JP2010026388A - ハイブリッド現像用現像剤および画像形成装置 - Google Patents
ハイブリッド現像用現像剤および画像形成装置 Download PDFInfo
- Publication number
- JP2010026388A JP2010026388A JP2008189898A JP2008189898A JP2010026388A JP 2010026388 A JP2010026388 A JP 2010026388A JP 2008189898 A JP2008189898 A JP 2008189898A JP 2008189898 A JP2008189898 A JP 2008189898A JP 2010026388 A JP2010026388 A JP 2010026388A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- toner
- carrier
- polarity
- toner particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Dry Development In Electrophotography (AREA)
- Developing Agents For Electrophotography (AREA)
Abstract
【課題】キャリアを補給することなしに、トナーの帯電および現像を長期的に安定して行うことができるハイブリッド現像用現像剤を提供すること。
【解決手段】バインダー樹脂および着色剤を含有し、平均円形度が0.945〜0.985のトナー粒子;該トナー粒子との摩擦接触によってトナー粒子を帯電させるキャリア;該キャリアとの摩擦接触によってトナー粒子の帯電極性とは逆の極性に帯電される逆極性粒子;および該キャリアとの摩擦接触によってトナー粒子の帯電極性と同極性に帯電される少なくとも2種類の同極性粒子を含み、逆極性粒子の粒径分布におけるピーク粒径が0.08〜0.70μm、逆極性粒子の含有量がトナー粒子100重量部に対して0.08〜2.00重量部であり、同極性粒子が、粒径分布におけるピーク粒径が4〜40nm、含有量がトナー粒子100重量部に対して0.09〜2.2重量部の小径同極性粒子、および粒径分布におけるピーク粒径が50〜220nm、含有量がトナー粒子100重量部に対して0.04〜1.1重量部の大径同極性粒子を含むハイブリッド現像用現像剤。
【選択図】なし
【解決手段】バインダー樹脂および着色剤を含有し、平均円形度が0.945〜0.985のトナー粒子;該トナー粒子との摩擦接触によってトナー粒子を帯電させるキャリア;該キャリアとの摩擦接触によってトナー粒子の帯電極性とは逆の極性に帯電される逆極性粒子;および該キャリアとの摩擦接触によってトナー粒子の帯電極性と同極性に帯電される少なくとも2種類の同極性粒子を含み、逆極性粒子の粒径分布におけるピーク粒径が0.08〜0.70μm、逆極性粒子の含有量がトナー粒子100重量部に対して0.08〜2.00重量部であり、同極性粒子が、粒径分布におけるピーク粒径が4〜40nm、含有量がトナー粒子100重量部に対して0.09〜2.2重量部の小径同極性粒子、および粒径分布におけるピーク粒径が50〜220nm、含有量がトナー粒子100重量部に対して0.04〜1.1重量部の大径同極性粒子を含むハイブリッド現像用現像剤。
【選択図】なし
Description
本発明は、ハイブリッド現像方式で使用されるのに適した現像剤および画像形成装置に関する。
電子写真方式の画像形成装置に採用されている現像方式として、現像剤の主成分としてトナーのみを用いる一成分現像方式と、現像剤の主成分としてトナーとキャリアを用いる二成分現像方式が知られている。
一成分現像方式の現像装置は、トナーを担持して搬送するトナー担持部材と該トナー担持部材のトナー担持面に接触する摩擦荷電部材を備えている。トナー担持部材に担持されているトナーは、摩擦荷電部材の接触位置を通過する際、摩擦荷電部材と摩擦接触して薄層化されると共に所定の極性に帯電される。このように、一成分現像装置は、トナーの帯電を摩擦荷電部材との摩擦接触によって行っているため、構成が簡単・小型・安価であるという利点がある。しかし、摩擦荷電部材の接触位置で強いストレスを受けることからトナーが劣化し易く、そのためにトナーの帯電性が比較的早期に損なわれる。また、トナー担持部材と摩擦荷電部材との接触圧によって両者にトナーが付着してトナーを帯電する能力が低下し、結果的に、現像装置の寿命が比較的短くなる。
二成分現像方式の現像装置は、トナーとキャリアを摩擦接触させることによって両者を所定の極性に荷電するため、トナーの受けるストレスは一成分現像装置に比べて少ない。キャリアも、その表面積はトナーに比べて大きいことから、トナーが付着して汚れることも少ない。しかし、長期間の使用によりキャリアの表面にトナーの微粉砕物などが付着する汚れ(スペント)が発生し、そのためにトナーを帯電する能力が低下し、かぶりやトナー飛散の問題が生じる。二成分現像装置の長寿命化を図るために、現像装置に収容するキャリアの量を増やすことが考えられるが、これは現像装置の大型化を招く。
二成分現像装置に係わる上述の問題を解消するため、キャリア又はキャリアとトナーを随時、補給するとともに、帯電性能の低下した現像剤を回収するトリクル現像方式が報告されている(特許文献1、2)。この技術によれば、現像装置を大型化することなく、現像剤の長寿命化が可能である。しかし、排出されたキャリアを回収する機構が必要である。また、キャリアの消費量が多く、それによるコストと環境面の問題を含む。さらに、未劣化キャリアと劣化キャリアの比率が安定するまでに所定量の印刷を行う必要がある。
特許文献3には、磁気ローラの外周面に保持されたトナーとキャリアを含む現像剤からトナーだけを選択的に現像ローラの外周面に供給し、この現像ローラの外周面に保持されたトナーを用いて感光体上の静電潜像(静電潜像画像部)を現像するハイブリッド現像方式が提案されている。そのような現像方式では、キャリアとの摩擦接触によってトナーの帯電極性とは逆の極性に帯電される逆極性粒子を現像剤に添加して、キャリアに付着させる。これにより、当該逆極性粒子がキャリアの荷電サイトとして働き、キャリアのトナー帯電能を確保し、キャリア劣化を抑制できる。
特開2005−107377号公報
特開2001−330985号公報
特開2003−287959号公報
しかしながら、上記したハイブリッド現像方式では、文字画像のように画像面積比(白黒比)の小さな画像を大量に印刷すると、長期的に安定したトナーの帯電性が得られなかった。その結果、耐刷時において、画像濃度が低下する、という問題があった。
本発明は、キャリアを補給することなしに、トナーの帯電および現像を長期的に安定して行うことができるハイブリッド現像用現像剤を提供することを目的とする。
本発明は、
バインダー樹脂および着色剤を含有し、平均円形度が0.945〜0.985のトナー粒子;
該トナー粒子との摩擦接触によってトナー粒子を帯電させるキャリア;
該キャリアとの摩擦接触によってトナー粒子の帯電極性とは逆の極性に帯電される逆極性粒子;および
該キャリアとの摩擦接触によってトナー粒子の帯電極性と同極性に帯電される少なくとも2種類の同極性粒子を含み、
逆極性粒子の粒径分布におけるピーク粒径が0.08〜0.70μm、逆極性粒子の含有量がトナー粒子100重量部に対して0.08〜2.00重量部であり、
同極性粒子が、粒径分布におけるピーク粒径が4〜40nm、含有量がトナー粒子100重量部に対して0.09〜2.2重量部の小径同極性粒子、および粒径分布におけるピーク粒径が50〜220nm、含有量がトナー粒子100重量部に対して0.04〜1.1重量部の大径同極性粒子を含むことを特徴とするハイブリッド現像用現像剤に関する。
バインダー樹脂および着色剤を含有し、平均円形度が0.945〜0.985のトナー粒子;
該トナー粒子との摩擦接触によってトナー粒子を帯電させるキャリア;
該キャリアとの摩擦接触によってトナー粒子の帯電極性とは逆の極性に帯電される逆極性粒子;および
該キャリアとの摩擦接触によってトナー粒子の帯電極性と同極性に帯電される少なくとも2種類の同極性粒子を含み、
逆極性粒子の粒径分布におけるピーク粒径が0.08〜0.70μm、逆極性粒子の含有量がトナー粒子100重量部に対して0.08〜2.00重量部であり、
同極性粒子が、粒径分布におけるピーク粒径が4〜40nm、含有量がトナー粒子100重量部に対して0.09〜2.2重量部の小径同極性粒子、および粒径分布におけるピーク粒径が50〜220nm、含有量がトナー粒子100重量部に対して0.04〜1.1重量部の大径同極性粒子を含むことを特徴とするハイブリッド現像用現像剤に関する。
本発明によれば、逆極性粒子がキャリア表面に移行し、キャリア表面上で荷電サイトとして機能するようになる。そのため、キャリアのトナー帯電能の低下を抑制できる。また小径同極性粒子がトナー粒子とともに挙動し、現像ローラ上でのトナー粒子の流動性が向上するので、現像性が向上する。しかも、大径同極性粒子が緩衝材として機能し、トナー粒子とともに挙動して小径同極性粒子のトナー粒子への埋没を抑制するので、現像性が長期にわたって向上する。さらに大径同極性粒子は現像剤中において逆極性粒子のトナー粒子への埋没も抑制するので、トナー帯電能の低下を長期にわたって抑制できる。それらの結果として、トナーの良好な帯電性および現像性を長期的に安定して維持するので、耐刷時においてもトナー帯電量の低下や画像濃度の低下を抑制できる。
〔ハイブリッド現像用現像剤〕
本発明に係るハイブリッド現像用現像剤(以下、単に現像剤という)は、トナー粒子、該トナー粒子に外添される外添剤、およびキャリアを含むものである。
本発明に係るハイブリッド現像用現像剤(以下、単に現像剤という)は、トナー粒子、該トナー粒子に外添される外添剤、およびキャリアを含むものである。
トナー粒子は少なくともバインダー樹脂および着色剤を含有し、平均円形度が0.945〜0.985、好ましくは0.950〜0.980のもので、キャリアとの摩擦接触により所定の極性に帯電されるものである。平均粒径が小さすぎると、キャリアとの帯電性が良くなく、カブリ等の原因となる。平均粒径が大きすぎると、クリーニング不良が発生する原因となる。
本明細書中、トナーの円形度は、「FPIA−2100」(Sysmex社製)を用いて測定した値である。
具体的には、トナーを界面活性剤入り水溶液にてなじませ、超音波分散を1分行い分散した後、「FPIA−2100」を用い、測定条件HPF(高倍率撮像)モードにて、HPF検出数3000〜10000個の適正濃度で測定を行う。この範囲であれば、再現性のある同一測定値が得られる。下記式にて定義された円形度を測定した。
円形度=(粒子像と同じ投影面積をもつ円の周囲長)/(粒子投影像の周囲長)
また、平均円形度は、各粒子の円形度を足し合わせ、全粒子数で割り算して算出した値である。
具体的には、トナーを界面活性剤入り水溶液にてなじませ、超音波分散を1分行い分散した後、「FPIA−2100」を用い、測定条件HPF(高倍率撮像)モードにて、HPF検出数3000〜10000個の適正濃度で測定を行う。この範囲であれば、再現性のある同一測定値が得られる。下記式にて定義された円形度を測定した。
円形度=(粒子像と同じ投影面積をもつ円の周囲長)/(粒子投影像の周囲長)
また、平均円形度は、各粒子の円形度を足し合わせ、全粒子数で割り算して算出した値である。
トナー粒子に含有されるバインダー樹脂は、特に限定的ではなく、例えば、スチレン系樹脂(スチレンまたはスチレン置換体を含む単重合体または共重合体、例えばスチレン・アクリル樹脂)、ポリエステル樹脂、エポキシ系樹脂、塩化ビニル樹脂、フェノール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリウレタン樹脂、シリコーン樹脂、窒素含有アクリル樹脂またはそれらの樹脂を任意に混ぜ合わせたものが挙げられる。バインダー樹脂は、軟化温度が約80〜160℃の範囲、ガラス転移点が約50〜75℃の範囲であることが好ましい。
トナー粒子のバインダー樹脂は現像時におけるトナー粒子の帯電極性に依存して決定されることが好ましい。例えば、負帯電性トナー粒子には、スチレンアクリル共重合体、ポリエステルを単独または適宜混合して使用されることが好ましい。また例えば、正帯電性トナー粒子には、スチレンアクリル共重合体が使用されることが好ましい。
着色剤は、トナーの分野で従来から着色剤として使用されている公知の材料が使用される。着色剤の具体例として、例えば、カーボンブラック、アニリンブラック、活性炭、マグネタイト、ベンジンイエロー、パーマネントイエロー、ナフトールイエロー、フタロシアニンブルー、ファーストスカイブルー、ウルトラマリンブルー、ローズベンガル、レーキーレッド等が挙げられる。着色剤の添加量は、一般に、バインダー樹脂100重量部に対して、2〜20重量部であることが好ましい。
トナー粒子は、さらに離型剤および/または荷電制御剤等の他の添加剤が含有されてもよい。
離型剤は、トナーの分野で従来から離型剤として使用されている公知のものが使用される。離型剤の具体例として、例えば、ポリエチレン、ポリプロピレン、カルナバワックス、サゾールワックス、又はそれらを適宜組み合わせた混合物が用いられる。離型剤は、バインダー樹脂100重量部に対して、0.1〜10重量部の割合で用いることが好ましい。
離型剤は、トナーの分野で従来から離型剤として使用されている公知のものが使用される。離型剤の具体例として、例えば、ポリエチレン、ポリプロピレン、カルナバワックス、サゾールワックス、又はそれらを適宜組み合わせた混合物が用いられる。離型剤は、バインダー樹脂100重量部に対して、0.1〜10重量部の割合で用いることが好ましい。
荷電制御剤は、トナーの分野で従来から荷電制御剤として使用されている公知の材料が使用される。具体的には、正極性に帯電するトナー粒子には、例えばニグロシン系染料、4級アンモニウム塩系化合物、トリフェニルメタン系化合物、イミダゾール系化合物、ポリアミン樹脂が正荷電制御剤として使用できる。負極性に帯電するトナーには、Cr、Co、Al、Fe等の金属含有アゾ系染料、サリチル酸金属化合物、アルキルサリチル酸金属化合物、カーリックスアレーン化合物が負荷電制御剤として使用できる。荷電制御剤は、バインダー樹脂100重量部に対して、0.1〜10重量部の割合で用いることが好ましい。
トナー粒子の製造方法は、特に製造されず、例えば、いわゆる粉砕法、および懸濁重合法、乳化重合会合法、溶解懸濁法等の湿式法が挙げられる。トナーの帯電性および現像性のさらなる向上の観点から、トナー粒子は湿式法、特に乳化重合会合法で製造されたものが好ましい。乳化重合会合法によると、トナー粒子表面の平滑性が向上し、トナー粒子に対する外添処理がより均一に行われる。その結果、逆極性粒子、小径同極性粒子および大径同極性粒子がトナー粒子表面において偏在することがないので、大径同極性粒子が小径同極性粒子および逆極性粒子のトナー粒子への埋没をより一層有効に抑制する。トナー粒子の体積平均粒径は特に制限されず、例えば約3〜10μm、好ましくは4〜8μmである。トナー粒子の平均粒径は、コールターマルチサイザーIII(ベックマンコールター社製)により、100μmのアパチャーチューブを用いて測定された値を用いている。
乳化重合会合法によるトナー粒子の製造方法について説明する。乳化重合会合法によるトナー粒子の製造方法は、水系媒体中でトナー粒子を形成させる方法で、例えば特開2002−351142号公報等に開示されている。また、特開平5−265252号公報、特開平6−329947号公報、特開平9−15904号公報に開示される樹脂粒子を水系媒体中で塩析/融着させてトナー粒子分散液を製造する方法を挙げることができる。具体的には、水中で樹脂粒子を乳化剤を用いて分散させた後、臨界凝集濃度以上の凝集剤を加えて塩析(凝集)させると同時に、形成された重合体自体のガラス転移温度以上で加熱融着させて融着粒子を形成しつつ徐々に粒子径を成長させ、目的の粒子径となったところで水を多量に加えて粒子径成長を停止し、さらに加熱、撹拌しながら粒子表面を平滑にして形状を制御し、トナー粒子分散液を調製するものである。凝集剤と同時にアルコールなど水に対して無限溶解する溶媒を加えてもよい。水系媒体としては、例えば、水、メタノール、エタノール、イソプロパノール、ブタノール、2−メチル−2−ブタノール、アセトン、メチルエチルケトン、テトラヒドロフラン、またはこれらを混合したものを挙げることができるが特に限定されるものではない。トナー粒子の製造にはこれらの中から適したものを選ぶことができる。水系媒体にはさらに他の有機溶媒を添加してもよい。有機溶媒としては、トルエン、キシレン、またはこれらを混合したものを挙げることができるが特に限定されるものではない。
トナー粒子に外添される外添剤としては、少なくとも逆極性粒子および同極性粒子が使用される。
逆極性粒子は、キャリアとの摩擦接触によって、キャリアに対するトナー粒子の帯電極性とは逆の極性に帯電されるものである。キャリアに対する帯電極性が、逆極性粒子とトナー粒子とで異なることは、それらのキャリアに対する帯電量を測定することによって知見できる。例えば、キャリアおよび逆極性粒子に対して所定の混合を行い、逆極性粒子の帯電量をブローオフ法により測定する。一方、キャリアおよびトナー粒子に対しても所定の混合を行い、トナー粒子の帯電量をブローオフ法により測定する。その結果、逆極性粒子の帯電量とトナー粒子の帯電量とが異なる符号を有する場合、それらの粒子のキャリアに対する帯電極性は異なるものと知見できる。
ブローオフ法による帯電量は、帯電量測定装置「ブローオフ式TB−200」(東芝社製)により測定した値を用いている。
逆極性粒子の粒径分布におけるピーク粒径は0.08〜0.70μmであり、キャリアによるトナー帯電の長期安定性の観点から好ましくは0.1〜0.5μmである。ピーク粒径が小さすぎると、トナー粒子中に埋め込まれてしまい、キャリア表面への移行が阻害され、キャリアのトナー帯電能の低下を抑制できないので、耐刷時において帯電量が低下したり、画像濃度が低下する。ピーク粒径が大きすぎると、逆極性粒子がキャリア表面に有効に付着し難いために、耐刷時において帯電量が低下したり、画像濃度が低下する。
本明細書中、粒径分布は体積粒径分布であり、ピーク粒径は動的光散乱法によって測定された粒径分布から読み取ることができる。
逆極性粒子は、例えばキャリアとの摩擦接触により負極性に帯電されるトナー粒子を用いる場合、キャリアとの摩擦接触により正極性に帯電される粒子が使用される。そのような粒子は、例えば、チタン酸ストロンチウム、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、アルミナ等の無機粒子やアクリル樹脂、ベンゾグアナミン樹脂、ナイロン樹脂、ポリイミド樹脂、ポリアミド樹脂等の、熱可塑性樹脂あるいは熱硬化性樹脂で構成された粒子が使用できる。逆極性粒子を構成する樹脂に対して、キャリアとの接触により正極性に帯電する正荷電制御剤を含有させた粒子であってもよい。正荷電制御剤には、例えば、ニグロシン染料、四級アンモニウム塩等が使用できる。逆極性粒子は含窒素ポリマーで構成してもよい。含窒素ポリマーを構成する材料には、例えば、アクリル酸2−ジメチルアミノエチル、アクリル酸2−ジエチルアミノエチル、メタクリル酸2−ジメチルアミノエチル、メタクリル酸2−ジエチルアミノエチル、ビニールピリジン、N−ビニールカルバゾール、ビニールイミダゾールがある。キャリアを構成する樹脂と逆極性粒子(正帯電性)を構成する材料との好ましい組み合わせは以下の通りである。
(キャリア構成樹脂−逆極性粒子(正帯電性))
ポリメチルメタクリレート樹脂−チタン酸ストロンチウム
シリコーン樹脂−チタン酸バリウム
メラミン樹脂−ジルコン酸カルシウム
ベンゾグアナミン樹脂−ジルコン酸マグネシウム
(キャリア構成樹脂−逆極性粒子(正帯電性))
ポリメチルメタクリレート樹脂−チタン酸ストロンチウム
シリコーン樹脂−チタン酸バリウム
メラミン樹脂−ジルコン酸カルシウム
ベンゾグアナミン樹脂−ジルコン酸マグネシウム
また例えば、キャリアとの摩擦接触により正極性に帯電されるトナー粒子を用いる場合、逆極性粒子は、キャリアとの摩擦接触により負極性に帯電される粒子が使用される。そのような粒子は、例えば、シリカ、酸化チタン、酸化アルミニウム等の無機粒子、また、フッ素樹脂、ポリオレフィン樹脂、シリコーン樹脂、ポリエステル樹脂等の、熱可塑性樹脂あるいは熱硬化性樹脂で構成された粒子が使用できる。キャリアとの接触により負極性に帯電する負荷電制御剤を、逆極性粒子を構成する樹脂に含有させた粒子であってもよい。負荷電制御剤には、例えば、サリチル酸系、ナフトール系のクロム錯体、アルミニウム錯体、鉄錯体、亜鉛錯体等を使用できる。逆極性粒子は、含フッ素アクリル系モノマーや含フッ素メタクリル系モノマーの共重合体粒子であってもよい。キャリアを構成する樹脂と逆極性粒子(負帯電性)を構成する材料との好ましい組み合わせは以下の通りである。
(キャリア−逆極性粒子(負帯電性))
フッ素樹脂−シリカ
ポリエステル−酸化アルミニウム
ポリオレフィン−ポリフッ化アクリルビーズ
(キャリア−逆極性粒子(負帯電性))
フッ素樹脂−シリカ
ポリエステル−酸化アルミニウム
ポリオレフィン−ポリフッ化アクリルビーズ
逆極性粒子の帯電性および疎水性を制御するために、無機粒子の表面をシランカップリング剤、チタンカップリング剤、シリコーンオイル等で表面処理してもよい。特に、無機粒子に正極性帯電性を付与する場合、アミノ基含有カップリング剤で表面処理することが好ましい。粒子に負極性帯電性を付与する場合、フッ素基含有カップリング剤で表面処理することが好ましい。
逆極性粒子の含有量はトナー粒子100重量部に対して0.08〜2.00重量部であり、トナー帯電の長期安定性の観点から好ましくは0.5〜1.5重量部である。含有量が少なすぎると、逆極性粒子がキャリア表面に移行して付着しても、荷電サイトが有効に機能しないために、耐刷時において帯電量が低下したり、画像濃度が低下する。含有量が多すぎると、トナーの帯電量が低くなり、耐刷時において更に帯電量が低下したり、画像濃度が低下する。逆極性粒子は2種類以上組み合わせて使用されてよく、その場合にはそれらの合計量が上記範囲内であればよい。
同極性粒子は、キャリアとの摩擦接触によって、キャリアに対するトナー粒子の帯電極性と同極性に帯電されるものである。キャリアに対する帯電極性が、同極性粒子とトナー粒子とで同じであることは、それらのキャリアに対する帯電量を測定することによって知見できる。例えば、キャリアおよび同極性粒子に対して所定の混合を行い、同極性粒子の帯電量をブローオフ法により測定する。一方、キャリアおよびトナー粒子に対しても所定の混合を行い、トナー粒子の帯電量をブローオフ法により測定する。その結果、同極性粒子の帯電量とトナー粒子の帯電量とが同じ符号を有する場合、それらの粒子のキャリアに対する帯電極性は同じであるものと知見できる。
好ましい同極性粒子は、トナー粒子との摩擦接触によっても、キャリアに対するトナー粒子の帯電極性と同極性に帯電されるものである。その結果トナーの帯電性と流動性(現像性)はより一層安定し、耐刷時において画像濃度の低下を抑制する。
トナー粒子との摩擦接触による同極性粒子の帯電極性は、キャリアとの摩擦接触によるトナー粒子の帯電量およびキャリアとの摩擦接触による同極性粒子の帯電量を測定することによって、間接的に知見できる。例えば、キャリアおよびトナー粒子に対して所定の混合を行い、トナー粒子の帯電量をブローオフ法により測定する。一方、キャリアおよび同極性粒子に対しても所定の混合を行い、同極性粒子の帯電量をブローオフ法により測定する。このとき、測定試料について、同極性粒子のキャリアに対する含有量はトナー粒子のキャリアに対する含有量と同等であり、また混合条件および帯電量測定条件も同等である。その結果、トナー粒子および同極性粒子の帯電量は同じ符号(正または負)を有するので、同極性粒子の帯電量の絶対値がトナー粒子の帯電量の絶対値よりも大きい場合、当該同極性粒子は、トナー粒子との摩擦接触によって、キャリアに対するトナー粒子の帯電極性と同極性に帯電されるものと知見できる。
そのような同極性粒子として、粒径の異なる少なくとも2種類の同極性粒子が使用され、通常は粒径が比較的小さい同極性粒子(「小径同極性粒子」という)と粒径が比較的大きい同極性粒子(「大径同極性粒子」という)とが併用される。単に「同極性粒子」というとき、「小径同極性粒子」および「大径同極性粒子」を包含して意味するものとする。
小径同極性粒子の粒径分布におけるピーク粒径は4〜40nmであり、トナーの現像性の観点から好ましくは10〜30nmである。ピーク粒径が小さすぎると、トナー粒子中に小径同極性粒子が埋没し、帯電性、現像性が低下するため、耐刷時において帯電量が低下したり、画像濃度が低下する。ピーク粒径が大きすぎると、トナー粒子から小径同極性粒子が離脱し、トナーの帯電量が低下するため、耐刷時において更に帯電量が低下したり、画像濃度が低下する。
小径同極性粒子の含有量はトナー粒子100重量部に対して0.09〜2.2重量部であり、トナー帯電の長期安定性の観点から好ましくは0.2〜1.5重量部である。含有量が少なすぎると、トナーの帯電量が低くなり、耐刷時において更に帯電量が低下したり、帯電量が低下したり、画像濃度が低下する。含有量が多すぎると、キャリアへの移行が多くなるので、耐刷時において帯電量が低下したり、画像濃度が低下する。小径同極性粒子は2種類以上組み合わせて使用されてよく、その場合にはそれらの合計量が上記範囲内であればよい。
大径同極性粒子の粒径分布におけるピーク粒径は50〜220nmであり、トナー帯電および現像の長期安定性の観点から好ましくは80〜180nmである。ピーク粒径が小さすぎると、耐刷時において小径同極性粒子および逆極性粒子がトナー粒子中に埋没するのを十分に防止できないため、耐刷時において帯電量が低下したり、画像濃度が低下する。ピーク粒径が大きすぎると、トナーからの離脱が多くなりキャリアへの移行が増えるので、耐刷時において帯電量が低下したり、画像濃度が低下する。
大径同極性粒子の含有量はトナー粒子100重量部に対して0.04〜1.1重量部であり、トナー帯電および現像の長期安定性の観点から好ましくは0.1〜0.8重量部である。含有量が少なすぎると、耐刷時において小径同極性粒子および逆極性粒子がトナー粒子中に埋没するのを十分に防止できないため、耐刷時において帯電量が低下したり、画像濃度が低下する。含有量が多すぎると、キャリアへの移行が多くなり、耐刷時において帯電量が低下したり、画像濃度が低下する。大径同極性粒子は2種類以上組み合わせて使用されてよく、その場合にはそれらの合計量が上記範囲内であればよい。
小径同極性粒子および大径同極性粒子は、例えばキャリアとの摩擦接触により負極性に帯電されるトナー粒子を用いる場合、キャリアとの摩擦接触により負極性に帯電される粒子が使用される。そのような小径同極性粒子および大径同極性粒子の構成材料は、逆極性粒子としてキャリアとの摩擦接触により負極性に帯電される粒子を使用する場合における当該逆極性粒子と同様の材料が使用できる。小径同極性粒子および大径同極性粒子の構成材料はそれぞれ独立して選択されてよい。逆極性粒子(正帯電性)を構成する材料と、同極性粒子(負帯電性)を構成する材料との好ましい組み合わせは以下の通りである。
(逆極性粒子(正帯電性)−同極性粒子(負帯電性))
チタン酸ストロンチウム−シリカ
チタン酸バリウム−酸化チタン
ジルコン酸カルシウム−酸化アルミニウム
ジルコン酸マグネシウム−ポリフッ化アクリルビーズ
(逆極性粒子(正帯電性)−同極性粒子(負帯電性))
チタン酸ストロンチウム−シリカ
チタン酸バリウム−酸化チタン
ジルコン酸カルシウム−酸化アルミニウム
ジルコン酸マグネシウム−ポリフッ化アクリルビーズ
また例えば、キャリアとの摩擦接触により正極性に帯電されるトナー粒子を用いる場合、小径同極性粒子および大径同極性粒子は、キャリアとの摩擦接触により正極性に帯電される粒子が使用される。そのような小径同極性粒子および大径同極性粒子の構成材料は、逆極性粒子としてキャリアとの摩擦接触により正極性に帯電される粒子を使用する場合における当該逆極性粒子と同様の材料が使用できる。小径同極性粒子および大径同極性粒子の構成材料はそれぞれ独立して選択されてよい。逆極性粒子(負帯電性)を構成する材料と、同極性粒子(正帯電性)を構成する材料との好ましい組み合わせは以下の通りである。
(逆極性粒子(負帯電性)−同極性粒子(正帯電性))
シリカ−チタン酸ストロンチウム
酸化チタン−チタン酸バリウム
酸化アルミニウム−ジルコン酸カルシウム
ポリフッ化アクリルビーズ−ジルコン酸マグネシウム
(逆極性粒子(負帯電性)−同極性粒子(正帯電性))
シリカ−チタン酸ストロンチウム
酸化チタン−チタン酸バリウム
酸化アルミニウム−ジルコン酸カルシウム
ポリフッ化アクリルビーズ−ジルコン酸マグネシウム
小径同極性粒子および大径同極性粒子の帯電性および疎水性を制御するために、逆極性粒子と同様にして、無機粒子の表面をシランカップリング剤、チタンカップリング剤、シリコーンオイル等で表面処理してもよい。表面処理剤は、逆極性粒子を表面処理するときと同様にして選択されればよい。
本発明において使用されるトナーは、トナー粒子に少なくとも逆極性粒子、小径同極性粒子および大径同極性粒子等の外添剤を混合して得ることができる。逆極性粒子、小径同極性粒子および大径同極性粒子の添加順序は特に制限されるものではなく、例えば、それらの粒子を同時に添加・混合してもよいし、大径同極性粒子を先に添加し混合し、小径同極性粒子を添加し混合した後で、逆極性粒子を添加し混合してもよいし、小径同極性粒子を先に添加し混合し、大径同極性粒子を添加し混合した後で、逆極性粒子を添加し混合してもよいし、それらの逆の順序で添加・混合してもよい。逆極性粒子の固着に比べて同極性粒子のトナーへの固着を強化する観点からは、同極性粒子の添加・混合を行った後に逆極性粒子の添加混合を行うことが好ましい。混合装置は、例えば、タービュラーミキサー、ヘンシェルミキサー、ナウターミキサー、V型混合機などの種々の公知の混合装置が使用できる。
トナーには逆極性粒子、小径同極性粒子および大径同極性粒子以外の他の外添剤が添加されてもよい。そのような他の外添剤としては、トナーの分野で従来から外添剤として使用されているものが使用可能である。
本発明の現像剤に含有されるキャリアは、二成分現像剤の分野で従来よりキャリアとして使用されているものが使用可能であり、例えば、磁性体粒子をそのまま使用したキャリア、磁性体粒子を樹脂でコートしてなるコート型キャリア、磁性体微粒子を樹脂中に分散してなるバインダー型キャリア等が挙げられる。キャリアに使用される磁性体としては、例えば、鉄粉、マグネタイト、各種フェライトが使用可能であり、好ましくはマグネタイトや各種フェライトである。フェライトとしては、例えば、銅、亜鉛、ニッケル、マンガン等の重金属を含有するフェライトやアルカリ金属及び/又はアルカリ土類金属を含有する軽金属フェライトが好ましく、特に好ましくはアルカリ金属及び/又はアルカリ土類金属を含有する軽金属フェライトである。
キャリアは、帯電付与能の観点から、コート型キャリアが好ましい。好ましいコート型キャリアの磁性体粒子(キャリアコア)は、Li、Na等のアルカリ金属及び/又はMg、Ca、Sr、Baのアルカリ土類金属を含有する軽金属フェライトまたはマグネタイトである。そのような軽金属フェライトの具体例として、例えば、下記組成(1)または(2)を有するものが挙げられる。
(M1 2O)x(Fe2O3)1−x (1)
(M2O)x(Fe2O3)1−x (2)
組成(1)および(2)において、M1としてはLi、Na等のアルカリ金属を示す。M2としてはMg、Ca、Sr、Baのアルカリ土類金属を示す。xとしては30mol%以下、好ましくは18mol%以下である。
(M1 2O)x(Fe2O3)1−x (1)
(M2O)x(Fe2O3)1−x (2)
組成(1)および(2)において、M1としてはLi、Na等のアルカリ金属を示す。M2としてはMg、Ca、Sr、Baのアルカリ土類金属を示す。xとしては30mol%以下、好ましくは18mol%以下である。
上記組成(1)の軽金属フェライトは、M1 2O及び/又はFe2O3の一部がアルカリ土類金属酸化物(M2O)で置換されたものであっても良い。置換されるアルカリ土類金属酸化物は1〜10mol%が好ましい。更に好ましくは3〜15mol%である。
上記したような軽金属フェライト或いはマグネタイトが好ましい理由としては、単に近年で盛んになっている廃棄物、環境汚染の問題のみでは無く、これらに加えてキャリア自体を軽量化することができ、トナーに対するストレスを軽減することができる利点を有しているからである。
コート型キャリアの磁性体粒子の体積平均粒径は10〜100μm、好ましくは20〜80μmである。更に、キャリア自体が有する磁化特性としては、飽和磁化で30〜60Am2/kgが好ましい。尚、磁性体粒子の体積平均粒径は、湿式分散器を備えてなるレーザー回折式粒度分布測定装置「HELOS」(シンパテック社製)により測定される体積基準の平均粒径である。飽和磁化は、「直流磁化特性自動記録装置3257−35」(横河電気株式会社製)により測定される。
コート型キャリアのコート層形成に好適な樹脂は、ポリエチレン、ポリプロピレン、塩素化ポリエチレン、クロルスルホン化ポリエチレン等のポリオレフィン系樹脂;ポリスチレン、ポリメチルメタクリレート等のポリアクリレート、ポリアクリロニトリル、ポリビニルアセテート、ポリビニルアルコール、ポリビニルブチラール、ポリ塩化ビニル、ポリビニルカルバゾール、ポリビニルエーテル、ポリビリケトン等のポリビニル及びポリビニリデン系樹脂;塩化ビニル−酢酸ビニル共重合体やスチレン−アクリル酸共重合体等の共重合体;オルガノシロキサン結合からなるシリコーン樹脂またはその変成樹脂(例えば、アルキッド樹脂、ポリエステル樹脂、エポキシ樹脂、ポリウレタン等による変成樹脂);ポリフッ化ビニル、ポリフッ化ビニリデン、ポリクロロトリフルオロエチレン等のフッ素樹脂;ポリアミド;ポリエステル;ポリウレタン;ポリカーボネート;尿素−ホルムアルデヒド樹脂等のアミノ樹脂;エポキシ樹脂等である。本発明では、現像剤の帯電性制御とコート層の耐久性の観点からポリスチレン、ポリメチルメタクリレート等のポリアクリレートが更に好ましい。
コート層の形成方法としては、湿式コート法、乾式コート法が挙げられる。以下に各方法について詳細に述べる。
湿式コート法の具体例としては、例えば、流動層式スプレーコート法、浸漬式コート法、重合法等が挙げられる。流動層式スプレーコート法では、コート用樹脂を溶剤に溶解した塗布液を、流動層を用いて磁性体粒子の表面にスプレー塗布し、次いで乾燥してコート層を形成する。浸漬式コート法では、コート用樹脂を溶剤に溶解した塗布液中に磁性体粒子を浸漬して塗布処理し、次いで乾燥してコート層を形成する。重合法では、反応性化合物を溶剤に溶解した塗布液中に磁性体粒子を浸漬して塗布処理し、次いで熱等を加えて重合反応を行いコート層を形成する。
乾式コート法では、コートしようとする粒子(磁性体粒子)の表面に樹脂粒子を被着させ、その後機械的衝撃力を加えて、コートしようとする粒子表面に被着した樹脂粒子を溶融あるいは軟化させて固着し、コート層を形成する。例えば、芯材(磁性体粒子)、樹脂、荷電制御粒子及び低抵抗微粒子を、非加熱下もしくは加熱下で機械的衝撃力を付与できる高速攪拌混合機で高速攪拌して、当該混合物に衝撃力を繰り返して付与し、磁性体粒子の表面に樹脂を溶融あるいは軟化させて固着したキャリアを製造する。加熱する場合には、60〜125℃が好ましい。加熱温度が過大になると、キャリア粒子同士の凝集が発生しやすくなるためである。
本発明に用いるキャリアの平均粒径は10〜150μm、特に20〜100μmであることが好ましい。キャリアの平均粒径は、前記レーザー回折式粒度分布測定装置「HELOS」(シンパテック社製)により測定された値を用いている。
キャリアの動的電流値は0.05〜0.6μA、特に0.1〜0.5μAが好ましい。電流値が小さすぎると、スリーブから現像ローラへのトナー供給性が低下する。電流値が大きすぎると、現像ローラからスリーブへのトナー回収性が低下する。
本明細書中、キャリアの動的電流値(CDC値)は、図7に概略的に示す構成を有する装置を使用して以下の方法で測定された値を用いている。
アルミスリーブ(212)にキャリア(210)をセットし、スリーブ(212)を回転させながら直流電源(214)により電圧を印加する。スリーブ(212)からキャリア(210)およびアルミ管(213)を通じて電流計(215)に流れる電流を測定する。測定条件は以下の通りである。
・スリーブ回転数:50rpm
・印加電圧 :500V
・サンプル量 :5g
・スリーブ(212)
長手方向長さ:55mm、直径:31mm、マグネット磁力:1000ガウス、マグネット磁極数:8本
・アルミ管(213)
長手方向長さ:55mm、直径:30mm
アルミスリーブ(212)にキャリア(210)をセットし、スリーブ(212)を回転させながら直流電源(214)により電圧を印加する。スリーブ(212)からキャリア(210)およびアルミ管(213)を通じて電流計(215)に流れる電流を測定する。測定条件は以下の通りである。
・スリーブ回転数:50rpm
・印加電圧 :500V
・サンプル量 :5g
・スリーブ(212)
長手方向長さ:55mm、直径:31mm、マグネット磁力:1000ガウス、マグネット磁極数:8本
・アルミ管(213)
長手方向長さ:55mm、直径:30mm
キャリアとトナーとの混合比は所望のトナー帯電量が得られるよう調整されれば良く、トナー混合比はトナーとキャリアとの合計量に対して3〜50重量%、好ましくは6〜30重量%が好ましい。
〔画像形成装置〕
本発明の現像剤はハイブリッド現像装置および当該現像装置を備えた画像形成装置に使用される。ハイブリッド現像方式とは、二成分現像剤を第1の搬送部材(搬送ローラ)の外周面に保持して、第2の搬送部材(現像ローラ)との対向領域まで搬送し、トナーを選択的に第2の搬送部材の外周面に供給して、第2の搬送部材の外周面にトナー薄層を形成し、該トナー薄層を用いて静電潜像担持体上の静電潜像を現像するものである。
本発明の現像剤はハイブリッド現像装置および当該現像装置を備えた画像形成装置に使用される。ハイブリッド現像方式とは、二成分現像剤を第1の搬送部材(搬送ローラ)の外周面に保持して、第2の搬送部材(現像ローラ)との対向領域まで搬送し、トナーを選択的に第2の搬送部材の外周面に供給して、第2の搬送部材の外周面にトナー薄層を形成し、該トナー薄層を用いて静電潜像担持体上の静電潜像を現像するものである。
以下、添付図面を参照して本発明の好適な実施形態を説明する。なお、以下の説明では、特定の方向を意味する用語(例えば、「上」、「下」、「左」、「右」、およびそれらを含む他の用語、「時計回り方向」、「反時計回り方向」)を使用するが、それらの使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明は限定的に解釈されるべきものでない。また、以下に説明する画像形成装置及び現像装置では、同一又は類似の構成部分には同一の符号を用いている。
図1は、本発明に係る電子写真式画像形成装置の画像形成に関連する部分の一例を示す。画像形成装置は、複写機、プリンタ、ファクシミリ、およびそれらの機能を複合的に備えた複合機のいずれであってもよい。画像形成装置11は、静電潜像坦持体である感光体12を有する。実施形態において、感光体12は円筒体で構成されているが、本発明はそのような形態に限定されるものでなく、代わりに無端ベルト式の感光体も使用可能である。感光体12は、図示しないモータに駆動連結されており、モータの駆動に基づいて矢印14方向に回転するようにしてある。感光体12の周囲には、感光体12の回転方向に沿って、帯電ステーション16、露光ステーション18、現像ステーション20、転写ステーション22、およびクリーニングステーション24が配置されている。
帯電ステーション16は、感光体12の外周面である感光体層を所定の電位に帯電する帯電装置26を備えている。実施形態では、帯電装置26は円筒形状のローラとして表されているが、これに代えて他の形態の帯電装置(例えば、回転型又は固定型のブラシ式帯電装置、ワイヤ放電式帯電装置)も使用できる。露光ステーション18は、感光体12の近傍又は感光体12から離れた場所に配置された露光装置28から出射された画像光30が、帯電された感光体12の外周面に向けて進行するための通路32を有する。露光ステーション18を通過した感光体12の外周面には、画像光が投射されて電位の減衰した部分とほぼ帯電電位を維持する部分からなる、静電潜像が形成される。実施形態では、電位の減衰した部分が静電潜像画像部、ほぼ帯電電位を維持する部分が静電潜像非画像部である。現像ステーション20は、粉体現像剤を用いて静電潜像を可視像化する現像装置34を有する。現像装置34の詳細は後に説明する。転写ステーション22は、感光体12の外周面に形成された可視像を紙やフィルムなどのシート38に転写する転写装置36を有する。実施形態では、転写装置36は円筒形状のローラとして表されているが、他の形態の転写装置(例えば、ワイヤ放電式転写装置)も使用できる。クリーニングステーション24は、転写ステーション22でシート38に転写されることなく感光体12の外周面に残留する未転写トナーを感光体12の外周面から回収するクリーニング装置40を有する。実施形態では、クリーニング装置40は板状のブレードとして示されているが、代わりに他の形態のクリーニング装置(例えば、回転型又は固定型のブラシ式クリーニング装置)も使用できる。
このような構成を備えた画像形成装置11の画像形成時、感光体12はモータ(図示せず)の駆動に基づいて時計周り方向に回転する。このとき、帯電ステーション16を通過する感光体外周部分は、帯電装置26で所定の電位に帯電される。帯電された感光体外周部分は、露光ステーション18で画像光30が露光されて静電潜像が形成される。静電潜像は、感光体12の回転と共に現像ステーション20に搬送され、そこで現像装置34によって現像剤像として可視像化される。可視像化された現像剤像は、感光体12の回転と共に転写ステーション22に搬送され、そこで転写装置36によりシート38に転写される。現像剤像が転写されたシート38は図示しない定着ステーションに搬送され、そこでシート38に現像剤像が固定される。転写ステーション22を通過した感光体外周部分はクリーニングステーション24に搬送され、そこでシート38に転写されることなく感光体12の外周面に残存する現像剤が回収される。
〔現像装置〕
現像装置34は、本発明の現像剤10と以下に説明する種々の部材を収容する現像槽(ハウジング)42を備えている。図面を簡略化することで発明の理解を容易にするため、現像槽42の一部は削除してある。現像槽42は感光体12に向けて開放された一連の開口部(44、52)を備えており、この開口部44の近傍に形成された空間46にトナー搬送部材(第2の搬送部材)である現像ローラ48が設けてある。現像ローラ48は、円筒状の部材(第2の回転円筒体)であり、感光体12と平行に且つ感光体12の外周面と所定の現像ギャップ50を介して、回転可能に配置されている。
現像装置34は、本発明の現像剤10と以下に説明する種々の部材を収容する現像槽(ハウジング)42を備えている。図面を簡略化することで発明の理解を容易にするため、現像槽42の一部は削除してある。現像槽42は感光体12に向けて開放された一連の開口部(44、52)を備えており、この開口部44の近傍に形成された空間46にトナー搬送部材(第2の搬送部材)である現像ローラ48が設けてある。現像ローラ48は、円筒状の部材(第2の回転円筒体)であり、感光体12と平行に且つ感光体12の外周面と所定の現像ギャップ50を介して、回転可能に配置されている。
現像ローラ48の背後には、開口部としての別の空間52が形成されている。空間52には、現像剤搬送部材(第1の搬送部材)である搬送ローラ54が、現像ローラ48と平行に且つ現像ローラ48の外周面と所定の供給回収ギャップ56を介して配置されている。搬送ローラ54は、回転不能に固定された磁石体58と、磁石体58の周囲を回転可能に支持された円筒スリーブ60(第1の回転円筒体)を有する。スリーブ60の上方には、現像槽42に固定され、スリーブ60の中心軸と平行に伸びる規制板62が、所定の規制ギャップ64を介して対向配置されている。
磁石体58は、搬送ローラ54の内面に対向し、搬送ローラ54の中心軸方向に伸びる、複数の磁極を有する。実施形態では、複数の磁極は、規制板62の近傍にある搬送ローラ54の上部内周面部分に対向する磁極S1、供給回収ギャップ56の近傍にある搬送ローラ54の左側内周面部分に対向する磁極N1、搬送ローラ54の下部内周面部分に対向する磁極S2、搬送ローラ54の右側内周面部分に対向する、2つの隣接する同極性の磁極N2,N3を含む。
搬送ローラ54の背後には、現像剤撹拌室66が形成されている。撹拌室66は、搬送ローラ54の近傍に形成された前室68と搬送ローラ54から離れた後室70を有する。前室68には図面の表面から裏面に向かって現像剤を攪拌しながら搬送する前攪拌搬送部材である前スクリュー72が回転可能に配置され、後室70には図面の裏面から表面に向かって現像剤を攪拌しながら搬送する後攪拌部材搬送部材である後スクリュー74が回転可能に配置されている。図示するように、前室68と後室70は、両者の間に設けた隔壁76で分離してもよい。この場合、前室68と後室70の両端近傍にある隔壁部分は除かれて連絡通路が形成されており、前室68の下流側端部に到達した現像剤が連絡通路を介して後室70へ送り込まれ、また後室70の下流側端部に到達した現像剤が連絡通路を介して前室68に送り込まれるようにしてある。
このように構成された現像装置34の動作を説明する。画像形成時、図示しないモータの駆動に基づいて、現像ローラ48とスリーブ60はそれぞれ矢印78,80方向に回転する。前スクリュー72は矢印82方向に回転し、後スクリュー74は矢印84方向に回転する。これにより、現像剤撹拌室66に収容されている現像剤10は、前室68と後室70を循環搬送されながら、攪拌される。その結果、現像剤に含まれるトナー(トナー粒子)とキャリアが摩擦接触し、互いに逆の極性に帯電される。
帯電された現像剤10は、前スクリュー72によって前室68を搬送される過程で搬送ローラ54に供給される。前スクリュー72から搬送ローラ54に供給された現像剤10は、磁極N3の近傍で、磁極N3の磁力によって、スリーブ60の外周面に保持される。スリーブ60に保持された現像剤10は、磁石体58によって形成された磁力線に沿って磁気ブラシを構成しており、スリーブ60の回転に基づいて反時計周り方向に搬送される。規制板62の対向領域(規制領域86)で磁極S1に保持されている現像剤10は、規制板62により、規制ギャップ64を通過する量が所定量に規制される。規制ギャップ64を通過した現像剤10は、磁極N1が対向する、現像ローラ48と搬送ローラ54が対向する領域(供給回収領域)88に搬送される。供給回収領域88のうち、主にスリーブ60の回転方向に関して上流側の領域(供給領域)90では、現像ローラ48とスリーブ60との間に形成された電界の存在により、キャリアに付着しているトナーが現像ローラ48に電気的に供給される。また、供給回収領域88のうち、主にスリーブ60の回転方向に関して下流側の領域(回収領域)92では、現像に寄与することなく供給回収領域88に送り戻された現像ローラ48上のトナーが、磁極N1の磁力線に沿って形成されている磁気ブラシに掻き取られてスリーブ60に回収される。キャリアは磁石体58の磁力によってスリーブ60の外周面に保持されており、スリーブ60から現像ローラ48に移動することはない。本発明において、逆極性粒子はキャリアとともに挙動してキャリアのトナー帯電能の低下を抑制する。
供給回収領域88を通過した現像剤10は、磁石体58の磁力に保持され、スリーブ60の回転と共に磁極S2の対向部を通過して磁極N2とN3の対向領域(放出領域94)に到達すると、磁極N2とN3によって形成される反発磁界によってスリーブ60の外周面から前室68に放出され、前室68を搬送されている現像剤10に混合される。
供給領域90で現像ローラ48に保持されたトナーは、現像ローラ48の回転と共に反時計周り方向に搬送され、感光体12と現像ローラ48が対向する領域(現像領域)96で、感光体12の外周面に形成されている静電潜像画像部に付着する。実施形態の画像形成装置では、感光体12の外周面は帯電装置26で負極性の所定の電位VHが付与され、露光装置28で画像光30が投射された静電潜像画像部が所定の電位VLまで減衰し、露光装置28で画像光30が投射されていない静電潜像非画像部はほぼ帯電電位VHを維持している。したがって、現像領域96では、感光体12と現像ローラ48との間に形成されている電界の作用を受けて、負極性に帯電したトナーが静電潜像画像部に付着し、この静電潜像を現像剤像として可視像化する。現像ローラ48表面に薄層形態で保持されて現像領域に搬送されるトナー量は3〜10g/m2であることが好ましい。
このようにして現像剤10からトナーが消費されると、消費された量に見合う量のトナーが現像剤10に補給されることが好ましい。そのために、現像装置34は、現像槽42に収容されているトナーとキャリアの混合比を測定する手段を備えている。また、後室70の上方にはトナー補給部98が設けてある。トナー補給部98は、トナーを収容するための容器100を有する。容器100の底部には開口部102が形成されており、この開口部102に補給ローラ104が配置されている。補給ローラ104は図示しないモータに駆動連結されており、トナーとキャリアの混合比を測定する手段の出力に基づいてモータが駆動し、トナーが後室70に落下補給するようにしてある。
〔電界形成手段〕
供給領域90でスリーブ60から現像ローラ48にトナーを効率的に移動させるために、現像ローラ48とスリーブ60は電界形成装置110と電気的に接続されている。電源の具体例が図2A〜図6に示してある。
供給領域90でスリーブ60から現像ローラ48にトナーを効率的に移動させるために、現像ローラ48とスリーブ60は電界形成装置110と電気的に接続されている。電源の具体例が図2A〜図6に示してある。
図2Aに示す実施形態1の電界形成装置110は、現像ローラ48に接続された第1の電源112(第2の電界形成手段に相当する)とスリーブ60に接続された第2の電源114(第1の電界形成手段に相当する)を有する。第1の電源112は、現像ローラ48とグランド116との間に接続された直流電源118を有し、トナーの帯電極性と同一極性の第1の直流電圧VDC1(例えば、−200ボルト)を現像ローラ48に印加している。第2の電源114は、スリーブ60とグランド116との間に接続された直流電源120を有し、トナーの帯電極性と同一極性で且つ第1の直流電圧よりも高圧の第2の直流電圧VDC2(例えば、−400ボルト)をスリーブ60に印加する。この結果、供給領域90では、現像ローラ48とスリーブ60との間に形成された直流電界の作用を受けて、負極性に帯電しているトナーがスリーブ60から現像ローラ48に電気的に吸引される。このとき、正極性に帯電しているキャリアは、スリーブ60から現像ローラ48に吸引されることはない。また、現像領域96では、現像ローラ48に保持されている負極性トナーが、図2Bに示すように、現像ローラ48(VDC1:−200ボルト)と静電潜像画像部(VL:−80ボルト)との電位差に基づき、静電潜像画像部に付着する。このとき、負極性トナーは、現像ローラ48(VDC1:−200ボルト)と静電潜像非画像部(VH:−600ボルト)との電位差により、静電潜像非画像部に付着することはない。
実施形態2に係る図3Aの電界形成装置122において、第1の電源124(第2の電界形成手段に相当する)は、実施形態1の電源と同様に、現像ローラ48とグランド126との間に接続された直流電源128を有し、トナーの帯電極性と同一極性の第1の直流電圧VDC1(例えば、−200ボルト)を現像ローラ48に印加している。第2の電源130(第1の電界形成手段に相当する)は、スリーブ60とグランド126との間に直流電源132と交流電源134を有する。直流電源132は、トナーの帯電極性と同一極性で且つ第1の直流電圧よりも高圧の第2の直流電圧VDC2(例えば、−400ボルト)をスリーブ60に印加している。図3Bに示すように、交流電源134は、スリーブ60とグランド126との間にピーク・ツー・ピーク電圧VP−Pが例えば300ボルトの交流電圧VACを印加する。その結果、供給領域90では、現像ローラ48とスリーブ60との間に形成された脈流電界の作用を受けて、負極性に帯電しているトナーがスリーブ60から現像ローラ48に電気的に吸引される。このとき、正極性に帯電しているキャリアは、スリーブ60の内部の固定磁石の磁力によってスリーブ60に保持され、現像ローラ48に供給されることはない。また、現像領域96では、現像ローラ48に保持されている負極性トナーは、現像ローラ48(VDC1:−200ボルト)と静電潜像画像部(VL:−80ボルト)との電位差に基づき、静電潜像画像部に付着する。
図4Aに示す電界形成装置136において、第1の電源138は、現像ローラ48とグランド140との間に直流電源142と交流電源144を有する。直流電源142は、トナーの帯電極性と同一極性の第1の直流電圧VDC1(例えば、−200ボルト)をスリーブ60および現像ローラ48に印加する。交流電源144は、スリーブ60および現像ローラ48とグランド146との間に振幅(ピーク・ツー・ピーク電圧)VP−Pが例えば1,600ボルトの交流電圧VACを印加する。第2の電源146(第1の電界形成手段に相当する)は、現像ローラ48と交流電源144との間の端子148とスリーブ60との間に接続された直流電源150を有する。直流電源150は、所定の直流電圧VDC2を出力することができ、陽極が端子148、陰極がスリーブ60に接続されており、これにより、スリーブ60が現像ローラ48に対して負極性にバイアスされている(図4B参照)。したがって、供給領域90では、現像ローラ48とスリーブ60との間に形成された脈流電界の作用を受けて、負極性に帯電しているトナーがスリーブ60から現像ローラ48に電気的に吸引される。また、現像領域96では、現像ローラ48上の負極性トナーが、現像ローラ48(VDC1:−200ボルト)と静電潜像画像部(VL:−80ボルト)との電位差に基づき、静電潜像画像部に付着する。
図5に示す電界形成装置152は、図2Aに示す実施形態1の電界形成装置110において、第1の電源112と第2の電源114にそれぞれ交流電源154,156を追加したものである。交流電源154,156の出力電圧はVAC1,VAC2である。電圧VAC1,VAC2は同一であってもよいし、違ってもよい。図6に示す電界形成装置158は、図2Aに示す実施形態の電源において、第1の電源112に交流電源160を追加したものである。交流電源160の出力電圧はVACである。これらの形態の電界形成装置152,158も、電界形成装置110,122,136と同様に、現像ローラ48とスリーブ60との間に形成された脈流電界の作用を受けて、供給領域90では負極性に帯電しているトナーをスリーブ60から現像ローラ48に供給し、現像領域96では負極性に帯電しているトナーを現像ローラ48から静電潜像画像部(VL:−80ボルト)との電位差に基づき、静電潜像画像部に供給する。
上記画像形成装置および現像装置では、トナー粒子とキャリアとの摩擦接触によりトナー粒子は負極性、キャリアは正極性に帯電される。また、逆極性粒子はキャリアとの接触により正極性に帯電し、小径同極性粒子および大径同極性粒子はキャリアとの接触により負極性に帯電する。本発明に用いるトナー粒子、キャリア、逆極性粒子、小径同極性粒子および大径同極性粒子の帯電性は、そのような組み合わせに限られるものでない。具体的には、トナー粒子とキャリアとの摩擦接触によりトナー粒子が正極性、キャリアが負極性に帯電され、逆極性粒子がキャリアとの接触により負極性に帯電するとともに、小径同極性粒子および大径同極性粒子がキャリアとの接触により正極性に帯電する組み合わせであってもよい。
以下、実施例により本発明を詳しく説明するが、本発明は以下の実施例に制限されるものでないことは明らかである。「部」は「重量部」を意味するものとする。
<キャリアA>
体積平均粒径50μmのMgフェライト球にポリメチルメタクリレート樹脂を乾式コート法でコートしたものをキャリアAとして用いた。キャリアの動的電流値は0.3μA、平均粒径は53μmであった。キャリアの飽和磁化は50Am2/kgであった。
<キャリアB>
体積平均粒径50μmのMgフェライト球にシリコーン樹脂を流動層式スプレーコート法でコートしたものをキャリアBとして用いた。キャリアの動的電流値は0.5μA、平均粒径は51μmであった。キャリアの飽和磁化は50Am2/kgであった。
体積平均粒径50μmのMgフェライト球にポリメチルメタクリレート樹脂を乾式コート法でコートしたものをキャリアAとして用いた。キャリアの動的電流値は0.3μA、平均粒径は53μmであった。キャリアの飽和磁化は50Am2/kgであった。
<キャリアB>
体積平均粒径50μmのMgフェライト球にシリコーン樹脂を流動層式スプレーコート法でコートしたものをキャリアBとして用いた。キャリアの動的電流値は0.5μA、平均粒径は51μmであった。キャリアの飽和磁化は50Am2/kgであった。
<トナー粒子A>
(第1段重合;ミニエマルジョン重合)
スチレン 175g
n−ブチルアクリレート 60g
メタクリル酸 15g
n−オクチル−3−メルカプトプロピオネート 7g
からなる単量体混合液を攪拌装置を取り付けた反応容器に入れ、そこにペンタエリスリトールテトラベヘン酸エステル100gを添加し、70℃に加温し溶解して単量体溶液を調製した。
(第1段重合;ミニエマルジョン重合)
スチレン 175g
n−ブチルアクリレート 60g
メタクリル酸 15g
n−オクチル−3−メルカプトプロピオネート 7g
からなる単量体混合液を攪拌装置を取り付けた反応容器に入れ、そこにペンタエリスリトールテトラベヘン酸エステル100gを添加し、70℃に加温し溶解して単量体溶液を調製した。
一方、ポリオキシエチレン(2)ドデシルエーテル硫酸ナトリウム2gをイオン交換水1350gに溶解させた界面活性剤溶液を70℃に加温し、前記単量体溶液に添加混合した後、循環径路を有する機械式分散機「クリアミックス」(エム・テクニック社製)により、70℃で30分間分散を行い、乳化分散液を調製した。
次いで、この分散液に、過硫酸カリウム7.5gをイオン交換水150gに溶解させた開始剤溶液を添加し、この系を78℃にて1.5時間にわたり加熱攪拌することにより重合を行い、樹脂粒子の分散液を得た。これを「樹脂粒子1の分散液」とする。
(第2段重合;外層の形成)
上記のようにして得られた「樹脂粒子1の分散液」に過硫酸カリウム12gをイオン交換水220gに溶解させた開始剤溶液を添加し、80℃の温度条件下に
スチレン 320g
n−ブチルアクリレート 100g
メタクリル酸 35g
n−オクチル−3−メルカプトプロピオネート 7.5g
からなる単量体混合液を1時間かけて滴下した。滴下終了後、2時間にわたり加熱攪拌することにより重合を行った。その後、28℃まで冷却し「樹脂粒子2の分散液」を得た。
上記のようにして得られた「樹脂粒子1の分散液」に過硫酸カリウム12gをイオン交換水220gに溶解させた開始剤溶液を添加し、80℃の温度条件下に
スチレン 320g
n−ブチルアクリレート 100g
メタクリル酸 35g
n−オクチル−3−メルカプトプロピオネート 7.5g
からなる単量体混合液を1時間かけて滴下した。滴下終了後、2時間にわたり加熱攪拌することにより重合を行った。その後、28℃まで冷却し「樹脂粒子2の分散液」を得た。
(着色剤粒子分散液)
ドデシル硫酸ナトリウム90gをイオン交換水1600gに攪拌溶解し溶液を調製した。この溶液を攪拌しながら、カーボンブラック「リーガル330R」(キャボット社製)400.0gを徐々に添加し、次いで、機械式分散機「クリアミックス」(エム・テクニック社製)を用いて分散処理して着色剤粒子分散液を調製した。この分散液中の着色剤粒子の粒子径を電気泳動光散乱光度計「ELS−800」(大塚電子社製)を用いて測定したところ、110nmであった。
ドデシル硫酸ナトリウム90gをイオン交換水1600gに攪拌溶解し溶液を調製した。この溶液を攪拌しながら、カーボンブラック「リーガル330R」(キャボット社製)400.0gを徐々に添加し、次いで、機械式分散機「クリアミックス」(エム・テクニック社製)を用いて分散処理して着色剤粒子分散液を調製した。この分散液中の着色剤粒子の粒子径を電気泳動光散乱光度計「ELS−800」(大塚電子社製)を用いて測定したところ、110nmであった。
((凝集・融着)会合工程)
樹脂粒子2の分散液 2000g
イオン交換水 670g
着色剤粒子分散液 400g
上記液を、温度センサ、冷却管、窒素導入装置、攪拌装置を取り付けた5Lの反応容器に入れ、攪拌し、液温を30℃に調整した後、この溶液に5Nの水酸化ナトリウム水溶液を加えてpHを10に調整した。
樹脂粒子2の分散液 2000g
イオン交換水 670g
着色剤粒子分散液 400g
上記液を、温度センサ、冷却管、窒素導入装置、攪拌装置を取り付けた5Lの反応容器に入れ、攪拌し、液温を30℃に調整した後、この溶液に5Nの水酸化ナトリウム水溶液を加えてpHを10に調整した。
次いで、塩化マグネシウム・6水和物60gをイオン交換水60gに溶解した水溶液を、攪拌下、30℃にて10分間かけて添加した。3分間放置した後に昇温を開始し、この系を60分間かけて90℃まで昇温し、粒子径を成長させ、会合反応を行った。その状態で、「コルターマルチサイザーIII」(ベックマン・コールター社製)にて会合粒子の粒径を測定し、体積基準におけるメディアン粒径が6.5μmになった時点で、塩化ナトリウム8.5gをイオン交換水35gに溶解した水溶液を添加し、粒子成長を停止させた後、融着のため、3時間にわたり加熱攪拌を継続した。
その後、30℃まで冷却し、塩酸を添加してpHを2.0に調整し、攪拌を停止した。成長した会合粒子を濾過し、35℃のイオン交換水で繰り返し洗浄し、その後、40℃の温風で乾燥することによりトナー粒子を得た。トナー粒子の体積平均径は6.5μm、平均円形度は0.960、ガラス転移点は50℃であった。
<トナー粒子B〜E>
塩化ナトリウム水溶液の添加のタイミングおよび融着のための撹拌継続時間を適宜調整することにより、各種平均径および平均円形度を有するトナー粒子を得た。
塩化ナトリウム水溶液の添加のタイミングおよび融着のための撹拌継続時間を適宜調整することにより、各種平均径および平均円形度を有するトナー粒子を得た。
<逆極性粒子>
逆極性粒子には、市販のチタン酸ストロンチウム(SW100:チタン工業社製)を分級して粒径を調整して用いた。
逆極性粒子には、市販のチタン酸ストロンチウム(SW100:チタン工業社製)を分級して粒径を調整して用いた。
<小径同極性粒子>
小径同極性粒子には、市販のシリカ(R972:日本アエロジル社製)を分級して粒径を調整して用いた。
小径同極性粒子には、市販のシリカ(R972:日本アエロジル社製)を分級して粒径を調整して用いた。
<大径同極性粒子>
大径同極性粒子には、市販の酸化チタン粒子(STT30S:チタン工業社製)を分級して粒径を調整して用いた。
大径同極性粒子には、市販の酸化チタン粒子(STT30S:チタン工業社製)を分級して粒径を調整して用いた。
<実施例/比較例>
所定のトナー粒子に対して、表1または表2に記載の逆極性粒子、小径同極性粒子および大径同極性粒子をそれぞれ所定量で同時に添加し、ヘンシェルミキサーにより10分間混合し、トナーを得た。得られたトナーと、所定のキャリアとを、トナー:キャリアが10:90の重量割合になるように混合して現像剤を得た。現像剤を図1に示す形態の画像形成装置に搭載した。この画像形成装置を用いて、画像比率5%のサンプルを200万枚プリントした。トナーは残量が少なくなるごとに補給した。
所定のトナー粒子に対して、表1または表2に記載の逆極性粒子、小径同極性粒子および大径同極性粒子をそれぞれ所定量で同時に添加し、ヘンシェルミキサーにより10分間混合し、トナーを得た。得られたトナーと、所定のキャリアとを、トナー:キャリアが10:90の重量割合になるように混合して現像剤を得た。現像剤を図1に示す形態の画像形成装置に搭載した。この画像形成装置を用いて、画像比率5%のサンプルを200万枚プリントした。トナーは残量が少なくなるごとに補給した。
現像条件は以下の通りであった。電界形成装置は、図6に示す形態を採用し、搬送ローラに直流電圧VDC2:−500ボルトを印加し、現像ローラには、直流電圧VDC1:−300ボルトと交流電圧を印加した。交流電圧は、周波数:2kHz、振幅VP−P:1,600ボルト、マイナスデューティ比(トナー回収デューティ比):40%、プラスデューティ比(トナー供給デューティ比):60%の矩形波であった。現像ギャップ50は0.3mmに設定し、供給回収ギャップ56は0.6mmに設定し、搬送ローラの現像剤搬送量は50mg/cm2となるように規制部を設定した。感光体の帯電電位(非画像部)は−550ボルト、感光体に形成された静電潜像像(画像部)の電位は−60ボルトであった。現像ローラのトナー搬送量は5g/m2であった。
・画像濃度
耐刷後に印字したベタ画像の濃度を測定した。画像の濃度は、マクベス社製透過濃度計を使用して測定した。
◎;濃度≧1.5;
○;1.3≦濃度<1.5;
△;1.1≦濃度<1.3(実用上問題あり);
×;濃度<1.1。
耐刷後に印字したベタ画像の濃度を測定した。画像の濃度は、マクベス社製透過濃度計を使用して測定した。
◎;濃度≧1.5;
○;1.3≦濃度<1.5;
△;1.1≦濃度<1.3(実用上問題あり);
×;濃度<1.1。
・帯電量
耐刷前および耐刷後において現像剤を取り出し、キャリアに対するトナーの帯電量をブローオフ法で測定した。帯電量の変化量の絶対値が20μC/g以下であれば実用上問題のない範囲内であり、当該値を超えると実用上問題のある範囲である。当該値が10μC/g以下であれば特に好ましいレベルである。
耐刷前および耐刷後において現像剤を取り出し、キャリアに対するトナーの帯電量をブローオフ法で測定した。帯電量の変化量の絶対値が20μC/g以下であれば実用上問題のない範囲内であり、当該値を超えると実用上問題のある範囲である。当該値が10μC/g以下であれば特に好ましいレベルである。
・帯電性
各実施例において現像剤に使用された新規なトナー粒子、逆極性粒子、小径同極性粒子および大径同極性粒子の所定のキャリアに対する帯電量をブローオフ法で測定した。詳しくは、トナー粒子、逆極性粒子、小径同極性粒子または大径同極性粒子を20重量部と、所定のキャリアを80重量部とを一定の時間だけ混合して、ブローオフ法で帯電量を測定したところ、いずれの実施例の組み合わせにおいても、小径同極性粒子<大径同極性粒子<トナー粒子<逆極性粒子の関係を満たしていた。
各実施例において現像剤に使用された新規なトナー粒子、逆極性粒子、小径同極性粒子および大径同極性粒子の所定のキャリアに対する帯電量をブローオフ法で測定した。詳しくは、トナー粒子、逆極性粒子、小径同極性粒子または大径同極性粒子を20重量部と、所定のキャリアを80重量部とを一定の時間だけ混合して、ブローオフ法で帯電量を測定したところ、いずれの実施例の組み合わせにおいても、小径同極性粒子<大径同極性粒子<トナー粒子<逆極性粒子の関係を満たしていた。
10:現像剤、11:画像形成装置、12:感光体、16:帯電ステーション、18:露光ステーション、20:現像ステーション、22:転写ステーション、24:クリーニングステーション、26:帯電装置、28:露光装置、30:画像光、32:通路、34:現像装置、36:転写装置、38:シート、40:クリーニング装置、42:現像槽(ハウジング)、44:開口部、46:第2の空間、48:現像ローラ、50:現像ギャップ、52:開口部(第2の空間)、54:搬送ローラ、56:供給回収ギャップ、58:磁石体、60:スリーブ、62:規制板、64:規制ギャップ、66:現像剤攪拌室、68:前室、70:後室、72:前スクリュー、74:後スクリュー、76:隔壁、86:規制領域、88:供給回収領域、90:供給領域、92:回収領域、94:放出領域、96:現像領域、98:トナー補給部、100:容器、102:開口部、104:補給ローラ、110:電界形成装置。
Claims (5)
- バインダー樹脂および着色剤を含有し、平均円形度が0.945〜0.985のトナー粒子;
該トナー粒子との摩擦接触によってトナー粒子を帯電させるキャリア;
該キャリアとの摩擦接触によってトナー粒子の帯電極性とは逆の極性に帯電される逆極性粒子;および
該キャリアとの摩擦接触によってトナー粒子の帯電極性と同極性に帯電される少なくとも2種類の同極性粒子を含み、
逆極性粒子の粒径分布におけるピーク粒径が0.08〜0.70μm、逆極性粒子の含有量がトナー粒子100重量部に対して0.08〜2.00重量部であり、
同極性粒子が、粒径分布におけるピーク粒径が4〜40nm、含有量がトナー粒子100重量部に対して0.09〜2.2重量部の小径同極性粒子、および粒径分布におけるピーク粒径が50〜220nm、含有量がトナー粒子100重量部に対して0.04〜1.1重量部の大径同極性粒子を含むことを特徴とするハイブリッド現像用現像剤。 - トナー粒子が乳化重合会合法により製造された請求項1に記載のハイブリッド現像用現像剤。
- 小径同極性粒子および大径同極性粒子がトナー粒子との摩擦接触によって、キャリアに対するトナー粒子の帯電極性と同極性に帯電される請求項1または2に記載のハイブリッド現像用現像剤。
- キャリアの動的電流値が0.05〜0.6μAである請求項1〜3のいずれかに記載のハイブリッド現像用現像剤。
- 請求項1〜4のいずれかに記載のハイブリッド現像用現像剤を備えた画像形成装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008189898A JP2010026388A (ja) | 2008-07-23 | 2008-07-23 | ハイブリッド現像用現像剤および画像形成装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008189898A JP2010026388A (ja) | 2008-07-23 | 2008-07-23 | ハイブリッド現像用現像剤および画像形成装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010026388A true JP2010026388A (ja) | 2010-02-04 |
Family
ID=41732258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008189898A Pending JP2010026388A (ja) | 2008-07-23 | 2008-07-23 | ハイブリッド現像用現像剤および画像形成装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010026388A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011253007A (ja) * | 2010-06-01 | 2011-12-15 | Mitsubishi Chemicals Corp | 2成分現像剤を用いた画像形成方法 |
JP7567237B2 (ja) | 2019-09-18 | 2024-10-16 | 三菱ケミカル株式会社 | 摩擦帯電ユニット、並びに該摩擦帯電ユニットを備えた摩擦発電デバイス及び集塵デバイス |
-
2008
- 2008-07-23 JP JP2008189898A patent/JP2010026388A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011253007A (ja) * | 2010-06-01 | 2011-12-15 | Mitsubishi Chemicals Corp | 2成分現像剤を用いた画像形成方法 |
JP7567237B2 (ja) | 2019-09-18 | 2024-10-16 | 三菱ケミカル株式会社 | 摩擦帯電ユニット、並びに該摩擦帯電ユニットを備えた摩擦発電デバイス及び集塵デバイス |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4508197B2 (ja) | 現像装置および画像形成装置 | |
JP4829154B2 (ja) | 現像装置および画像形成装置 | |
JP4600531B2 (ja) | 現像装置および画像形成装置 | |
JP2009186655A (ja) | ハイブリッド現像用キャリア、ハイブリッド現像用現像剤および画像形成装置 | |
JP2009217246A (ja) | ハイブリッド現像用現像剤および画像形成装置 | |
JP2009145845A (ja) | ハイブリッド現像用キャリア、ハイブリッド現像装置および画像形成装置 | |
JP2010026388A (ja) | ハイブリッド現像用現像剤および画像形成装置 | |
JP5062012B2 (ja) | 現像装置、及び画像形成装置 | |
JP4539714B2 (ja) | ハイブリッド現像用キャリア、ハイブリッド現像装置および画像形成装置 | |
JP4941026B2 (ja) | 現像装置および画像形成装置 | |
JP4683077B2 (ja) | ハイブリッド現像用現像装置および画像形成装置 | |
JP5130753B2 (ja) | 現像装置および画像形成装置 | |
JP2010026148A (ja) | ハイブリッド現像用現像剤および画像形成装置 | |
JP5176351B2 (ja) | 現像装置および画像形成装置 | |
JP4655116B2 (ja) | ハイブリッド現像用トナー、ハイブリッド現像用現像剤および画像形成装置 | |
JP4935436B2 (ja) | 現像装置および画像形成装置 | |
JP5012113B2 (ja) | 画像形成装置 | |
JP5251648B2 (ja) | 現像装置および画像形成装置 | |
JP2008225061A (ja) | 現像装置および画像形成装置 | |
JP5251679B2 (ja) | 現像方法および画像形成装置 | |
JP2004280072A (ja) | 画像形成装置及び補給用現像剤キット | |
JP5347230B2 (ja) | 現像装置および画像形成装置 | |
JP2008225329A (ja) | 現像装置および画像形成装置 | |
JP5114983B2 (ja) | 現像装置および画像形成装置 | |
JP5135833B2 (ja) | 現像装置および画像形成装置 |