JP2010026722A - 歩数測定装置 - Google Patents

歩数測定装置 Download PDF

Info

Publication number
JP2010026722A
JP2010026722A JP2008186388A JP2008186388A JP2010026722A JP 2010026722 A JP2010026722 A JP 2010026722A JP 2008186388 A JP2008186388 A JP 2008186388A JP 2008186388 A JP2008186388 A JP 2008186388A JP 2010026722 A JP2010026722 A JP 2010026722A
Authority
JP
Japan
Prior art keywords
waveform
frequency band
acceleration signal
step count
steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008186388A
Other languages
English (en)
Other versions
JP4982444B2 (ja
Inventor
Hisaaki Miyoshi
寿顕 三好
Seiji Yoda
成司 依田
Keitaro Hanada
恵太郎 花田
Toshise Tamura
俊世 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008186388A priority Critical patent/JP4982444B2/ja
Publication of JP2010026722A publication Critical patent/JP2010026722A/ja
Application granted granted Critical
Publication of JP4982444B2 publication Critical patent/JP4982444B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】装着位置によらず、正確に歩数を測定でき、消費電力も小さな歩数測定装置を提供する。
【解決手段】歩数測定装置20は、3軸加速度センサ50と、その出力を合成して合成加速度信号を出力する3軸合成部52と、合成加速度信号の波形の0.5〜1.5Hz,1.0〜2.0Hz,及び1.5〜2.5Hzの周波数帯域成分の波形をそれぞれ抽出するバンドパスフィルタ54,56,58、これら帯域成分のレベルを比較し、最も大きな帯域成分の波形を選択し結合して、合成加速度信号の波形を整形するレベル測定回路80,90,100、コンパレータ60、及び波形選択部62と、波形選択部62の出力する整形された波形をしきい値と比較して歩数を計数するスレッショルド回路64及びカウンタ66とを含む。
【選択図】図2

Description

この発明は歩数を計測する装置に関し、特に、装着位置にかかわらず安定して正確な歩数計測を行なうことができる歩数測定装置に関する。
現代の日本人にとって最大の問題は健康問題である、といっても過言ではない。健康維持のために最も手軽な方法はいわゆるウォーキングである。ウォーキングは体に過度の負担がかからず、比較的体力のない人でも続けていくことができるという特色がある。
しかし、単に歩き続けるだけでは面白みがなく、なかなか続けられないという問題がある。また、どの程度の距離を歩いたかが分からなければ励みにならないという問題もある。
そこで、いわゆる歩数計が利用されることが多い。歩数計を装着して歩くことにより、歩数を計測することができる。例えば一日の歩数の目標を定め、目標を達成するように歩いたりすることでウォーキングを続けることができる。また、毎日の歩数を記録していくことで、健康管理に役立てることができる。
当然、歩数計による計測数は正確であることが望ましい。しかし、現実には以下に説明するように、正確に歩数を計測することは難しいという問題がある。
現在では歩数計に2軸又は3軸の加速度センサが用いられることが多い。2軸の加速度センサを用いた場合、予め想定した装着位置に歩数計が装着されれば、歩行時の加速度が比較的正確に測定されるが、想定していない装着位置に装着されたり、バッグの中にいれられたりして、想定している姿勢と異なる姿勢に歩数計がおかれると、歩行をカウントすることができなくなり、歩数の計測結果には全く信頼がおけなくなる。一方、3軸の加速度センサを用いた場合には、装着位置及び姿勢にかかわらず、歩行をカウントすることができる。しかし、この場合でもかばんとかポケットの中に歩数計がしまわれたりすると、加速度センサに十分な加速度が加わらないために歩数のカウントが大幅に少なくなったり、逆に加速度センサに加速度が過剰に加わるために歩数のカウントが大幅に多くなったりして、正確な測定が困難となる問題がある。
今までは、こうした問題はそれほど大きな問題とはみなされていなかった。歩数計の用途が、上記したウォーキングのように、ある程度の速度で歩くようなしっかりした歩行での歩数を測定することにあり、そうした用途では、歩行時に歩数計を適切な位置に装着すると考えられるためである。
特開2005−38018号公報(段落0018〜0022、0028)
例えば会社員が健康管理のために毎日の歩数を計測しようとする場合を考える。そのためには毎日、歩数計を持つ必要がある。男性であればベルト等に歩数計を装着してもそれほど気にはならない。しかし女性の場合にはそのようなことができないことが多い。そのため、女性の場合には歩数計をバッグに入れておくことが多い。
しかしバッグに歩数計を入れた場合には、上記したように歩行による加速度が歩数計に加わるまでの間に様々なところで吸収されてしまい、歩数計では正確に測定することができないという問題がある。
同様の問題は、ゆっくりとした歩行時で、加速度そのものが小さい場合にも生じえる。例えば歩行に困難を来たすような病気の患者がリハビリテーションを行なう場合には、歩行の速度はゆっくりとなる。そのような弱い歩行でも歩数を正確に測ることができれば、リハビリテーションの励みになると思われる。
こうした問題を解決するための歩数測定装置が特許文献1で提案されている。特許文献1に開示された歩数測定装置は3軸加速度センサを用い、3軸の加速度の2乗和をとることでこれらを合成した後、その波形をローパスフィルタに通して歩数を計数する。又は、合成後の加速度信号に対して周波数分析を行なって、最も周波数成分が大きかった帯域の周波数が毎秒の歩数を示すものとして歩数を測定する。
しかし、後に述べるように、合成後の加速度信号をローパスフィルタに通した波形を用いて歩数を計数する場合、合成後の加速度信号の波形が安定せず、計数するためのしきい値を定めるのが難しいという問題がある。さらに、測定時にも合成後の加速度信号が安定しないため、正確な歩数計測が難しいという問題がある。
また、波形分析を行なう際には、特許文献1に記載された歩数測定装置はFFT(Fast Fourier Transform)を用いている。FFT算出のためには比較的大きな計算量が必要であるため、ハードウェアを用いる場合もプロセッサを用いる場合も消費電力が大きくなるという問題がある。歩数測定装置のように日常的に使用する製品の場合、消費電力が小さければ小さいほど望ましいことはいうまでもない。また、FFTを用いた歩数測定ではその精度をあまり高くすることができないという問題もある。
それゆえに本発明の目的は、装着位置によらず、正確に歩数を測定できる歩数測定装置を提供することである。
本発明の他の目的は、装着位置によらず、正確に歩数を測定でき、かつ消費電力も小さくて済む歩数測定装置を提供することである。
本発明のさらに他の目的は、装着位置によらず、ゆっくりとした歩行速度であっても正確に歩数を測定でき、かつ消費電力も小さくて済む歩数測定装置を提供することである。
本発明の第1の局面に係る歩数測定装置は、3軸加速度センサと、加速度センサの出力を合成して合成加速度信号を出力するための加速度合成手段と、合成加速度信号の波形の、複数の周波数帯域の成分の波形をそれぞれ抽出するための複数の抽出手段と、複数の抽出手段により抽出された複数の周波数帯域の成分の大きさを比較し、最も大きな周波数帯域の成分の波形を選択し結合することにより、合成加速度信号の波形を整形するための波形整形手段と、波形整形手段により整形された後の波形を所定のしきい値と比較することにより、歩数を計数するための計数手段とを含む。
加速度センサの出力する3軸加速度信号は、加速度合成手段によって合成される。合成加速度信号の波形から、複数の周波数帯域成分の波形が複数の抽出手段により抽出される。波形整形手段は、これら波形のうち、大きさ、すなわち信号レベルが最も大きな周波数帯域の成分の波形を選択し結合することによって、合成加速度信号の波形を整形する。計数手段は、整形後の合成加速度信号の値をしきい値と比較することによって歩数を計数する。
上記した波形整形手段によって整形された後の合成加速度信号の波形は滑らかなカーブを描き、正確な測定を行なうためのしきい値を決定することが容易である。また、実際の測定時にも測定対象の合成加速度信号の波形が整形され滑らかとなるため、しきい値との比較が安定して行なえ、歩数の計数が安定し、かつ信頼性が高くなるという効果がある。さらに、3軸加速度信号を合成して歩数計測に使用するため、3軸加速度センサの姿勢によらず、安定した歩数計測を実現できる。FFTのような処理を実行する必要もなく、消費電力は少なくて済む。
好ましくは、複数の抽出手段は、第1の周波数帯域の成分の波形を合成加速度信号から抽出するための第1の波形抽出手段と、中心周波数が第1の周波数帯域の中心周波数より高い第2の周波数帯域の波形を合成加速度信号から抽出するための第2の波形抽出手段とを含む。
第1及び第2の波形抽出手段によって、異なる中心周波数の周波数帯域の成分が抽出され、波形整形の際のレベルの比較に用いられる。利用者の歩行速度が変化すると、いずれかの波形抽出手段の出力が他方より大きくなるため、歩行速度に応じた周波数帯域の成分が合成後加速度信号から選択される。その結果、歩数の変化があってもその変化に追随して歩数を正確に算出できる。
より好ましくは、第2の周波数帯域は、第1の周波数帯域と重なる部分を有する。
実験によれば、このように両者の帯域が一部で重なっている場合には、そうでない場合よりも整形後の合成加速度信号の波形が滑らかとなり、しきい値の設定及び実際の測定における誤差が少なくなるという効果がある。
さらに好ましくは、第1の周波数帯域は0.5Hz以上で1.5Hz以下でもよい。第2の周波数帯域は1.0Hz以上で2.0Hz以下でもよい。
これらは実際の歩行速度に対応したものであり、毎秒0.5〜2歩程度の歩行速度について、精度よく、かつ消費電力も少なく歩数を測定できる。
好ましくは、複数の抽出手段はさらに、中心周波数が第2の周波数帯域の中心周波数より高い第3の周波数帯域の波形を合成加速度信号から抽出するための第3の波形抽出手段を含む。
このように第3の周波数帯域の波形も抽出して、そのレベルを波形整形における比較の対象とすることにより、毎秒あたりの歩数が2歩以上となった場合にも、歩数速度の精度を維持することができる。
好ましくは、第3の周波数帯域は、第2の周波数帯域と重なる部分を有する。より好ましくは、第3の周波数帯域は1.5Hz以上で2.5Hz以下である。
以上のように本発明によれば、合成加速度信号の波形が滑らかなカーブを描くため、正確な測定を行なうためのしきい値を決定することが容易にできる。測定時にも測定対象の合成加速度信号の波形が整形され滑らかとなるため、しきい値との比較が安定して行なえ、歩数の計数が安定し、かつ信頼性が高くなる。さらに、3軸加速度信号を合成して歩数計測に使用するため、3軸加速度センサの姿勢によらず、安定した歩数計測を実現できる。FFTのような処理を実行する必要もなく、消費電力は少なくて済む。
その結果、装着位置によらず、正確に歩数を測定でき、かつ消費電力も小さくて済む歩数測定装置を提供することができる。また、ゆっくりとした歩行速度であっても正確に歩数を測定でき、かつ消費電力も小さくて済むという効果もある。
以下の説明及び図面において、同一の部品には同一の参照番号を付してある。それらの名称及び機能も同一である。したがってそれらについての詳細な説明は繰返さない。
[第1の実施の形態]
<構成>
図1は、本発明の第1の実施の形態に係る歩数測定装置20の外観図である。図1を参照して、歩数測定装置20は、扁平な直方体形状をした筐体30と、筐体30の前面に形成された表示部32と、いずれも同じく筐体30の前面に形成されたリセットボタン34、履歴切替ボタン36、及び設定ボタン38とを含む。リセットボタン34は歩数を0にリセットする際に操作される。履歴切替ボタン36は表示部32の表示を歩数表示と歩数の日別の履歴表示との間で切替える際に操作される。設定ボタン38は歩数測定装置20の日付及び時刻等の設定を行なう際に操作される。
歩数のリセット、履歴切替、及び設定については本発明とは直接関係しない。そのため以下の説明では、説明及び図を簡明にするため、これらについての詳細な説明は行なわず、それらに必要な部分については図示もしないこととする。
図2は、歩数測定装置20の機能ブロック図である。図2を参照して、歩数測定装置20は、筐体30内に固定され、筐体30に固定された座標軸(これらをX軸、Y軸、及びZ軸とする。)方向の加速度を表す信号を出力する3軸加速度センサ50と、3軸加速度センサ50の出力を受け、3軸の加速度の2乗和を計算することにより、3軸の加速度を合成する3軸合成部52と、3軸合成部52の出力する合成加速度の信号波形のうち、周波数帯域0.5〜1.5Hz、1.0〜2.0Hz、及び1.5〜2.5Hzの成分をそれぞれ抽出するバンドパスフィルタ54、56及び58と、それぞれバンドパスフィルタ54、56及び58の出力を受けるように接続され、バンドパスフィルタ54、56及び58から出力される合成加速度の信号波形の周波数成分のレベルを測定し出力するレベル測定回路80,90及び100と、レベル測定回路80,90及び100の出力を受け、これらの内の最大値を与える回路を特定する信号を出力するコンパレータ60とを含む。ここでは、コンパレータ60は、ローパスフィルタ84の出力が最も大きいときにはバイナリで00を、ローパスフィルタ94の出力が最も大きいときにはバイナリで01を、ローパスフィルタ104の出力が最も大きいときにはバイナリで10を、それぞれ出力するものとする。
歩数測定装置20はさらに、バンドパスフィルタ54、56及び58の出力をそれぞれ受ける3つの入力と、コンパレータ60の出力を受ける制御入力とを有し、バンドパスフィルタ54、56及び58の出力のうち、コンパレータ60の出力に対応するものを選択し結合することによって整形された合成加速度信号を出力する波形選択部62と、波形選択部62の出力する整形後の合成加速度信号の波形を所定のスレッショルド(しきい値)と比較して2値化するスレッショルド回路64と、スレッショルド回路64の出力する信号がローレベルからハイレベルとなった回数を加算するカウンタ66とを含む。ここでは、波形選択部62は、コンパレータ60の出力がバイナリの00であればバンドパスフィルタ54の出力を選択し、バイナリの01であればバンドパスフィルタ56の出力を選択し、バイナリの10であればバンドパスフィルタ58の出力を選択する。
なお、スレッショルドの値は、予め実験を繰返すことによって設定する。この設定時にも、合成後の加速度信号が滑らかであるため、スレッショルドを適切な値に設定することが容易に行なえる。
カウンタ66の出力は表示部32に与えられ、歩数として表示される。カウンタ66はリセットボタン34からの信号を受けるように接続されており、リセットボタン34からリセット信号が与えられるとカウントを0にリセットする。
レベル測定回路80は、バンドパスフィルタ54から出力される、合成加速度信号の0.5〜1.5Hzの周波数帯域の信号成分の絶対値を算出する絶対値回路82と、絶対値回路82の出力のうち0.1Hzまでの成分を抽出してコンパレータ60に与えるローパスフィルタ84とを含む。
レベル測定回路90及びレベル測定回路100はいずれもレベル測定回路80と類似した構成を持つ。具体的には、レベル測定回路90はバンドパスフィルタ56の出力に接続された入力を持つ絶対値回路92と、絶対値回路92の出力に接続された入力を持つローパスフィルタ94とを含む。レベル測定回路100は、バンドパスフィルタ58の出力に接続された入力を持つ絶対値回路102と、絶対値回路102の出力に接続された入力を持つローパスフィルタ104とを含む。ローパスフィルタ94及び104は、いずれもローパスフィルタ84と同様、0.1Hzをカットオフ周波数とする。
<動作>
歩数の測定時、歩数測定装置20は以下のように動作する。図2を参照して、3軸加速度センサ50はX軸、Y軸及びZ軸の3軸の加速度を測定し、加速度信号を3軸合成部52に与える。3軸合成部52は、これら加速度信号の値の2乗和を算出することにより合成加速度信号を出力し、バンドパスフィルタ54、56及び58に与える。
図3(A)に、この合成加速度信号の波形の例を示す。図4(A)は、図3(A)に示す合成加速度信号の波形のうち、部分波形110を拡大した波形である。図3(A)を参照して、合成加速度信号の波形は細かく見ると大小のピークが多数あり、どの時点でステップ(歩行)を検出すべきか定めることが難しい。
バンドパスフィルタ54はこの合成加速度信号の0.5〜1.5Hzの周波数帯域の成分を抽出し、絶対値回路82及び波形選択部62の第1の入力に与える。バンドパスフィルタ56は合成加速度信号の1.0〜2.0Hzの周波数帯域の成分を抽出し、絶対値回路92及び波形選択部62の第2の入力に与える。バンドパスフィルタ58は合成加速度信号の1.5〜2.5Hzの周波数帯域の成分を抽出し、絶対値回路102及び波形選択部62の第3の入力に与える。
ローパスフィルタ84、94及び104は、絶対値回路82、92及び102の出力のうち、0.1Hz以下の成分(直流成分)をコンパレータ60の第1、第2、及び第3の入力にそれぞれ与える。コンパレータ60は、これら3つの入力のうち、最も高いものを示す信号を波形選択部62の制御端子に与える。具体的には、コンパレータ60は、ローパスフィルタ84の出力が最も大きいときにはバイナリで00を、ローパスフィルタ94の出力が最も大きいときにはバイナリで01を、ローパスフィルタ104の出力が最も大きいときにはバイナリで10を、それぞれ出力する。波形選択部62は、コンパレータ60の出力がバイナリの00であればバンドパスフィルタ54の出力を選択し、バイナリの01であればバンドパスフィルタ56の出力を選択し、バイナリの10であればバンドパスフィルタ58の出力を選択して出力する。波形選択部62がこのようにコンパレータ60の出力に応じてバンドパスフィルタ54、56及び58の出力を選択して出力することにより、選択された波形が逐次結合され、整形された合成加速度信号が得られる。
図3(B)に、図3(A)に示す波形に基づいて波形選択部62の出力に得られる、整形後の波形の例を示す。図4(B)は、図3(B)に示す合成加速度信号の波形のうち、部分波形112を拡大した波形を示す図である。図4(B)を参照して、波形選択部62から出力される整形後の合成加速度信号の波形は、なめらかなものとなっている。その結果、スレッショルドとしてどの程度の値を用いれば歩数の測定結果が正確なものとなるかが容易に判定できる。
再び図2を参照して、スレッショルド回路64は、波形選択部62から出力される整形後の合成加速度信号の波形の大きさ(値)を所定のスレッショルドと比較することにより、波形の大きさがスレッショルドより小さい値から大きな値に切替わるとき、パルスを1つ出力する。カウンタ66はこのパルスをカウントし、カウント結果を表示部32に与える。表示部32は、与えられたカウンタ値を表示する。
図8は、第1の実施の形態に係る歩数測定装置のアルゴリズムで計算した歩数による誤差割合と、従来の加速度センサ歩数計によって測定したときの誤差割合とを示す図である。図8を参照して、○印は、第1の実施の形態の歩数測定装置のアルゴリズムで計算した歩数と、目視により実際に歩数をカウントした値(実測値)との誤差割合を示す。×印は、従来の加速度センサ歩数計による測定値と目視により実際に歩数を測定した値(実測値)との誤差割合を示す。図8において、縦軸のプラス方向は実測値よりも歩数が多くカウントされたことを示し、マイナス方向は実測値よりお歩数が少なくカウントされたことを示す。縦軸の単位は誤差割合をパーセントで示してある。
図8において×印で示されるように、従来の加速度センサ歩数計の場合には、歩行の速度が40メートル/分以下となると、計測結果のばらつきが目立ち、特に実際の歩数の半分以下しか測定できない場合が頻出することが観測された。すなわち、加速度が弱いと従来の歩数測定装置では信頼性を持った歩数測定を行なうことができない。
一方、図8において○印で示されるように、本実施の形態に係る歩数測定装置20のアルゴリズムでは、歩行の速度が40メートル/分以下となっても、ほとんど誤差のない歩数測定値を出力することができた。これは、上記したような構成によって、合成後加速度信号の形状を滑らかにしたこと、及びそれによってスレッショルドを適切な値に容易に定めることができたことによるものと思われる。
以上のように本実施の形態によれば、3軸合成部52から出力される合成加速度信号の波形が図3(A)及び図4(A)に示すように不定形でスレッショルドを決めにくいときでも、波形選択部62から出力される合成加速度を示す信号の波形は、図3(B)及び図4(B)に示すように滑らかに整形されたものとなり、容易にスレッショルドを定めることができる。その結果、スレッショルド回路64による比較を行なう際の誤差が少なくなるという効果が得られる。また、3軸合成部52によって3軸合成を行なうので、3軸加速度センサ50の姿勢、すなわち歩数測定装置20の姿勢がどのようになっていても安定して正確に歩数計測を行なうことができる。そのため、歩数測定装置20をどのような装着位置に置く場合でも、また例えばバッグ等の中にしまった場合でも正確に歩数計測を行なうことができる。さらに、FFTを使用しないので計算量は少なくて済み、ハードウェアの量が少なく、その結果消費電力を抑えることができる。
[第2の実施の形態]
上記した歩数測定装置は、プロセッサ及びソフトウェアを一部に用いて実現することもできる。この第2の実施の形態に係る歩数測定装置はそのような歩数測定装置である。図5に、この第2の実施の形態に係る歩数測定装置120のハードウェアブロック図を示す。
図5を参照して、歩数測定装置120は、3軸加速度センサ50と、3軸加速度センサ50からの3軸加速度を受けるように接続されたプロセッサ130と、プロセッサ130に接続された、不揮発性でかつ随時書込及び読出が可能なメモリ132と、プロセッサ130の入力インターフェースにそれぞれ接続されたリセットボタン34、履歴切替ボタン36、及び設定ボタン38と、表示部32と、プロセッサ130の出力インターフェースに接続され、プロセッサ130から与えられる信号にしたがって表示部32を駆動して歩数等を表示させるためのドライバ134とを含む。なお、プロセッサ130は、いずれも図示しないCPU(中央演算処理装置)、及び随時書込及び読出が可能なメモリ等を有している。
メモリ132は、プロセッサ130が実行する、歩数測定のためのコンピュータプログラムを記憶している。プロセッサ130が、そのCPUに内蔵されたプログラムカウンタによって指定されるメモリ132内のアドレスからプログラム命令を読出して実行し、3軸加速度センサ50の出力を処理することによって、第1の実施の形態の歩数測定装置20と同様の機能を持つ歩数測定装置120を実現する。
図6は、プロセッサ130が実行する、歩数測定のためのコンピュータプログラムの制御構造を示すフローチャートである。図6を参照して、このプログラムは、歩数測定装置120の電源投入直後にメモリ132の全アドレスをクリアするなどの初期設定を行なうステップ150と、ステップ150に続き、3軸加速度センサ50の3軸の加速度信号をサンプリングするステップ152と、ステップ152でサンプリングされた3軸の加速度信号の2乗和を算出することにより3軸加速度を合成し、合成加速度信号を算出し、メモリ132に保存するステップ154とを含む。この処理を後述するように繰返し実行することにより、メモリ132には合成加速度信号の時系列が記憶されることになる。
このプログラムはさらに、ステップ154において算出されメモリ132に保存された3軸合成後の合成加速度信号のうち、0.5〜1.5Hzの成分のレベルを算出するステップ156と、1.0〜2.0Hzの成分のレベルを算出するステップ158と、1.5〜2.5Hzの成分のレベルを算出するステップ160とを含む。図6では、これら3つのステップが並列に実行されるように示してあるが、これは図を簡略にするためであり、CPUが1つの場合にはこれらが順番に実行される。また各ステップの出力がいずれもメモリ132又はプロセッサ130内のレジスタに記憶されることは言うまでもない。
ステップ156は、ステップ154で算出されメモリ132に記憶されている合成加速度信号の時系列に対するフィルタリング処理を行ない、0.5〜1.5Hzの成分を抽出する、バンドパスフィルタ処理を実行するステップ170と、ステップ170によって算出された値をメモリ132又はレジスタに保存するステップ172と、ステップ172で保存された値の絶対値を算出しメモリ132に記憶するステップ174と、ステップ174で算出された絶対値の時系列に対するフィルタリング処理により、0.1Hz以下の成分を抽出するローパスフィルタ処理を実行するステップ176とを含む。
ステップ158、160はいずれもステップ156と同様の構成を持つ。具体的には、ステップ158は、それぞれステップ156のステップ170、172、174及び176に対応するステップ180、182、184及び186を含む。ただし、ステップ180では、ステップ170と異なり、合成加速度信号の波形から1.0〜2.0Hzの成分が抽出される。ステップ160は、それぞれステップ156のステップ170、172、174及び176に対応するステップ190、192、194及び196を含む。ただし、ステップ190では、ステップ170と異なり、合成加速度信号の波形から1.5〜2.5Hzの成分が抽出される。
このプログラムはさらに、ステップ176、186及び196の出力としてメモリ132に記憶されている値を比較し、値が最も大きなものはどれかを判定するステップ162と、ステップ162の判定結果にしたがい、ステップ176で得られた値が最も大きなときにはステップ172で保存された値を選択し、ステップ186で得られた値が最も大きなときにはステップ182で保存された値を選択し、ステップ196で得られた値が最も大きなときにはステップ192で保存された値を選択してメモリ132に保存するステップ164と、このようにしてメモリ132に保存された合成加速度信号の値の時系列に基づいて、歩数カウント処理を実行した後に処理をステップ152に戻すステップ166とを含む。
ステップ164において保存される信号の値は、時系列順に並んでいることから、逐次合成されている波形を示すものとみなすことができる。さらに、ステップ166を完了するまでステップ152の処理を行なってはならない、という訳ではない。ステップ166は波形データの蓄積状況に応じて割込み処理として行なってもよい。
ステップ166では、メモリ132に記憶されている合成加速度信号の時系列について、直前にスレッショルド以下の値であったのに対し、最新の値がスレッショルドより大きくなったときに歩数に1を加算する。
この第2の実施の形態に係る歩数測定装置120は、第1の実施の形態と同様に動作することはいうまでもない。FFTを使用するわけではないので、プロセッサ130における計算量は比較的少なく、消費電力は小さくて済む。
なお、ステップ154でメモリ132に合成加速度信号を記憶する際、どの程度の数の値を合成加速度信号の時系列として記憶すればよいかが問題となる。ここでは、ステップ170,180及び190で実行されるバンドパスフィルタ処理、並びにステップ176,186及び196で実行されるローパスフィルタ処理を行なうために、予めどの程度の時系列の値を記憶するかによって、ステップ154で時系列として記憶される値の数を決定すればよい。この場合、これら値をリングバッファなどの形式で記憶すれば、不要な値は順次自動的に削除されて都合がよい。
この第2の実施の形態のように、信号処理にプロセッサを使用する場合、他の携帯機器にこの歩数測定装置を組込むことが容易に行なえる。その携帯機器が例えば携帯電話機のように、プロセッサを持っているものであれば、その携帯機器に3軸加速度センサを組込んだ上で、そのプロセッサに上記した歩数計測のプログラムを実行させればよい。そのような例を図7に示す。
図7に示したものは、携帯電話機220に歩数測定装置を組込んだものである。携帯電話機は、通常はベルトに装着されることよりもバッグなどに入れたりポケットに入れたりして携帯することが多い。したがって、従来の歩数測定装置を組込んだとしても安定した計測は行なえない。しかし上記した本発明の実施の形態に係る歩数測定装置120であれば、3軸加速度センサ、したがって携帯電話機220の姿勢がどのようなものであっても安定して歩数を計測することができる。その結果、携帯電話機の他に独立した歩数測定装置を携帯する必要がなくなるという効果がある。これは、携帯電話機に限らず、PDA(Personal Digital Assistant)の場合も同様である。
以上のように本発明によれば、合成加速度信号の波形が不定形でスレッショルドを決めにくいときでも、合成加速度を示す信号の波形は滑らかに整形されたものとなり、容易にスレッショルドを定めることができる。その結果、スレッショルド回路よる比較を行なう際の誤差が少なくなるという効果が得られる。また、3軸加速度センサの出力の合成を行なうので、3軸加速度センサの姿勢、すなわち歩数測定装置20の姿勢がどのようになっていても安定して正確に歩数計測を行なうことができる。
なお、上記した実施の形態では、3つの帯域を使用しているが、この数は3つには限定されない。2以上の複数であれば上記実施の形態と同様の効果を得ることができる。上記実施の形態では、3つの帯域のうち、隣接する帯域同士は半分ずつ重なっている。しかし本発明はそのような実施の形態には限定されない。重なっている部分が各帯域の半分より小さくてもよい。隣接する帯域同士の間に重なっていない部分があってもある程度の効果が得られるが、実験によればこの場合には得られる波形の滑らかさが劣化する。そのため、スレッショルドの決め方がやや困難となることが分かった。しかしこの場合にも、整形前の波形を使用する場合と比較するとはるかに歩数計測の精度を高めることができる。
また、上記した実施の形態では、3軸加速度の出力を合成するために、各軸方向の加速度の値の2乗和を計算している。しかし本発明はそのような実施の形態には限定されない。例えば、各方向の加速度の絶対値の合計、又は各方向の加速度の2乗和のルートを用いてもよい。特にアナログ回路で上記実施の形態を実現する場合、2乗和を用いる場合と2乗和のルートを用いる場合とを比較すると、加速度の大きさが同じ場合、2乗和のルートを用いた方が使用する電圧の幅が半分ですむため、回路実装上、及び電力消費上で有利である。
今回開示された実施の形態は単に例示であって、本発明が上記した実施の形態のみに制限されるわけではない。本発明の範囲は、発明の詳細な説明の記載を参酌した上で、特許請求の範囲の各請求項によって示され、そこに記載された文言と均等の意味および範囲内でのすべての変更を含む。
本発明の第1の実施の形態に係る歩数測定装置20の外観を示す図である。 歩数測定装置20のハードウェア構成を示すブロック図である。 図3(A)は3軸合成後の合成加速度信号の波形を示す波形図であり、図3(B)は歩数測定装置20によって整形した後の合成加速度信号の波形を示す波形図である。 図4(A)は図3(A)の部分波形110を拡大した波形図であり、図4(B)は図3(B)の部分波形112を拡大した波形図である。 本発明の第2の実施の形態に係る歩数測定装置120のハードウェア構成を示すブロック図である。 歩数測定装置120のプロセッサ130で実行される、歩数計測のためのコンピュータプログラムの制御構造を示すフローチャートである。 本発明の実施の形態に係る歩数測定装置を組込んだ携帯電話機の外観を示す図である。 第1の実施の形態に係る歩数計測装置20のアルゴリズムによって計算した歩数と実測値との誤差割合、及び従来の加速度センサ歩数計による測定値と実測値との誤差割合を示す図である。
符号の説明
20,120 歩数測定装置
30 筐体
32 表示部
50 3軸加速度センサ
52 3軸合成部
54,56,58 バンドパスフィルタ
60 コンパレータ
62 波形選択部
64 スレッショルド回路
66 カウンタ
80,90,100 レベル測定回路
82,92,102 絶対値回路
84,94,104 ローパスフィルタ
130 プロセッサ
132 メモリ
220 携帯電話機

Claims (8)

  1. 3軸加速度センサと、
    前記加速度センサの出力を合成して合成加速度信号を出力するための加速度合成手段と、
    前記合成加速度信号の波形の、複数の周波数帯域の成分の波形をそれぞれ抽出するための複数の抽出手段と、
    前記複数の抽出手段により抽出された前記複数の周波数帯域の成分の大きさを比較し、最も大きな周波数帯域の成分の波形を選択し結合することにより、合成加速度信号の波形を整形するための波形整形手段と、
    前記波形整形手段により整形された後の波形を所定のしきい値と比較することにより、歩数を計数するための計数手段とを含む、歩数測定装置。
  2. 前記複数の抽出手段は、
    第1の周波数帯域の成分の波形を前記合成加速度信号から抽出するための第1の波形抽出手段と、
    中心周波数が前記第1の周波数帯域の中心周波数より高い第2の周波数帯域の波形を前記合成加速度信号から抽出するための第2の波形抽出手段とを含む、請求項1に記載の歩数測定装置。
  3. 前記第2の周波数帯域は、前記第1の周波数帯域と重なる部分を有する、請求項2に記載の歩数測定装置。
  4. 前記第1の周波数帯域は0.5Hz以上で1.5Hz以下である、請求項2又は請求項3に記載の歩数測定装置。
  5. 前記第2の周波数帯域は1.0Hz以上で2.0Hz以下である、請求項2〜請求項4のいずれかに記載の歩数測定装置。
  6. 前記複数の抽出手段はさらに、中心周波数が前記第2の周波数帯域の中心周波数より高い第3の周波数帯域の波形を前記合成加速度信号から抽出するための第3の波形抽出手段を含む、請求項2〜請求項5のいずれかに記載の歩数測定装置。
  7. 前記第3の周波数帯域は、前記第2の周波数帯域と重なる部分を有する、請求項6に記載の歩数測定装置。
  8. 前記第3の周波数帯域は1.5Hz以上で2.5Hz以下である、請求項6又は請求項7に記載の歩数測定装置。
JP2008186388A 2008-07-17 2008-07-17 歩数測定装置 Expired - Fee Related JP4982444B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008186388A JP4982444B2 (ja) 2008-07-17 2008-07-17 歩数測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008186388A JP4982444B2 (ja) 2008-07-17 2008-07-17 歩数測定装置

Publications (2)

Publication Number Publication Date
JP2010026722A true JP2010026722A (ja) 2010-02-04
JP4982444B2 JP4982444B2 (ja) 2012-07-25

Family

ID=41732510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008186388A Expired - Fee Related JP4982444B2 (ja) 2008-07-17 2008-07-17 歩数測定装置

Country Status (1)

Country Link
JP (1) JP4982444B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012088295A (ja) * 2010-03-25 2012-05-10 Seiko Instruments Inc 電子機器、歩数計、およびプログラム
WO2012133028A1 (ja) * 2011-03-25 2012-10-04 株式会社ニコン 電子機器、選択方法、取得方法、電子装置、合成方法および合成プログラム
JP2012221401A (ja) * 2011-04-13 2012-11-12 Nikon Corp 電子機器及び選択方法
US20160001131A1 (en) * 2014-07-03 2016-01-07 Katarzyna Radecka Accurate Step Counting Pedometer for Children, Adults and Elderly
JP2016508260A (ja) * 2012-12-21 2016-03-17 クアルコム,インコーポレイテッド 歩検出における振り補償
WO2017085770A1 (ja) * 2015-11-16 2017-05-26 富士通株式会社 電子機器、歩数計測方法および歩数計測プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197437A (ja) * 2000-12-27 2002-07-12 Sony Corp 歩行検出システム、歩行検出装置、デバイス、歩行検出方法
JP2005034364A (ja) * 2003-07-14 2005-02-10 Hosiden Corp 体動検出装置
JP2008084271A (ja) * 2006-09-29 2008-04-10 Seiko Instruments Inc 歩数計

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197437A (ja) * 2000-12-27 2002-07-12 Sony Corp 歩行検出システム、歩行検出装置、デバイス、歩行検出方法
JP2005034364A (ja) * 2003-07-14 2005-02-10 Hosiden Corp 体動検出装置
JP2008084271A (ja) * 2006-09-29 2008-04-10 Seiko Instruments Inc 歩数計

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012088295A (ja) * 2010-03-25 2012-05-10 Seiko Instruments Inc 電子機器、歩数計、およびプログラム
WO2012133028A1 (ja) * 2011-03-25 2012-10-04 株式会社ニコン 電子機器、選択方法、取得方法、電子装置、合成方法および合成プログラム
JP2012221401A (ja) * 2011-04-13 2012-11-12 Nikon Corp 電子機器及び選択方法
JP2016508260A (ja) * 2012-12-21 2016-03-17 クアルコム,インコーポレイテッド 歩検出における振り補償
US10564178B2 (en) 2012-12-21 2020-02-18 Qualcomm Incorporated Swing compensation in step detection
US20160001131A1 (en) * 2014-07-03 2016-01-07 Katarzyna Radecka Accurate Step Counting Pedometer for Children, Adults and Elderly
WO2017085770A1 (ja) * 2015-11-16 2017-05-26 富士通株式会社 電子機器、歩数計測方法および歩数計測プログラム

Also Published As

Publication number Publication date
JP4982444B2 (ja) 2012-07-25

Similar Documents

Publication Publication Date Title
JP5202933B2 (ja) 体動検出装置
JP4982444B2 (ja) 歩数測定装置
CN110251080B (zh) 检测正在穿戴可穿戴电子设备的肢体
JP6183906B2 (ja) 歩容推定装置とそのプログラム、転倒危険度算出装置とそのプログラム
JP5417970B2 (ja) 歩数計及び歩数計数方法
EP1988492A1 (en) Body motion detection device, body motion detection method, and body motion detection program
US10289902B2 (en) Data analysis device, data analysis method and storage medium
CN109893111B (zh) 一种动态血压测量模式选择方法及装置
JP2005309692A (ja) 電子歩数計
WO2019061513A1 (zh) 一种姿态矩阵的计算方法及设备
US20110238364A1 (en) Electronic apparatus and program
JP2003093566A (ja) 運動識別方法および運動センシングモジュール
CN105311812A (zh) 运动能力评价方法、评价装置、算出方法及算出装置
KR101901191B1 (ko) 수영 간이계측 밴드에 의한 수영 운동기록 관리시스템
JP2006293861A (ja) 歩数計
JP6573104B2 (ja) 指標導出装置、ウェアラブル機器及び携帯機器
WO2016194908A1 (ja) 指標導出装置、ウェアラブル機器及び携帯機器
US20150150491A1 (en) Movement estimation device, and activity tracker
JP2008292294A (ja) 速度計
JP6233123B2 (ja) センサ装置、サンプリング方法及びプログラム
CN110168547B (zh) 一种状态确定方法及便携设备
JP7180216B2 (ja) 生体情報解析装置、生体情報解析方法、および生体情報解析システム
KR101355889B1 (ko) 신체 부위 운동 범위 측정 장치 및 방법
US20210128023A1 (en) Configurable Fashion Accessory Including an Electronic System for Activity Tracking
JP3172926U (ja) 体動量測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees