JP2010048222A - コンプレッサ装置および燃料電池システム - Google Patents

コンプレッサ装置および燃料電池システム Download PDF

Info

Publication number
JP2010048222A
JP2010048222A JP2008215132A JP2008215132A JP2010048222A JP 2010048222 A JP2010048222 A JP 2010048222A JP 2008215132 A JP2008215132 A JP 2008215132A JP 2008215132 A JP2008215132 A JP 2008215132A JP 2010048222 A JP2010048222 A JP 2010048222A
Authority
JP
Japan
Prior art keywords
oil
temperature
compressor
bearing
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008215132A
Other languages
English (en)
Inventor
Isao Kato
功 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2008215132A priority Critical patent/JP2010048222A/ja
Publication of JP2010048222A publication Critical patent/JP2010048222A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】オイルの温度が低いときであっても、コンプレッサ装置を始動させるとき、駆動軸および/または軸受における焼き付きを抑制させるのに有利なコンプレッサ装置および燃料電池システムを提供する。
【解決手段】コンプレッサ装置1は、コンプレッサ部32と、コンプレッサ部32の駆動軸34を回転可能に支持する軸受4と、オイルを軸受4に潤滑のために供給するオイル供給通路50とオイルを貯留するオイルタンク52とオイルタンク52のオイルをオイル供給通路50に供給するオイルポンプ54とを有するオイル供給系5と、オイル温度センサ60と、オイル圧力センサ63と、オイル温度とオイル圧力に基づいて、軸受4に供給するオイル流量を制御して駆動軸34の焼き付きを抑制させるようにオイルポンプ54を制御する制御部7とを具備する。
【選択図】図1

Description

本発明は、コンプレッサ装置および燃料電池システムに関する。
コンプレッサ装置は、駆動軸と駆動軸に設けられた羽根部と駆動軸をこれの軸芯回りで回転させる駆動部とを有するコンプレッサ部と、コンプレッサ部の駆動軸を回転可能に支持する軸受と、オイルを軸受に潤滑のために供給するオイル供給通路とオイルタンクとオイルタンクのオイルをオイル供給通路に供給するオイルポンプとを有するオイル供給系とを有する(特許文献1,2)。
特開平6−173858号公報 特開2000−27794号公報
上記した特許文献に係るコンプレッサ装置によれば、オイルの温度が低いときにおいて、例えばオイルの温度が0℃以下のように低いときにおいて、コンプレッサ装置を始動させるとき、軸受の潤滑が必ずしも充分ではなく、駆動軸および/または軸受における焼き付きが発生するおそれがあった。
本発明は上記した実情に鑑みてなされたものであり、オイルの温度が低いときであっても、例えばオイルの温度が0℃以下のように低いときであっても、コンプレッサ装置を始動させるとき、軸受の潤滑性を向上させ、駆動軸および/または軸受における焼き付きを抑制させるのに有利なコンプレッサ装置および燃料電池システムを提供することを課題とする。
(1)本発明に係るコンプレッサ装置は、駆動軸と駆動軸に設けられた羽根部と駆動軸をこれの軸芯回りで回転させる駆動部とを有するコンプレッサ部と、コンプレッサ部の駆動軸を回転可能に支持する軸受と、オイルを軸受に潤滑のために供給するオイル供給通路とオイルを貯留するオイルタンクとオイルタンクのオイルをオイル供給通路に供給するオイルポンプとを有するオイル供給系と、オイル供給系におけるオイルの温度を直接的または間接的に検知するオイル温度センサと、オイル供給系におけるオイルの圧力を直接的または間接的に検知するオイル圧力センサと、オイル温度センサで検知されたオイル温度と、オイル圧力センサで検知されたオイル圧力とに基づいて、オイルポンプを制御し、軸受に供給するオイル流量を制御し、駆動軸および/または軸受の焼き付きを抑制させる制御部とを具備する。
オイル温度センサは、オイル供給系におけるオイルの温度を直接的または間接的に検知する。オイル圧力センサは、オイル供給系におけるオイルの圧力を直接的または間接的に検知する。オイル温度センサで検知されたオイル温度と、オイル圧力センサで検知されたオイル圧力に基づいて、制御部は、軸受に供給するオイル流量を制御して駆動軸および/または軸受の焼き付きを抑制させるようにオイルポンプを制御する。
ここで、オイル温度センサで検知されたオイル温度が低いとき、オイルは流れにくい状態となっており、軸受に供給されるオイル流量は減少し、駆動軸および/または軸受の焼き付きが発生し易くなっている。このため、制御部は、オイル温度センサで検知されたオイル温度と、オイル圧力センサで検知されたオイル圧力とに基づいて、軸受に供給するオイル流量を増加させるようにオイルポンプを制御し、駆動軸および/または軸受の焼き付きを抑制させる。これにより軸受に供給するオイル流量が適性化され、軸受の潤滑性が向上され、軸受に回転可能に支持されている駆動軸および/または軸受の焼き付きが抑制される。
(2)本発明に係る燃料電池システムは、電解質を挟む燃料極および酸化剤極をもつ燃料電池と、燃料電池の燃料極に供給される燃料が流れる燃料供給通路と、燃料電池の酸化剤極に酸化剤ガスを供給する酸化剤供給通路と、酸化剤供給通路において燃料電池の上流に設けられ酸化剤ガスを燃料電池の酸化剤極に搬送させる酸化剤ガス搬送源とを具備しており、酸化剤ガス搬送源は、上記したコンプレッサ装置で構成されている。
オイル温度センサは、オイル供給系におけるオイルの温度を直接的または間接的に検知する。直接的に検知とは、他のパラメータを介さずにオイルの温度を検知することをいう。間接的に検知とは、他のパラメータを介してオイルの温度を検知することをいう。オイル圧力センサは、オイル供給系におけるオイルの圧力を直接的または間接的に検知する。直接的に検知とは、他のパラメータを介さずにオイルの圧力を検知することをいう。間接的に検知とは、他のパラメータを介してオイルの圧力を検知することをいう。
オイル温度とオイル圧力とに基づいて、制御部は、オイルポンプを制御し、軸受に供給するオイル流量を制御し、駆動軸および/または軸受の焼き付きを抑制させる。
ここで、オイル温度センサで検知されたオイル温度が低いとき、オイルは流れにくい状態となっており、軸受に供給されるオイル流量は減少し、駆動軸および/または軸受の焼き付きが発生し易くなっている。この場合、燃料電池システムを起動させると、コンプレッサ装置の駆動軸および/または軸受の焼き付きが発生し易くなっており、コンプレッサ装置の長寿命化、燃料電池システムの長寿命化には限界がある。
このため、オイル温度とオイル圧力とに基づいて、制御部は、オイルポンプを制御し、軸受に供給するオイル流量を増加するようにオイルポンプを制御し、駆動軸および/または軸受の焼き付きを抑制させる。これにより軸受に供給されるオイル流量が適性化され、軸受の潤滑性が向上され、軸受に回転可能に支持されている駆動軸および/または軸受の焼き付きが抑制される。
本発明に係るコンプレッサ装置、燃料電池システムによれば、次の好適態様が採用できる。
・オイルの流動性が低下する第1所定温度T1よりもオイルの温度が低いとき、オイルの粘度は高く、オイルは流れにくい。そこで、オイルの温度が第1所定温度T1よりも低いときにおいてコンプレッサ装置を始動させるとき、制御部は、オイルポンプを駆動させてオイルを軸受に供給するものの、コンプレッサ部を停止させたままとしておくことが好ましい。この場合、オイルポンプを駆動させるため、オイルを軸受に早期に供給できる。このためコンプレッサ部を回転駆動させるとき、駆動軸および/または軸受の焼き付きが抑制される。
・オイルの温度が第1所定温度T1以下のときにおいてコンプレッサ装置を始動させるとき、制御部は、オイル流量を、コンプレッサ部の定常運転モードを実施するときにおけるオイル流量よりも増加させることができる。これによりオイルの温度が低いためオイルが軸受に流れにくいときであっても、オイル流量が増加される。このため、オイルが軸受に良好に供給され、軸受の潤滑性が良好に確保される。これにより駆動軸およぴ/または軸受の焼き付けが良好に抑制される。オイル流量は、オイルを軸受に供給させるオイル供給通路におけるオイル流量である。オイル流量を増加させるためには、オイルポンプの単位時間あたりの回転数を増加させたり、オイル供給通路にバルブが設けられている場合には、バルブの開度を増加させたりできる。
・オイルの流動性が低下する第1所定温度T1よりもオイルの温度が低いときにおいてコンプレッサ装置を始動させるとき、制御部は、オイルポンプへの通電量を、コンプレッサ部の定常運転モードを実施するときにおけるオイルポンプへの通電量よりも増加させる始動制御を実行することが好ましい。これによりオイルの温度が低いためオイルが軸受に流れにくいときであっても、オイルポンプへの単位時間あたりの通電量が増加され、オイルポンプの回転速度が増加される。このため、オイルが軸受に良好に供給され、軸受の潤滑性が良好に確保される。これにより駆動軸およぴ/または軸受の焼き付けが良好に抑制される。
ここで、第1所定温度T1は、オイルの流動性が充分でない温度を意味し、コンプレッサ装置が使用される地域、オイルの材質、オイルの粘度等に応じて適宜設定されるが、例えば、10℃、5℃、0℃、−5℃、−10℃、−20℃とすることができる。但しこれらに限定されるものではない。
オイルポンプは、パルス電流によりデューティ制御される方式でも良いし、あるいは、非パルスの電流で制御される方式でも良い、オイルポンプへの通電量は、オイルポンプがパルス電流によりデューティ制御される場合には、デューティ比に基づく通電量とすることができ、あるいは、オイルポンプが非パルスの電流で制御される場合には電流量とすることができる。
・オイルの温度が第1所定温度T1よりも低いときにおいてコンプレッサ装置を始動させるとき、制御部は、オイルポンプへの通電量を、コンプレッサ部の定常運転モードを実施するときにおけるオイルポンプへの通電量よりも増加させ、且つ、コンプレッサ部の定常運転モードにおける回転速度よりも低い回転速度でコンプレッサ部を回転させる始動制御を実行することが好ましい。これによりオイルの温度が低いためオイルが軸受に流れにくいときであっても、オイルポンプへの通電量が増加され、オイルポンプの回転数が増加される。このため、オイルが軸受に供給され、軸受の潤滑性が確保される。更に、コンプレッサ部の定常運転モードにおける回転速度よりも低い回転速度でコンプレッサ部が回転する。これにより駆動軸の焼き付けが一層抑制される。
・上記した始動制御によりオイルの温度が第1所定温度T1よりも上昇したとき、オイルの流動性が向上し、オイルが軸受に供給され易くなる。そこで、低温であったオイルの温度が第1所定温度T1よりも上昇したとき、制御部は、上記した始動制御を終了し、オイルポンプへの通電量を始動制御におけるオイルポンプへの通電量よりも減少させることが好ましい。この場合、オイルポンプの回転速度は減少する。且つ、制御部は、コンプレッサ部を定常運転モードにおいて駆動させることが好ましい。この場合、オイルポンプの回転速度は減少するため、オイルポンプにおける負荷が低減され、オイルポンプを回転させるエネルギが節約される。
以上説明したように本発明によれば、オイル温度センサで検知されたオイル温度と、オイル圧力センサで検知されたオイルの圧力とに基づいて、制御部は、駆動軸を回転可能に支持する軸受に供給するオイル流量を制御し、駆動軸および/または軸受の焼き付きを抑制させるようにオイルポンプを制御する。これによりオイルの温度が低いときであっても、軸受に供給するオイル流量が適性化され、軸受の潤滑性が向上され、軸受に回転可能に支持されている駆動軸および/または軸受の焼き付きが抑制される。
以下、本発明について各実施形態を説明する。
(実施形態1)
以下、本発明の実施形態1について図1を参照して説明する。図1は遠心式コンプレッサ装置を模式的に示す。図1に示すように、遠心式のコンプレッサ装置1は、図略のハウジングと、複数のインペラ羽根部30を有する羽根車で形成されたコンプレッサ部32と、コンプレッサ部32の中央域に取り付けられた駆動軸34と、コンプレッサ部32を回転させる駆動モータ36とを有する。
駆動モータ36はコンプレッサ部32を回転させるものである。駆動モータ36は、駆動軸34のうち軸長方向においてコンプレッサ部32と反対側に設けられ永久磁石を有するロータ361と、ロータ361の外周側に設けられた励磁コイル355を巻回したステータ363とを有する。駆動モータ用インバータ72により信号線72aを介して駆動モータ36の励磁コイル355に励磁電流が通電されると、ロータ361の周囲に回転磁界が発生し、ロータ361が駆動軸34と共に回転し、コンプレッサ部32がこれの軸心M1の回りで回転する。コンプレッサ部32の駆動軸34を回転可能に支持する複数個または単数個の軸受4が設けられている。軸受4は外輪40と内輪42と転動体44とを有する。本実施形態では軸受4は駆動軸34の軸長方向において複数個直列に並設されている。
なお、コンプレッサ部32は例えば1k〜200k[r.p.m]、殊に、10k〜100k[r.p.m]で回転することができる。但しこれらに限定されるものではない。コンプレッサ部32の下流には、コンプレッサ部32の回転駆動に伴うガス(例えば空気)が流れる下流機器9が配置されている。
更に図1に示すように、オイル供給系5は、オイルを軸受4に潤滑のために供給するオイル供給通路50と、オイルを貯留するオイルタンク52と、オイルタンク52のオイルをオイル供給通路50に供給するオイルポンプ54とを有する。オイル供給通路50には、オイルの汚れを低減させるオイルフィルタ58が設けられている。オイル供給通路50の一端部50fは、オイルを軸受7に供給できるように軸受4に連通する。オイル供給通路50の他端部50sはオイルポンプ54の吐出口56に連通する。軸受4に供給されたオイルは、帰還通路52rからオイルタンク52に帰還される。軸オイルポンプ54はオイルポンプインバータ74により回転駆動される。オイルポンプ54は、トロコイドポンプで形成されており、複数の内歯を有する固定された固定部材と、内歯と噛み合う複数の外歯を有する回転部材とを有する。オイルポンプ54はパルス信号によりデューティ制御される。オイルポンプ54は、制御部7に制御されるオイルポンプインバータ74に内蔵されているPWM回路により信号線74aを介してデューティ制御(パルス制御)される。制御部7は、入力処理回路と出力処理回路とメモリとマイコンとを有する。
オイル温度センサ60は、オイル供給系5におけるオイルの温度Tを検知する。すなわち、オイル温度センサ60は、オイル供給系5において軸受4の上流におけるオイルの温度Tを検知する。具体的には、オイル温度センサ60は、オイル供給系5において軸受4の上流で且つオイルフィルタ58よりも下流におけるオイルの温度Tを検知する。オイル温度センサ60の検知信号は、信号線60aにより制御部7に入力される。
オイル圧力センサ63はオイル供給系5におけるオイルの圧力を検知する。すなわち、オイル圧力センサ63は、オイル供給系5におけるオイルポンプ54の吐出口56の下流に設けられており、吐出口56側のオイルの圧力を検知する。更に具体的には、オイル圧力センサ63は、オイル供給系5におけるオイルポンプ54の吐出口56の下流で、且つ、オイルフィルタ58の上流におけるオイルの圧力を検知する。オイル圧力センサ63の検知信号は、信号線63aにより制御部7に入力される。
制御部7は、信号線72cを介して駆動モータ用インバータ72を制御し、信号線74cを介してオイルポンプインバータ74を制御することにより、駆動モータ36およびオイルポンプ54を制御する。
さて本実施形態によれば、制御部7からの指令により駆動モータ用インバータ72を介して駆動モータ36が回転し、駆動軸34が軸芯M1回りで軸受4に対して滑りつつ回転し、コンプレッサ部32が回転する。これによりコンプレッサ部32によりガスが下流機器9に向けて搬送される。また制御部7からの指令によりオイルポンプインバータ74を介してオイルポンプ54が回転する。
本実施形態によれば、オイル温度センサ60で検知されたオイル温度Tと、オイル圧力センサ63で検知されたオイル圧力Pとに基づいて、制御部7は、オイルポンプ54の駆動を制御し、軸受4に供給するオイル流量を制御し、これにより駆動軸34および/または軸受4の焼き付きを抑制させる。
上記したようにオイルの温度Tが第1所定温度T1よりも低いため、オイルの粘度が高くてオイルの流動性が低い場合には、オイルの温度Tが第1所定温度T1よりも高い場合に比較して、オイルポンプ54への通電量を増加させ、単位時間あたりのオイルポンプ54の回転数を増加させる。この結果、オイルポンプ54により軸受4に供給されるオイル流量が増加され、軸受4の潤滑性が向上され、軸受4に回転可能に支持されている駆動軸34の焼き付きが抑制される。オイルポンプ54への通電量は、オイルポンプ54へ通電するときにおけるデューティ比に基づいて設定される。デューティ比は、通電時間/(通電時間+休止時間)で示される比率である。デューティ比はPWM制御により制御部7により調整される。デューティ比が高いほど、オイルポンプ54の回転速度は増加する。デューティ比が低いほど、オイルポンプ54の回転速度は減少する。
ここで、上記した第1所定温度T1は、オイルの流動性が充分でない温度を意味し、コンプレッサ装置1が使用される地域、オイルの材質、オイルの粘度等に応じて適宜設定されるが、例えば、10℃、5℃、0℃、−5℃、−10℃、−20℃とすることができる。第1所定温度T1は、コンプレッサ部32が定常運転モードで回転されるときにおけるオイルの下限温度とすることができる。
(実施形態2)
本実施形態は実施形態1と基本的には同じ構成、同じ作用効果を有するため、図1を準用する。本実施形態においても、オイルの温度Tが第1所定温度T1よりも低いときには、オイルは粘度が高く流れにくいため、オイルが軸受4に供給されにくい。この場合、条件によっては、軸受4においてオイル膜切れが発生し、駆動軸34および/または軸受4が焼き付くおそれがある。
そこで本実施形態によれば、オイルの温度Tが第1所定温度T1よりも低い低温において、コンプレッサ装置1を始動させるときには、コンプレッサ部32を停止させつつ、制御部7は、オイルポンプ54への通電量(例えばデューティ比)を、コンプレッサ部32の定常運転モードを実施するときにおけるオイルポンプ54への通電量(例えばデューティ比)よりも増加させる高デューティ比処理(オイルポンプ高回転数処理)を実施する。これにより軸受4に供給されるオイル流量が増加され、軸受4の潤滑性が次第に増加される。
オイルポンプ54の駆動開始から所定時間経過すると、あるいは、オイルの圧力Pが第1所定圧力P1よりもよりも増加したら、制御部7は、コンプレッサ部32の定常運転モードにおけるコンプレッサ部32の回転速度よりも低い回転速度でコンプレッサ部32を回転させる暖機運転モードを実行する。
このようなコンプレッサ部32の暖機運転モードにおいては、コンプレッサ部32の駆動軸34の回転速度が定常運転モードよりも低いため、駆動軸34および/または軸受4の焼き付きは抑制される。すなわち、このようにオイルの温度Tが第1所定温度T1よりも低い低温であっても、コンプレッサ部32の回転速度が低いため、駆動軸34および/または軸受4の焼き付きは抑制される。
上記したようにオイルの温度Tが第1所定温度T1よりも低い低温においてコンプレッサ装置1を始動させるときであっても、上記始動制御によりオイルの温度Tが次第に上昇する。軸受4における摩擦熱、励磁コイル355への通電に伴う駆動モータ36の発熱などの影響に基づいて、オイルの温度Tは上昇する。このようにオイルの温度Tが昇温して第1所定温度T1よりも上昇すると、オイルは流れ易くなり、それに伴って、制御部7はコンプレッサ部32を定常運転モードとさせる。
上記したようにオイルの温度Tが昇温して第1所定温度T1よりも上昇すると、オイルの流動性は向上する。そこで本実施形態によれば、制御部7は、上記した始動制御を終了し、オイルポンプ54への通電量(例えばデューティ比)を、始動制御におけるオイルポンプ54への通電量(例えばデューティ比)よりも減少させる。この場合、オイルの流動性は良好となっているため、オイルポンプ54への通電量を減少させてとしても、すなわち、オイルポンプ54の回転速度を減少させたとしても、前記した高デューティ比処理(オイルポンプ高回転数処理)により軸受4における潤滑性が確保されているため、焼き付きが抑えられる。この場合、制御部7は、コンプレッサ部32の回転速度を増加させて定常運転モードの回転速度で駆動させる。このように定常運転モードで回転するコンプレッサ部32により、ガスは下流機器9に向けて良好に搬送され、ガス搬送流量が確保される。
定常運転モードではコンプレッサ部32の回転速度は高いため、軸受4における摩擦熱、駆動モータ36の発熱等により、オイルの温度Tが昇温する。オイルの温度Tが第2所定温度T2(T2>T1)よりも高くなったときには、オイルは過熱されており、好ましくない。このため、本実施形態によれば、オイルの温度Tが第2所定温度T2(T2>T1)よりも高くなったときにおいて、制御部7は、次の(i)(ii)の双方または一方を実行させることができる。
(i)オイルの温度Tが第2所定温度T2よりも高くなる前に比較して、制御部7は、オイルポンプ54への通電量(例えばデューティ比)を減少させ、オイルポンプ54の回転速度を減少させる。これによりオイルポンプ54の負荷が低減される。
(ii)オイルの温度Tが第2所定温度T2よりも高くなる前に比較して、制御部7は、コンプレッサ部32の回転速度を減少させる。これによりコンプレッサ部32の駆動軸34の回転速度が減少するため、駆動軸34および/または軸受4の焼き付きが抑制される。この場合、コンプレッサ部32を定常運転モードにおいて回転させる場合よりも、コンプレッサ部32の回転速度を減少させることが好ましい。
なお、第2所定温度T2は、オイルの流動性が高まっている温度を意味し、コンプレッサ装置1が使用される地域、オイルの材質、オイルの粘度等に応じて適宜設定されるが、例えば、40℃、50℃、60℃、70℃、80℃とすることができる。第2所定温度T2は、コンプレッサ部32が定常運転モードで回転するときにおけるオイルの上限温度とすることができる。すなわち、オイルの温度Tが第1所定温度T1と第2所定温度T2との間においてコンプレッサ部32を定常運転モードで回転させることができる。
(実施形態3)
図2は実施形態3を示す。本実施形態は実施形態1,2と基本的には同じ構成、同じ作用効果を有するため、図1を準用する。図2は、オイルの温度Tと、オイルポンプ54のオイルの圧力Pと、オイルポンプ54のモードおよびコンプレッサ部32のモードとの関係を表したマップの内容を示す。このマップは、制御部7のメモリの所定のエリアに格納されている。図2において、『T≦T1』は、T<T1,T=T1であることを意味する。
本実施形態によれば、オイルの温度Tが第1所定温度T1(オイルの温度Tの下限値)よりも低い低温のとき(T≦T1)には、すなわち、オイルの温度Tが第1所定温度T1(オイルの温度Tの下限値)以下のときには、オイルの粘度は高く、オイルは流れにくく、通路における圧損が大きく、オイルが軸受4に供給されにくい。この場合、軸受4におけるオイル膜切れが発生し、駆動軸34および/または軸受4が焼き付くおそれがある。そこで本実施形態では、オイルの温度Tが第1所定温度T1よりも低温であるとき、制御部7は、コンプレッサ装置1を以下のように低温始動させる。
すなわち、オイルの温度Tが第1所定温度T1以下の低温であるとき(T≦T1)には、制御部7は、低温始動の制御を実行する。ここで、オイルの温度Tが低く、オイルの粘度が高くオイルが流れにくい低温時(T≦T1)において、オイルの圧力Pが第1所定圧力P1と第2所定圧力P2との間に存在するとき(P1<P<P2)には、制御部7は『低温始動で且つオイル流量小』と判定する。このようにオイルの温度および流動性が低く、オイルの粘度が高く、軸受4に供給されるオイル流量は少ないため、オイルが軸受4に供給されにくい。このため、駆動軸34および/または軸受4の焼き付きを抑制することが要請される。
このため、制御部7は、時間経過につれてオイルポンプ54のデューティ比の目標値を次第に増加(UP)させることによりオイルポンプ54の回転速度を次第に増加させる。更に、制御部7は、コンプレッサ部32を暖機運転モードに設定させて回転させる。ここで、コンプレッサ部32の暖機運転モードは、コンプレッサ部32が回転速度N1(例えば1〜5万rpm)という低速または中速で回転するモードである。
上記したようにオイルの温度Tが第1所定温度T1以下の低温であったとしても、時間経過につれてオイルポンプ54のデューティ比の目標値が次第に増加するため、軸受4に供給されるオイル流量が次第に増加し、軸受4におけるオイル膜切れが抑制され、駆動軸34及び軸受4の焼き付きが抑制される利点が得られる。更に、コンプレッサ部32の暖機運転モードによれば、コンプレッサ部32の回転速度N1は、定常運転モードに比較して低いため、本来的には駆動軸34および/または軸受4は焼き付きにくい。
始動時においてオイルの温度Tが第1所定温度T1以下の低温であったとしても、コンプレッサ部32が低速または中速ながらも暖機運転で回転すると、励磁コイル355への通電に起因する駆動モータ36の発熱、軸受4および駆動軸34の回転摩擦熱等に基づいて、オイルが暖められる。このようにオイルが暖められるため、オイルの粘度が次第に低下し、オイルの流動性が向上し、軸受4におけるオイル膜切れが抑制され、駆動軸34および/または軸受4の焼き付きが一層抑制される。
更にコンプレッサ装置1を起動させるとき、低温始動(T≦T1)であれば、オイルの圧力Pが第2所定圧力P2以上のとき(P2≦P)には、制御部7は『低温始動』と判定する。この場合、オイルの温度Tが第1所定温度T1よりも低く、オイルの粘度が高いためオイルが流れにくく、従って、軸受4に供給されるオイル流量は少ないため、駆動軸34および/または軸受4の焼き付きを抑制することが要請される。このため、制御部7は、コンプレッサ部32を暖機運転モードと設定させて回転させ、コンプレッサ部32を低速または中速で回転させつつも、制御部7は、オイルポンプ54のデューティ比の目標値を上限値(FULL,100%)に設定させる。このようにオイルポンプ54のデューティ比の目標値が上限値(100%)に設定されてオイルポンプ54の回転速度が早期に増加するため、軸受4に供給されるオイル流量が早期に増加し、軸受4におけるオイル膜切れが早期に抑制され、駆動軸34および/または軸受4の焼き付きが早期に抑制される。
なお、上記した低温始動(T≦T1)において、オイルの圧力Pが第1所定圧力P1以下のとき(P≦P1)には、オイルタンク52内のオイル量が不足していると考えられる。この場合、制御部7は『異常』と判定する。この結果、制御部7はオイルポンプ54を停止させる指令を出力し、且つ、コンプレッサ部32を停止させる指令を出力し、更に警報を出力する。
上記したようにオイルが低温であったとしても、コンプレッサ部32の駆動により、駆動モータ36の発熱、駆動軸34と軸受4との回転摩擦熱等の影響により、オイルは次第に昇温する。そして、オイルの温度Tが昇温して第1所定温度T1と第2所定温度T2との間に存在するようになったときには(T1<T<T2)、制御部7は中温制御を実行する。
オイルの温度Tが第1所定温度T1と第2所定温度T2との間に存在するようになったときには(T1<T<T2)、制御部7は中温制御を実行する。すなわち、コンプレッサ部1を起動させるとき、中温制御(T1<T<T2)において、オイルの圧力Pが第1所定圧力P1以下のとき(P≦P1)には、軸受4に供給されるオイルの流量は制約されているため、制御部7は『オイル流量小』と判定する。
このため、制御部7は、オイルポンプ54のデューティ比の目標値を増加(UP)させ、オイルポンプ54の回転速度を速め、軸受4に供給するオイル流量を増加させる。この場合、オイルの温度が温度T1以上であるため、オイルの粘性が良好である。そこで、制御部7は、コンプレッサ部32を暖機運転モードよりも回転数が高い定常運転モードとして回転させる。この場合、オイルの温度Tが昇温して第1所定温度T1と第2所定温度T2との間に存在するようになったとき(T1<T<T2)、オイルの粘性が良好となり、軸受4に供給されるオイル流量が増加する。このためコンプレッサ部32の回転速度を増加させたとしても、駆動軸34および/または軸受4における焼き付きは抑制される。
なお、コンプレッサ部32の定常運転モードは、コンプレッサ部32の暖機モードよりも高い回転速度N2(例えば5〜10万rpmの範囲内であるが、これに限定されるものではない)でコンプレッサ部32を回転させるモードである。従って駆動モータ36への通電量が増加し、駆動モータ36の発熱が増加する。このようにコンプレッサ部32は定常運転モードで回転すると、コンプレッサ部32が搬送するガス流量が確保される。
コンプレッサ部32の定常運転モードにおいては、コンプレッサ部32の下流に配置されている下流機器9における要請に応じて、コンプレッサ部の回転速度は制御される。すなわち、コンプレッサ部32による大きなガス流量が下流機器9において要請されるときには、コンプレッサ部32の回転速度は増加される。また、コンプレッサ部32による小さなガス流量が下流機器9において要請されるときには、コンプレッサ部32の回転速度は減少される。下流機器9としては、燃料電池システムにおける燃料電池等のように、コンプレッサ部32で搬送されるガスを使用する機器が例示される。
また中温制御(T1<T<T2)において、オイルの圧力Pが第1所定圧力P1と第2所定圧力P2との間に存在するとき(P1<P<P2)には、制御部7は『正常』と判定する。この結果、制御部7は、オイルポンプ54のデューティ比を現在値に保持させ、且つ、制御部7は、コンプレッサ部32を定常運転モードとした状態で回転させる。このようにコンプレッサ部32が定常運転モードとされて高い回転速度で回転するため、コンプレッサ部32の回転速度は暖機運転モードよりも高く、駆動モータ36の発熱、軸受4の回転摩擦熱等の影響でオイルは昇温する。
また中温制御(T1<T<T2)において、オイルの圧力Pが第2所定圧力P2以上となるような高圧であるとき(P2≦P)には、オイルの粘度が過剰に小さくなり、軸受4に供給されるオイル流量が増加し、制御部7は、『オイル流量大』と判定する。このため、制御部7は、コンプレッサ部32を定常運転モードとした状態で回転させつつも、オイルポンプ54のデューティ比を減少(DOWN)させてオイルポンプ54の回転速度を減少させる。このようにコンプレッサ部32は定常運転モードで回転するため、コンプレッサ部32の回転速度は速く、コンプレッサ部32が下流機器9に向けて搬送するガス流量が確保される。
さて、コンプレッサ部32の高負荷運転が長時間にわたり継続すると、オイルの温度Tが第2所定温度T2以上と高温となり(T2≦T)、オイルが過熱され、オイルの圧力Pが第1所定圧力P1以下となることがある(P≦P1)。この場合、軸受4には良好なオイル膜が形成されにくい。ここで、制御部7は『高負荷運転かつオイル流量小』と判定する。この結果、制御部7はオイルポンプ54のデューティ比の目標値を増加させ(UP)ることにより、オイルポンプ54の回転速度を速め、オイルポンプ54の吐出口56からのオイル吐出量を増加させ、軸受4に供給されるオイル流量を増加させ、駆動軸34および軸受4の過熱を抑制させる。
更に、仮にコンプレッサ部32の回転速度を高速化させる指令が出力されているとしても、制御部7は、コンプレッサ部32の回転速度を抑えるように制限し、オイルの温度Tが適温範囲まで低下するのを待つ。このようにコンプレッサ部32の出力を制限させ、オイルの過熱を抑制させ、コンプレッサ装置1およびオイルを過熱から保護する。この場合、コンプレッサ部32の回転数を増速させる指令が出力されている場合においても、コンプレッサ部32の回転数(出力)の増加が制限されているため、コンプレッサ部32を駆動させる駆動モータ36等の保護が図られている。
また高温制御(T2≦T)において、オイルの圧力PがP1とP2との間に存在するとき(P1<P<P2)には、制御部7は『高負荷運転』と判定する。この結果、制御部7は、オイルポンプ54のデューティ比を現在値として保持させる。更に、仮にコンプレッサ部の回転速度を高速化させる指令が出力されているとしても、制御部7は、コンプレッサ部32の回転速度を抑えるように制限し、オイルの温度Tが適温範囲まで低下するのを待つ。このようにコンプレッサ部32の回転数および出力を制限させ、オイルの過熱を抑制させる。この場合、コンプレッサ部32の回転数(出力)の増加が制限されているため、コンプレッサ部32を駆動させる駆動モータ36等の保護が図られている。
またオイルの温度Tが第2所定温度T2以上であり(T2≦T)、オイルの粘度は減少してオイルの流動性が増加しているものの、オイルの圧力Pが第2所定圧力P2よりも高圧であるとき(P2≦P)がある。この場合、オイル通路における詰まり、例えば、オイルフィルタ58等の目詰まりが推定される。このため制御部7は『異常』と判定する。この場合、制御部7はオイルポンプ54を停止させ、且つ、コンプレッサ部32を停止させ、警報を出力する。これによりオイル供給不足に起因する故障が防止される。
(実施形態4)
図3は実施形態4を示す。本実施形態は実施形態1〜3と基本的には同じ構成、同じ作用効果を有するため、図1を準用する。図3は、オイルの温度が第1所定温度T1よりも低温であるとき、コンプレッサ装置1を始動させるときにおけるタイミングチャートを示す。すなわち、図3は、オイルの温度T,オイルの圧力P,オイルポンプ54のデューティ比,コンプレッサ部32の回転速度の関係を示すタイミングチャートを示す。図3に示すように、オイルの温度Tを示す特性線は、線部分T13,T89,Tを有する。オイルの圧力Pを示す特性線は,線部分P01,P12,P23,P34,P45,P56を有する。オイルポンプ54のデューティ比を示す特性線は、線部分D01,D12,D23,D,D45,D56,D67を有する。コンプレッサ部32の回転速度を示す特性線は、線部分N01,N13,N45,N56,N67,N78,N89を有する。
更に、図3は、デューティ比を相対値(0,30,50,100)として示し、コンプレッサ部32の回転速度を相対値(N1,N2,N3)として示す。N1<N2<N3の関係とされている。図3の横軸は時間経過を示す。オイルの温度が第1所定温度T1よりも低温であるとき、オイルの粘度は高く、オイルは流れに難く、駆動軸34および/または軸受4が焼き付くおそれがある。
本実施形態によれば、オイルの温度Tが第1所定温度T1〜第2所定温度T2のとき、且つ、オイルの圧力Pが第1所定圧力P1〜第2所定圧力P2のとき、制御部7は、コンプレッサ部32の定常運転モードを実行させる。
図3に示すように、始動開始を時刻t0とする。時刻t0から時刻t1までの起動時において、線部分D01として示すように、制御部7はオイルポンプ54のデューティ比を一定値(デューティ比の上限値である100とデューティ比の下限値である0との間における中間値,例えば50)に維持させる。これによりオイルポンプ54の回転速度を一定値に維持させつつ、オイルポンプ54を駆動させる。このようなオイルポンプ54の駆動により、オイルの圧力Pは、線部分P01に示すように、時刻t0から時刻t1にかけて次第に昇圧される。
このような始動時においては、線部分N01として示すように、コンプレッサ部32を停止させたままとし、コンプレッサ部32を回転させない。従ってコンプレッサ部32はガスを搬送させない。コンプレッサ部32および駆動軸34を回転させない理由としては、オイルの温度Tが低温で、オイルの粘度が高いため、駆動軸34が回転すると、駆動軸34および/または軸受4が焼き付くおそれがあるためである。
なお、このように始動時において、時刻t0から所定時間経過したとしても、万一、オイルの圧力Pが第1所定圧力P1に昇圧しないときには、制御部7は、オイルタンク52に貯留されているオイルの量が不足し、異常であると判定し、警報を出力する。
上記したコンプレッサ装置1の始動時において、オイルの圧力Pが第1所定圧力P1以上に昇圧されたら、あるいは、第1所定圧力P1以上に到達していないものの時刻t0から時間が経過して時刻t1に到達したら、線部分D12に示すように、制御部7は、オイルポンプ54のデューティ比の目標値を上限値(相対値100)に向けて変化速度βupで増加させるデューティ比上昇処理Dupを実行する。これに伴い、図3において線部分P12として示すように、時刻t1から時刻t2にかけて、オイルポンプ54のオイルの圧力Pが次第に増加する。更に、線部分T13として示すように、オイルの温度Tも時刻t1から時刻t3にかけて次第に昇温する。
更に、昇圧されたオイルの圧力Pが第1所定圧力P1以上になったら、あるいは、時刻t1に到達したら、線部分D23で表される高デューティ比処理Dhighとして示すように、制御部7は、オイルポンプ54のデューティ比を上限値(相対値100)に継続して設定する。
上記したようにオイルポンプ54のデューティ比を上限値(相対値100)に継続して設定するため、オイルの温度Tを短時間に上昇させてオイルの流動性を高めることができると共に、軸受4に供給するオイル流量を短時間に増加させ、軸受4の潤滑性を短時間に高めることができる。
上記した高デューティ比処理Dhighにより、オイルの温度Tの昇温を急速に速めると共に、軸受4に供給するオイル流量を急速に増加させ、軸受4における潤滑性を急速に高めることができる。高デューティ比処理Dhighが実施されると、線部分P23として示すように、オイルの圧力Pは第2所定圧力P2を高圧側に超えることがある。
上記したようにオイルの圧力Pが第1所定圧力P1以上に昇圧されたら(時刻t1)、軸受4に供給されるオイル流量が確保される。このため、線部分N13として示すように、制御部7は、停止していたコンプレッサ部32を暖機運転モードとして回転させる。暖機運転モードにおいては、定常運転モードにおけるコンプレッサ部32の回転速度N2よりも低い回転速度N1で、つまり、低速または中速でコンプレッサ部32を回転させる(N2>N1,時刻t1〜時刻t3)。コンプレッサ部32の駆動軸34の回転速度N2は高速ではないため、また、高デューティ比処理Dにより軸受4に単位時間あたりに供給されるオイル流量が良好に確保されているため、駆動軸34および/または軸受4における焼き付きが抑制される。
上記した高デューティ比処理Dhによりオイルの温度Tが昇温して第1所定温度T1以上となったとき(時刻t3)には、オイルの粘度は低下し、オイルの流動性が向上している。このため線部分Dとして表されるデューティ低下処理Ddownとして示すように、制御部7は、オイルポンプ54のデューティ比を相対値30に変化速度βdownで急激に減少させ、減少後においてそのデューティ比を維持する。このデューティ比は、上記した低温始動時におけるオイルポンプ54のデューティ比(相対値50,線部分D01)よりも低い。これによりオイルポンプ54の単位時間あたりの吐出流量が抑制され、オイルの圧力Pが過大化することが抑制される。ここで、デューティ低下処理Ddownにおける変化速度βdownは、デューティ比上昇処理Dupにおける変化速度βupよりも大きい。
上記したようにオイルポンプ54のデューティ比を急激に減少させるデューティ低下処理Ddownを実行する理由としては、次のようである。すなわち、オイルポンプ54は時刻t2〜t3にかけて高デューティ比処理Dhighが実行されているため、オイルポンプ54の回転数が上限値(または上限値附近でも良い)であり、単位時間あたり高回転数であり、従って、オイルポンプを構成している励磁コイルに大きな電流量が流れてオイルポンプの励磁コイルの発熱がかなり増加している。このためオイルポンプのステータおよび励磁コイルを保護するためであり、更に、オイルの圧力Pが第2所定圧力P2よりも過剰に増加することを抑えるためである。この場合、デューティ低下処理Ddownが実行されると、オイルポンプ54の回転速度が急激に低下するため、軸受4に供給されるオイル流量が急激に低下するものの、高デューティ比処理Dhighにより軸受4には既にオイルが充分に保持されているため、駆動軸34および/または軸受4の焼き付きは抑制される。
なお、上記したデューティ低下処理Ddownにより、オイルポンプ54のデューティ比が減少してオイルポンプ54の回転速度が減少するため、時刻t3以後において、線部分P34して示すように、オイルの圧力Pが第2所定圧力P2よりも低下し始め、適性化される。
上記したようにオイルの温度Tが昇温して第1所定温度T1以上となれば(時刻t3〜)、オイルの流動性が向上しているため、コンプレッサ部32は暖機運転モードから定常運転モードに移行する。コンプレッサ部32の定常運転モードにおいては、コンプレッサ部32の下流に配置されている下流機器9における要請に応じて、コンプレッサ部32は回転する。すなわち、コンプレッサ部32によるガス流量の増加が下流機器9において要請されるときには、コンプレッサ部32の回転速度は増加される。また、コンプレッサ部32によるガス流量の減少が下流機器9において要請されるときには、コンプレッサ部32の回転速度は減少される。下流機器9としては、燃料電池システムにおける燃料電池が例示される。すなわち、燃料電池の発電量が増加されるときには、コンプレッサ部32の回転速度は増加される。燃料電池の発電量が減少されるときには、コンプレッサ部32の回転速度は減少される。
さて、コンプレッサ部32が定常運転モードで回転駆動しているとき、オイルポンプ54のデューティ比が低下していれば、線部分P45として示すように、オイルの圧力Pが低下して第1所定圧力P1以下となることがある(時刻t4)。この場合、オイルの圧力Pは低下し過ぎである。この場合、良好の潤滑膜が軸受4に形成されず、駆動軸34および/または軸受4が焼き付くおそれがある。そこで、制御部7は、線部分D45として示すように、オイルの圧力Pを増加させるべく、オイルポンプ54のデューティ比を次第に増加させ、オイルポンプ54の回転速度を増加させ、線部分P56として示すように、オイルの圧力Pを増加させる。この場合、線部分N45,N56,N67として示すように、コンプレッサ部32は定常運転モードとされており、下流機器9の要請に応じて、コンプレッサ部32は、暖機運転モードにおけるコンプレッサ部32の回転速度よりも速い回転速度で回転している。
さて、低下していたオイルの圧力Pが増加して第1所定圧力P1以上になると(時刻t5)、線部分D56として示すように、制御部7はオイルポンプ54のデューティ比をその値として保持する。オイルの圧力Pが更に増加して第2所定圧力P2以上の過剰の高圧になると(時刻t6)、制御部7は、線部分D67として示すように、オイルポンプ54のデューティ比を減少させ、オイルの圧力Pを減少させる。
コンプレッサ部32が定常運転モードにおいて回転しているとき、時刻t7〜t8において、線部分N78として示すように、コンプレッサ部32が高回転速度で所定時間継続していると、線部分T89として示すように、オイルの温度Tは第2所定温度T2以上の高温となり、オイルの粘度が過剰に減少することがある。この場合、軸受4に良好なオイル膜が形成されないおそれがある。そこで、コンプレッサ部32を回転速度N3で連続して回転させる高速回転指令Nhが出力されているにもかかわらず、制御部7は、オイルの温度Tが第2所定温度T2以上となった時刻t8において、線部分N89として示すように、コンプレッサ部32の回転速度を強制的に低下させる低下指令Nmを出力する。このように高速回転指令Nhよりも低下指令Nmを優先させる。これにより線部分Tとして示すように、オイルの温度Tが次第に低下し、第2所定温度T2以下となる。このときオイルポンプ54のデューティ比は一定値に維持されている。その理由としては、オイルの圧力Pが第1所定圧力P1と第2所定圧力P2との間において存在するため、制御部7は『高負荷運転』と判定するためである。
(適用形態)
図4は燃料電池システムに適用した形態を模式的に示す。この適用形態では、上記した各実施形態におけるコンプレッサ装置が使用できる。この燃料電池システムは、自動車等の車両に搭載されるタイプ、または、定置用のタイプである。燃料電池システムは、図4に模式的に示すように、燃料極101と酸化剤極103とで電解質膜104(例えばイオン伝導性をもつ固体高分子膜など)を挟んだ燃料電池100と、燃料電池100の燃料極101の入口にガス状の燃料(例えば水素ガス、水素含有ガス)を供給する燃料供給通路200と、燃料電池100の燃料極101の出口から発電反応後の燃料オフガスを排出する燃料オフガス路210と、燃料電池100の酸化剤極103の入口に加湿器333を介して発電反応前の酸化剤ガス(例えば空気)を供給する酸化剤供給通路300と、燃料電池の酸化剤極103の出口103pから発電反応後のガス状の酸化剤オフガスを排出する酸化剤オフガス路310とをもつ。
加湿器333は、酸化剤極103に供給される直前の酸化剤ガスを加湿させる加湿路333aと、酸化剤極103から吐出された高温高湿の酸化剤オフガスを吸湿させる吸湿路333bと、加湿路333aおよび吸湿路333bを仕切る水分保持部材333cとを有する。
図4に示すように、燃料供給通路200には燃料供給弁205が設けられている。燃料オフガス路210には燃料オフガス排出弁215が設けられている。酸化剤供給通路300には酸化剤供給弁305が設けられている。酸化剤オフガス路310には酸化剤オフガス排出弁315が設けられている。
発電運転時には、燃料供給通路200の燃料供給弁205が開放し、燃料が燃料電池100の燃料極101に供給される。酸化剤供給通路300の酸化剤供給弁305が開弁し、酸化剤ガス(一般的には空気)が燃料電池100の酸化剤極103に供給される。これにより燃料電池100の内部で発電される。発電反応を経た燃料オフガスは、燃料オフガス路210の燃料オフガス排出弁215から排出される。発電反応を経た酸化剤オフガス(空気オフガス)は、酸化剤オフガス路310の酸化剤オフガス排出弁315から排出される。
本適用形態によれば、図4に示すように、酸化剤供給通路300の酸化剤供給弁305の上流に、本発明に係るコンプレッサ装置1が設けられている。コンプレッサ装置1により圧縮空気(酸化剤ガス)を燃料電池100の酸化剤極103に供給できるため、燃料電池100の発電性能を高めることができる。
図4に示すように、コンプレッサ装置1は、燃料電池100の酸化剤極103に酸化剤ガスを供給するための酸化剤ガス搬送源として機能するものである。コンプレッサ装置1は、加湿器333の上流に配置されており、コンプレッサ装置1で圧縮された酸化剤ガス(一般的には空気等の酸素含有ガスまたは酸素ガス)を加湿器333に供給して加湿した後に燃料電池100の酸化剤極103に供給する。酸化剤オフガス路310は加湿器333に繋がっており、燃料電池から排出された酸化剤オフガス路310を流れる水分リッチな酸化剤オフガスは、加湿器333の吸湿路333bに流れ、加湿器333の水分保持部材333cに水分を与える。これにより加湿器333の加湿能力が確保される。燃料供給通路200の上流端は燃料供給源220に繋がる。燃料供給源220は、燃料を貯蔵する燃料タンクでも良いし、原料を改質して燃料を生成させる改質装置でも良い。
本適用形態によれば、前記した各実施形態と同様に、オイル温度センサで検知されたオイル温度と、オイル圧力センサで検知されたオイルの圧力とに基づいて、制御部7は、駆動軸を回転可能に支持する軸受に供給するオイル流量を制御し、駆動軸および/または軸受の焼き付きを抑制させるようにオイルポンプを制御する。これによりオイルの温度が低いときであっても、軸受に供給するオイル流量が適性化され、軸受の潤滑性が向上され、軸受に回転可能に支持されている駆動軸および/または軸受の焼き付きが抑制される。
(その他)
上記した実施形態によれば、オイル圧力センサ63はオイルポンプ54の吐出口56とオイルフィルタ58との間に設けられているが、これに限らず、オイルフィルタ58と軸受4との間に設けられていても良い。オイル温度センサ60はオイルフィルタ58と軸受4との間に設けられているが、これに限らず、オイルフィルタ58とオイルポンプ54の吐出口56との間に設けられていても良い。軸受4は外輪40、内輪42、転動体44を有するが、これに限定されず、外輪40および転動体44を有する構造でも良く、あるいは、内輪42および転動体44を有する構造でも良く、あるいは、軸受メタル等の他の構造でも良い。
オイルポンプ54への通電量は、オイルポンプ54へ通電するときにおけるデューティ比とされているが、これに限らず、オイルポンプ54がパルス制御されない場合には、オイルポンプ54への電流量でも良い。上記した実施形態において、高デューティ比処理Dhighでは、オイルポンプ54のデューティ比の目標値を上限値(相対値100)に設定しているが、これに限らず、デューティ比の目標値を相対値85以上、90以上、あるいは、95以上に設定することにしても良く、要するに、コンプレッサ部32の定常運転モードを実施するときにおけるオイルポンプ54のデューティ比よりも増加していれば良い。電解質膜104をもつ燃料電池は固体高分子型の燃料電池に限定されず、リン酸型、炭酸塩型、固体酸化物型の燃料電池にも適用できる。
本発明は上記し且つ図面に示した実施形態のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できる。なお燃料電池システム以外の流体システムに適用することも可能である。本明細書における記載から次の技術的思想も把握される。
[付記項1]駆動軸と前記駆動軸に設けられた羽根部と前記駆動軸をこれの軸芯回りで回転させる駆動部とを有するコンプレッサ部と、前記コンプレッサ部の前記駆動軸を回転可能に支持する軸受と、オイルを前記軸受に潤滑のために供給するオイル供給通路と前記オイルを貯留するオイルタンクと前記オイルタンクの前記オイルを前記オイル供給通路に供給するオイルポンプとを有するオイル供給系と、前記オイル供給系における前記オイルの温度を直接的または間接的に検知するオイル温度センサと、前記オイル供給系における前記オイルの圧力を直接的または間接的に検知するオイル圧力センサとを具備するコンプレッサ装置。
本発明は燃料電池システムに適用できる。更に、ガス圧縮機、ターボチャージャ等の他の流体システムに適用することもできる。
実施形態1に係り、コンプレッサ装置の断面を模式的に示す図である。 実施形態3に係り、オイルの温度とオイルの圧力と運転モードとの関係を表すチャート図である。 実施形態4に係り、オイルの温度T,オイルの圧力P,オイルポンプのデューティ比,コンプレッサ部の回転速度の関係を示すタイミングチャートである。 燃料電池システムに適用した適用図である。
符号の説明
図中、1はコンプレッサ装置(酸化剤ガス搬送源)、30はインペラ羽根部(羽根部)、32はコンプレッサ部、34は駆動軸、36は駆動モータ(駆動部)、4は軸受、44は転動体、5はオイル供給系、50はオイル供給通路、52はオイルタンク、54はオイルポンプ、56は吐出口、60はオイル温度センサ、63はオイル圧力センサ、7は制御部7、100は燃料電池、101は燃料極、103は酸化剤極、104は電解質膜、200は燃料供給通路、300は酸化剤供給通路を示す。

Claims (6)

  1. 駆動軸と前記駆動軸に設けられた羽根部と前記駆動軸をこれの軸芯回りで回転させる駆動部とを有するコンプレッサ部と、
    前記コンプレッサ部の前記駆動軸を回転可能に支持する軸受と、
    オイルを前記軸受に潤滑のために供給するオイル供給通路と前記オイルを貯留するオイルタンクと前記オイルタンクの前記オイルを前記オイル供給通路に供給するオイルポンプとを有するオイル供給系と、
    前記オイル供給系における前記オイルの温度を直接的または間接的に検知するオイル温度センサと、
    前記オイル供給系における前記オイルの圧力を直接的または間接的に検知するオイル圧力センサと、
    前記オイル温度センサで検知されたオイル温度と、前記オイル圧力センサで検知された前記オイルの圧力とに基づいて、前記オイルポンプを制御し、前記軸受に供給するオイル流量を制御し、前記駆動軸および/または前記軸受の焼き付きを抑制させる制御部とを具備するコンプレッサ装置。
  2. 請求項1において、オイルの温度が第1所定温度T1以下のときにおいて前記コンプレッサ装置を始動させるとき、前記制御部は、前記オイル流量を、前記コンプレッサ部の定常運転モードを実施するときにおける前記オイル流量よりも増加させるコンプレッサ装置。
  3. 請求項1において、オイルの温度が第1所定温度T1以下のときにおいて前記コンプレッサ装置を始動させるとき、前記制御部は、前記オイルポンプへの通電量を、前記コンプレッサ部の定常運転モードを実施するときにおける前記オイルポンプへの通電量よりも増加させるコンプレッサ装置。
  4. 請求項1において、オイルの流動性が低下する第1所定温度T1よりも前記オイルの温度が低いときにおいて前記コンプレッサ装置を始動させるとき、前記制御部は、前記オイルポンプへの通電量を、前記コンプレッサ部の定常運転モードを実施するときにおける前記オイルポンプへの通電量よりも増加させ、且つ、前記コンプレッサ部の前記定常運転モードを実施するときにおける回転速度よりも低い回転速度で前記コンプレッサ部を回転させる始動制御を実行するコンプレッサ装置。
  5. 請求項2または3において、前記第1所定温度T1よりも前記オイルの温度が上昇したとき、前記制御部は、前記始動制御を終了し、前記オイルポンプへの通電量を前記始動制御における前記オイルポンプへの通電量よりも減少させ、且つ、前記コンプレッサ部を前記定常運転モードにおいて駆動させるコンプレッサ装置。
  6. 電解質を挟む燃料極および酸化剤極をもつ燃料電池と、
    前記燃料電池の前記燃料極に供給される燃料が流れる燃料供給通路と、
    前記燃料電池の前記酸化剤極に酸化剤ガスを供給する酸化剤供給通路と、
    前記酸化剤供給通路において前記燃料電池の上流に設けられ前記酸化剤ガスを前記燃料電池の前記酸化剤極に搬送させる酸化剤ガス搬送源とを具備しており、
    前記酸化剤ガス搬送源は、請求項1〜5のうちのいずれか一項に記載のコンプレッサ装置で構成されている燃料電池システム。
JP2008215132A 2008-08-25 2008-08-25 コンプレッサ装置および燃料電池システム Pending JP2010048222A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008215132A JP2010048222A (ja) 2008-08-25 2008-08-25 コンプレッサ装置および燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008215132A JP2010048222A (ja) 2008-08-25 2008-08-25 コンプレッサ装置および燃料電池システム

Publications (1)

Publication Number Publication Date
JP2010048222A true JP2010048222A (ja) 2010-03-04

Family

ID=42065490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008215132A Pending JP2010048222A (ja) 2008-08-25 2008-08-25 コンプレッサ装置および燃料電池システム

Country Status (1)

Country Link
JP (1) JP2010048222A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105351243A (zh) * 2015-11-24 2016-02-24 重庆美的通用制冷设备有限公司 离心压缩机
EP3193021A1 (en) * 2016-01-15 2017-07-19 Panasonic Intellectual Property Management Co., Ltd. Turbocompressor apparatus
JP2018113170A (ja) * 2017-01-12 2018-07-19 トヨタ自動車株式会社 燃料電池システム
JP2018159340A (ja) * 2017-03-23 2018-10-11 株式会社島津製作所 真空ポンプの制御装置、およびポンプ装置
JP2019090370A (ja) * 2017-11-15 2019-06-13 株式会社マーレ フィルターシステムズ 電動コンプレッサ
WO2022163573A1 (ja) * 2021-01-29 2022-08-04 ダイキン工業株式会社 送風装置、ならびに当該送風装置を備える空気調和装置の利用ユニット・熱源ユニット、給湯器、及び空気清浄機

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105351243A (zh) * 2015-11-24 2016-02-24 重庆美的通用制冷设备有限公司 离心压缩机
EP3193021A1 (en) * 2016-01-15 2017-07-19 Panasonic Intellectual Property Management Co., Ltd. Turbocompressor apparatus
US20170207733A1 (en) * 2016-01-15 2017-07-20 Panasonic Intellectual Property Management Co., Ltd. Turbocompressor apparatus
CN106982016A (zh) * 2016-01-15 2017-07-25 松下知识产权经营株式会社 涡轮压缩机装置
US10560042B2 (en) 2016-01-15 2020-02-11 Panasonic Intellectual Property Management Co., Ltd. Turbocompressor comprising a compressor motor generating regenerative electric power by regenerative driving capable of driving a compressor motor
CN106982016B (zh) * 2016-01-15 2021-11-26 松下知识产权经营株式会社 涡轮压缩机装置
JP2018113170A (ja) * 2017-01-12 2018-07-19 トヨタ自動車株式会社 燃料電池システム
JP2018159340A (ja) * 2017-03-23 2018-10-11 株式会社島津製作所 真空ポンプの制御装置、およびポンプ装置
JP2019090370A (ja) * 2017-11-15 2019-06-13 株式会社マーレ フィルターシステムズ 電動コンプレッサ
WO2022163573A1 (ja) * 2021-01-29 2022-08-04 ダイキン工業株式会社 送風装置、ならびに当該送風装置を備える空気調和装置の利用ユニット・熱源ユニット、給湯器、及び空気清浄機
JP2022117021A (ja) * 2021-01-29 2022-08-10 ダイキン工業株式会社 送風装置、ならびに当該送風装置を備える空気調和装置の利用ユニット・熱源ユニット、給湯器、及び空気清浄機
JP7235990B2 (ja) 2021-01-29 2023-03-09 ダイキン工業株式会社 送風装置、ならびに当該送風装置を備える空気調和装置の利用ユニット・熱源ユニット、給湯器、及び空気清浄機

Similar Documents

Publication Publication Date Title
JP4735642B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2010048222A (ja) コンプレッサ装置および燃料電池システム
US10957926B2 (en) Fuel cell system and control method of fuel cell system
JP4953051B2 (ja) 燃料電池システム
CN104051762B (zh) 用于使燃料电池待机的设备和方法
JP2007179949A (ja) 燃料電池システム
JP2005302304A (ja) 燃料電池システム
JP5050342B2 (ja) 燃料電池システム及びその起動方法
JP2007299691A (ja) 車両駆動用燃料電池における空気供給システムおよび空気供給方法
JP2006196402A (ja) 燃料電池システムの制御装置
JP2007328972A (ja) 燃料電池システム
JP2007220355A (ja) 燃料電池システムと燃料電池の低温起動方法
JP5034160B2 (ja) 燃料電池システム
JP2007280676A (ja) 燃料電池システム
JP2006120532A (ja) 燃料電池システム
JP2011049040A (ja) 燃料電池システム
JP2014203723A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5187477B2 (ja) 燃料電池システム
JP2007059348A (ja) 燃料電池システムおよび燃料電池システムの起動方法
JP4706954B2 (ja) 燃料電池システム
JP5240068B2 (ja) 燃料電池用コンプレッサの停止制御装置
JP6469132B2 (ja) 通常動作を開始する方法
JP2007109570A (ja) 燃料電池システム
JP2006209994A (ja) 燃料電池システム
JP2007234311A (ja) 燃料電池システム