をめっきした回転軸109bにトルクTを印加したときの磁歪膜の円形の微小部分D10が受ける変形を図示する。図10(b)、(c)は、微小部分を拡大した図である。まず、図10(c)において、回転軸109bに捩りトルクを印加する前の円形微小部分D10は、回転軸109bに例えば100Nmの捩りトルクを作用して捩ると磁歪膜12の微小部分D10は図10(b)に示すように引っ張り荷重F1と圧縮荷重F2を同時に受け円形(捩りトルクをうけないとき)から右上がりのつぶれた楕円形に変形する。
次に、恒温槽にて全体を300℃にて1時間加熱する。図11は、加熱したときの微小部分の変形の様子を示す。図11(a)のように磁歪膜12と回転軸109bが加熱されるが、これらの磁歪膜12と回転軸109bは過熱され膨張する。そのとき、図11(b)のように楕円形に変形した磁歪膜は、全体が膨張した状態となるが300℃で過熱されるために磁歪膜12は、図11(c)のようにほぼ歪みが抜けた状態になる。図12は、室温に戻したときの微小部分の変形を示す図である。図12のように常温まで冷却されると熱膨張した磁歪膜は、その状態で、回転軸と共に縮小する。そして、室温に冷却すると、その時の微小部分は図12(b)のようになる。図13は、捩りトルクをゼロにしたときの微小部分の変形を示す図である。そして、図13(b)のように捩りトルクTを取り除くと微小部分D10は逆方向のすなわち左上がりの楕円形になる。
このように、図13のように常温に冷却されたあと、図13のように捩りトルクTが取り除かれても図10の楕円とほぼ同じ大きさ(面積)で左上がりにつぶれている。
次に、本発明に係る磁歪膜での状態を説明する。トルクは従来と同様に印加し、図10に示したように、磁歪膜12をめっきした回転軸109bにトルクTを印加したときの磁歪膜の円形の微小部分D10が受ける変形を図示する。まず、図10において、回転軸109bに捩りトルクを印加する前の円形微小部分D10は、回転軸109bに例えば100Nmの捩りトルクを作用して捩ると磁歪膜12の微小部分D10は引っ張り荷重F1と圧縮荷重F2を同時に受け円形(捩りトルクをうけないとき)から右上がりのつぶれた楕円形に変形する。
次に、図3のようなコイル13で電磁誘導加熱(高周波加熱)する。図14は、電磁誘導加熱したときの微小部分の変形の様子を示す。図14(b)のように磁歪膜12のみが数秒で瞬時に加熱されるが、軸109bは過熱されないので磁歪膜は膨張することができない。したがって、図14(b)のように磁歪膜12は膨張しようとするが、回転軸109bは膨張しないので、全体に圧縮応力F3がかかる。また、300℃で過熱されているので、その後、磁歪膜にはクリープが起こり、図14(c)のようにほぼ歪みが抜けた状態になる。図15は、室温に戻したときの微小部分の変形を示す図である。図15のように常温まで冷却されると熱膨張して歪の抜けた磁歪膜は、その状態で、回転軸と接合面を形成する。そして、室温に冷却すると、磁歪膜は収縮しようとするが、回転軸との接合面で接合しているために、全体に引っ張り歪みSが残留する。その時の微小部分はD10で示す。図16は、捩りトルクをゼロにしたときの微小部分の変形を示す図である。そして、微小部分D10は図16のように捩りトルクTを取り除くと引っ張り歪みSと捩り歪みC1,C2の残留した逆方向のすなわち左上がりのつぶれた全体に大きい楕円形になる。
したがって、従来手法では捩り歪みのみが磁歪膜に付与されるが、本発明では引っ張り歪みと捩り歪みが同時に付与される。
本実施形態のように、ソレノイドコイル102fにより回転軸の軸方向に磁歪膜を励磁するとき、全方向に引っ張り歪みが作用しているときには、この引っ張り歪みを感知することができる。また、回転軸の軸方向に対しては引っ張り歪み、軸と直角方向では圧縮歪みのみを感知することができる。これらの特性により、例えば、図3のT1あるいは−T1のところまで捩りトルクが作用すると磁歪膜の微小部分はほぼ図15のようになる。このとき、従来手法では、図12のように歪みがほとんど発生していないため、歪みを感知しない。したがって、図23のように磁歪膜の初期歪みなどのみを検出し不安定であるが、本発明では、磁歪膜の初期歪みを上回る引っ張り歪みが残留されているので、この残留歪みが感知されて安定な状態となる。
また、さらに、捩りトルクを増大させて再び捩りトルクを減少させると従来手法では、歪みを感知しないところを通過するのでヒステリシスが増大するが、本発明手法では、常に引っ張り歪みが残留しているため、ヒステリシスがほとんどない良好な逆磁歪特性が得られる。
また、このヒステリシスの小さい磁歪式トルクセンサを電動パワーステアリング装置に適用すると、ハンドルに作用する運転者の操舵トルクを直接検出することができ、とくに運転者が操舵トルクを減少させたときのハンドル軸上のトルクのヒステリシスを小さく検出できる。したがって、運転者のハンドル操作に忠実にモータの動きを応答できるので、ハンドル戻りを良好にすることができる。
本発明は、磁歪式トルクセンサを製造する製造方法と、磁歪式トルクセンサを搭載した電動パワーステアリング装置として利用される。
10…電動パワーステアリング装置、11…磁歪式トルクセンサ、12,13…磁歪膜、100…電動パワーステアリング装置、101…ステアリングホイール、102…磁歪式トルクセンサ、102d…検出コイル、102e…検出コイル、102f…励磁コイル、102g…ヨーク部、102h…電源、103…モータ、104…動力伝達機構、105…車速センサ、106…制御装置、107…前輪、108…ラック・ピニオン機構、109a,b…ステアリング軸、110…ピニオンギヤ、111…ラック軸、112…タイロッド

Claims (1)

  1. シャフト部に磁歪膜を設ける磁歪膜付与工程と、
    次に前記シャフト部に所定の捩りトルクを加え磁歪膜に歪みを発生させた後、高周波加熱により所定時間加熱したことによって、磁歪膜の歪みを加熱前よりも抜けた状態にする加熱工程と、
    次に前記シャフト部に所定の捩りトルクを加えた状態で磁歪膜を冷却する冷却工程と、
    次に前記捩りトルクを解放することによって前記磁歪膜に磁気異方性を設けるトルク解放工程と、
    によって、前記シャフト部に磁気異方性を有する磁歪膜を設け、この磁歪膜は、前記磁気異方性単独の磁気異方性を有することを特徴とする磁歪式トルクセンサの製造方法。
JP2009272322A 2009-11-30 2009-11-30 磁歪式トルクセンサの製造方法 Expired - Lifetime JP4659115B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009272322A JP4659115B2 (ja) 2009-11-30 2009-11-30 磁歪式トルクセンサの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009272322A JP4659115B2 (ja) 2009-11-30 2009-11-30 磁歪式トルクセンサの製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006232147A Division JP4668870B2 (ja) 2006-08-29 2006-08-29 磁歪式トルクセンサの製造方法、および磁歪式トルクセンサを搭載した電動パワーステアリング装置

Publications (2)

Publication Number Publication Date
JP2010048820A true JP2010048820A (ja) 2010-03-04
JP4659115B2 JP4659115B2 (ja) 2011-03-30

Family

ID=42065987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009272322A Expired - Lifetime JP4659115B2 (ja) 2009-11-30 2009-11-30 磁歪式トルクセンサの製造方法

Country Status (1)

Country Link
JP (1) JP4659115B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042249A (ja) * 2010-08-16 2012-03-01 Panasonic Electric Works Power Tools Co Ltd 磁歪式トルクセンサ
JP2015017915A (ja) * 2013-07-11 2015-01-29 ヤマハ発動機株式会社 磁歪材料、磁歪式センサ、及び磁歪膜の製造方法
JP2016513445A (ja) * 2013-02-06 2016-05-12 グレート プレインズ ディーゼル テクノロジーズ,エル.シー. 磁歪アクチュエータ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359127A (ja) * 1991-06-04 1992-12-11 Yaskawa Electric Corp 磁歪式トルクセンサの磁性膜作製方法
JP2002082000A (ja) * 2000-09-07 2002-03-22 Tdk Corp 磁歪式応力センサおよびその製造方法
JP2002250662A (ja) * 2000-12-22 2002-09-06 Tdk Corp トルクセンサおよびその製造方法
JP2004340744A (ja) * 2003-05-15 2004-12-02 Honda Motor Co Ltd 磁歪式トルクセンサの製造方法、および磁歪式トルクセンサを搭載した電動パワーステアリング装置
JP3730234B2 (ja) * 2003-05-12 2005-12-21 本田技研工業株式会社 磁歪式トルクセンサの製造方法、および磁歪式トルクセンサを搭載した電動パワーステアリング装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359127A (ja) * 1991-06-04 1992-12-11 Yaskawa Electric Corp 磁歪式トルクセンサの磁性膜作製方法
JP2002082000A (ja) * 2000-09-07 2002-03-22 Tdk Corp 磁歪式応力センサおよびその製造方法
JP2002250662A (ja) * 2000-12-22 2002-09-06 Tdk Corp トルクセンサおよびその製造方法
JP3730234B2 (ja) * 2003-05-12 2005-12-21 本田技研工業株式会社 磁歪式トルクセンサの製造方法、および磁歪式トルクセンサを搭載した電動パワーステアリング装置
JP2004340744A (ja) * 2003-05-15 2004-12-02 Honda Motor Co Ltd 磁歪式トルクセンサの製造方法、および磁歪式トルクセンサを搭載した電動パワーステアリング装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042249A (ja) * 2010-08-16 2012-03-01 Panasonic Electric Works Power Tools Co Ltd 磁歪式トルクセンサ
JP2016513445A (ja) * 2013-02-06 2016-05-12 グレート プレインズ ディーゼル テクノロジーズ,エル.シー. 磁歪アクチュエータ
JP2015017915A (ja) * 2013-07-11 2015-01-29 ヤマハ発動機株式会社 磁歪材料、磁歪式センサ、及び磁歪膜の製造方法

Also Published As

Publication number Publication date
JP4659115B2 (ja) 2011-03-30

Similar Documents

Publication Publication Date Title
JP2004340744A (ja) 磁歪式トルクセンサの製造方法、および磁歪式トルクセンサを搭載した電動パワーステアリング装置
JP4668870B2 (ja) 磁歪式トルクセンサの製造方法、および磁歪式トルクセンサを搭載した電動パワーステアリング装置
US7013741B2 (en) Torque sensor
US8701503B2 (en) Magnetostrictive torque sensor and electrical power steering device
US8302492B2 (en) Magnetostrictive torque sensor and electric power steering apparatus
US7752923B2 (en) Magnetostrictive torque sensor
JP4866437B2 (ja) 磁歪式トルクセンサ及びその製造方法
JP4897309B2 (ja) 磁歪式力学量センサ及び磁歪式力学量センサの製造方法
WO2011070826A1 (ja) 電動パワーステアリング装置の製造方法
JP2008058108A (ja) 磁歪式トルクセンサの製造方法と電動パワーステアリング装置
JP3730234B2 (ja) 磁歪式トルクセンサの製造方法、および磁歪式トルクセンサを搭載した電動パワーステアリング装置
JP4659115B2 (ja) 磁歪式トルクセンサの製造方法
JP2009204533A (ja) 磁歪式トルクセンサとその製造方法、並びに電動パアーステアリング装置
JP5439446B2 (ja) 磁歪式トルクセンサ
JP6411256B2 (ja) 磁歪式トルクセンサ及び電動パワーステアリング装置
JP2012122728A (ja) 磁歪式トルクセンサ及び電動パワーステアリング装置
JP5081483B2 (ja) 磁歪式トルクセンサの製造方法
JP4486616B2 (ja) 磁歪式トルクセンサの製造方法と電動パワーステアリング装置
JP5091630B2 (ja) 磁歪式トルクセンサおよび電動パワーステアリング装置
JP4932206B2 (ja) 磁歪式トルクセンサの製造方法
JP5372583B2 (ja) 磁歪式トルクセンサ及び電動パワーステアリング装置
JP5058961B2 (ja) 磁歪式トルクセンサの製造方法
JP4073901B2 (ja) 電動ステアリング装置
JP2006064446A (ja) 磁歪式トルクセンサと電動ステアリング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4659115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term