JP2010040976A - 発光素子及びこれを用いた照明装置並びに表示装置 - Google Patents

発光素子及びこれを用いた照明装置並びに表示装置 Download PDF

Info

Publication number
JP2010040976A
JP2010040976A JP2008205330A JP2008205330A JP2010040976A JP 2010040976 A JP2010040976 A JP 2010040976A JP 2008205330 A JP2008205330 A JP 2008205330A JP 2008205330 A JP2008205330 A JP 2008205330A JP 2010040976 A JP2010040976 A JP 2010040976A
Authority
JP
Japan
Prior art keywords
light
layer
wavelength
phosphor layer
blue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008205330A
Other languages
English (en)
Inventor
Takamasa Izawa
孝昌 伊澤
Tsuneo Kusuki
常夫 楠木
Takahiro Igarashi
崇裕 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2008205330A priority Critical patent/JP2010040976A/ja
Publication of JP2010040976A publication Critical patent/JP2010040976A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)

Abstract

【課題】共振器構造を有し励起光の入射側と逆側から蛍光を出射する発光素子及びこれを用いた照明装置並びに表示装置を提供すること。
【解決手段】発光素子は、ガラス基板11と、蛍光体層13と、第1の所定の波長を超えない光を反射する波長選択半透明反射層14と、第2の所定の波長を超えない光を透過させ、超える光を反射させる波長選択反射透過層12と、波長選択反射透過層を通して蛍光体層に照射して蛍光体を励起する励起光源とを有し、第1、第2の波長をλ1、λ2とする時、λ1≧λ2であり、蛍光体層が波長選択半透明反射層と基板の間に配置され、波長選択反射透過層が蛍光体層と基板の間又は基板の蛍光体層の逆側に設けられ、波長選択半透明反射層と波長選択反射透過層の間に共振器15が構成され、蛍光λFを波長選択半透明反射層から放射する。
【選択図】図1

Description

本発明は、発光素子に関し、光励起される蛍光体、共振器構造を有する発光素子及びこれを用いた照明装置並びに表示装置に関する。
有機発光素子、無機発光素子は、カラー色又は白色光の照明装置(光源装置)、各種の電子機器に使用される表示装置に適用されているが、その発光スペクトルがブロードなため色再現性といった観点ではLEDやレーザに比較して劣り、色純度の向上、演色性の向上等のより優れた発光特性上が望まれている。色純度の高い発光を得るために、半透明反射膜、反射層でつくった微小共振器で蛍光体層を挟み、発光素子の発光スペクトルの半値幅を縮小させることができる構造が知られている。
共振器構造を用いて発光素子の発光特性を改善する技術に関しては、種々の方法が報告されている。
先ず、「有機発光素子」と題する後記の特許文献1には、次の記載がある。
特許文献1の発明の有機発光素子は、透明な基体と、該基体上に設けられた発光機能を有する有機薄膜からなる発光層と、該発光層の、上記基体と反対側の面に設けられた金属電極と、上記発光層と上記基体との間に設けられた半透明反射膜を備えている。また、上記半透明反射膜と上記金属電極との間に光の微小共振器が構成されている。
特許文献1の発明においては、透明電極と基体との間に半透明反射膜を設置し、該半透明反射膜と背面電極すなわち上記金属電極との間に光の微小共振器を構成するようにしている。ここで、上記半透明反射膜と背面電極すなわち上記金属電極との間の光学的距離が、発光波長のそれと同じかその整数倍又はその半整数倍であることが好ましい。それによって、発光スペクトルの半値幅が縮小される。また、発光効率が向上し、可干渉光の発生の割合が増大する等、発光特性を向上できるとしている。
図16は、特許文献1に記載の図5であり、光励起による発光を利用した共振器素子の模式断面図を示す図である。
全反射金属膜108とTiO2/SiO2の積層体からなる半透明反射膜102との間に、有機蛍光薄膜109としてアルミキレートが挾まれた構造に形成した。これに半透明反射膜102側から波長406nmの光を照射することにより、有機蛍光薄膜109から可視光を、硝子基体101を通して取出すことができるとしている。
また、「光干渉フィルタを含む薄膜エレクトロルッミネセンス装置」と題する後記の特許文献2には、次の記載がある。
特許文献2の発明は、光透過性を有する電極層と光反射電極層により、蛍光体層或いは蛍光体層と誘電体層の構造体に電圧が印加されるように構成されると共に、前記構造体内における、光の取出側に、前記蛍光体層より放射される発光波長の任意の波長λを選択的に透過する多層膜の光干渉フィルタを、前記構造体に屈折率の低い誘電体膜1と屈折率の高い誘電体膜2を交互にλ/4=膜厚・屈折率の式に従って誘電体膜2、誘電体膜1の順に2層以上積層し、更に、誘電体膜1より高い屈折率を有する蛍光体層をλ/2・N(Nは1以上の整数)=膜厚・屈折率の式に従って積層し、更に、誘電体膜3をλ/4・正数=膜厚・屈折率の式に従って誘電体膜3を積層した構成にしたことを特徴とする光干渉フィルタを含む構成にする。
また、「多色発光素子とその基板」と題する後記の特許文献3には、次の記載がある。
特許文献3の発明の目的は、スペクトル幅と発光特性を改善した有機発光素子を提供することにある。この課題を解決する特許文献3の発明は次のとおりである。
第1に、発光機能を有する有機薄膜からなる発光層と、該発光層の両面に形成された反射鏡とで微小光共振器が構成され、該微小光共振器は前記反射鏡間の光学的距離が異なる画素を少なくとも2個以上有することを特徴とする多色発光素子にある。
第2に、透明基体上に半透明反射層、透明導電層、有機薄膜からなる発光層、電極が順次に形成された多色発光素子であって、半透明反射層と電極の間の光学的距離が異なる画素を少なくとも2個以上有する微小光共振器を含むことを特徴とする多色発光素子にある。
第3に、透明基体上に半透明反射層、透明導電層、有機薄膜からなる発光層、電極が順次に形成された多色発光素子であって、半透明反射層と電極の間に構成が微小光共振器として作用し、複数の異なる発光スペクトルの光を同一基板上の素子から取出すことを特徴とする多色発光素子にある。
第4に、透明基体上に半透明反射層を有し、該半透明反射層上に透明導電層が配置され、該透明導電層上に有機薄膜からなる発光層が設けられており、その上に電極が形成された有機発光素子であって、前記半透明反射層は発光層での発光の一部を透明基体側に透過し、発光の一部を発光層側に反射する反射機能を有し、該半透明反射層は発光層背面の電極とで光共振器として作用し、且つ半透明反射層と電極との間の光学的距離が異なるように構成されていることを特徴とする多色発光素子にある。
第5に、透明基体上に半透明反射層を有し、該半透明反射層上に透明導電層が配置され、該透明導電層上にホール注入層、有機薄膜からなる発光層が設けられており、その上に電極が形成された有機発光素子であって、前記半透明反射層は発光層での発光の一部を透明基体側に透過し、発光の一部を発光層側に反射する反射機能を有し、該半透明反射層は発光層背面の電極とで光共振器として作用し、且つ半透明反射層と電極との間の光学的距離が異なるように構成されていることを特徴とする多色発光素子にある。
なお、蛍光体とLEDを用いるカラー表示装置に関しては、種々の方法が報告されている。
先ず、「単色LEDを用いた全色画像表示装置」と題する後記の特許文献4には、次の記載がある。
基板と、その上に形成された複数の単一色発光ダイオード(LED)とを含む、全色画像表示装置においては、光学的に透明な板が基板に隣接して取り付けられ、複数の別個の領域がその上に規定される。更に、この板の配置は、複数のLEDの各々によって発せられる光が、板の複数の別個領域の各1つに入射するように決められる。複数の異なる蛍光体が別個に板に取り付けられ、各々板の複数の別個領域の異なる1つに、複数のLEDの異なる1つからの光が衝突するように位置付けられる。異なる蛍光体は各々、LEDからの光に衝突されると、異なる色の光を生成する。
また、「面状光源装置及びカラー液晶表示装置組立体」と題する後記の特許文献5には、次の記載がある。
特許文献5の発明の第1の態様に係る面状光源装置は、(a)透明第1電極を備えたフロントパネル、(b)透明第2電極を備えたリアパネル、及び、(c)フロントパネルとリアパネルとの間に配された液晶材料、からなる透過型のカラー液晶表示装置をリアパネル側から照射する面状光源装置(より具体的には、直下型の面状光源装置)であって、(A)リアパネルに対向して配置され、第1原色、第2原色及び第3原色から構成された光の三原色の内の第1原色に相当する第1原色光を射出する光源、(B)リアアパネルと光源との間に配置された支持部材、(C)カラー液晶表示装置の第2原色に相当する第2原色光を発光するサブピクセルに対応した支持部材の領域上に形成され、第2原色光を発光する第2原色発光粒子からなり、光源から射出されたエネルギー線によって励起されて第2原色光を発光する第2原色発光層、並びに、(D)カラー液晶表示装置の第3原色に相当する第3原色光を発光するサブピクセルに対応した支持部材の領域上に形成され、第3原色光を発光する第3原色発光粒子からなり、光源から射出されたエネルギー線によって励起されて第3原色光を発光する第3原色発光層、を具備することを特徴とする。
特開平10−177896号公報(段落0008〜0009、段落0028〜0029、図5) 特許第2689661号公報(第2頁右欄第20行〜同欄第33行、第1図) 特許第2797883号明細書(段落0005〜0012、図1) 特開平8−63119号公報(段落0009) 特開2007−4099号公報(段落0014)
特許文献1〜特許文献3に記載されるような構造を採用する場合、励起光源からの励起光によって蛍光体を励起させて蛍光を放射する発光素子では、蛍光体への励起光の入射側と同じ側から蛍光を出射させる(取出す)構成となる。このような構成の発光素子を使用するデバイスでは、蛍光の出射面が、励起光源又は励起光の導入機構等によって制限を受けるので、蛍光の取出しが十分でないという問題がある。
また、励起光として紫外光を用いた場合、発光層から励起光の入射側(即ち、蛍光を出射させる(取出す)側)に戻ってくる紫外光が、デバイス部材の劣化を引き起こす原因となるといった問題がある。従って、上記のような構成をもつ発光素子を用いたデバイス構造が制限されてしまうことになる。従来、カラー表示装置では、色度再現性範囲の拡大(色純度の向上、色空間の拡大)が種々の手法によって検討されているが、更なる改善が望まれている。
本発明は、上述したような課題を解決するためになされたものであって、その目的は、共振器構造を有し、励起光の入射側と逆側から蛍光を出射する発光素子及びこれを用いた照明装置並びに表示装置を提供することにある。
即ち、本発明は、透明基板(例えば、後述の実施の形態におけるガラス基板11)と、
蛍光体を含む蛍光体層(例えば、後述の実施の形態における蛍光体層13、13R、13G、13B)と、第1の所定の波長を超えない光を反射する波長選択半透明反射層(例えば、後述の実施の形態における波長選択半透明反射層14、14R、14G、14B)と、第2の所定の波長を超えない光を透過させ、前記第2の所定の波長を超える光を反射させる波長選択反射透過層(例えば、後述の実施の形態における波長選択反射透過層12、12R、12G、12B)と前記波長選択反射透過層を通して前記蛍光体層に照射して前記蛍光体を励起する励起光を発する励起光源(例えば、後述の実施の形態における(例えば、後述の実施の形態における青色光源30、近紫外光源31)とを有し、前記第1の所定の波長をλ1とし、前記第2の波長をλ2とする時、λ1≧λ2であり、前記蛍光体層が前記波長選択半透明反射層と前記基板の間に配置され、前記波長選択反射透過層が、前記蛍光体層と前記基板の間、又は、前記基板の前記蛍光体層の逆側に設けられ、前記波長選択半透明反射層と前記波長選択反射透過層の間に共振器が構成され、前記蛍光体から放射される蛍光を前記波長選択半透明反射層から放射させる発光素子に係るものである。
また、本発明は、上記の発光素子を有する照明装置に係るものである。
また、本発明は、上記の発光素子を有する画素が複数個配置された画素部と、前記画素部の各画素に照射される前記励起光のオンオフを制御する光照射制御部とを有する表示装置に係るものである。
本発明によれば、透明基板と、蛍光体を含む蛍光体層と、第1の所定の波長を超えない光を反射する波長選択半透明反射層と、第2の所定の波長を超えない光を透過させ、前記第2の所定の波長を超える光を反射させる波長選択反射透過層と前記波長選択反射透過層を通して前記蛍光体層に照射して前記蛍光体を励起する励起光を発する励起光源とを有し、前記第1の所定の波長をλ1とし、前記第2の波長をλ2とする時、λ1≧λ2であり、前記蛍光体層が前記波長選択半透明反射層と前記基板の間に配置され、前記波長選択反射透過層が、前記蛍光体層と前記基板の間、又は、前記基板の前記蛍光体層の逆側に設けられ、前記波長選択半透明反射層と前記波長選択反射透過層の間に共振器が構成され、前記蛍光体から放射される蛍光を前記波長選択半透明反射層から放射させるので、前記共振器によって発光効率を向上させ発光素子の発光スペクトルの幅を狭くし、発光特性を向上させることができ、励起光の入射側と逆側から蛍光を出射させるため、蛍光の取出しに制限を受けず、デバイス構造に制限を受けることがない発光素子を提供することができる。
また、本発明によれば、励起光の入射側と逆側から蛍光を出射させるため、蛍光の取出しに制限を受けることなく、照射強度の大きな照明装置を提供することができる。
また、本発明によれば、共振器によって発光効率を向上させ発光素子の発光スペクトルの幅を狭くし、発光特性を向上させることができ、励起光の入射側と逆側から蛍光を出射させるため、蛍光の取出しに制限を受けることのない表示装置を提供することができる。
本発明の発光素子では、前記波長選択半透明反射層及び前記波長選択反射透過層は誘電体多層膜によって構成されたものとするのがよい。前記波長選択半透明反射層及び前記波長選択反射透過層を前記誘電体多層膜によって構成するので、前記誘電体多層膜を、高屈折率材料と低屈折率材料の2種類の誘電体膜を所定の光学膜厚(前記誘電体多層膜を構成する各材料の屈折率と膜厚の積和によって定義され、光学的距離ともいう。)で交互に積層した構造とすることによって、所望の光学特性(透過率又は反射率特性)を有する前記波長選択半透明反射層及び前記波長選択反射透過層を構成することができる。
また、前記蛍光の中心波長をλ、Nを1以上の整数とする時、前記波長選択半透明反射層と前記波長選択反射透過層との間の光学膜厚を(λ/2)Nとするのがよい。このような構成によれば、前記蛍光体層を、前記中心波長を共振周波数とする共振器とすることができ、発光効率を向上させると共に発光素子の発光スペクトルの半価幅を狭小化することができ、発光特性を向上させることができる。なお、前記波長選択反射透過層が前記蛍光体層と前記基板の間に設けられる場合、即ち、前記波長選択反射透過層、前記蛍光体層、前記波長選択半透明反射層の順に積層される場合には、前記波長選択半透明反射層と前記波長選択反射透過層との間の光学膜厚は前記蛍光体層の光学膜厚となり、前記蛍光体層の厚さをdF、前記蛍光体層の屈折率をnFとする時、nF・dF=(λ/2)Nである。また、前記波長選択反射透過層が前記基板の前記蛍光体層の逆側に設けられる場合には、前記波長選択反射透過層、前記基板、前記蛍光体層の順に積層される場合には、前記波長選択半透明反射層と前記波長選択反射透過層との間の光学膜厚は、前記基板と前記蛍光体層による層となり、前記蛍光体層の厚さをdF、前記蛍光体層の屈折率をnF、前記基板の厚さをdG、基板の屈折率をnGとする時、(nG・dG+nF・dF)=(λ/2)Nである。
また、前記第2の所定の波長を超える光に対する透過率が50%以上である構成とするのがよい。このような構成によれば、前記波長選択半透明反射層を通して、前記蛍光の中心波長を含む光を出射させることができる。
また、前記蛍光体が無機蛍光体である構成とするのがよい。このような構成によれば、前記蛍光体として、青色光の波長領域の光、又は、近紫外光によって、劣化しにくい蛍光体を使用することができる。
また、前記励起光源が青色光を発する青色発光ダイオード(LED)又は青色レーザであり、前記第1の所定の波長、及び、第2の所定の波長が470nmである構成とするのがよい。このような構成によれば、青色光を放射する青色光源を前記励起光源とするとき、前記波長選択反射透過層は、青色光の波長領域の光を透過、好ましくは全透過させ、青色光の波長領域以外の光を反射、好ましくは全反射させるので、前記蛍光体層には青色光の波長領域の光が照射され前記蛍光体が励起され、青色光の波長領域以外の光によって前記蛍光体が励起されることがないので、前記蛍光体層から目的とする蛍光のみを励起させ、不要な励起光を生成することがなく、発光素子の発光特性を向上させることができる。
また、前記励起光源が近紫外光を発する近紫外発光ダイオード(LED)又は近紫外レーザであり、前記第1の所定の波長が420nm、前記第2の所定の波長が470nmである構成とするのがよい。このような構成によれば、近紫外光を放射する青色光源を前記励起光源とするとき、前記波長選択反射透過層は、近紫外光を透過、好ましくは全透過させ、近紫外以外の光を反射、好ましくは全反射させるので、前記蛍光体層には近紫外光が照射され前記蛍光体が励起され、近紫外光以外の光によって前記蛍光体が励起されることがないので、前記蛍光体層から目的とする蛍光のみを励起させ、不要な励起光を生成することがなく、発光素子の発光特性を向上させることができる。
本発明の照明装置では、前記励起光源が青色光を発する青色発光ダイオード(LED)又は青色レーザである構成とするのがよい。このような構成によれば、前記蛍光体層を、赤色光の蛍光を放射する赤色蛍光体、又は、緑色光の蛍光を放射する緑色蛍光体によって構成することができ、赤色光、又は、緑色光を放射する照明装置を実現することができる。
また、赤色光の蛍光を放射する赤色蛍光体層と緑色光の蛍光を放射する緑色蛍光体層が並置されて、前記蛍光体層が構成され、前記青色光が前記波長選択反射透過層を通して前記蛍光体層に照射され、前記青色光によって励起された前記赤色光及び前記緑色光が前記波長選択半透明反射層を通して出射され、前記青色光が、前記蛍光体層が設けられていない前記波長選択反射透過層の領域を通して出射され、前記赤色光、前記緑色光、及び、前記青色光が混色され白色光が放射される構成とするのがよい。このような構成によれば、赤色蛍光体及び緑色蛍光体の種類を選択すること、又は/及び、前記赤色光体層及び前記緑色光体層の各面積、前記蛍光体層が設けられていない前記波長選択反射透過層の領域であり前記青色光が前記蛍光体を通過しないで出射される領域(以下、青色光通過領域と呼ぶ。)の面積によって、放射される光の色温度を調整することができ、例えば、白色光を放射する冷陰極蛍光ランプよりも小型化、省電力化が可能な照明装置を実現することができる。
また、前記励起光源が近紫外光を発する近紫外発光ダイオード(LED)又は近紫外レーザである構成とするのがよい。このような構成によれば、前記蛍光体層を、赤色光の蛍光を放射する赤色蛍光体、又は、緑色光の蛍光を放射する緑色蛍光体、又は、青色光の蛍光を放射する青色蛍光体によって構成することができ、赤色光、又は、緑色光、又は、青色光を放射する照明装置を実現することができる。
また、赤色光の蛍光を放射する赤色蛍光体層、緑色光の蛍光を放射する緑色蛍光体層及び青色光の蛍光を放射する青色蛍光体層が並置されて、前記蛍光体層が構成され、前記近紫外光が前記波長選択反射透過層を通して照射され、前記近紫外光によって励起された前記赤色光、前記緑色光、及び、前記青色光が、前記波長選択半透明反射層を通して出射され、前記赤色光、前記緑色光、及び、前記青色光が混色され白色光が放射される構成とするのがよい。このような構成によれば、赤色蛍光体、緑色蛍光体、及び、青色蛍光体の種類を選択すること、又は/及び、前記赤色蛍光体層、前記緑色蛍光体層、前記青色蛍光体層の各面積によって、放射される光の色温度を調整することができ、例えば、白色光を放射する冷陰極蛍光ランプよりも小型化、省電力化が可能な照明装置を実現することができる。
本発明の表示装置では、前記光照射制御部は、液晶素子とスイッチング素子を含む構成とするのがよい。このような構成によれば、前記画素部の各画素に照射される前記励起光のオンオフを制御することができる。
また、前記光源がバックライトを兼ねている構成とするのがよい。このような構成によれば、背景照射のための照明光源を必要としない。
また、前記励起光源が青色光を発する青色発光ダイオード(LED)又は青色レーザである構成とするのがよい。このような構成によれば、前記蛍光体層を、赤色光の蛍光を放射する赤色蛍光体、又は、緑色光の蛍光を放射する緑色蛍光体によって構成することができ、赤色光、又は、緑色光による表示装置を実現することができる。
また、赤色光の蛍光を放射する赤色蛍光体層と緑色光の蛍光を放射する緑色蛍光体層が並置されて、前記蛍光体層が構成され、前記青色光が前記波長選択反射透過層を通して前記蛍光体層に照射され、前記青色光によって励起された前記赤色光及び前記緑色光が前記波長選択半透明反射層を通して出射され、前記青色光が、前記蛍光体層が設けられていない前記波長選択反射透過層の領域を通して出射され、カラー表示を行なう構成とするのがよい。このような構成によれば、赤色蛍光体及び緑色蛍光体の種類を選択すること、又は/及び、前記赤色光体層及び前記緑色光体層の各面積、前記蛍光体層が設けられていない前記波長選択反射透過層の領域であり前記青色光が前記蛍光体を通過しないで出射される領域(前記青色光通過領域)の面積を調整することによって、放射される光の色度再現性範囲の拡大(色純度の向上、色空間の拡大)を可能とし、冷陰極蛍光ランプのような白色光をバック又はサイドライトとしカラーフィルタを使用して所望の光を得る構成の液晶表示装置よりも、小型化、省電力化が可能な表示装置を実現することができる。
また、前記励起光源が近紫外光を発する近紫外発光ダイオード(LED)又は近紫外レーザである構成とするのがよい。このような構成によれば、前記蛍光体層を、赤色光の蛍光を放射する赤色蛍光体、又は、緑色光の蛍光を放射する緑色蛍光体、又は、青色光の蛍光を放射する青色蛍光体によって構成することができ、赤色光、又は、緑色光、又は、青色光による表示装置を実現することができる。
また、赤色光の蛍光を放射する赤色蛍光体層、緑色光の蛍光を放射する緑色蛍光体層及び青色光の蛍光を放射する青色蛍光体層が並置されて、前記蛍光体層が構成され、前記近紫外光が前記波長選択反射透過層を通して前記蛍光体層に照射され、前記近紫外光によって励起された前記赤色光、前記緑色光、及び、前記青色光が、前記波長選択半透明反射層を通して出射されカラー表示を行なう構成とするのがよい。このような構成によれば、赤色蛍光体、緑色蛍光体、及び、青色蛍光体の種類を選択すること、及び/又は、前記赤色光体層、前記緑色光体層、前記青色光体層の各面積を調整することによって、放射される光の色度再現性範囲の拡大(色純度の向上、色空間の拡大)を可能とし、冷陰極蛍光ランプのような白色光をバック又はサイドライトとしカラーフィルタを使用して所望の光を得る構成の液晶表示装置よりも、小型化、省電力化が可能な表示装置を実現することができる。
本発明の第1の構成による発光素子は、透明基板と、この透明基板上に設けられた蛍光体薄膜(発光層)と、波長470nm以下の光を反射し、波長470nm以上の光に対し0.1%〜50%の透過率、99.9%〜50%の反射率を有するように形成され、蛍光体薄膜の上記透明基板と反対側の面に設けられた波長選択半透明反射膜と、蛍光体薄膜と上記透明基板上の間、若しくは、蛍光体薄膜の逆側に設けられ、波長470nm以下の光を透過し、波長470nm以上の光を反射するように形成された波長選択反射透過膜を有し、波長選択半透明反射膜と波長選択反射透過膜との間に光の微小共振器が構成されている。波長選択半透明反射膜と波長選択反射膜との間に、波長450nmの光で励起される蛍光体膜を挟み共振器構造を作り、光励起された蛍光(可視光)を波長選択半透明反射膜から放射させる。
上記第1の構成において、波長選択半透明反射膜、及び、波長選択反射透過膜は誘電体の多層膜からなり、波長選択半透明反射膜と波長選択反射透過膜との間の光学的距離(この間に設けられた材料の屈折率と厚さの積(膜が複数の材料の層から構成されている場合には各材料の層の関する屈折率と厚さの積和)によって定義される。)を、蛍光体の発光中心波長の整数倍又は半整数倍とする。蛍光体は青色LED又は青色レーザからなる励起光源にとって励起され、発光素子は照明装置、表示装置に使用される。
本発明の第2の構成による発光素子は、透明基板と、この透明基板上に設けられた蛍光体薄膜(発光層)と、波長420nm以下の光を反射し、波長420nm以上の光に対し0.1%〜50%の透過率、99.9%〜50%の反射率を有するように形成され、蛍光体薄膜の上記透明基板と反対側の面に設けられた波長選択半透明反射膜と、蛍光体薄膜と上記透明基板上の間、若しくは、蛍光体薄膜の逆側に設けられ、波長420nm以下の光を透過し、波長420nm以上の光を反射するように形成された波長選択反射透過膜を有し、波長選択半透明反射膜と波長選択反射透過膜との間に光の微小共振器が構成されている。波長選択半透明反射膜と波長選択反射膜との間に、波長405nmの光で励起される蛍光体膜を挟み共振器構造を作り、光励起された蛍光(可視光)を波長選択半透明反射膜から放射させる。
上記第2の構成において、波長選択半透明反射膜、及び、波長選択反射透過膜は誘電体の多層膜からなり、波長選択半透明反射膜と波長選択反射透過膜との間の光学的距離(この間に設けられた材料の屈折率と厚さの積(膜が複数の材料の層から構成されている場合には各材料の層の関する屈折率と厚さの積和)によって定義される。)を、蛍光体の発光中心波長の整数倍又は半整数倍とする。蛍光体は近紫外LED又は近紫外レーザからなる励起光源にとって励起され、発光素子は照明装置、表示装置に使用される。励起光に紫外光を用いても、発光層から戻ってくる紫外光が、照明装置、表示装置を構成するデバイス部材(蛍光の取出し側に配置される部材)の劣化を引き起こすことがない。
以下、図面を参照しながら本発明による実施の形態について詳細に説明する。
第1の実施の形態(発光素子の構成)
図1は、本発明の実施の形態において、発光素子の構成を説明する模式断面図である。
図1に示すように、発光素子は、透明なガラス基板11上に形成され、波長λ0を超えない光を略全透過させ、波長λ0を超える光を略全反射させるように形成された波長選択反射透過層12と、この波長選択反射透過層12上に形成され、光励起によって蛍光を発する蛍光体を含む蛍光体層13と、波長λ0を超える光に対して、透過率50%〜0.01%、反射過率50%〜99.9%を有し、波長λ0を超えない光を略全反射させ、波長λ0を超える光を透過させるように形成された波長選択半透明反射層14と、波長選択反射透過層12を通して蛍光体層に照射して蛍光体を励起する励起光を発する図示しない励起光源を有している。
波長選択半透明反射層14と波長選択反射透過層12の間に共振器(光共振器)15が構成されている。蛍光体から放射される蛍光の中心波長をλmとし、Nを1以上の整数とする時、蛍光体層13の光学膜厚を(λm/2)Nとする。この光学膜厚は、蛍光体層13の厚さd、蛍光体の屈折率をnとする時、n・d=(λm/2)Nによって定義されるものであり、d=(λm/2)N(1/n)である。波長選択半透明反射層14、波長選択反射透過層12は誘電体多層膜によって構成されている。なお、波長選択反射透過層12は、蛍光体層13とガラス基板11の間ではなく、ガラス基板11の蛍光体層13と逆側に設けてもよい。
励起光源から放射された励起光λEが蛍光体層13に入射されると、励起光λEは、波長選択半透明反射層14、波長選択反射透過層12の間で反射を繰り返し受けて反射光λERを生じると共に、蛍光体層13を照射して蛍光体を励起して波長分布をもった蛍光λFを発生させる。蛍光λFは波長選択半透明反射層14から放射される。蛍光体層13の光学膜厚を(λm/2)Nとするので、発光素子から放射される中心波長λmをもった蛍光λFの発光スペクトルの幅は狭小化され、また、励起光λEは波長選択半透明反射層14、波長選択反射透過層12の間で繰り返し反射され、蛍光体層13に照射されるので、蛍光体が繰り返し励起され蛍光体の発光効率を向上させることができ、発光素子の発光特性を向上させることができる。蛍光体層13として、無機蛍光体又は有機蛍光体を使用することができる。
励起光源として、青色光、例えば、450nmの光を放射する青色光源(例えば、青色LED)を使用する場合、蛍光体層13は、この青色光によって励起可能な蛍光体によって形成され、λ0=470nmとし、λm>λ0とする。なお、青色光源として、半導体レーザを使用することもできる。
励起光源として、近紫外光、例えば、405nmの光を放射する近紫外光源(例えば、近紫外発光ダイオード(LED)、近紫外レーザ)を使用する場合、蛍光体層13は、この近紫外光によって励起可能な蛍光体によって形成され、λ0=420nmとし、λm>λ0とする。
本発明の発光素子では、蛍光体層13の厚さ、波長選択半透明反射膜14の光学特性(反射又は透過特性)を変えることによって、発光素子の発光スペクトルの形状、即ち、ピーク位置、半価幅、強度を変えることができ、発光効率を向上させ発光スペクトルの幅を狭小化させ、発光特性を向上させることができる。また、近紫外光源を用いる場合、蛍光λFは波長選択半透明反射層14から放射され、蛍光λFが放射される側への紫外線は、波長選択半透明反射層14によって反射され遮断される。従って、蛍光λFが照射される側に種々の部材が配置されていても、これら部品が紫外線によって劣化することがないので、発光素子と種々の部材を組み合わせて構成されるデバイスの設計の自由度を増大させることができる。
また、図1示す発光装置では、一方の側(例えば、下方又は右側)に励起光源を配置し励起光を照射して、他一方の側(例えば、上方又は左側)から光を取出す構成としているので、励起光源が配置される側から光を取出す構成のように、装置から取出される光が、励起光源の影によって妨害されることなく、また、励起光源からの励起光が、蛍光体層13層を通して、観測者の目に入ることがないので、光の取出し効率が低下することがない。
第2の実施の形態(青色光を励起光として蛍光体を励起する照明装置)
図2は、本発明の実施の形態において、青色光を励起光として蛍光体を励起し白色光を発生する照明装置の構成を説明する模式断面図である。
図2に示すように、第2の実施の形態における照明装置では、励起光源、例えば、青色LEDから放射された、例えば、波長450nmの青色の励起光λEによって、赤色蛍光体層13Rから放射される赤色光λFRと、緑色蛍光体層13Gから放射される緑色光λFGと、青色LEDから放射された青色光λFBの混色によって白色光を発生させる。
波長選択反射透過層12上には、緑色蛍光体層13G、及び赤色蛍光体層13Rが設けられていない領域であり、青色LEDから放射された青色光が蛍光体層を通過しないで出射される領域である青色光通過領域が設けられており、青色光λFBが放射される。
このように、赤色光λFRが放射される領域R、緑色光λFGが放射される領域G、青色光λFBが放射される領域B(青色光通過領域)が設けられている。
なお、領域R、領域G、領域Bの3領域の相互の間には、ブラックマトリックス16が配置されており、光が照射装置から出射される以前における、上記の3領域の相互の間での光の混合が阻止されており、上記の3領域で生成された光が独立して照射装置から出射された後に混色されるように構成されている。ブラックマトリックス16は、例えば、黒色顔料で着色された樹脂材料、又は、黒色の無機材料によって形成されている。
ガラス基板11上に、例えば、波長λ0=470nm以下の光を略全透過させ、波長λ0=470nm以上の光を略全反射させる波長選択反射透過層12が、誘電体多層膜によって形成されている。この波長選択反射透過層12上に、赤色蛍光体層13Rと、緑色蛍光体層13Gが積層されている。赤色蛍光体層13R、緑色蛍光体層13Gはそれぞれ青色光源によって励起可能なものであれば、無機蛍光体又は有機蛍光体を使用することができる。
赤色蛍光体層13Rから放射される蛍光の中心波長をλmR、赤色蛍光体の屈折率をnR、Nを1以上の整数とする時、赤色蛍光体層13Rの厚さdR=(λmR/2)N(1/nR)とし、赤色蛍光体層13Rの光学膜厚nR・dR=(λmR/2)Nとする。
緑色蛍光体層13Gから放射される蛍光の中心波長をλmG、緑色蛍光体の屈折率をnG、Nを1以上の整数とする時、緑色蛍光体層13Gの厚さdG=(λmG/2)N(1/nG)とし、緑色蛍光体層13Gの光学膜厚nG・dG=(λmG/2)Nとする。
赤色蛍光体層13R上、緑色蛍光体層13G上にはそれぞれ誘電体多層膜によって形成された、赤色波長選択半透明反射層14R、緑色波長選択半透明反射層14Gが積層されている。赤色波長選択半透明反射層14R、緑色波長選択半透明反射層14Gはそれぞれ、波長λ0=470nmを超える光に対して、透過率50%〜0.01%、反射過率50%〜99.9%を有し、波長λ0=470nmを超えない光を略全反射させ、波長λ0=470nmを超える光を透過させるように形成されている。
なお、波長選択反射透過層12は、赤色蛍光体層13R、緑色蛍光体層13Gとガラス基板11の間ではなく、ガラス基板11の赤色蛍光体層13R、緑色蛍光体層13Gと逆側に設けてもよい。
赤色蛍光体層13Rは波長選択反射透過層12と赤色波長選択半透明反射層14Rの間、緑色蛍光体層13Gは波長選択反射透過層12と緑色波長選択半透明反射層14Gの間にそれぞれ配置されており、赤色用共振器(赤色光用光共振器)15R、緑色用共振器(緑色光用光共振器)15Gが構成されている。
励起光源から放射された励起光λEが赤色蛍光体層13Rに入射されると、励起光λEは、赤色波長選択半透明反射層14R、波長選択反射透過層12の間で反射を繰り返し受けて反射光を生じ、赤色蛍光体層13Rを繰り返し照射して赤色蛍光体を励起して蛍光を発生させる。赤色蛍光体層13Rの光学膜厚を(λmR/2)Nとするので、中心波長λmRを有し、発光スペクトルの幅が狭小化された赤色蛍光λFRが赤色波長選択半透明反射層14Rから放射される。
このように、赤色蛍光体層13Rが形成され赤色光が放射される領域Rにおいては、励起光λEによって、赤色蛍光体層13Rが繰り返し照射され赤色蛍光体が励起されるので、赤色蛍光の発光効率を向上させることができ、赤色蛍光の発光特性を向上させることができる。
また、励起光源から放射された励起光λEが緑色蛍光体層13Gに入射されると、励起光λEは、緑色波長選択半透明反射層14G、波長選択反射透過層12の間で反射を繰り返し受けて反射光を生じ、緑色蛍光体層13Gを繰り返し照射して緑色蛍光体を励起して蛍光を発生させる。緑色蛍光体層13Gの光学膜厚を(λmG/2)Nとするので、中心波長λmGを有し、発光スペクトルの幅が狭小化された緑色蛍光λFGが緑色波長選択半透明反射層14Gから放射される。
このように、緑色蛍光体層13Gが形成され緑色光が放射される領域Gにおいては、励起光λEによって、緑色蛍光体層13Gが繰り返し照射され緑色蛍光体が励起されるので、緑色蛍光の発光効率を向上させることができ、緑色蛍光の発光特性を向上させることができる。
また、赤色波長選択半透明反射層14R、緑色波長選択半透明反射層14Gの各層上に青色光をカットする後述する黄色フィルタ(図7を参照。)を設けて、領域R、領域Gから放射される光への青色光の混合を抑制することができる。
図2に示す照射装置では、赤色蛍光体層13R、緑色蛍光体層13Gの各層の厚さ、領域R、領域G、領域Bの各領域の面積、赤色波長選択半透明反射層14R、緑色波長選択半透明反射層14Gの各層の光学特性(反射又は透過特性)を変えることによって、装置から放射される各蛍光のスペクトルの形状、即ち、ピーク位置、半価幅、強度を変え発光特性を向上させることが可能であり色温度を変更することができる。
また、図2に示す照射装置では、一方の側(例えば、下方又は右側)に励起光源を配置し励起光を照射して、他一方の側(例えば、上方又は左側)から白色光を取出す構成としているので、励起光源が配置される側から白色光を取出す構成のように、装置から取出される白色光が、励起光源の影によって妨害されることなく、また、励起光源からの励起光が、赤色蛍光体層13R、緑色蛍光体層13Gの各層を通して、観測者の目に入ることがないので、光の取出し効率の低下を招くことがない。
第3の実施の形態(近紫外光を励起光として蛍光体を励起する照明装置)
図3は、本発明の実施の形態において、近紫外光を励起光として蛍光体を励起起し白色光を発生する照明装置の構成を説明する模式断面図である。
図3に示すように、第3の実施の形態における照明装置では、励起光源として近紫外光源、例えば、近紫外LEDから放射された、例えば、波長405nmの近紫外の励起光λEによって、赤色蛍光体層13Rから放射される赤色光λRと、緑色蛍光体層13Gから放射される緑色光λGと、青色蛍光体層13Bから放射される青色光λBの混色によって白色光を発生させる。
このように、赤色光λFRが放射される領域R、緑色光λFGが放射される領域G、青色光λFBが放射される領域Bが設けられている。
なお、領域R、領域G、領域Bの3領域の相互の間には、ブラックマトリックス16が配置されており、光が照射装置から出射される以前における、上記の3領域の相互の間での光の混合が阻止されており、上記の3領域で生成された光が独立して照射装置から出射された後に混色されるように構成されている。ブラックマトリックス16は、例えば、黒色顔料で着色された樹脂材料、又は、黒色の無機材料によって形成されている。
ガラス基板11上に、例えば、波長λ0=420nm以下の光を略全透過させ、波長λ0=420nm以上の光を略全反射させる波長選択反射透過層12が、誘電体多層膜によって形成されている。この波長選択反射透過層12上に、赤色蛍光体層13Rと、緑色蛍光体層13G、青色蛍光体層13Bが積層されている。赤色蛍光体層13R、緑色蛍光体層13G、青色蛍光体層13Bはそれぞれ近紫外光源によって励起可能なものであれば、無機蛍光体又は有機蛍光体を使用することができる。
赤色蛍光体層13Rから放射される蛍光の中心波長をλmR、赤色蛍光体の屈折率をnR、Nを1以上の整数とする時、赤色蛍光体層13Rの厚さdR=(λmR/2)N(1/nR)とし、赤色蛍光体層13Rの光学膜厚nR・dR=(λmR/2)Nとする。
緑色蛍光体層13Gから放射される蛍光の中心波長をλmG、緑色蛍光体の屈折率をnG、Nを1以上の整数とする時、緑色蛍光体層13Gの厚さdG=(λmG/2)N(1/nG)とし、緑色蛍光体層13Gの光学膜厚nG・dG=(λmG/2)Nとする。
青色蛍光体層13Bから放射される蛍光の中心波長をλmB、青色蛍光体の屈折率をnB、Nを1以上の整数とする時、青色蛍光体層13Bの厚さdB=(λmB/2)N(1/nB)とし、青色蛍光体層13Bの光学膜厚nB・dB=(λmB/2)Nとする。
赤色蛍光体層13R上、緑色蛍光体層13G上、青色蛍光体層13B上にはそれぞれ誘電体多層膜によって形成された、赤色波長選択半透明反射層14R、緑色波長選択半透明反射層14G、青色波長選択半透明反射層14Bが積層されている。赤色波長選択半透明反射層14R、緑色波長選択半透明反射層14G、青色波長選択半透明反射層14Bはそれぞれ、波長λ0=420nmを超える光に対して、透過率50%〜0.01%、反射過率50%〜99.9%を有し、波長λ0=420nmを超えない光を略全反射させ、波長λ0=420nmを超える光を透過させるように形成されている。
なお、波長選択反射透過層12は、赤色蛍光体層13R、緑色蛍光体層13G、青色蛍光体層13Bとガラス基板11の間ではなく、ガラス基板11の赤色蛍光体層13R、緑色蛍光体層13G、青色蛍光体層13Bと逆側に設けてもよい。
赤色蛍光体層13Rは波長選択反射透過層12と赤色波長選択半透明反射層14Rの間、緑色蛍光体層13Gは波長選択反射透過層12と緑色波長選択半透明反射層14Gの間、青色蛍光体層13Bは波長選択反射透過層12と青色波長選択半透明反射層14Bの間、にそれぞれ配置されており、赤色用共振器(赤色光用光共振器)15R、緑色用共振器(緑色光用光共振器)15G、青色用共振器(青色光用光共振器)15Bが構成されている。
励起光源から放射された励起光λEが赤色蛍光体層13Rに入射されると、励起光λEは、赤色波長選択半透明反射層14R、波長選択反射透過層12の間で反射を繰り返し受けて反射光を生じ、赤色蛍光体層13Rを繰り返し照射して赤色蛍光体を励起して蛍光を発生させる。赤色蛍光体層13Rの光学膜厚を(λmR/2)Nとするので、中心波長λmRを有し、発光スペクトルの幅が狭小化された赤色蛍光λFRが赤色波長選択半透明反射層14Rから放射される。
このように、赤色蛍光体層13Rが形成され赤色光が放射される領域Rにおいては、励起光λEによって、赤色蛍光体層13Rが繰り返し照射され赤色蛍光体が励起されるので、赤色蛍光の発光効率を向上させることができ、赤色蛍光の発光特性を向上させることができる。
また、励起光源から放射された励起光λEが緑色蛍光体層13Gに入射されると、励起光λEは、緑色波長選択半透明反射層14G、波長選択反射透過層12の間で反射を繰り返し受けて反射光を生じ、緑色蛍光体層13Gを繰り返し照射して緑色蛍光体を励起して蛍光を発生させる。緑色蛍光体層13Gの光学膜厚を(λmG/2)Nとするので、中心波長λmGを有し、発光スペクトルの幅が狭小化された緑色蛍光λFGが緑色波長選択半透明反射層14Gから放射される。
このように、緑色蛍光体層13Gが形成され緑色光が放射される領域Gにおいては、励起光λEによって、緑色蛍光体層13Gが繰り返し照射され緑色蛍光体が励起されるので、緑色蛍光の発光効率を向上させることができ、緑色蛍光の発光特性を向上させることができる。
更に、励起光源から放射された励起光λEが青色蛍光体層13Bに入射されると、励起光λEは、青色波長選択半透明反射層14B、波長選択反射透過層12の間で反射を繰り返し受けて反射光を生じ、青色蛍光体層13Bを繰り返し照射して青色蛍光体を励起して蛍光を発生させる。青色蛍光体層13Bの光学膜厚を(λmB/2)Nとするので、中心波長λmBを有し、発光スペクトルの幅が狭小化された青色蛍光λFBが青色波長選択半透明反射層14Bから放射される。
このように、青色蛍光体層13Bが形成され緑色光が放射される領域Bにおいては、励起光λEによって、青色蛍光体層13Bが繰り返し照射され青色蛍光体が励起されるので、青色蛍光の発光効率を向上させることができ、青色蛍光の発光特性を向上させることができる。
図3に示す照射装置では、赤色蛍光体層13R、緑色蛍光体層13G、青色蛍光体層13Bの各層の厚さ、領域R、領域G、領域Bの各領域の面積、赤色波長選択半透明反射層14R、緑色波長選択半透明反射層14G、青色波長選択半透明反射層14Bの各層の光学特性(反射又は透過特性)を変えることによって、装置から放射される各蛍光のスペクトルの形状、即ち、ピーク位置、半価幅、強度を変え発光特性を向上させることが可能であり色温度を変更することができる。
また、図3に示す照射装置では、一方の側(例えば、下方又は右側)に励起光源を配置し励起光を照射して、他一方の側(例えば、上方又は左側)から白色光を取出す構成としているので、励起光源が配置される側から白色光を取出す構成のように、装置から取出される白色光が、励起光源の影によって妨害されることなく、また、励起光源からの励起光が、赤色蛍光体層13R、緑色蛍光体層13G、青色蛍光体層13Bの各層を通して、観測者の目に入ることがないので、光の取出し効率の低下を招くことがない。
第4の実施の形態(青色光源を有する照明装置を用いた表示装置)
図4は、本発明の実施の形態において、青色光源30を有する照明装置を用いた表示装置の構成を説明する模式断面図である。
図4に示すように、第4の実施の形態における表示装置(カラー液晶表示装置)は、照明装置36と、液晶装置28から構成されている。
照明装置36は、青色光を放射する青色光源30(例えば、青色LEDからなる。)が内部に配置され筐体を兼ね、内面に光反射剤が塗布されているリフレクタ32と、この筐体の開口部に設けられ、液晶装置28を保持するための支持部材34によって構成されている。支持部材34は、青色光源30から放射される青色光に対して透明であり、青色光を吸収し難い材料、例えば、PMMA、ポリカーボネート樹脂、アクリル系樹脂、非晶性のポリプロピレン系樹脂、AS樹脂を含むスチレン系樹脂等のプラスチック材料、ガラス等から構成されている。支持部材34は、青色光源30から放射される青色光を拡散させながら通過させる拡散板として機能するように構成されていてもよい。
青色光源30は、例えば、青色LEDであり、これから放射された、例えば、波長450nmの青色の励起光λEによって、赤色蛍光体層13Rから赤色光が、緑色蛍光体層13Gから緑色光がそれぞれ励起され放射される。
波長選択反射透過層12上には、緑色蛍光体層13G、及び赤色蛍光体層13Rが設けられていない領域であり、青色LEDから放射された青色光が蛍光体層を通過しないで出射される領域である青色光通過領域が設けられており、青色光が放射される。
このように、赤色光が放射される領域R、緑色光が放射される領域G、青色光λが放射される領域B(青色光通過領域)が設けられている。
なお、領域R、領域G、領域Bの3領域の相互の間には、領域R、領域G、領域Bの各領域以外へ侵入する光を遮蔽し、迷光を防止するためのブラックマトリックス16が配置されており、光が表示装置から出射される以前における、上記の3領域の相互の間での光の混合が阻止されており、上記の3領域で生成された光が表示装置から出射されるように構成されている。ブラックマトリックス16は、例えば、黒色顔料で着色された樹脂材料、又は、黒色の無機材料によって形成されている。
液晶装置28は、図4の上方のフロントパネルと下方のリアパネルから構成されている。フロントパネルは、図4に図示しない第1のガラス基板と、この一方の面に設けられた透明電極26と、この透明電極26上に形成された配向膜25bと、第1のガラス基板の他方の面に設けられた偏光板(或いは偏光フィルム)21bとから構成されている。
リアパネルは、図4に図示しない第2のガラス基板と、この一方の面に設けられた層であり、スイッチング素子(具体的には、薄膜トランジスタ、TFT)22とこのスイッチング素子22の間に設けられ青色光源30から放射される青色光に対して透明な絶縁層23からなる層と、この層上に形成され、スイッチング素子22の導通状態と非導通状態を制御するための透明電極24と、上記層及び透明電極24の上に形成された配向膜25aと、第2のガラス基板の他方の面に設けられた偏光板(或いは偏光フィルム)21aととから構成されている。
フロントパネルの配向膜25bとリアパネルの配向膜25aの間に液晶層27が配置され、フロントパネルの偏光板21b上に波長選択反射透過層12が形成されている。なお、フロントパネルとリアパネルはそれらの外周部で封止材によって接合されている。
波長選択反射透過層12は誘電体多層膜によって形成され、例えば、波長λ0=470nm以下の光を略全透過させ、波長λ0=470nm以上の光を略全反射させる。この波長選択反射透過層12上に、赤色蛍光体層13Rと、緑色蛍光体層13Gが積層されている。赤色蛍光体層13R、緑色蛍光体層13Gはそれぞれ青色光源30によって励起可能なものであれば、無機蛍光体又は有機蛍光体を使用することができる。
赤色蛍光体層13Rから放射される蛍光の中心波長をλmR、赤色蛍光体の屈折率をnR、Nを1以上の整数とする時、赤色蛍光体層13Rの厚さdR=(λmR/2)N(1/nR)とし、赤色蛍光体層13Rの光学膜厚nR・dR=(λmR/2)Nとする。
緑色蛍光体層13Gから放射される蛍光の中心波長をλmG、緑色蛍光体の屈折率をnG、Nを1以上の整数とする時、緑色蛍光体層13Gの厚さdG=(λmG/2)N(1/nG)とし、緑色蛍光体層13Gの光学膜厚nG・dG=(λmG/2)Nとする。
赤色蛍光体層13R上、緑色蛍光体層13G上にはそれぞれ誘電体多層膜によって形成された、赤色波長選択半透明反射層14R、緑色波長選択半透明反射層14Gが積層されている。赤色波長選択半透明反射層14R、緑色波長選択半透明反射層14Gはそれぞれ、波長λ0=470nmを超える光に対して、透過率50%〜0.01%、反射過率50%〜99.9%を有し、波長λ0=470nmを超えない光を略全反射させ、波長λ0=470nmを超える光を透過させるように形成されている。
赤色蛍光体層13Rは波長選択反射透過層12と赤色波長選択半透明反射層14Rの間、緑色蛍光体層13Gは波長選択反射透過層12と緑色波長選択半透明反射層14Gの間にそれぞれ配置されており、赤色用共振器(赤色光用光共振器)、緑色用共振器(緑色光用光共振器)が構成されている。
青色光源30から放射された励起光λEが赤色蛍光体層13Rに入射されると、励起光λEは、赤色波長選択半透明反射層14R、波長選択反射透過層12の間で反射を繰り返し受けて反射光を生じ、赤色蛍光体層13Rを繰り返し照射して赤色蛍光体を励起して蛍光を発生させる。赤色蛍光体層13Rの光学膜厚を(λmR/2)Nとするので、中心波長λmRを有し、発光スペクトルの幅が狭小化された赤色蛍光λFRが赤色波長選択半透明反射層14Rから放射される。
このように、赤色蛍光体層13Rが形成され赤色光が放射される領域Rにおいては、励起光λEによって、赤色蛍光体層13Rが繰り返し照射され赤色蛍光体が励起されるので、赤色蛍光の発光効率を向上させることができ、赤色蛍光の発光特性を向上させることができる。
また、青色光源30から放射された励起光λEが緑色蛍光体層13Gに入射されると、励起光λEは、緑色波長選択半透明反射層14G、波長選択反射透過層12の間で反射を繰り返し受けて反射光を生じ、緑色蛍光体層13Gを繰り返し照射して緑色蛍光体を励起して蛍光を発生させる。緑色蛍光体層13Gの光学膜厚を(λmG/2)Nとするので、中心波長λmGを有し、発光スペクトルの幅が狭小化された緑色蛍光λFGが緑色波長選択半透明反射層14Gから放射される。
このように、緑色蛍光体層13Gが形成され緑色光が放射される領域Gにおいては、励起光λEによって、緑色蛍光体層13Gが繰り返し照射され緑色蛍光体が励起されるので、緑色蛍光の発光効率を向上させることができ、緑色蛍光の発光特性を向上させることができる。
また、赤色波長選択半透明反射層14R、緑色波長選択半透明反射層14Gの各層上に青色光をカットする後述する黄色フィルタ(図7を参照。)を設けて、領域R、領域Gから放射される光への青色光の混合を抑制することができる。
また、ブラックマトリックス16、カラーフィルタ(図示せず。)、赤色波長選択半透明反射層14R、緑色波長選択半透明反射層14G、赤色蛍光体層13R、緑色蛍光体層13G、ブラックマトリックス16、波長選択反射透過層12を、図4に図示しない第1のガラス基板と透明電極26の間に設けた構成としてもよい。
表示装置の動作において、照明装置36の青色光源30から射出された青色光は、拡散板として機能する支持部材34を通過し、偏光板21a、図示しない第2のガラス基板、透明電極24(カラー液晶表示装置の各色を発光する副画素(サブピクセル)に対応した部分)、液晶層70、透明電極26(カラー液晶表示装置の各色を発光する副画素(サブピクセル)に対応した部分)、図示しない第1のガラス基板、偏光板21bを通過し、更に、赤色蛍光体層13R、緑色蛍光体層13Gを照射すると共に、領域Bを通過する。
この結果、赤色蛍光体層13Rから赤色蛍光が、緑色蛍光体層13Gから緑色蛍光が励起、放射され、領域Bから青色光が放射される。表示装置を構成する画素からの赤色蛍光、緑色蛍光、青色光の放射、即ち、各画素に対応する領域R、領域G、領域Bから装置外部へ放射は、各画素の副画素(サブピクセル)に対して設けられたスイッチング素子22によって制御される。
各画素の副画素(サブピクセル)に対応する、赤色蛍光体層13R、緑色蛍光体層13Gの各層の青色光による照射のオンオフ、領域Bの青色光の通過のオンオフはそれぞれ、各画素の副画素(サブピクセル)に対応して設けられたスイッチング素子22のオンオフによって制御され、青色光による照射のオンオフは、液晶層27における各画素の副画素(サブピクセル)に対応する領域の配向状態(この配向状態はスイッチング素子22のオンオフによって制御される。)によって制御される。各画素に対するスイッチング素子22のオンオフ制御が実行され、これによってカラー表示がなされる。
以上説明した表示装置では、赤色蛍光体層13R、緑色蛍光体層13Gの各層の厚さ、領域R、領域G、領域Bの各領域の面積、赤色波長選択半透明反射層14R、緑色波長選択半透明反射層14Gの各層の光学特性(反射又は透過特性)を変えることによって、装置から放射される各蛍光のスペクトルの形状、即ち、ピーク位置、半価幅、強度を変え発光特性を向上させることが可能であり色純度向上させる(色再現性範囲を広くする)ことができる。
第5の実施の形態(近紫外光源を有する照明装置を用いた表示装置)
図5は、本発明の実施の形態において、近紫外光源31を有する照明装置を用いた表示装置の構成を説明する模式断面図である。
図5に示すように、第5の実施の形態における表示装置(カラー液晶表示装置)は、照明装置36と、液晶装置28から構成されている。
照明装置36は、近紫外光を放射する近紫外光源31(例えば、近紫外LEDからなる。)が内部に配置され筐体を兼ね、内面に光反射剤が塗布されているリフレクタ32と、この筐体の開口部に設けられ、液晶装置28を保持するための支持部材34によって構成されている。支持部材34は、近紫外光源31から放射される近紫外光に対して透明であり、近紫外光を吸収し難い材料であり、紫外線の照射によって損傷を受けない材料、例えば、石英ガラスやBK−7等の光学ガラスを使用する。支持部材34は、近紫外光源31から放射される近紫外光を拡散させながら通過させる拡散板として機能するように構成されていてもよい。
近紫外光源31は、例えば、近紫外LEDであり、これから放射された、例えば、波長405nmの励起光λEによって、赤色蛍光体層13Rから赤色光が、緑色蛍光体層13Gから緑色光が、青色蛍光体層13Bから青色光がそれぞれ励起され放射される。
このように、赤色光が放射される領域R、緑色光が放射される領域G、青色光λが放射される領域Bが設けられている。
なお、領域R、領域G、領域Bの3領域の相互の間には、領域R、領域G、領域Bの各領域以外へ侵入する光を遮蔽し、迷光を防止するためのブラックマトリックス16が配置されており、光が表示装置から出射される以前における、上記の3領域の相互の間での光の混合が阻止されており、上記の3領域で生成された光が表示装置から出射されるように構成されている。ブラックマトリックス16は、例えば、黒色顔料で着色された樹脂材料、又は、黒色の無機材料によって形成されている。
液晶装置28は、図5の上方のフロントパネルと下方のリアパネルから構成されている。フロントパネルは、図5に図示しない第1のガラス基板と、この一方の面に設けられた透明電極26と、この透明電極26上に形成された配向膜25bと、第1のガラス基板の他方の面に設けられた偏光板(或いは偏光フィルム)21bとから構成されている。
リアパネルは、図5に図示しない第2のガラス基板と、この一方の面に設けられた層であり、スイッチング素子(具体的には、薄膜トランジスタ、TFT)22とこのスイッチング素子22の間に設けられ近紫外光源31から放射される近紫外光に対して透明な絶縁層23からなる層と、この層上に形成され、スイッチング素子22の導通状態と非導通状態を制御するための透明電極24と、上記層及び透明電極24の上に形成された配向膜25aと、第2のガラス基板の他方の面に設けられた偏光板(或いは偏光フィルム)21aととから構成されている。
フロントパネルの配向膜25bとリアパネルの配向膜25aの間に液晶層27が配置され、フロントパネルの偏光板21b上に波長選択反射透過層12が形成されている。なお、フロントパネルとリアパネルはそれらの外周部で封止材によって接合されている。
波長選択反射透過層12は誘電体多層膜によって形成され、例えば、波長λ0=420nm以下の光を略全透過させ、波長λ0=420nm以上の光を略全反射させる。この波長選択反射透過層12上に、赤色蛍光体層13Rと、緑色蛍光体層13G、青色蛍光体層13Bが積層されている。赤色蛍光体層13R、緑色蛍光体層13G、青色蛍光体層13Bはそれぞれ近紫外光源31によって励起可能なものであれば、無機蛍光体又は有機蛍光体を使用することができる。
赤色蛍光体層13Rから放射される蛍光の中心波長をλmR、赤色蛍光体の屈折率をnR、Nを1以上の整数とする時、赤色蛍光体層13Rの厚さdR=(λmR/2)N(1/nR)とし、赤色蛍光体層13Rの光学膜厚nR・dR=(λmR/2)Nとする。
緑色蛍光体層13Gから放射される蛍光の中心波長をλmG、緑色蛍光体の屈折率をnG、Nを1以上の整数とする時、緑色蛍光体層13Gの厚さdG=(λmG/2)N(1/nG)とし、緑色蛍光体層13Gの光学膜厚nG・dG=(λmG/2)Nとする。
青色蛍光体層13Bから放射される蛍光の中心波長をλmB、青色蛍光体の屈折率をnB、Nを1以上の整数とする時、青色蛍光体層13Bの厚さdB=(λmB/2)N(1/nB)とし、青色蛍光体層13Bの光学膜厚nB・dB=(λmB/2)Nとする。
赤色蛍光体層13R上、緑色蛍光体層13G上、青色蛍光体層13B上にはそれぞれ誘電体多層膜によって形成された、赤色波長選択半透明反射層14R、緑色波長選択半透明反射層14G、青色波長選択半透明反射層14Bが積層されている。赤色波長選択半透明反射層14R、緑色波長選択半透明反射層14G、青色波長選択半透明反射層14Bはそれぞれ、波長λ0=470nmを超える光に対して、透過率50%〜0.01%、反射過率50%〜99.9%を有し、波長λ0=470nmを超えない光を略全反射させ、波長λ0=470nmを超える光を透過させるように形成されている。
赤色蛍光体層13Rは波長選択反射透過層12と赤色波長選択半透明反射層14Rの間、緑色蛍光体層13Gは波長選択反射透過層12と緑色波長選択半透明反射層14Gの間、青色蛍光体層13Bは波長選択反射透過層12と青色波長選択半透明反射層14Bの間にそれぞれ配置されており、赤色用共振器(赤色光用光共振器)、緑色用共振器(緑色光用光共振器)、青色用共振器(青色光用光共振器)が構成されている。
近紫外光源31から放射された励起光λEが赤色蛍光体層13Rに入射されると、励起光λEは、赤色波長選択半透明反射層14R、波長選択反射透過層12の間で反射を繰り返し受けて反射光を生じ、赤色蛍光体層13Rを繰り返し照射して赤色蛍光体を励起して蛍光を発生させる。赤色蛍光体層13Rの光学膜厚を(λmR/2)Nとするので、中心波長λmRを有し、発光スペクトルの幅が狭小化された赤色蛍光λFRが赤色波長選択半透明反射層14Rから放射される。
このように、赤色蛍光体層13Rが形成され赤色光が放射される領域Rにおいては、励起光λEによって、赤色蛍光体層13Rが繰り返し照射され赤色蛍光体が励起されるので、赤色蛍光の発光効率を向上させることができ、赤色蛍光の発光特性を向上させることができる。
また、近紫外光源31から放射された励起光λEが緑色蛍光体層13Gに入射されると、励起光λEは、緑色波長選択半透明反射層14G、波長選択反射透過層12の間で反射を繰り返し受けて反射光を生じ、緑色蛍光体層13Gを繰り返し照射して緑色蛍光体を励起して蛍光を発生させる。緑色蛍光体層13Gの光学膜厚を(λmG/2)Nとするので、中心波長λmGを有し、発光スペクトルの幅が狭小化された緑色蛍光λFGが緑色波長選択半透明反射層14Gから放射される。
このように、緑色蛍光体層13Gが形成され緑色光が放射される領域Gにおいては、励起光λEによって、緑色蛍光体層13Gが繰り返し照射され緑色蛍光体が励起されるので、緑色蛍光の発光効率を向上させることができ、緑色蛍光の発光特性を向上させることができる。
また、近紫外光源31から放射された励起光λEが青色蛍光体層13Bに入射されると、励起光λEは、青色波長選択半透明反射層14B、波長選択反射透過層12の間で反射を繰り返し受けて反射光を生じ、青色蛍光体層13Bを繰り返し照射して青色蛍光体を励起して蛍光を発生させる。青色蛍光体層13Bの光学膜厚を(λmB/2)Nとするので、中心波長λmBを有し、発光スペクトルの幅が狭小化された緑色蛍光λFBが青色波長選択半透明反射層14Bから放射される。
このように、青色蛍光体層13Bが形成され青色光が放射される領域Bにおいては、励起光λEによって、青色蛍光体層13Bが繰り返し照射され青色蛍光体が励起されるので、青色蛍光の発光効率を向上させることができ、青色蛍光の発光特性を向上させることができる。
また、ブラックマトリックス16、カラーフィルタ(図示せず。)、赤色波長選択半透明反射層14R、緑色波長選択半透明反射層14G、青色波長選択半透明反射層14B、赤色蛍光体層13R、緑色蛍光体層13G、青色蛍光体層13B、ブラックマトリックス16、波長選択反射透過層12を、図5に図示しない第1のガラス基板と透明電極26の間に設けた構成としてもよい。
表示装置の動作において、照明装置36の近紫外光源31から射出された近紫外光は、拡散板として機能する支持部材34を通過し、偏光板21a、図示しない第2のガラス基板、透明電極24(カラー液晶表示装置の各色を発光する副画素(サブピクセル)に対応した部分)、液晶層70、透明電極26(カラー液晶表示装置の各色を発光する副画素(サブピクセル)に対応した部分)、図示しない第1のガラス基板、偏光板21bを通過し、更に、赤色蛍光体層13R、緑色蛍光体層13G、青色蛍光体層13Bを照射する。
この結果、赤色蛍光体層13Rから赤色蛍光が、緑色蛍光体層13Gから緑色蛍光が、青色蛍光体層13Bから青色蛍光が励起、放射される。表示装置を構成する画素からの赤色蛍光、緑色蛍光、青色光の放射、即ち、各画素に対応する領域R、領域G、領域Bから装置外部へ放射は、各画素の副画素(サブピクセル)に対して設けられたスイッチング素子22によって制御される。
各画素の副画素(サブピクセル)に対応する、赤色蛍光体層13R、緑色蛍光体層13G、青色蛍光体層13Bの各層の近紫外光による照射のオンオフはそれぞれ、各画素の副画素(サブピクセル)に対応して設けられたスイッチング素子22のオンオフによって制御され、近紫外光による照射のオンオフは、液晶層27における各画素の副画素(サブピクセル)に対応する領域の配向状態(この配向状態はスイッチング素子22のオンオフによって制御される。)によって制御される。各画素に対するスイッチング素子22のオンオフ制御が実行され、これによってカラー表示がなされる。
以上説明した表示装置では、赤色蛍光体層13R、緑色蛍光体層13G、青色蛍光体層13Bの各層の厚さ、領域R、領域G、領域Bの各領域の面積、赤色波長選択半透明反射層14R、緑色波長選択半透明反射層14G、青色波長選択半透明反射層14Bの各層の光学特性(反射又は透過特性)を変えることによって、装置から放射される各蛍光のスペクトルの形状、即ち、ピーク位置、半価幅、強度を変え発光特性を向上させることが可能であり色純度向上させる(色再現性範囲を広くする)ことができる。
実施例(青色光を励起光として蛍光体を励起する照明装置)
図6は、本発明の実施例において、青色光を励起光として蛍光体を励起する照明装置の構成を説明する模式断面図である。
図6に示す照明装置では、青色光源30として、青色光を放射する青色LEDを使用し、赤色蛍光体層13Rから放射される赤色光λRと、緑色蛍光体層13Gから放射される緑色光λGと、青色LEDから放射された青色光λBの混色によって白色光を発生させる。
照明装置は、青色光源30が内部に配置され筐体を兼ね、内面に光反射剤が塗布されているリフレクタ32と、この筐体の開口部に設けられ、青色光源30から放射される青色光に対して透明であり、蛍光体層を含む共振器(光共振器)を保持するためのガラス基板11と、波長選択反射透過層12と、この上に順次積層された、CaS:Eu(赤色蛍光体層)43R、赤色波長選択半透明反射層44R、カラーフィルタ45R、及び、SrGa2Sr4:Eu(緑色蛍光体層)43G、緑色波長選択半透明反射層44G、カラーフィルタ45Gを有している。
赤色蛍光体層43Rは波長選択反射透過層12と赤色波長選択半透明反射層44Rの間、緑色蛍光体層43Gは波長選択反射透過層12と緑色波長選択半透明反射層44Gの間にそれぞれ配置されており、赤色用共振器(赤色光用光共振器)15R、緑色用共振器(緑色光用光共振器)15Gが構成されている。
赤色蛍光体層13Rが形成され赤色光が放射される領域R、緑色蛍光体層13Gが形成され緑色光が放射される領域Gに加えて、青色光源30から放射される青色光が波長選択反射透過層12に入射され、これを透過して青色光が放射される領域B(図6の右方に示す波長選択反射透過層12が露出している部分)が設けられている。
また、領域R、領域G、領域Bの3領域の相互の間には、ブラックマトリックス16が配置されており、光が照射装置から出射される以前における、上記の3領域の相互の間での光の混合が阻止されており、上記の3領域で生成された光が独立して照射装置から出射され混色されるように構成されている。
なお、図6に示す照射装置における、波長選択反射透過層12及びこれよりも上部に形成されている蛍光体層、波長選択半透明反射層、カラーフィルタからなる部分を、図4に示したカラー液晶表示装置に使用することができる。
図6に示す照射装置では、赤色蛍光体層43R、緑色蛍光体層43Gの各層の厚さ及び面積(領域R、領域Gの面積)、領域Bの各領域の面積、赤色波長選択半透明反射層44R、緑色波長選択半透明反射層44Gの各層の光学特性(反射又は透過特性)を変えることによって、装置から放射される各蛍光のスペクトルの形状、即ち、ピーク位置、半価幅、強度を変え発光特性を向上させることが可能であり色温度を変更することができる。
また、図6に示す照射装置では、一方の側(例えば、下方又は右側)に青色光源を配置し青色光を照射して、他一方の側(例えば、上方又は左側)から白色光を取出す構成としているので、青色光源が配置される側から白色光を取出す構成のように、装置から取出される白色光が、青色光源の影によって妨害されることなく、また、青色光源からの青色光が、赤色蛍光体層43R、緑色蛍光体層43Gの各層を通して、観測者の目に入ることがないので、光の取出し効率の低下を招くことがない。
更に、図6に示す照射装置において、赤色蛍光体層43Rのみを設け、領域G及び領域Bの面積をゼロとして赤色光を照射光とする照明装置、或いは、緑色蛍光体層43Gのみを設け、領域R及び領域Bの面積をゼロとして緑色光を照射光とする照明装置を構成することもできる。
以下、実施例における、カラーフィルタ、波長選択半透明反射層、蛍光体層、波長選択反射透過層、青色LED、光共振器、照明装置から放射される照明光のスペクトル、照明装置の色域(放射される照明光によって色空間が表現できる色の範囲)について説明する。
(1)カラーフィルタの透過特性
図7は、本発明の実施例において、カラーフィルタの透過特性を示す図である。
図6に示すカラーフィルタ45R、45Gは、青色光をカットする黄色カラーフィルタであり、図7はその透過特性を示す。図6に示すように、赤色波長選択半透明反射層14R、緑色波長選択半透明反射層14Gの各層上に青色光をカットする黄色フィルタを設けるので、領域R、領域Gから放射される光への青色光の混合を抑制することができる。
(2)波長選択半透明反射層の構成とその特性
図8は、本発明の実施例において、波長選択半透明反射層の特性を説明する図であり、図8(A)は波長選択半透明反射層の透過率及び反射率、図8(B)は波長選択半透明反射層の構成を示す図である。
赤色蛍光体層43R上、緑色蛍光体層43G上にはそれぞれ、誘電体多層膜によって形成された赤色波長選択半透明反射層44R、緑色波長選択半透明反射層44Gが積層されている。赤色波長選択半透明反射層44R、緑色波長選択半透明反射層44Gはそれぞれ、波長460nmを超える光に対して、透過率50%〜0.01%、反射過率50%〜99.9%を有し、波長λ0=460nmを超えない光に対して、透過率78%〜99.91%、反射過率0.01%〜22%を有し、波長λ0=460nmを超えない光を略全反射させ、波長λ0=470nmを超える光を透過させるように形成されている。
図8(B)は、層数=5、Nb25の屈折率をnH=2.2、SiO2の屈折率をnL=1.45として、GreenとBlueの中央付近である500nmあたりにカットオフがくるように、TFCalcTM(version3.4.6、Software Spectra, Inc.)を使用して計算によって求めた、赤色波長選択半透明反射層44R、緑色波長選択半透明反射層44Gの構成(層番号とその層の厚さ)を示している。また、図8(A)は、計算によって求められた透過率、反射率を示している。なお、図8(B)の最左欄の1〜5は、図6に示すガラス基板11より数えた層番号を示している。
(3)蛍光体層の構成
CaS:Euによる赤色蛍光体層43Rから放射される蛍光の中心波長をλmR=655nm、赤色蛍光体の屈折率をnR=2.3として、赤色蛍光体層43Rの厚さをdR=(λmR/2)(1/nR)=285nmとした。
SrGa24:Euによる緑色蛍光体層43Gから放射される蛍光の中心波長をλmG=536nm、緑色蛍光体の屈折率をnG=2.3として、緑色蛍光体層43Gの厚さdG=(λmG/2)(1/nG)=233nmとした。
(4)波長選択反射透過層の構成とその特性
図9は、本発明の実施例において、波長選択反射透過層の特性を説明する図であり、図9(A)は波長選択反射透過層の透過率及び反射率、図9(B)は波長選択反射透過層の構成を示す図である。
図6に示すガラス基板11上には、SiO2とNb25からなる誘電体多層膜によって構成され、波長470nm以下の光を略全透過させ、波長470nm以上の光を略全反射させる波長選択反射透過層12が形成されている。
図9(B)は、層数=21、Nb25の屈折率をnH=2.2、SiO2の屈折率をnL=1.45として、GreenとBlueの中央付近である500nmあたりにカットオフがくるように、TFCalcTM(version3.4.6、Software Spectra, Inc.)を使用して計算によって求めた、波長選択反射透過層12の構成(層番号とその層の厚さ)を示している。また、図9(A)は、計算によって求められた透過率、反射率を示している。なお、図9(B)の最左欄の1〜21は、図6に示すガラス基板11より数えた層番号を示している。
(5)青色LEDの発光特性
図10は、本発明の実施例において、青色LEDの発光特性を説明する図である。
図10は、InGaN系半導体からなる青色LEDの3.5mmチップをプリント基板にマウントして、積分球(Labsphere社製)を用いて発光スペクトルを測定した結果であり(Labsphere社のソフトウエア Spectral Lamp Measurement Systemを使用。)、中心波長は452nmであった。
(6)光共振器
図6に示す蛍光体層43R、43Gはそれぞれ、波長選択半透明反射層44R、44Gによって挟まれたキャビティ(光共振器)を構成する。上述したように、蛍光体の蛍光の中心波長をλm、蛍光体の屈折率をnとする時、蛍光体層の厚さをd=(λm/2)(1/n)とされる。この結果、蛍光体層43R、43Gはそれぞれ、青色光によって繰り返し照射され蛍光体が励起され、蛍光の発光効率が向上され、装置から放射される蛍光スペクトルの幅が狭小化され発光特性が向上する。
青色光源30から放射される青色光がCaS:Eu(赤色蛍光体層)43Rに入射されると、青色光は、赤色波長選択半透明反射層44R、波長選択反射透過層12の間で反射を繰り返し受けて反射光を生じ、赤色蛍光体層43Rを繰り返し照射してCaS:Euを励起して蛍光を発生させる。赤色蛍光体層43Rの光学膜厚を(λmR/2)とするので、中心波長λmRを有し、発光スペクトルの幅が狭小化された赤色蛍光λFRが赤色波長選択半透明反射層44Rから放射される。
また、青色光源30から放射される青色光が緑色蛍光体層43Gに入射されると、青色光は、緑色波長選択半透明反射層44G、波長選択反射透過層12の間で反射を繰り返し受けて反射光を生じ、緑色蛍光体層43Gを繰り返し照射して緑色蛍光体を励起して蛍光を発生させる。緑色蛍光体層43Gの光学膜厚を(λmG/2)Nとするので、中心波長λmGを有し、発光スペクトルの幅が狭小化された緑色蛍光λFGが緑色波長選択半透明反射層44Gから放射される。
(7)緑色蛍光体層による発光スペクトル
図11は、本発明の実施例において、SrGa2Sr4:Eu(緑色蛍光体層)43Gによる発光スペクトルを説明する図であり、図11(A)は本発明の方式及び比較例の方式による発光スペクトルを示し、図11(B)は比較例の方式の照明装置の構成、図11(C)は本発明の方式による照明装置の構成を示す図である。
図11(C)に示す本発明の方式の構成は、図6に示す照明装置が緑色光のみを放射するものとして構成された照明装置を示し、図11(B)に示す比較例の方式の構成は、緑色光のみを放射する照明装置の構成を示している。
図11(A)において、横軸は波長(nm)、縦軸は分光放射束(mW/nm)を示す(2方式の最大値を同一とした任意スケールで示す。)。
図11(A)に示す比較例の方式による発光スペクトルは、積分球(Labsphere社製)を用いて発光スペクトルを測定した結果である(Labsphere社のソフトウエア Spectral Lamp Measurement Systemを使用。)。図11(B)に示す本発明方式による発光スペクトルは、TFCalcTM(version3.4.6、Software Spectra, Inc.)を使用して計算によって求めたものである。
図11(A)に示す比較例の方式による発光スペクトルはブロードであり、青色光源30から放射される青色光が緑色蛍光体層43Gを透過した結果生じた青色光を含んでいるが、本発明の方式による発光スペクトルはシャープであり、青色光を含んでいない。
(8)赤色蛍光体層による発光スペクトル
図12は、本発明の実施例において、CaS:Eu(赤色蛍光体層)43Rによる発光スペクトルを説明する図であり、図12(A)は本発明の方式及び比較例の方式による発光スペクトルを示し、図12(B)は比較例の方式の照明装置の構成、図12(C)は本発明の方式による照明装置の構成を示す図である。
図12(C)に示す本発明の方式の構成は、図6に示す照明装置が赤色光のみを放射するものとして構成された照明装置を示し、図12(B)に示す比較例の方式の構成は、赤色光のみを放射する照明装置の構成を示している。
図12(A)において、横軸は波長(nm)、縦軸は分光放射束(mW/nm)を示す(2方式の最大値を同一とした任意スケールで示す。)。
図12(A)に示す比較例の方式による発光スペクトルは、積分球(Labsphere社製)を用いて発光スペクトルを測定した結果である(Labsphere社のソフトウエア Spectral Lamp Measurement Systemを使用。)。図12(B)に示す本発明方式による発光スペクトルは、TFCalcTM(version3.4.6、Software Spectra, Inc.)を使用して計算によって求めたものである。
図12(A)に示す比較例の方式による発光スペクトルはブロードであり、青色光源30から放射される青色光が赤色蛍光体層43Rを透過した結果生じた青色光を含んでいるが、本発明の方式による発光スペクトルはシャープであり、青色光を含んでいない。
(9)照明装置から放射される光の発光スペクトル
図13は、本発明の実施例において、青色光を励起光として蛍光体を励起する照明装置を説明する図であり、図13(A)はシャープな発光スペクトルを示し、図13(B)は本発明の方式による照明装置の構成(図6に示す照明装置と同一のものである。)を示す図である。
図13(A)において、横軸は波長(nm)、縦軸は分光放射束(mW/nm)を示し(任意スケールで示す。)、発光スペクトルはシャープである。なお、図13(A)に示す発光スペクトルは、TFCalcTM(version3.4.6、Software Spectra, Inc.)を使用して計算によって求めたものである。
比較例(照明装置から放射される光の発光スペクトル)
図14は、本発明の実施例において、青色光を励起光として蛍光体を励起する比較例の照明装置を説明する図であり、図14(A)は発光スペクトルを示し、図14(B)は比較例の照明装置の構成を示す図であり、図11(B)、図12(B)に示す構成を含み、青色光を放射する領域を有している。
図14(A)において、横軸は波長(nm)、縦軸は分光放射束(mW/nm)を示し(任意スケールで示す。)、発光スペクトルはブロードである。なお、図14(A)に示す発光スペクトルは、積分球(Labsphere社製)を用いて発光スペクトルを測定した結果である(Labsphere社のソフトウエア Spectral Lamp Measurement Systemを使用。)。
(10)照明装置から放射される光の色域
図15は、本発明の実施例において、照明装置から放射される光の色域を説明する図であり、図15(A)はカラーフィルタの透過特性を示す図、図15(B)は色域を示す図である。
図15(B)において、(a)は本発明の方式による色域、(b)は比較例の方式による色域、(c)はsRGB色空間(国際規格)、(d)はCIE locus(CIE1976UCS色度図(u’v’色度図))をそれぞれ示す。
図15(B)に示す色域(a)は、図15(A)に示す透過特性を有するCF(カラーフィルタ)を使用した装置から放射される発光スペクトルをTFCalcTM(version3.4.6、Software Spectra, Inc.)を使用して計算によって求め、計算された発光スペクトルから得たものである。この装置では、図13(B)に示す本発明の方式の構成において、BCF(青色カラーフィルタ)を青色光が放射される領域(図13の右方に示す波長選択反射透過層12が露出している部分)に配置し、GCF(緑色カラーフィルタ)をカラーフィルタ45Gとして使用し、RCF(赤色カラーフィルタ)をカラーフィルタ45Rとして使用している。
図15(B)に示す色域(b)は、図15(A)に示す透過特性を有するCF(カラーフィルタ)を使用した装置から放射される発光スペクトルを、積分球(Labsphere社製)を用いて測定し(Labsphere社のソフトウエア Spectral Lamp Measurement Systemを使用。)、測定された発光スペクトルから得たものである。この装置では、図14(B)に示す比較例の方式の構成において、BCF(青色カラーフィルタ)を青色光が放射される領域(図13の右方に示す波長選択反射透過層12が露出している部分)に配置し、GCF(緑色カラーフィルタ)を緑色蛍光体層43G上に配置し、RCF(赤色カラーフィルタ)を赤色蛍光体層43R上に配置している。
図15(B)に示す色域(b)の面積が、NTSC方式によるRGBの各色度座標によって規定される色空間の面積の123%であるのに対して、図15(B)に示す色域(a)の面積が、NTSC方式によるRGBの各色度座標によって規定される色空間の面積の147%であり、約2割だけ色域(色再現性範囲)が拡大されている。
以上、本発明を実施の形態について説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形が可能である。
本発明の発光素子は、照明装置、表示装置の他に通信用発光デバイス等にも利用することができる。蛍光体を励起する青色励起光を放射するLEDとして、450nm〜475nmの光を放射するものを使用することができる。蛍光体を励起する近紫外光を放射する光源として、200nm〜410nmの光を放射する近紫外LED又は近紫外レーザの他に、UVランプを使用することができる。
緑色光を発光する蛍光体として、BaMgAl1017:Eu、Mn、LaPO4:Ce,Tb、BaMgAl1017:Eu,Mn、Zn2SiO4:Mn、MgAl1119:Ce,Tb、Y2SiO5:Ce,Tb、MgAl1119:Ce,Tb,Mn、ZnS:Cu、SrAl24:Eu、SrAl24:Eu,Dy、Zn2Ge24:Mn、Zn2SiO4:Mn等がある。
赤色光を発光する蛍光体として、La22S:Eu、Y22S:Eu、Y23:Eu、YVO4:Eu、Y(P,V)O4:Eu、CaSiO3:Pb,Mn、Mg6AsO11:Mn、(Sr,Mg)3(PO43:Sn、(Ca:Eu)SiN2、(Ca:Eu)AlSiN3等がある。
青色光を発光する蛍光体として、BaMgAl1017:Eu、BaMg2Al1627:Eu、Sr227:Eu、Sr5(PO43Cl:Eu、CaWO4:Pb、ZnS:Ag、Sr10(PO46Cl2:Eu、Ca10(PO462:Sb、SrMgSi28:Eu、CaAl24:Eu,Nd等がある。
また、紫外光によって励起され、青色光、緑色光、赤色光を発光する白色蛍光体、例えば、CaZrO3を母材とし、Eu3+、Tb3+を発光中心とする白色蛍光体をR、G、B蛍光体の代わりに使用することもできる。
以上説明したように、本発明は、発光効率を向上させ発光スペクトルの幅を狭くし、発光特性を向上させることができる発光素子及びこれを用いた照明装置並びに表示装置を提供することができる。
本発明の実施の形態において、発光素子の構成を説明する模式断面図である。 同上、青色光を励起光として蛍光体を励起する照明装置の構成を説明する模式断面図である。 同上、近紫外光を励起光として蛍光体を励起する照明装置の構成を説明する模式断面図である。 同上、青色光源を有する照明装置を用いた表示装置の構成を説明する模式断面図である。 同上、近紫外光源を有する照明装置を用いた表示装置の構成を説明する模式断面図である。 本発明の実施例において、青色光を励起光として蛍光体を励起する照明装置の構成を説明する模式断面図である。 同上、カラーフィルタの透過特性を示す図である。 同上、波長選択半透明反射層の特性を説明する図である。 同上、波長選択反射透過層の特性を説明する図である。 同上、青色LEDの発光特性を説明する図である。 同上、緑色蛍光体層による発光スペクトルを説明する図である。 同上、赤色蛍光体層による発光スペクトルを説明する図である。 同上、青色光を励起光として蛍光体を励起する照明装置を説明する図である。 同上、青色光を励起光として蛍光体を励起する比較例の照明装置を説明する図である。 同上、照明装置の色域を説明する図である。 従来技術において、光励起による発光を利用した共振器素子の模式断面図である。
符号の説明
11…ガラス基板、12…波長選択反射透過層、13…蛍光体層、13B…青色蛍光体、
13G…緑色蛍光体層、13R…赤色蛍光体層、14…波長選択半透明反射層、
14B…青色波長選択半透明反射層、14G、44G…緑色波長選択半透明反射層、
14R、44R…赤色波長選択半透明反射層、15…共振器、15B…青色用共振器、
15G…緑色用共振器、15R…赤色用共振器、16…ブラックマトリックス、
21a、21b…偏向板、22…スイッチング素子、23絶縁層、
24、26…透明電極、25a、25b…配向膜、27…液晶層、28…液晶装置、
30…青色光源、31…近紫外光源、32…リフレクタ、34…支持部材、
36…照明装置、43G…SrGa2Sr4:Eu、43R…CaS:Eu、
45G、45R…カラーフィルタ、λE…励起光、λER…励起光の反射光、λF…蛍光、
λFB…青色蛍光、λFG…緑色蛍光、λFR…赤色蛍光

Claims (19)

  1. 透明基板と、
    蛍光体を含む蛍光体層と、
    第1の所定の波長を超えない光を反射する波長選択半透明反射層と、
    第2の所定の波長を超えない光を透過させ、前記第2の所定の波長を超える光を反射
    させる波長選択反射透過層と
    前記波長選択反射透過層を通して前記蛍光体層に照射して前記蛍光体を励起する励起
    光を発する励起光源と
    を有し、前記第1の所定の波長をλ1とし、前記第2の波長をλ2とする時、λ1≧λ2であり、前記蛍光体層が前記波長選択半透明反射層と前記基板の間に配置され、前記波長選択反射透過層が、前記蛍光体層と前記基板の間、又は、前記基板の前記蛍光体層の逆側に設けられ、前記波長選択半透明反射層と前記波長選択反射透過層の間に共振器が構成され、前記蛍光体から放射される蛍光を前記波長選択半透明反射層から放射させる
    、発光素子。
  2. 前記波長選択半透明反射層及び前記波長選択反射透過層は誘電体多層層によって構成された、請求項1に記載の発光素子。
  3. 前記蛍光の中心波長をλ、Nを1以上の整数とする時、前記波長選択半透明反射層と前記波長選択反射透過層との間の光学膜厚を(λ/2)Nとする、請求項1に記載の発光素子。
  4. 前記第2の所定の波長を超える光に対する透過率が50%以上である、請求項1に記載の発光素子。
  5. 前記蛍光体が無機蛍光体である、請求項1に記載の発光素子。
  6. 前記励起光源が青色光を発する青色発光ダイオード(LED)又は青色レーザであり、前記第1の所定の波長、及び、第2の所定の波長が470nmである、請求項1に記載の発光素子。
  7. 前記励起光源が近紫外光を発する近紫外発光ダイオード(LED)又は近紫外レーザであり、前記第1の所定の波長が420nm、前記第2の所定の波長が470nmである、請求項1に記載の発光素子。
  8. 請求項1から請求項5の何れか1項に記載の発光素子を有する照明装置。
  9. 前記励起光源が青色光を発する青色発光ダイオード(LED)又は青色レーザである、請求項8に記載の照明装置。
  10. 赤色光の蛍光を放射する赤色蛍光体層と緑色光の蛍光を放射する緑色蛍光体層が並置されて、前記蛍光体層が構成され、前記青色光が前記波長選択反射透過層を通して前記蛍光体層に照射され、前記青色光によって励起された前記赤色光及び前記緑色光が前記波長選択半透明反射層を通して出射され、前記青色光が、前記蛍光体層が設けられていない前記波長選択反射透過層の領域を通して出射され、前記赤色光、前記緑色光、及び、前記青色光が混色され白色光が放射される、請求項9に記載の照明装置。
  11. 前記励起光源が近紫外光を発する近紫外発光ダイオード(LED)又は近紫外レーザである、請求項8に記載の照明装置。
  12. 赤色光の蛍光を放射する赤色蛍光体層、緑色光の蛍光を放射する緑色蛍光体層及び青色光の蛍光を放射する青色蛍光体層が並置されて、前記蛍光体層が構成され、前記近紫外光が前記波長選択反射透過層を通して照射され、前記近紫外光によって励起された前記赤色光、前記緑色光、及び、前記青色光が、前記波長選択半透明反射層を通して出射され、前記赤色光、前記緑色光、及び、前記青色光が混色され白色光が放射される、請求項11に記載の照明装置。
  13. 請求項1から請求項5の何れか1項に記載の発光素子を有する画素が複数個配置され
    た画素部と、
    前記画素部の各画素に照射される前記励起光のオンオフを制御する光照射制御部と
    を有する表示装置。
  14. 前記光照射制御部は、液晶素子とスイッチング素子を含む、請求項13に記載の表示装置。
  15. 前記光源がバックライトを兼ねている、請求項13に記載の表示装置。
  16. 前記励起光源が青色光を発する青色発光ダイオード(LED)又は青色レーザである、請求項13に記載の表示装置。
  17. 赤色光の蛍光を放射する赤色蛍光体層と緑色光の蛍光を放射する緑色蛍光体層が並置されて、前記蛍光体層が構成され、前記青色光が前記波長選択反射透過層を通して前記蛍光体層に照射され、前記青色光によって励起された前記赤色光及び前記緑色光が前記波長選択半透明反射層を通して出射され、前記青色光が、前記蛍光体層が設けられていない前記波長選択反射透過層の領域を通して出射され、カラー表示を行なう、請求項16に記載の表示装置。
  18. 前記励起光源が近紫外光を発する近紫外発光ダイオード(LED)又は近紫外レーザである、請求項13に記載の表示装置。
  19. 赤色光の蛍光を放射する赤色蛍光体層、緑色光の蛍光を放射する緑色蛍光体層及び青色光の蛍光を放射する青色蛍光体層が並置されて、前記蛍光体層が構成され、前記近紫外光が前記波長選択反射透過層を通して前記蛍光体層に照射され、前記近紫外光によって励起された前記赤色光、前記緑色光、及び、前記青色光が、前記波長選択半透明反射層を通して出射されカラー表示を行なう、請求項18に記載の表示装置。
JP2008205330A 2008-08-08 2008-08-08 発光素子及びこれを用いた照明装置並びに表示装置 Pending JP2010040976A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008205330A JP2010040976A (ja) 2008-08-08 2008-08-08 発光素子及びこれを用いた照明装置並びに表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205330A JP2010040976A (ja) 2008-08-08 2008-08-08 発光素子及びこれを用いた照明装置並びに表示装置

Publications (1)

Publication Number Publication Date
JP2010040976A true JP2010040976A (ja) 2010-02-18

Family

ID=42013164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205330A Pending JP2010040976A (ja) 2008-08-08 2008-08-08 発光素子及びこれを用いた照明装置並びに表示装置

Country Status (1)

Country Link
JP (1) JP2010040976A (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129135A1 (ja) * 2010-04-14 2011-10-20 シャープ株式会社 蛍光体基板およびその製造方法、ならびに表示装置
WO2012090786A1 (ja) * 2010-12-27 2012-07-05 シャープ株式会社 発光デバイス、表示装置、及び照明装置
JP2012169371A (ja) * 2011-02-10 2012-09-06 Citizen Holdings Co Ltd 発光ダイオードの製造方法
JP2013235192A (ja) * 2012-05-10 2013-11-21 Nitto Kogaku Kk 色温度変更フィルタ及び色温度変更フィルタを備えた光学モジュール
JP2014502787A (ja) * 2010-12-17 2014-02-03 コーニンクレッカ フィリップス エヌ ヴェ 光源と、放射線変換素子と、フィルタとを備える照明システム
US9172008B2 (en) 2013-01-24 2015-10-27 Samsung Electronics Co., Ltd. Semiconductor light emitting device
JP2016522984A (ja) * 2013-10-29 2016-08-04 フィリップス ライティング ホールディング ビー ヴィ 光出力を発生する蛍光体に基づく照明デバイス及び方法
JP2017037121A (ja) * 2015-08-07 2017-02-16 シャープ株式会社 色変換基板および表示装置
JP2017168851A (ja) * 2010-10-25 2017-09-21 株式会社半導体エネルギー研究所 発光素子ユニット
KR101800884B1 (ko) * 2010-10-14 2017-11-24 엘지디스플레이 주식회사 표시장치
JP2017538290A (ja) * 2014-11-18 2017-12-21 オキュラス ブイアール,エルエルシー 集積型カラーledマイクロディスプレイ
KR101849603B1 (ko) * 2016-07-27 2018-04-17 국민대학교산학협력단 액정표시패널 및 이를 포함하는 액정표시장치
JP2020506543A (ja) * 2017-02-14 2020-02-27 サムスン エレクトロニクス カンパニー リミテッド Led装置及びその製造方法
JP2020145425A (ja) * 2019-03-08 2020-09-10 シャープ株式会社 画像表示素子
JP2020184617A (ja) * 2019-04-30 2020-11-12 シャープ株式会社 光源装置および発光装置
JPWO2020085164A1 (ja) * 2018-10-26 2021-09-16 ソニーグループ株式会社 光学装置、光源装置及びプロジェクタ
WO2022103115A1 (ko) * 2020-11-12 2022-05-19 서울대학교산학협력단 파장 변환 물질을 포함하는 공진 공동 구조체
WO2023189384A1 (ja) * 2022-03-31 2023-10-05 ソニーグループ株式会社 発光デバイスおよび画像表示装置

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8908125B2 (en) 2010-04-14 2014-12-09 Sharp Kabushiki Kaisha Fluorescent substrate and method for producing the same, and display device
WO2011129135A1 (ja) * 2010-04-14 2011-10-20 シャープ株式会社 蛍光体基板およびその製造方法、ならびに表示装置
KR101800884B1 (ko) * 2010-10-14 2017-11-24 엘지디스플레이 주식회사 표시장치
JP2017168851A (ja) * 2010-10-25 2017-09-21 株式会社半導体エネルギー研究所 発光素子ユニット
JP2014502787A (ja) * 2010-12-17 2014-02-03 コーニンクレッカ フィリップス エヌ ヴェ 光源と、放射線変換素子と、フィルタとを備える照明システム
KR101819912B1 (ko) 2010-12-17 2018-01-18 코닌클리케 필립스 엔.브이. 광원, 방사선 변환 요소 및 필터를 갖는 조명 시스템
WO2012090786A1 (ja) * 2010-12-27 2012-07-05 シャープ株式会社 発光デバイス、表示装置、及び照明装置
US9117977B2 (en) 2010-12-27 2015-08-25 Sharp Kabushiki Kaisha Light emitting device, display apparatus, and illuminating apparatus
JP2012169371A (ja) * 2011-02-10 2012-09-06 Citizen Holdings Co Ltd 発光ダイオードの製造方法
JP2013235192A (ja) * 2012-05-10 2013-11-21 Nitto Kogaku Kk 色温度変更フィルタ及び色温度変更フィルタを備えた光学モジュール
US9172008B2 (en) 2013-01-24 2015-10-27 Samsung Electronics Co., Ltd. Semiconductor light emitting device
JP2016522984A (ja) * 2013-10-29 2016-08-04 フィリップス ライティング ホールディング ビー ヴィ 光出力を発生する蛍光体に基づく照明デバイス及び方法
JP2017538290A (ja) * 2014-11-18 2017-12-21 オキュラス ブイアール,エルエルシー 集積型カラーledマイクロディスプレイ
US10862010B2 (en) 2014-11-18 2020-12-08 Facebook Technologies, Llc Integrated colour LED micro-display
US10367122B2 (en) 2014-11-18 2019-07-30 Facebook Technologies, Llc Integrated colour LED micro-display
JP2017037121A (ja) * 2015-08-07 2017-02-16 シャープ株式会社 色変換基板および表示装置
KR101849603B1 (ko) * 2016-07-27 2018-04-17 국민대학교산학협력단 액정표시패널 및 이를 포함하는 액정표시장치
JP7061613B2 (ja) 2017-02-14 2022-04-28 サムスン エレクトロニクス カンパニー リミテッド Led装置及びその製造方法
JP2020506543A (ja) * 2017-02-14 2020-02-27 サムスン エレクトロニクス カンパニー リミテッド Led装置及びその製造方法
JPWO2020085164A1 (ja) * 2018-10-26 2021-09-16 ソニーグループ株式会社 光学装置、光源装置及びプロジェクタ
JP7484718B2 (ja) 2018-10-26 2024-05-16 ソニーグループ株式会社 光学装置、光源装置及びプロジェクタ
US11239395B2 (en) 2019-03-08 2022-02-01 Sharp Kabushiki Kaisha Image display device
JP6990265B2 (ja) 2019-03-08 2022-01-12 シャープ株式会社 画像表示素子
JP2020145425A (ja) * 2019-03-08 2020-09-10 シャープ株式会社 画像表示素子
CN111667777A (zh) * 2019-03-08 2020-09-15 夏普株式会社 图像显示元件
JP2020184617A (ja) * 2019-04-30 2020-11-12 シャープ株式会社 光源装置および発光装置
WO2022103115A1 (ko) * 2020-11-12 2022-05-19 서울대학교산학협력단 파장 변환 물질을 포함하는 공진 공동 구조체
KR20220064823A (ko) * 2020-11-12 2022-05-19 서울대학교산학협력단 파장 변환 물질을 포함하는 공진 공동 구조체
KR102662357B1 (ko) * 2020-11-12 2024-04-30 서울대학교산학협력단 파장 변환 물질을 포함하는 공진 공동 구조체
WO2023189384A1 (ja) * 2022-03-31 2023-10-05 ソニーグループ株式会社 発光デバイスおよび画像表示装置

Similar Documents

Publication Publication Date Title
JP2010040976A (ja) 発光素子及びこれを用いた照明装置並びに表示装置
CN106409876B (zh) 一种显示器件
CN104145210B (zh) 光致发光彩色显示器
CN110333629B (zh) 部分驱动型光源装置及使用其的图像显示装置
US7859175B2 (en) Illuminating device, display device and optical film
US20060284532A1 (en) Color display unit
US10656319B2 (en) Liquid crystal display device
JP4898332B2 (ja) 表示装置
US7036946B1 (en) LCD backlight with UV light-emitting diodes and planar reactive element
US7686493B2 (en) Display
KR101370372B1 (ko) 조명 시스템 및 표시 디바이스
JP4976196B2 (ja) 表示装置及び照明装置
US7959343B2 (en) Illumination system for luminaires and display devices
US20060268537A1 (en) Phosphor film, lighting device using the same, and display device
JP2010092705A (ja) 照明装置及びこれを用いた表示装置
US20120194764A1 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
US10073293B2 (en) Optical microcavity for a high-contrast display
JP2005311373A (ja) 燐光体変換半導体発光装置のための燐光体
JP2009216824A (ja) 表示装置および電子機器
CN102713740B (zh) 具有改善型色域的反射式显示系统
JP2013254071A (ja) 蛍光体基板、表示装置
CN104570566B (zh) 投影机
JP2009036989A (ja) 面発光表示装置
JP2009104941A (ja) 照明装置、及び、表示装置
KR101095634B1 (ko) 광학 부재, 이의 제조 방법 및 이를 갖는 표시 장치