JP2010045967A - パワーコンバータで用いるためのスイッチング回路、およびパワーコンバータの出力を制御するための方法 - Google Patents

パワーコンバータで用いるためのスイッチング回路、およびパワーコンバータの出力を制御するための方法 Download PDF

Info

Publication number
JP2010045967A
JP2010045967A JP2009187121A JP2009187121A JP2010045967A JP 2010045967 A JP2010045967 A JP 2010045967A JP 2009187121 A JP2009187121 A JP 2009187121A JP 2009187121 A JP2009187121 A JP 2009187121A JP 2010045967 A JP2010045967 A JP 2010045967A
Authority
JP
Japan
Prior art keywords
switch
terminal
passive
active
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009187121A
Other languages
English (en)
Other versions
JP5564697B2 (ja
Inventor
Robert J Mayell
ロバート・ジェイ・メイエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Integrations Inc
Original Assignee
Power Integrations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Integrations Inc filed Critical Power Integrations Inc
Publication of JP2010045967A publication Critical patent/JP2010045967A/ja
Application granted granted Critical
Publication of JP5564697B2 publication Critical patent/JP5564697B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter

Abstract

【課題】不一致のスイッチを有するパワーコンバータのエネルギ消費を減らすためのスイッチング回路を実現するための方法および装置を提供する。
【解決手段】1つの局面におけるパワーコンバータで用いるためのスイッチング回路は、第1および第2の能動スイッチならびに第1および第2の受動スイッチを含む。第1の能動スイッチは、変圧器の一次巻線の第1の端子に結合され得る。第2の能動スイッチは、変圧器の一次巻線の第2の端子に結合され得る。第1の能動スイッチの出力キャパシタンスは第2の能動スイッチの出力キャパシタンスよりも大きい。第1の受動スイッチは、第2の能動スイッチおよび一次巻線の第2の端子に結合され得る。第2の受動スイッチは、第1の能動スイッチおよび一次巻線の第1の端子に結合され得る。第1の受動スイッチの逆回復時間は第2の受動スイッチの逆回復時間よりも長い。
【選択図】図1

Description

背景情報
開示の分野
本発明は一般に電源装置に関し、特にフォワードコンバータに関する。
背景
AC/DCおよびDC/DC電源装置は典型的に、2スイッチフォワードコンバータ(すなわち2つの能動スイッチを有するフォワードコンバータ)として一般的に公知である電力変換トポロジーを用いる。
2スイッチフォワードコンバータは典型的に、変圧器の一次巻線に入力電圧を印加する構成において2つの能動スイッチおよび2つの受動スイッチを用いる。変圧器の二次巻線は、一次巻線に印加された入力電圧に応じて、スケーリングされた電圧を生成する。二次巻線の電圧は出力電圧を生成するために整流され、フィルタにかけられる。受動スイッチは、能動スイッチがオフであるときに変圧器の磁化エネルギをリセットすることができる。変圧器の磁化エネルギはリセットされ(すなわち、はるかに低い値に戻って)、過度に蓄えられたエネルギが変圧器を飽和させ、それによって変圧器の特性を変化させることを防ぐことができる。
2スイッチフォワードコンバータはしばしば、パーソナルコンピュータおよび同様の応用例の電源の要件を満たす最もコストの低い構成である。2スイッチフォワードコンバータの回路トポロジーの対称性のため、設計者は、2つの能動スイッチに名目上全く同一のトランジスタを選択し、2つの受動スイッチに名目上全く同一のダイオードを選択することになる。
2スイッチフォワードコンバータの従来の設計では、2つのトランジスタに同一の構成要素またはほぼ同じ性質を有する2つの異なる構成要素のいずれか一方が指定され、2つのダイオードについても同様である。そのような設計では、システムのコストを減らすことのできる付加的な自由度を利用することができない。
特に明記しない限りさまざまな図面全体にわたって同様の参照番号は同様の部分を指す以下の図面を参照して、本発明の非限定的および非網羅的な実施例が説明される。
本発明の主な特徴を示す回路図である。 動作を図示するために特定の電流および電圧を示す、図1の本発明の回路図である。 本発明の動作に関する波形を示す図である。 図3に示される時間間隔に関連付けられる電流の経路を示す回路図である。 図3に示される時間間隔に関連付けられる電流の経路を示す回路図である。 図3に示される時間間隔に関連付けられる電流の経路を示す回路図である。 図3に示される時間間隔に関連付けられる電流の経路を示す回路図である。 図3に示される時間間隔に関連付けられる電流の経路を示す回路図である。 図3に示される時間間隔に関連付けられる電流の経路を示す回路図である。 図3に示される時間間隔に関連付けられる電流の経路を示す回路図である。 2スイッチフォワードコンバータの最大デューティ比を大きくする回路を含む本発明の一例を示す図である。 2スイッチフォワードコンバータの最大デューティ比を50パーセントよりも大きくするために回路に加えて一次インダクタンスを含む、本発明の別の例を示す図である。
詳細な説明
不一致のスイッチを有するパワーコンバータのエネルギ消費を減らすためのスイッチング回路を実現するための方法および装置が開示される。以下の説明では、本発明の完全な理解を与えるために多数の具体的な詳細が記載される。しかし、本発明を実践するのに具体的な詳細を使用することは不要であることが当業者に明らかになるであろう。他の例では、本発明を曖昧にするのを避けるために周知の材料および方法は詳細に説明されていない。
本明細書全体にわたって「1つの実施例」、「実施例」、「一例」または「例」への言及は、その実施例または例に関連して説明される特定の特徴、構造または特性が本発明の少なくとも1つの実施例に含まれることを意味する。したがって、本明細書全体にわたってさまざまな箇所に出てくる「1つの実施例では」、「実施例では」、「一例」または「例」という文言は、すべてが同一の実施例または例について言及しているとは限らない。また、特定の特徴、構造または特性は、1つ以上の実施例または例においていずれかの好適なコンビネーションおよび/またはサブコンビネーションで組合せられ得る。さらに、本明細書とともに与えられる図面は当業者に説明するためのものであり、図面は必ずしも同じ縮尺で描かれていないことが認識される。
次に、非対称スイッチフォワードコンバータが説明される。本発明の例は、第1および第2の能動スイッチならびに第1および第2の受動スイッチを含む。第1の能動スイッチは、変圧器の一次巻線の第1の端子に結合され得る。第2の能動スイッチは、変圧器の一次巻線の第2の端子に結合され得る。第1の能動スイッチの出力キャパシタンスは第2の能動スイッチの出力キャパシタンスよりも実質的に大きい。第1の受動スイッチは、第2の能動スイッチおよび一次巻線の第2の端子に結合され得る。第2の受動スイッチは、第1の能動スイッチおよび一次巻線の第1の端子に結合され得る。第1の受動スイッチの逆回復時間は第2の受動スイッチの逆回復時間よりも実質的に長い。
図1は、本発明の教示内容に係る2スイッチフォワードコンバータ100の一例を示す。この2スイッチフォワードコンバータは、入力電圧VIN 102から変圧器T1 128の一次巻線130の電圧VP 132を生成する構成において、2つの能動スイッチQ1 104およびQ2 122、ならびに2つの受動スイッチD1 110およびD2 116を用いる。変圧器T1 128の二次巻線134は、一次電圧VP 132に比例した電圧を生成する。出力ダイオード136は、二次巻線134の電圧を整流する。フリーホイールダイオード138、出力インダクタL1 140、および出力コンデンサC1
142は二次巻線134からの整流電圧をフィルタにかけて、負荷144において出力電圧VO 142を生成する。
能動スイッチと受動スイッチとの違いは、能動スイッチは自身を開閉する制御信号を受信するのに対して、受動スイッチは制御信号を普通は受信しないことである。開いているスイッチは通常は電流を通さない。閉じているスイッチは電流を通すことができる。能動スイッチは典型的に1つ以上の制御端子を有し、これらは、能動スイッチの2つの他の端子が電流を通し得るか否かを決定する。図1の能動スイッチQ1 104およびQ2 122を開閉する信号は、本発明に従った教示内容を曖昧にするのを避けるため図中に示されていない。
受動スイッチは一般に2つの端子しか有しない。典型的に、これらの端子同士の間の電圧が受動スイッチの開閉を決定する。ダイオードは受動スイッチであると考えることができる。なぜなら、ダイオードは、自身の2つの端子同士の間の電圧が1つの極性を有する場合(カソードに対してアノードが正)電流を通し、端子同士の間の電圧が反対の極性を有する場合(カソードに対してアノードが負)電流を実質的に阻止するからである。
図1の例では、能動スイッチQ1 104およびQ2 122が金属酸化物半導体電界効果トランジスタ(MOSFET)106および124をそれぞれ備えることが示されており、それぞれの固有の出力キャパシタンスがコンデンサCOSS1 108およびCOSS2 126としてそれぞれ示されている。コンデンサCOSS1 108およびCOSS2 126は、これらがMOSFET106および124の固有の挙動を表わし、かつ外部の構成要素ではないことを強調するために図1において破線で示されている。制御信号はMOSFET106および124をオンにして、能動スイッチQ1 104およびQ2 122を閉じる。制御信号はMOSFET106および124をオフにして、能動スイッチQ1 104およびQ2 122を開く。
他の例では、それぞれの能動スイッチQ1 104およびQ2 122は、バイポーラ接合型トランジスタ(BJT)または絶縁ゲート型バイポーラトランジスタ(IGBT)などの他の好適な電子装置で実現され得る。MOSFETおよび他の能動スイッチング装置の出力キャパシタンスは、以下に説明するように重要である。スイッチは、単一の基板を用いて集積されてもよいし、または別個の構成要素として設けられてもよい。
図1の例ではまた、受動スイッチD1 110およびD2 116がPN接合ダイオード112および118をそれぞれ備え、破線でそれぞれコンデンサCRR1 114およびCRR2 120として示される逆回復キャパシタンスによってモデル化される逆回復特性を有することが示されている。逆回復キャパシタンスは、実際のダイオードの逆回復特性をモデル化している。PN接合ダイオードの電圧の極性が遷移して、ダイオードの状態が電流を通す状態から電流を阻止する状態に変化する場合、装置から電荷のキャリアが取除かれる間に発生する逆回復時間として公知の時間の間、瞬間的な逆電流が存在する。通常、逆回復キャパシタンスは、ダイオードの逆回復時間の間にのみ存在すると考えられる。
逆回復時間および逆電流は、ダイオードの逆回復特性を定義する助けとなる。逆回復時間が短いダイオードは高速ダイオード(fast diode)であると考えられる。逆回復時間が長いダイオードは低速ダイオード(slow diode)として公知であり得る。高速ダイオードの逆回復時間は典型的に、1μsecよりも実質的に短い。低速ダイオードの逆回復時間は典型的に、1μsecよりも実質的に長い。受動スイッチD1 110およびD2 116の逆回復特性は以下にさらに詳細に説明される。
一例では、それぞれの能動スイッチQ1 104およびQ2 122のMOSFET1
06および124は、それぞれの制御信号に応じて両方ともオンに切換えられるか、または両方ともオフに切換えられるかのいずれか一方である。受動スイッチD1 110およびD2 116のそれぞれのダイオード112および118は、能動スイッチQ1 104およびQ2 122のスイッチングに起因する電圧に応じてオンまたはオフになる。
2スイッチフォワードコンバータの従来の設計では典型的に、名目上全く同一の能動スイッチおよび名目上全く同一の受動スイッチを用いて、設計上必要な別個の部品の数を減らす。別個の構成要素の数を減らすと、多くの場合コストが低下する。しかし、以下の例に説明されるように、2つの能動スイッチに実質的に異なる特性を有する装置を使用し、2つの受動スイッチに実質的に異なる特性を有する装置を使用すると、よりコストの低い設計をもたらすことができる。
たとえば、制御機能を有する高電圧MOSFETトランジスタを含む低コストの電力集積回路が利用可能であれば、そのような装置を用いて、一方の能動スイッチを2スイッチフォワードコンバータ内に設けることができる。コンバータ内の他方の能動スイッチは、集積回路のMOSFETとは多くの点で異なり得る別個の電子装置であってもよい。
スイッチング装置を選択する際に典型的に考慮されるパラメータは、その装置の出力キャパシタンスである。装置は、装置がオンになるたびに、自身の出力キャパシタンスに蓄えられているエネルギを消費する。消費されるエネルギは、装置がオンになったときにキャパシタンスに存在する電圧の二乗に比例する。エネルギが消費されると、通常は装置の温度が上昇する。温度が過度に上昇して装置を損傷し得ることを防ぐため、より大きなパッケージまたはヒートシンクが必要となり得る。したがって、熱管理のコストが増えるため、低コストの電力集積回路の利点が相殺され得る。したがって、典型的に出力キャパシタンスが小さいスイッチング装置が用いられ、キャパシタンスの電圧が低いときに典型的に切換えられる。
一方の能動スイッチが集積回路のMOSFETであり、他方の能動スイッチが別個の構成要素としてパッケージ化されている応用例では、別個の構成要素のオン抵抗はしばしば、集積回路のMOSFETのオン抵抗よりも実質的に小さい。装置内の導通損失を減らすためには低いオン抵抗が望ましい。出力キャパシタンスは普通、オン抵抗が低下するにつれて増加する。したがって、別個の構成要素としてパッケージ化される選択されたスイッチング装置の出力キャパシタンスはしばしば、集積回路のMOSFETの出力キャパシタンスよりもはるかに大きい。本開示に従って、能動スイッチが実質的に異なる出力キャパシタンスを有する場合にエネルギの過度の消費を減らす2スイッチフォワードコンバータが説明される。この非対称スイッチフォワードコンバータは、非対称受動スイッチを用いて、能動スイッチがオンになる前に高い方の出力キャパシタンスを有する能動スイッチの両端に残っている電圧を低下させる。出力キャパシタンスのエネルギは、スイッチがオンになるとスイッチ内で消費される。したがって、キャパシタンスのエネルギを減らすと、高い方の出力キャパシタンスを有する能動スイッチのエネルギの消費を減らすことになる。
図1に示される例示的な非対称2スイッチフォワードコンバータ100は、図2の回路図200においてより詳細に示される。図2には、能動スイッチQ1 104の出力キャパシタンスCOSS1 108が能動スイッチQ2 122の出力キャパシタンスCOSS2 126よりも実質的に大きいことが示されている。一例では、別個のトランジスタである能動スイッチQ1 104の出力キャパシタンスCOSS1 108は約330pFであるのに対して、電力集積回路に含まれる能動スイッチQ2 122の出力キャパシタンスCOSS2
126は約50pFである。
図1および図2の例では、能動スイッチ内の電力消費は、(逆回復キャパシタンスCRR1によって-モデル化された)受動スイッチD1 110の逆回復時間が、(逆回復キャパシタンスCRR2によってモデル化された)受動スイッチD2 116の逆回復時間よりも実質的に長くなるように受動スイッチD1およびD2の動作特性を選択することによって管理される。一例では、受動スイッチD1 110の逆回復時間は約2μsecであるのに対して、受動スイッチD2 116の逆回復時間は約75nsecである。当該技術における一般用語では、D1 110は低速ダイオードであり、D2 116は高速ダイオードである。
図1および図2において、Q1 104は、その端子の1つが入力電圧102の正端子と共通しているので高電位側能動スイッチである。逆に、Q2 122は、その端子の1つが入力電圧102の負端子と共通しているので低電位側能動スイッチである。同様に、D1 110は高電位側受動スイッチであり、D2 116は低電位側受動スイッチである。
一般に、非対称2スイッチフォワードコンバータは、出力キャパシタンスが大きい1つの能動スイッチ、および出力キャパシタンスが小さい1つの能動スイッチを有する。出力キャパシタンスが大きい能動スイッチは、高電位側スイッチまたは低電位側スイッチのいずれか一方であり得る。非対称2スイッチフォワードコンバータはまた、高速ダイオードである1つの受動スイッチおよび低速ダイオードである1つの受動スイッチも有する。
出力キャパシタンスが大きい高電位側能動スイッチおよび出力キャパシタンスが小さい低電位側能動スイッチを有する非対称2スイッチフォワードコンバータは、低速ダイオードである高電位側受動スイッチおよび高速ダイオードである低電位側受動スイッチも有する。出力キャパシタンスが小さい高電位側能動スイッチおよび出力キャパシタンスが大きい低電位側能動スイッチを有する非対称2スイッチフォワードコンバータは、高速ダイオードである高電位側受動スイッチおよび低速ダイオードである低電位側受動スイッチも有する。
図2は、高電位側能動スイッチQ1 104両端の電圧VQ1 210、および低電位側能動スイッチQ2 122両端の電圧VQ2 270を示す。図2はまた、高電位側能動スイッチQ1 104の制御電圧VGS1 220、および低電位側能動スイッチQ2 122の制御電圧VGS2 280も示す。図2にはさらに、変圧器T1 128の固有の性質である磁化インダクタンスLM 250も破線で示されている。
磁化インダクタンスLM 250は、非対称2スイッチフォワードコンバータの挙動を理解するために用いられる。磁化インダクタンスLMは、変圧器T1 128の望ましくない性質を表わす。図2は、変圧器電流IT 240と磁化電流IM 230との合計である一次電流IP 260を示す。変圧器電流IT 240は、変圧器の巻線比によってスケーリングされ、かつ二次巻線134に送られる、一次電流IP 260の一部である。磁化電流IM 230は、一次巻線130を二次巻線134に結合させるために用いられる磁束を生成する、一次電流IP 260の一部である。
磁化電流の変化率は、変圧器電流IT 240とは無関係に、一次電圧VP 132および磁化インダクタンスLM 250によって決定され得る。磁化インダクタンスLM 250内の磁化電流IM 230は、変圧器T1 128に蓄えられるエネルギを表わす。以下に説明されるように、非対称2スイッチフォワードコンバータは磁化インダクタンスLM 250からのエネルギを用いて、受動スイッチ内で消費されるエネルギを減らす。
図3は、連続導通モードで動作する際の図2の例示的な非対称2スイッチフォワードコ
ンバータからの波形を示す。連続導通モードでは、フリーホイールダイオード138の電流は、能動スイッチQ1 104およびQ2 122が開いている間はゼロにならない。連続導通モードは典型的に、構成要素が自身の最高温度で動作しているときに高い出力電力で発生する。
図3は、間隔t1 310で開始して間隔t7 370後に終了する、1つのスイッチングサイクルにおける7つの別個の間隔を示す。MOSFET106および124は、間隔t1の間はオンである。MOSFET106および124は、スイッチングサイクルの残りの間はオフである。
受動スイッチD1 110およびD2 116は、自身の両端の電圧に応じて導通する。受動スイッチD1 110に低速ダイオードを用い、受動スイッチD2 116に高速ダイオードを用いることによって、能動スイッチQ1 104両端の電圧VQ1 210を、最大のVIN 102から間隔t7 370の終わりに最終値VQ1F 315にまで低下させることができる。全く同一の能動スイッチを用いる通常の2スイッチフォワードコンバータでは、最終電圧VQ1F 315は、実質的に最大値であるVIN 102に留まり続けることになる。
間隔t7 370の終わりにおける能動スイッチQ2 122の電圧は、最終値VQ2F 325である。最終値VQ2F 325は、入力電圧VIN 102と最終電圧VQ1F 315との差である。最終電圧VQ1F 315は通常、できる限り小さくされる。なぜなら、電圧VQ1F 315は、能動スイッチが再びオンになったときにMOSFET106内で消費されることになる大きな出力キャパシタンスCOSS1 108のエネルギを決定するからである。Q2 122の出力キャパシタンスCOSS2 126がQ1 104の出力キャパシタンスCOSS1 108よりもはるかに小さいため、能動スイッチQ2 122の最終電圧VQ2F 325は大した困難もなく高くすることができる。能動スイッチQ2 122の小さな出力キャパシタンスは通常、能動スイッチQ2 122の加熱を支配するのに十分なエネルギを蓄えることができない。したがって、電圧VQ2Fを最大のVIN 102にまで増加させるという犠牲を払って電圧VQ1F 315をゼロにまで低下させることは普通は許容される。COSS1 108の出力キャパシタンスはCOSS2 126の出力キャパシタンスよりも実質的に大きい。COSS1 108およびCOSS2 126から消費されるエネルギの純減少によって、電力が節約され、冷却の必要性が減り、電源の効率が高まる。
非対称フォワードコンバータの動作は、変圧器T1 128内の電流を調べることによって理解することができる。図4Aから図4Fは、図3に示される7つの時間間隔の間の電流の経路を示すために、図2の回路の簡略化された一部を示す。説明に用いられない回路要素の中には、図示されないものもある。
図4Aは、時間間隔t1 310の間の能動スイッチQ1 104およびQ2 122を通る一次電流IP 260の経路を示す。能動スイッチの出力キャパシタンスおよび受動スイッチの逆回復キャパシタンスは、間隔t1 310の間は一次電流IP 260に実質的に影響を及ぼさないため図中に示されていない。間隔t1 310の間、能動スイッチQ1 104およびQ2 122は閉じられて、スイッチQ1 104およびQ2 122の両端の小さな電圧降下は無視して、VP=VINとなるように変圧器T1 128の一次巻線130に入力電圧VIN 102が印加される。磁化電流IM 230は、磁化インダクタンスLM 250内で線形的な勾配で増加する。受動スイッチD1 110およびD2 116は開いている。一次電流IP 260は、変圧器電流IT 240および磁化電流IM 230を含む。
図4Bは、時間間隔t2 320の間の能動スイッチQ1 104およびQ2 122
を通る一次電流IP 260の経路を示す。時間間隔t1 310の終わりにMOSFET106および124がオフになると、磁化電流IM 230は出力キャパシタンスCOSS1
108およびCOSS2 126を充電し続ける。磁化電流IM 230の勾配は、磁化インダクタンス両端の電圧VP 132が低下するにつれて変化する。時間間隔t2 320は、能動スイッチQ2 122の出力キャパシタンスCOSS2 126が入力電圧VIN 102にまで充電されると終了する。
図4Cは、時間間隔t3 330の間の一次電流IP 260の経路を示す。時間間隔t3 330では、受動スイッチD1 110が閉じて磁化電流IM 230を通す。磁化電流IM 230は、時間間隔t3 330の終わりに能動スイッチQ1 104両端の電圧VQ1 210が入力電圧VIN 102に達するまで、出力キャパシタンスCOSS1 108を充電し続ける。
図4Dは、時間間隔t4 340の間の一次電流IP 260の経路を示す。時間間隔t4 340では、受動スイッチD1 110およびD2 116が閉じられて磁化電流IM
230を通す。磁化電流IM 230は線形的な勾配で減少し、これは、変圧器T1 128の一次側における磁化インダクタンスLM 250両端の入力電圧VIN 102が図4Aにおける入力電圧の印加とは反対の極性であることに起因する。磁化電流IM 230は減少して、時間間隔t4 340の終わりにゼロに達する。時間間隔t4 340の終わりには、出力キャパシタンスCOSS1 108およびCOSS2 128は入力電圧VIN 102にまで充電される。
受動スイッチD2 116は導通を停止する。その速い回復により、受動スイッチD2
116の電流は急速にゼロにまで下がることができる。磁化電流IM 230はゼロを通過して負になり、時間間隔t5 350の開始を標示する。図4Eは、間隔t5 350の間の一次電流IP 260の経路を示す。間隔t5 350の間、能動スイッチQ1 104の出力キャパシタンスCOSS1 108は受動スイッチD1 110の逆回復キャパシタンスCRR1 114を介して放電して、磁化電流IM 230を負の方向に増加させる。受動スイッチD1 110の逆回復時間の終わりに受動スイッチD1 110から逆回復電荷が取除かれるまで、逆回復キャパシタンスCRR1 114は磁化電流IM 230を通す。受動スイッチD1 110が逆方向における導通を停止すると、時間間隔t5 350は終了する。
時間間隔t5 350の終わりに受動スイッチD1 110が逆方向における導通を停止すると、時間間隔t6 360の開始時に、磁化電流IM 230が能動スイッチQ2 122の出力キャパシタンスCOSS2 126を放電し始める。図4Fは、間隔t6 360の間の一次電流IP 260の経路を示す。磁化電流IM 230は、電圧VQ1 210とVQ2 270との合計がVIN 102の値に達し、負の磁化電流IM 230が最終値IMF 305に達するまで、電圧VQ1 210およびVQ2 270を低下させる。VQ1 210とVQ2 270との合計が値VIN 102になると、一次電圧VP 132はゼロになり、時間間隔t6 360は終了する。
時間間隔t6 360の終わりに一次電圧VP 132がゼロに達すると、二次巻線134の電圧もゼロになり、それによって出力ダイオード136が導通できるようになる。連続導通モードでは、フリーホイールダイオード138は時間間隔t1 310の終わりから時間間隔t7 370の終わりまで導通する。
図4Gは、時間間隔t7 370の間の電流の経路を示す。変圧器T1 128の一次巻線130および二次巻線134の両方におけるゼロ電圧の状況によって、磁化電流IM
230が一次巻線130内で循環できるようになる。磁化電流IM 230が負の変圧
器電流IT 240になると、一次電流IP 260はゼロになる。変圧器電流IT 240は、二次巻線134の変圧器の巻線比によってスケーリングされた電流を生成する。
この非対称2スイッチフォワードコンバータは、従来の2スイッチフォワードコンバータに適用されてきた変更点を含んでもよい。従来の2スイッチフォワードコンバータの最大デューティ比は50%である。すなわち、能動スイッチは、反復性のスイッチングサイクルの完全なスイッチング周期において半分よりも長く閉じることができない。図5は、高電位側受動スイッチD1 110から電流を受ける変圧器回復回路550を含む、非対称2スイッチフォワードコンバータの一例500を示す。
例示的な変圧器回復回路550は、ツェナーダイオードVR1 510、抵抗器R1 520、およびコンデンサC3 530を含む。高電位側受動スイッチD1 110からの電流は、入力電圧VIN 102の正端子と高電位側受動スイッチD1 110との間のコンデンサC3 530の電圧VC3 540を設定する。
電圧VC3 540は入力電圧VIN 102を増加させて、磁化電流IM 230が間隔t4 340においてゼロにまで減少するのに必要な時間を短縮する。磁化電流IM 230がゼロにまで戻る時間が短縮されることによって、たとえば、スイッチングサイクルにおける間隔T1 310に割当てられる最大時間が増えるという利点が得られ、それによって、50%デューティ比の制限を超える2スイッチフォワードコンバータの制御範囲を拡大することができる。制御範囲が拡大することによって、コンバータが、より広範な入力電圧VIN 102に対して所望の出力を与えることが可能となる。入力電圧VIN 102の範囲を拡大しない例では、デューティ比を大きくすると能動スイッチQ1 104およびQ2 122におけるRMS(二乗平均平方根)電流を小さくすることができ、それによって導通損失を減らすことができる。別の付加的な利点として、時間間隔t5 350およびt6 360の間に電圧VC3 540が出力キャパシタンスCOSS1の放電を助けることができ、これによって高電位側能動スイッチQ1 104の最終電圧VQ1F 315が低下する。
図6は、変圧器T1 128の一次巻線130の一端に一次漏れインダクタンスLLP 605を加えた、非対称2スイッチフォワードコンバータの別の例600を示す。図6の一次漏れインダクタンスLLP 605は、変圧器T1の固有の性質を表わすが、別個のインダクタによって増加されてもよい。
一次漏れインダクタンスLLP 605は、一次電流IP 260からのエネルギを蓄える。一次漏れインダクタンスLLP 605からのエネルギは、時間間隔t3 330およびt4 340の間に磁化インダクタンスLM 250がコンデンサC3 530を充電するのを助ける。その結果コンデンサC3 530の電圧がさらに高くなり、受動スイッチD1 110の回復時間が延長される。したがって、一次インダクタンスLLP 605からのエネルギは、時間間隔t5 350およびt6 360の間に磁化インダクタンスLM
250が出力キャパシタンスCOSS1を放電させることも助ける。
要約書に記載されることを含む本発明の記載例の上記の説明は、開示されたままの形態に関して網羅的または限定的であることを意図していない。説明のため本明細書中には本発明の具体的な実施例および例が説明されているが、本発明のより広範な思想および範囲から逸脱することなくさまざまな均等な変更が可能である。実際、具体的な電圧、電流、周波数、電力範囲値、時間などは説明のために与えられ、かつ本発明の教示内容に従って他の実施例および例では他の値も使用可能であることが認識される。
これらの変更は、上記の詳細な説明に鑑みて本発明の例に加えられてもよい。以下の特
許請求の範囲で用いられる用語は、本発明を本明細書および特許請求の範囲に開示される具体的な実施例に制限するものと解釈されるべきではない。むしろ、本発明の範囲は、特許請求の範囲の解釈の確立された原則に従って解釈されることになる以下の特許請求の範囲によってのみ決定される。本願明細書および図面は従って、限定的ではなく例示的に解釈されるべきである。
Q1 104 能動スイッチ、Q2 122 能動スイッチ、D1 110 受動スイッチ、D2 116 受動スイッチ。

Claims (25)

  1. パワーコンバータで用いるためのスイッチング回路であって、
    変圧器の一次巻線の第1の端子に結合される第1の能動スイッチと、
    前記変圧器の前記一次巻線の第2の端子に結合される第2の能動スイッチとを備え、
    前記第1の能動スイッチの出力キャパシタンスは、前記第2の能動スイッチの出力キャパシタンスよりも大きく、
    前記スイッチング回路は、
    前記第2の能動スイッチおよび前記一次巻線の前記第2の端子に結合される第1の受動スイッチと、
    前記第1の能動スイッチおよび前記一次巻線の前記第1の端子に結合される第2の受動スイッチとをさらに備え、
    前記第1の受動スイッチの逆回復時間は、前記第2の受動スイッチの逆回復時間よりも長い、スイッチング回路。
  2. 前記第1の能動スイッチは高電位側スイッチである、請求項1に記載のスイッチング回路。
  3. 前記第1の受動スイッチは高電位側スイッチである、請求項2に記載のスイッチング回路。
  4. 前記第1の能動スイッチおよび前記第2の能動スイッチの少なくとも一方は、金属酸化物半導体電界効果トランジスタである、請求項1に記載のスイッチング回路。
  5. 前記第1の受動スイッチおよび前記第2の受動スイッチの少なくとも一方は、PN接合ダイオードである、請求項1に記載のスイッチング回路。
  6. 前記第1の受動スイッチから電流を受けるように結合される変圧器回復回路をさらに備える、請求項1に記載のスイッチング回路。
  7. 前記変圧器回復回路に含まれ、前記第1の受動スイッチから前記電流を受けつつ電圧を設定するコンデンサをさらに備える、請求項6に記載のスイッチング回路。
  8. 前記第1の受動スイッチに結合されるツェナーダイオードおよびコンデンサをさらに備える、請求項6に記載のスイッチング回路。
  9. 前記変圧器回復回路に含まれる前記ツェナーダイオードと前記コンデンサとの間に結合される抵抗器をさらに備える、請求項8に記載のスイッチング回路。
  10. 前記変圧器回復回路に含まれるコンデンサは、前記第1の受動スイッチにおける逆回復電流を生成するように結合される、請求項6に記載のスイッチング回路。
  11. 前記変圧器の前記一次巻線の前記第1の端子と前記第1の能動スイッチとの間に結合されるインダクタをさらに備える、請求項1に記載のスイッチング回路。
  12. 前記インダクタは、前記変圧器の前記一次巻線の前記第1の端子と前記第2の受動スイッチとの間に結合される、請求項11に記載のスイッチング回路。
  13. パワーコンバータの出力を制御するための方法であって、
    変圧器の一次巻線に入力電圧を印加するために第1の能動スイッチおよび第2の能動ス
    イッチを閉じるステップを備え、
    前記入力電圧は、前記一次巻線の両端の一次電圧を誘導し、
    前記一次電圧は、磁化電流成分を有する一次電流を誘導し、
    前記第1の能動スイッチの出力キャパシタンスは、前記第2の能動スイッチの出力キャパシタンスよりも大きく、
    前記方法は、
    前記第1の能動スイッチおよび前記第2の能動スイッチを開くステップをさらに備え、
    前記磁化電流成分は、前記第1の能動スイッチのキャパシタンスおよび前記第2の能動スイッチのキャパシタンスを充電し、
    前記方法は、
    前記磁化電流成分を通すために第1の受動スイッチを閉じるステップをさらに備え、
    前記磁化電流成分は、前記第1の能動スイッチの両端の電圧が前記入力電圧に達するまで前記第1の能動スイッチの前記キャパシタンスを充電し、
    前記方法は、
    前記磁化電流成分を前記第1の受動スイッチおよび前記第2の受動スイッチに通して、前記磁化電流成分の方向を逆にすることによって前記第1の能動スイッチの前記キャパシタンスを前記第1の受動スイッチを介して放電させるために、第2の受動スイッチを閉じるステップをさらに備え、
    前記第1の受動スイッチの逆回復時間は、前記第2の受動スイッチの逆回復時間よりも長く、
    前記方法は、
    前記磁化電流成分を前記第2の受動スイッチに通して、前記第2の能動スイッチの前記キャパシタンスを放電させるために、前記第1の受動スイッチを開くステップをさらに備える、方法。
  14. 前記磁化電流成分を前記第1の受動スイッチおよび前記第2の受動スイッチに通すことによって、前記第1の能動スイッチの両端の第1のスイッチ電圧が低下し、前記第2の受動スイッチの両端の第2のスイッチ電圧が低下する、請求項13に記載の方法。
  15. 前記磁化電流成分を前記第1の受動スイッチおよび前記第2の受動スイッチに通すことによって、前記第1のスイッチ電圧と前記第2のスイッチ電圧との合計が前記入力電圧に等しくなるまで前記第1のスイッチ電圧および前記第2のスイッチ電圧が低下する、請求項14に記載の方法。
  16. 前記第1の能動スイッチおよび前記第2の能動スイッチは、50パーセントよりも高い能動デューティ比を用いて開閉される、請求項13に記載の方法。
  17. 前記一次電圧がゼロボルトに達すると、前記変圧器の二次巻線に結合される出力ダイオードに電流を通すステップをさらに備える、請求項13に記載の方法。
  18. 前記第1の能動スイッチおよび前記第2の能動スイッチを閉じる信号が出されたときから前記第1の能動スイッチおよび前記第2の能動スイッチを開く信号が出されるときまで、前記二次巻線に結合されるフリーホイールダイオードに電流を通すステップをさらに備える、請求項17に記載の方法。
  19. パワーコンバータで用いるためのスイッチング回路であって、
    変圧器の一次巻線の第1の端子に結合される第1の端子を有する第1の能動スイッチと、
    前記変圧器の前記一次巻線の第2の端子に結合される第1の端子を有する第2の能動スイッチとを備え、
    前記第1の能動スイッチの出力キャパシタンスは、前記第2の能動スイッチの出力キャパシタンスよりも大きく、
    前記スイッチング回路は、
    前記第2の能動スイッチおよび前記一次巻線の第2の端子に結合される第1の端子を有し、回復回路に結合される第2の端子をさらに有する第1の受動スイッチと、
    前記第1の能動スイッチおよび前記一次巻線の前記第1の端子に結合される第1の端子を有する第2の受動スイッチとをさらに備え、
    前記第1の受動スイッチの逆回復時間は、前記第2の受動スイッチの逆回復時間よりも長い、スイッチング回路。
  20. 前記第1の能動スイッチは、第1の電圧入力端子に結合される第2の端子を有する、請求項19に記載のスイッチング回路。
  21. 前記第2の能動スイッチは、第2の電圧入力端子に結合される第2の端子を有し、前記第1の電圧入力端子と前記第2の電圧入力端子との間に電圧が存在する、請求項20に記載のスイッチング回路。
  22. 前記第2の受動スイッチは、前記第2の電圧入力端子に結合される第2の端子を有する、請求項21に記載のスイッチング回路。
  23. 二次巻線をさらに備え、
    前記二次巻線は、出力ダイオードに結合される第1の端子を有し、
    前記出力ダイオードは、前記二次巻線に結合される第1の端子およびフリーホイールダイオードに結合される第2の端子を有し、
    前記フリーホイールダイオードは、前記出力ダイオードの前記第2の端子に結合される第1の端子、および前記二次巻線の第2の端子に結合される第2の端子を有する、請求項19に記載のスイッチング回路。
  24. 前記回復回路は、
    前記第1の受動スイッチの前記第2の端子に結合される第1の端子を有するコンデンサと、
    抵抗器の第1の端子に結合される第1の端子を有するツェナーダイオードと、
    前記第1の受動スイッチの前記第2の端子に結合される第2の端子を有する前記抵抗器とを備え、
    前記ツェナーダイオードの第2の端子は、前記コンデンサの第2の端子に結合され、
    前記ツェナーダイオードの前記第2の端子はさらに、前記パワーコンバータの入力電圧を印加するための第1の電圧入力端子に結合される、請求項19に記載のスイッチング回路。
  25. 前記抵抗器は、実質的にゼロオームの値を有する抵抗器相当物である、請求項24に記載のスイッチング回路。
JP2009187121A 2008-08-15 2009-08-12 パワーコンバータで用いるためのスイッチング回路 Expired - Fee Related JP5564697B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/192,810 2008-08-15
US12/192,810 US8174852B2 (en) 2008-08-15 2008-08-15 Asymmetric switch forward converter

Publications (2)

Publication Number Publication Date
JP2010045967A true JP2010045967A (ja) 2010-02-25
JP5564697B2 JP5564697B2 (ja) 2014-07-30

Family

ID=41057011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009187121A Expired - Fee Related JP5564697B2 (ja) 2008-08-15 2009-08-12 パワーコンバータで用いるためのスイッチング回路

Country Status (4)

Country Link
US (3) US8174852B2 (ja)
EP (1) EP2154773A1 (ja)
JP (1) JP5564697B2 (ja)
CN (1) CN101651420B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011087418A (ja) * 2009-10-16 2011-04-28 Origin Electric Co Ltd コンバータ回路

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8174852B2 (en) 2008-08-15 2012-05-08 Power Integrations, Inc. Asymmetric switch forward converter
JP5403005B2 (ja) * 2010-10-20 2014-01-29 株式会社デンソー 電力変換装置
US9502987B1 (en) * 2014-02-06 2016-11-22 Pai Capital Llc Circuit and method for managing common mode noise in isolated resonant DC-DC power converters
US9325247B1 (en) * 2015-10-02 2016-04-26 Vlt, Inc. Clamped capacitor resonant power converter
CN106059316B (zh) * 2016-07-28 2019-07-02 国网山东省电力公司东营供电公司 一种高降压比的快响应直流变换器系统
CN107846147A (zh) * 2017-11-07 2018-03-27 上海电力学院 一种单输入多输出dc‑dc开关变换器
EP3484040A1 (en) 2017-11-09 2019-05-15 CE+T Power Luxembourg SA Inverter with ac forward bridge and improved dc/dc topology
CN110045262B (zh) * 2018-01-15 2021-06-22 株式会社村田制作所 开关驱动电路故障检测装置和方法、电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144143A (ja) * 1984-01-05 1985-07-30 Nippon Telegr & Teleph Corp <Ntt> 直流電圧変換回路
JPS63262059A (ja) * 1987-04-17 1988-10-28 Yuasa Battery Co Ltd 2石フオワ−ド形スイツチングレギユレ−タの制御方式
JPH05336742A (ja) * 1992-05-27 1993-12-17 Yuasa Corp 2石フォワード形スイッチング電源装置
JPH11187663A (ja) * 1997-12-19 1999-07-09 Fuji Elelctrochem Co Ltd スイッチング電源
JP2000060122A (ja) * 1998-08-13 2000-02-25 Toshiba Corp 電源装置
JP2006325325A (ja) * 2005-05-18 2006-11-30 Densei Lambda Kk スイッチング電源装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2079014A (en) * 1980-05-12 1982-01-13 Electrotech Instr Ltd Variable electrical power supplies
JP2803164B2 (ja) 1989-05-26 1998-09-24 日本電気株式会社 アブゾーバ回路
DE4005168C2 (de) * 1990-02-17 1993-09-30 Jungheinrich Ag Stromrichter für höhere Frequenzen
JP3512540B2 (ja) 1995-11-22 2004-03-29 オリジン電気株式会社 スイッチング電源及びその制御方法
US5875103A (en) * 1995-12-22 1999-02-23 Electronic Measurements, Inc. Full range soft-switching DC-DC converter
US5986904A (en) 1998-11-05 1999-11-16 Lucent Technologies, Inc. Self-regulating lossless snubber circuit
DE69940902D1 (de) * 1998-12-08 2009-07-02 Panasonic Corp Schaltnetzteil
US6191960B1 (en) * 2000-05-09 2001-02-20 Lucent Technologies Inc. Active clamp for isolated power converter and method of operating thereof
US6469915B2 (en) 2000-09-15 2002-10-22 Delta Electronics Inc. Resonant reset dual switch forward DC-to-DC converter
SE520159C2 (sv) 2001-01-26 2003-06-03 Ericsson Telefon Ab L M Anordning för avmagnetisering av en transformator
US6466459B2 (en) * 2001-03-01 2002-10-15 Adtec International Ltd. Passive voltage clamp for rectifier diodes in a soft-switching DC/DC converter
US6496392B2 (en) 2001-04-13 2002-12-17 Power Integrations, Inc. Dissipative clamping of an electrical circuit with a clamp voltage varied in response to an input voltage
US6639814B2 (en) 2001-12-03 2003-10-28 Delta Electronics, Inc. Constant voltage reset circuit for forward converter
US6483724B1 (en) * 2002-02-15 2002-11-19 Valere Power, Inc. DC/DC ZVS full bridge converter power supply method and apparatus
US7218081B2 (en) * 2004-04-29 2007-05-15 Delta Electronics, Inc. Power system having multiple power converters with reduced switching loss
TWI273760B (en) * 2004-07-27 2007-02-11 Pi Internat Ltd Forward converter with attached coil
CN100440705C (zh) * 2005-01-08 2008-12-03 艾默生网络能源系统有限公司 一种电感电压箝位全桥软开关电路
EP2348626A3 (en) * 2005-07-29 2017-04-19 TDK Corporation Switching power supply with surge voltage suppression
US7606051B1 (en) * 2005-11-03 2009-10-20 Wittenbreder Jr Ernest Henry Fully clamped coupled inductors in power conversion circuits
US8174852B2 (en) 2008-08-15 2012-05-08 Power Integrations, Inc. Asymmetric switch forward converter
JP5688629B2 (ja) * 2008-12-26 2015-03-25 Tdkラムダ株式会社 ゲート駆動回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144143A (ja) * 1984-01-05 1985-07-30 Nippon Telegr & Teleph Corp <Ntt> 直流電圧変換回路
JPS63262059A (ja) * 1987-04-17 1988-10-28 Yuasa Battery Co Ltd 2石フオワ−ド形スイツチングレギユレ−タの制御方式
JPH05336742A (ja) * 1992-05-27 1993-12-17 Yuasa Corp 2石フォワード形スイッチング電源装置
JPH11187663A (ja) * 1997-12-19 1999-07-09 Fuji Elelctrochem Co Ltd スイッチング電源
JP2000060122A (ja) * 1998-08-13 2000-02-25 Toshiba Corp 電源装置
JP2006325325A (ja) * 2005-05-18 2006-11-30 Densei Lambda Kk スイッチング電源装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011087418A (ja) * 2009-10-16 2011-04-28 Origin Electric Co Ltd コンバータ回路

Also Published As

Publication number Publication date
US8174852B2 (en) 2012-05-08
US20130223106A1 (en) 2013-08-29
US20120188800A1 (en) 2012-07-26
CN101651420B (zh) 2013-09-18
EP2154773A1 (en) 2010-02-17
US8441815B2 (en) 2013-05-14
US8625312B2 (en) 2014-01-07
JP5564697B2 (ja) 2014-07-30
CN101651420A (zh) 2010-02-17
US20100039837A1 (en) 2010-02-18

Similar Documents

Publication Publication Date Title
JP5564697B2 (ja) パワーコンバータで用いるためのスイッチング回路
JP3665021B2 (ja) Dc変圧器を備える無損失スイッチング変換器
US5173846A (en) Zero voltage switching power converter
US7385833B2 (en) Snubber circuit for a power converter
TWI430544B (zh) 功率轉換器及功率轉換之方法
US6434029B1 (en) Boost topology having an auxiliary winding on the snubber inductor
JP2010516223A (ja) スナバを有する電力コンバータ
US5307005A (en) Zero current switching reverse recovery circuit
KR20040020862A (ko) 탭핑된-인덕터 점감 변환기
US20090086512A1 (en) Driving a primary-side switch and a secondary-side rectifier element in a switching converter
GB2265771A (en) Power converters with improved switching efficiency
US9912241B2 (en) System and method for a cascode switch
JP2013509152A (ja) 同期整流器制御のシステム及び方法
CN101677212A (zh) 正激变换器变压器的饱和防止
CN108933515B (zh) 反激式转换器控制器、反激式转换器及其操作方法
KR100886231B1 (ko) 비대칭 멀티 컨버터 전원 공급기 및 이를 작동시키는 방법
JP2005287291A (ja) 電圧調整器
JPH07154967A (ja) Dc−dcコンバータとそれを用いた電子計算機
McNeill et al. Proportional regenerative base driver circuit with negative offstate voltage for sic bipolar junction transistors
WO2008152548A1 (en) Switched-mode dc-dc converter and an integrated system comprising such a converter
TW201939868A (zh) 具有快速暫態響應之經耦合電感器級聯降壓轉換器
JP7329972B2 (ja) コンバータ及びコンバータの制御方法
CN115021576A (zh) Dc-dc转换器及电源装置
US20210036621A1 (en) Prestart control circuit for a switching power converter
JPH1118426A (ja) スイッチング電源回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R150 Certificate of patent or registration of utility model

Ref document number: 5564697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees