JP2010025809A - モアレ縞測定装置 - Google Patents

モアレ縞測定装置 Download PDF

Info

Publication number
JP2010025809A
JP2010025809A JP2008188772A JP2008188772A JP2010025809A JP 2010025809 A JP2010025809 A JP 2010025809A JP 2008188772 A JP2008188772 A JP 2008188772A JP 2008188772 A JP2008188772 A JP 2008188772A JP 2010025809 A JP2010025809 A JP 2010025809A
Authority
JP
Japan
Prior art keywords
pixel
image
lattice
transformation
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008188772A
Other languages
English (en)
Inventor
Akinori Fujita
明徳 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008188772A priority Critical patent/JP2010025809A/ja
Publication of JP2010025809A publication Critical patent/JP2010025809A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】余分な構成を必要とせずに、基準格子からの反射回折光によるノイズを除去することができるモアレ縞測定装置を提供することを目的とする。
【解決手段】基準格子Lからの反射回折光によるノイズ成分については、アダマール変換部32で変換された直交変換画像において、周囲の画素の画素値に対して特異な画素値を有する画素となる特異画素に変換される。したがって、特異画素算出部33で求められた特異画素の画素値を周囲の画素の画素値で補間部34が補間し、その補間部34で補間された直交変換画像に対して逆アダマール変換部35は逆アダマール変換を施して元の画像に戻すことで、ノイズを除去することになる。その結果、余分な構成を必要とせずに、基準格子Lからの反射回折光によるノイズを除去することができる。
【選択図】図1

Description

この発明は、コンパクトディスク、ハードディスク、液晶ガラス基板などの比較的滑らかな表面形状を有する被測定物体の表面形状の測定検査に利用される平行光束を用いた実体格子型のモアレ縞測定装置に関する。
図9に、一般的な発散光束を使用するモアレ縞測定装置を示す。3次元の被測定物体Mの直前に格子(基準格子)Lを配設し、点光源101から被測定物体Mに発散光束O´を照射すると、被測定物体M上に格子による明暗パターン(変形格子)が形成される。このパターンを、異なる方向(CCDカメラ102)から同じ基準格子Lを通して見ると等高線モアレ縞(等高線モアレパターン)が観測される。しかし、発散光束を用いる場合には、モアレ縞間隔が高さ(格子からの距離)によって異なり、被測定物体の表面高さ測定への利用を困難にする。また、被測定物体の表面が散乱面であればよいが、反射面では使用することができない。
これに対して、コンパクトディスク、ハードディスク、液晶ガラス基板などの比較的滑らかな表面形状を有する被測定物体に対して図10のように平行光束Oを用いたモアレ縞測定装置を適用する(図中の符号111はレーザダイオード、符号122はCCDカメラ)。基準格子Lのピッチ長さをpとし、平行光束Oと基準格子Lの垂線(基準格子Lの格子面の法線)とがなす角度をθとし、モアレ縞間隔をΔhとすると、モアレ縞間隔Δhは下記(1)式で表される。
Δh=p/2×tanθ …(1)
さらに、基準格子と被測定物体との距離を変えて、4回の撮像を行うことによって、被測定物体の高さをさらに細かい精度で求めることができる(例えば、非特許文献1参照)。また、この平行光束を用いたモアレ縞測定装置は、反射面を有する被測定物体にも適用することができる。
しかし、この平行光束を用いたモアレ縞測定装置は、目的とする等高線モアレパターンに重畳して、照射光が基準格子の格子面で反射回折された像がノイズとして混入するという欠点を持つ。
これに対して、(1)被測定物体に対して基準格子を平行状態から傾けて配置し、基準格子からの反射回折光が撮像系(撮像手段)の撮像面上に入射しない角度に設定する方法、(2)被測定物体と基準格子との間に偏向素子を配置し、基準格子からの反射回析光の偏向状態を変えて撮像前にフィルタで除去する方法が記載されている(例えば、特許文献1参照)。
また、上述した特許文献1において前記(1)の方法だけでは、上記(1)式からの誤差が生じて補正演算が必要になること、等高線モアレ縞のコントラストが低下する欠点があると指摘し、小さな傾斜角度を設定し、かつ、遮光手段を用いて基準格子からの反射回折光が撮像系の撮像面上に入射しないようにすることが記載されている(例えば、特許文献2参照)。
ところで、X線撮像装置の分野では、X線が被検体を透過したときに散乱線が生じるので、それを除去するためにX線検出器の手前にX線グリッドを配設している。X線グリッドは、X線を吸収する吸収箔(グリッド箔)とX線を透過させる中間物質(空気が介在する場合もある)とを交互に並べて配設して構成されており、散乱線がグリッド箔によって遮られることで、散乱線を除去することができる。X線検出器のサンプリング周波数FとX線グリッドのグリッド周波数Fとの大小関係によって、X線グリッドによるモアレ縞の現れ方が変わる。F>Fであれば、Fのモアレ縞が現れ、F<Fであれば、2F−Fのモアレ縞が現れる。バンドパスフィルタ処理によってモアレ縞の周波数のみを通過して、その通過したモアレ縞を除去する(例えば、特許文献3参照)。なお、通常は、X線グリッド透過後の画像に対してフーリエ変換を行って空間周波数領域上の画像に変換して、周波数解析を行う。
特開平7−332956号公報 特開2007−57313号公報 特開2000−83951号公報(第5,6頁) H. Fujiwara, Y. Otani, T. Yoshizawa, Flatness measurement by reflection moire Technique, 172-176, SPIE Vol.2862, 1996
しかしながら、上述した特許文献1,2では余分な素子の配置が必要になり、モアレ縞測定装置の構成が複雑になるという欠点を持つ。
この発明は、このような事情に鑑みてなされたものであって、余分な構成を必要とせずに、基準格子からの反射回折光によるノイズを除去することができるモアレ縞測定装置を提供することを目的とする。
この発明は、このような目的を達成するために、次のような構成をとる。
すなわち、請求項1に記載の発明は、(a)被測定物体に平行光束を照射する照射手段と、(b)その照射手段と前記被測定物体との間に挿入された基準格子と、(c)その基準格子の影を被測定物体上に形成し、この影により被測定物体上に形成される変形格子と前記基準格子との重なりによって生じる等高線モアレ縞を撮像面上に撮像する撮像手段とを備え、その撮像手段へ向かう光軸と前記照射手段からの光軸とが、基準格子の格子面の法線に対して略対称となるように構成されている実体格子型のモアレ縞測定装置であって、(A)前記基準格子に照射された照射手段からの照射光が基準格子の格子面で反射回折されて撮像手段の撮像面上にノイズとして混入した画像に対して2次元直交変換を施す2次元直交変換手段と、(B)その2次元直交変換手段で変換された直交変換画像において、周囲の画素の画素値に対して特異な画素値を有する画素となる特異画素を求める特異画素算出手段と、(C)その特異画素算出手段で求められた特異画素の画素値を周囲の画素の画素値で補間する補間手段と、(D)その補間手段で補間された直交変換画像に対して2次元逆直交変換を施す2次元逆直交変換手段とを備え、前記補間手段によって補間して、前記2次元逆直交変換手段によって元の画像に戻すことで前記ノイズを除去するものである。
[作用・効果]請求項1に記載の発明によれば、基準格子からの反射回折光によるノイズ成分については、2次元直交変換手段で変換された直交変換画像において、周囲の画素の画素値に対して特異な画素値を有する画素となる特異画素に変換される。したがって、特異画素算出手段で求められた特異画素の画素値を周囲の画素の画素値で補間手段が補間し、その補間手段で補間された直交変換画像に対して2次元逆直交変換手段は2次元逆直交変換を施して元の画像に戻すことで、ノイズを除去することになる。その結果、余分な構成を必要とせずに、基準格子からの反射回折光によるノイズを除去することができる。
上述した発明の一例は、2次元直交変換は、基準格子の格子パターンに合わせた行列変換であるとともに、2次元逆直交変換手段は、逆行列変換であることである(請求項2に記載の発明)。また、上述した発明の他の一例は、2次元直交変換は、フーリエ変換であるとともに、2次元逆直交変換手段は、逆フーリエ変換であって、直交変換画像において、基準格子と直交するx方向に対しては基準格子のピッチ周波数に基づく特定値を有する周波数に対応し、かつ、基準格子に平行なy方向に対しては直流成分に対応する直交変換画像の位置を特異画素として特異画素算出手段は求めることである(請求項4に記載の発明)。
前者の一例(請求項2に記載の発明)の場合、基準格子の格子パターンに合わせた行列変換を施すことで、変換後の画像では、一様に広い分布を持つ成分と、複数個の拡がりを有した点に変換される成分とに分けられ、変換された広い分布を持つ成分がモアレ縞成分に相当し、変換された複数個の拡がりを有した点がノイズ成分に相当する。したがって、ノイズが行列変換で変換された複数個の拡がりを有した点を特異画素として特異画素算出手段は求める。
後者の一例(請求項4に記載の発明)の場合、フーリエ変換を施すことで、フーリエ変換後のノイズ成分については、基準格子と直交するx方向に対しては基準格子のピッチ周波数に基づく特定値を有する周波数を有し、基準格子に平行なy方向に対しては直流成分となる。x方向の周波数成分については、通常では複数個の成分を持つ。このx方向およびy方向に対応する直交変換画像の位置を特異画素として特異画素算出手段は求める。
前者の一例(請求項2に記載の発明)におけるさらなる具体的な一例は、基準格子として、格子の幅と隣接する格子間の空間部幅とが同じ長さの基準格子を使用し、行列変換はアダマール変換であるとともに、逆行列変換は逆アダマール変換であって、ノイズがアダマール変換で唯一の点に変換された唯一の画素を特異画素として特異画素算出手段は求め、その特異画素の画素値を周囲の画素の画素値で補間手段が補間することである(請求項3に記載の発明)。
さらなる具体的な一例(請求項3に記載の発明)の場合、基準格子として、格子の幅と隣接する格子間の空間部幅とが同じ長さの基準格子を使用し、行列変換としてアダマール変換を適用することで、複数個の拡がりを有した点が唯一の点に集約される。したがって、アダマール変換を施すことで、変換後の画像では、一様に広い分布を持つ成分と唯一の点に変換される成分とに分けられ、変換された広い分布を持つ成分がモアレ縞成分に相当し、変換された唯一の点がノイズ成分に相当する。したがって、ノイズがアダマール変換で唯一の点に変換された唯一の画素を特異画素として特異画素算出手段は求める。
この発明に係るモアレ縞測定装置によれば、特異画素算出手段で求められた特異画素の画素値を周囲の画素の画素値で補間手段が補間し、その補間手段で補間された直交変換画像に対して2次元逆直交変換手段は2次元逆直交変換を施して元の画像に戻すことで、余分な構成を必要とせずに、基準格子からの反射回折光によるノイズを除去することができる。
以下、図面を参照してこの発明の実施例1を説明する。
図1は、実施例1に係るモアレ縞測定装置の概略図およびブロック図であり、図2は、格子の幅(格子幅)と空間部幅(スリット幅)とが同じ長さの基準格子の模式図であり、図3は、実施例1に係るモアレ縞測定装置による一連の処理の流れを示すフローチャートであり、図4は、画像とx,y方向との関係を模式的に示した図であり、図5は、n=16のときのアダマール変換と各行ベクトルとの関係を示した図である。モアレ縞測定装置は、実体格子型モアレトポグラフィー計測法に基づいて被測定物体の表面形状の測定を行う。
本実施例1に係るモアレ縞測定装置は、図1に示すように、被測定物体Mに平行光束Oを照射する照射系1と、その照射系1と被測定物体Mとの間に挿入された基準格子Lと、基準格子Lを介して被測定物体Mからの反射光を通して撮像する撮像系2と、撮像系2で撮像された画像を取り込んで画像処理を行うパーソナルコンピュータ3とを備えている。照射系1は、この発明における照射手段に相当し、基準格子Lは、この発明における基準格子に相当し、撮像系2は、この発明における撮像手段に相当する。
照射系1は、レーザ光を照射するレーザダイオード11と、レーザダイオード11から照射されたレーザ光を平行光束Oに制御するレンズ12とを備えている。本実施例1では、基準格子Lは、図2に示すように、格子の幅(以下、「格子幅」と略記する)をL1とするとともに、隣接する格子間の空間部幅(以下、「スリット幅」と呼ぶ)をL2とすると、格子幅L1とスリット幅L2とが同じである基準格子を使用している(すなわち、L1=L2)。なお、L1=L2に限らず、格子幅L1とスリット幅L2とを合わせた長さが格子のピッチPとなる。
撮像系2は、図1に示すように、基準格子Lを介して被測定物体Mからの反射光を偏向制御するレンズ21と、偏向制御された反射光を撮像面上で光学像として結像させて、撮像を行うCCDカメラ22とを備えている。また、撮像系2へ向かう光軸(被測定物体Mからの反射光)と照射系1からの光軸(平行光束O)とが、基準格子Lの格子面の法線(基準格子Lの垂線)に対して略対称となるように、照射系1,基準格子Lおよび撮像系2を配設してモアレ縞測定装置を構成している。したがって、平行光束Oと基準格子Lの垂線(基準格子Lの格子面の法線)とがなす角度をθとすると、被測定物体Mからの反射光と基準格子Lの垂線(基準格子Lの格子面の法線)とがなす角度もほぼθとなる。
基準格子Lの影を被測定物体M上に形成し、この影により被測定物体M上に形成される変形格子(明暗パターン)と基準格子Lとの重なりによって等高線モアレ縞が生じる。この等高線モアレ縞を撮像系2のCCDカメラ22の撮像面上に撮像する。また、基準格子Lに照射された照射系1からの照射光が基準格子Lの格子面で反射回折されて撮像系2のCCDカメラ22の撮像面上にノイズとして混入する。したがって、上述した光学像に等高線モアレとともにノイズが重畳する。このノイズが混入した光学像を画像としてパーソナルコンピュータ3に取り込む。
パーソナルコンピュータ3は、画像のアナログ値をディジタル値に変換するA/D変換器31と、ディジタル値に変換された画像に対して2次元直交変換の1つであるアダマール変換を施すアダマール変換部32と、アダマール変換部32で変換された直交変換画像に対して特異な画素値を有する画素となる特異画素を求める特異画素算出部33と、その特異画素算出部33で求められた特異画素の画素値を周囲の画素の画素値で補間する補間部34と、その補間部34で補間された直交変換画像に対して2次元逆直交変換の1つである逆アダマール変換を施す逆アダマール変換部35とを備えている。アダマール変換部32は、この発明における2次元直交変換手段に相当し、特異画素算出部33は、この発明における特異画素算出手段に相当し、補間部34は、この発明における補間手段に相当し、逆アダマール変換部35は、この発明における2次元逆直交変換手段に相当する。
次に、パーソナルコンピュータ3内の各構成の具体的な機能を含んだ本実施例1に係る装置の一連の処理について、図3〜図5を参照して説明する。
(ステップS1)CCDカメラで撮像
撮像系2へ向かう光軸と照射系1からの光軸とが、基準格子Lの格子面の法線に対して略対称となるように、被測定物体Mを配設する。このとき、上述した略対称となるように、照射系1,基準格子Lおよび撮像系2も配設している。照射系1のレーザダイオード11からレーザ光を照射して、レンズ12を介して平行光束Oに制御して、その平行光束Oを被測定物体Mに照射する。基準格子Lを介して被測定物体Mからの反射光を撮像系2のレンズ21が偏向制御して、CCDカメラ22の撮像面上に光学像として結像させることで、CCDカメラ22で撮像を行う。
(ステップS2)画像取り込み
CCDカメラ22で撮像された光学像を画像としてパーソナルコンピュータ3に取り込む。そして、A/D変換器31は、画像のアナログ値をディジタル値に変換する。
図2に示すように、基準格子Lにおいて格子幅L1とスリット幅L2とを等しくすれば、CCDカメラ22で撮像された画像(等高線モアレ縞の画像)のうち、ノイズを示す基準格子Lの像は、x方向に格子部N画素と空間部N画素とが交互に繰り返される像となる。なお、図4に示すように、基準格子Lと直交する方向をx方向とするとともに、基準格子Lに平行な方向をy方向とする。格子幅L1とスリット幅L2とを適切に選択して、CCDカメラ22上における等高線モアレ縞の画像の倍率を定めることによって、格子部と空間部の画素数NをN=1,2,4,8,16,…と2のべき乗に選択することができる。
(ステップS3)アダマール変換
このように取得された(ディジタル変換後の)等高線モアレ縞の画像に対して2次元直交変換の1つである2次元アダマール変換を適用する。具体的には、アダマール変換部32は、画像の各行に1次元アダマール変換を行い、さらに各列に1次元アダマール変換を行うことで2次元アダマール変換を行う。
x方向にn個,y方向にn個の画素を並べた正方の画像をベクトルとして表す。x方向に並べた各々の画素値を列ベクトルXとする。列ベクトルX中の下付き添え字nはy方向のアドレスを表し、図4に示すように、n個の列ベクトルX,X,…,Xで画像を表すことができる。1次元アダマール変換[H(n,n)]は行列として定義され、1次元アダマール変換[H(n,n)]は、ベクトルXをベクトルYに変換する。また、上述したように画像は、x方向にn個,y方向にn個の画素を並べた正方で構成されるので、ベクトルX中の要素もn個の画素値でそれぞれ表される。したがって、1次元アダマール変換[H(n,n)]はn×nの行列変換である。n=1,2,4,8,16,…に対して、下記(2)式で表される。
Figure 2010025809
ここで、n=2に対しては、[H(2,2)]は下記(3)式で定義される。
Figure 2010025809
n=2Jに対しては、[H(2J,2J)]は下記(4)式で定義される。
Figure 2010025809
したがって、例えばn=16では、[H(16,16)]は下記(5)式で定義される。
Figure 2010025809
このアダマール変換は、基準格子Lの格子パターンに合わせた行列変換であって、1次元アダマール変換[H(n,n)]の行ベクトル(図5の太枠部分を参照)においても、1次元アダマール変換[H(n,n)]の列ベクトルにおいても、“1”,“−1”の並びで表される。格子パターンの格子部,空間部のいずれか一方を“1”とするとともに、他方を“−1”とすると、1次元アダマール変換[H(n,n)]は格子パターンを要素として並べた行列変換であるとも言える。
(ステップS4)特異画素算出
ベクトルXが、1次元アダマール変換[H(n,n)]の行ベクトル(図5の太枠部分を参照)と等しい場合には、そのベクトルXは基準格子Lからの反射回折光によるノイズ(基準格子Lの像)であり、基準格子Lの格子面で反射回折された像である。ベクトルXが、1次元アダマール変換[H(n,n)]の行ベクトルと等しい場合(すなわちベクトルXがノイズである基準格子Lの像の場合)には、上記(2)式により、ベクトルYは、唯一だけ“0”でない成分を持つ。例えば、ベクトルXが、(1,−1,1,−1,1−1,1,−1,1,−1,1,−1,1,−1,1,−1)と反射回折光によるノイズとして表される場合、ベクトルXは、1次元アダマール変換[H(n,n)]の16行分の行ベクトルのうち上から2番目の行ベクトル(1,−1,1,−1,1−1,1,−1,1,−1,1,−1,1,−1,1,−1)と等しい。この場合、上記(2)式により、ベクトルYの要素のうち上から2番目は“16”の成分を持ち、ベクトルYは、(0,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0)となる。
上述したように、基準格子Lにおいて格子幅L1とスリット幅L2とを等しくすれば、CCDカメラ22で撮像された基準格子Lの像は、x方向に格子部N画素と空間部N画素とが交互に繰り返される像となる。したがって、y方向は直流となる。したがって、この基準格子Lの像に対してアダマール変換を施すことにより、ノイズである基準格子Lの像は、唯一の点に集約されて変換される。
また、特異画素の座標をωi(ただしi=1,2,3,4,…,m)とすると、L1=L2に限らない一般的な場合には、特異画素はm個(ただしm≦n)の拡がりを有する。つまり、m個の特異画素を有することになる。例えば、図5のn=16の場合に、図2の基準格子にて格子部L1の像が6画素、空間部L2の像が2画素になるように設定する。この場合には、基準格子Lの影を表すベクトルXは(1,1,1,1,1,1,−1,−1,1,1,1,1,1,1,−1,−1)と表される。上記(2)式の1次元アダマール変換によりベクトルYは、(8,0,8,0,8,0,−8,0,0,0,0,0,0,0,0,0)となりm=4となる。これは基準格子Lの像にx方向のアダマール変換を施すことに対応しており、y方向のアダマール変換は直流になるので、2次元アダマール変換により4点の特異画素を持つ。基準格子Lにおいて格子幅L1とスリット幅L2とを等しくすれば、特異画素の座標はωのみ(すなわちi=1)となり、唯一の特異画素を持つ。
一方、ノイズのない所望の等高線モアレ縞の画像は、測定対象の等高線を表す画像であり、ランダムな模様の画像であるので、基準格子Lの成分を含まない。したがって、ノイズのない等高線モアレ縞の画像に対してアダマール変換を施すと、唯一の点に集約されずに一様に広い分布を持つ。
以上をまとめると、ノイズが混入された等高線モアレ縞の画像に対しアダマール変換を施すと、一様に広い分布を持つ成分と唯一の点に変換される成分とに分けられ、変換された広い分布を持つ成分がモアレ縞成分に相当し、変換された唯一の点がノイズ成分に相当する。したがって、ノイズがアダマール変換で唯一の点に変換された唯一の画素を特異画素として特異画素算出部33は求める。
(ステップS5)補間
ステップS4で特異画素として唯一の点に変換されたら、補間部34は、特異画素の画素値(すなわちアダマール変換された変換後のノイズ成分)を、周囲の画素の画素値(アダマール変換された変換後のモアレ縞成分)で補間する。補間については、周囲の画素のうちいずれか1つの画素の画素値で置換することで補間してもよいし、周囲の画素の平均値や中央値(メディアン)で補間してもよい。
(ステップS6)逆アダマール変換
ステップS5で補間されたベクトルYに対して、2次元逆直交変換手段の1つである2次元逆アダマール変換を適用する。具体的には、逆アダマール変換部35は、アダマール変換[H(n,n)]の逆行列であるアダマール変換[H(n,n)−1をベクトルYに対して施して、ベクトルXに戻して実空間に変換する。
上述した本実施例1に係るモアレ縞測定装置によれば、基準格子Lからの反射回折光によるノイズ成分については、2次元直交変換(本実施例ではアダマール変換)で変換された直交変換画像において、周囲の画素の画素値に対して特異な画素値を有する画素となる特異画素に変換される。したがって、特異画素算出部33で求められた特異画素の画素値を周囲の画素の画素値で補間部34が補間し、その補間部34で補間された直交変換画像に対して2次元逆直交変換の1つである逆アダマール変換部35は逆アダマール変換を施して元の画像に戻すことで、ノイズを除去することになる。その結果、余分な構成を必要とせずに、基準格子Lからの反射回折光によるノイズを除去することができる。
本実施例1では、2次元直交変換は、基準格子Lの格子パターンに合わせた(n×n)の行列変換であるとともに、2次元逆直交変換手段は、(n×n)の逆行列変換である。本実施例1の場合、基準格子Lの格子パターンに合わせた行列変換を施すことで、変換後の画像では、一様に広い分布を持つ成分と、複数個(本実施例1ではm個)の拡がりを有した点ωi(ただしi=1,2,3,4,…,m かつ m≦n)に変換される成分とに分けられ、変換された広い分布を持つ成分がモアレ縞成分に相当し、変換された複数個の拡がりを有した点ωiがノイズ成分に相当する。したがって、ノイズが行列変換で変換された複数個の拡がりを有した点ωiを特異画素として特異画素算出部33は求める。
さらに、本実施例1では、基準格子Lとして、格子幅(格子の幅)L1とスリット幅(隣接する格子間の空間部幅)L2とが同じ長さの基準格子を使用し、行列変換はアダマール変換であるとともに、逆行列変換は逆アダマール変換である。このように、格子幅L1とスリット幅L2とが同じである基準格子を使用し、行列変換としてアダマール変換を適用することで、複数個の拡がりを有した点ωiが唯一の点ωのみ(すなわちi=1)に集約される。したがって、アダマール変換を施すことで、変換後の画像では、一様に広い分布を持つ成分と唯一の点に変換される成分とに分けられ、変換された広い分布を持つ成分がモアレ縞成分に相当し、変換された唯一の点がノイズ成分に相当する。したがって、ノイズがアダマール変換で唯一の点に変換された唯一の画素を特異画素として特異画素算出部33は求める。
次に、図面を参照してこの発明の実施例2を説明する。
図6は、実施例2に係るモアレ縞測定装置の概略図およびブロック図であり、図7は、実施例2に係るモアレ縞測定装置による一連の処理の流れを示すフローチャートであり、図8は、フーリエ変換後の画像に表れる特定の周波数を模式的に表した図である。なお、上述した実施例1と同じ構成については同じ符号を付して、その説明を省略する。
本実施例2に係るモアレ縞測定装置は、図6に示すように、上述した実施例1と同様に、照射系1と基準格子Lと撮像系2とパーソナルコンピュータ3とを備えている。パーソナルコンピュータ3は、上述した実施例1と同様にA/D変換器31と特異画素算出部33と補間部34とを備えているとともに、本実施例2では、ディジタル値に変換された画像に対して2次元直交変換の1つであるフーリエ変換を施すフーリエ変換部42と、補間部34で補間された直交変換画像に対して2次元逆直交変換の1つである逆フーリエ変換を施す逆フーリエ変換部45とを備えている。つまり、上述した実施例1のアダマール変換部32(図1を参照)の替わりに、本実施例2ではフーリエ変換部42を備え、上述した実施例1の逆アダマール変換部35(図1を参照)の替わりに、本実施例2では逆フーリエ変換部45とを備えている。本実施例2では、フーリエ変換部42は、この発明における2次元直交変換手段に相当し、特異画素算出部33は、この発明における特異画素算出手段に相当し、補間部34は、この発明における補間手段に相当し、逆フーリエ変換部35は、この発明における2次元逆直交変換手段に相当する。
次に、パーソナルコンピュータ3内の各構成の具体的な機能を含んだ本実施例2に係る装置の一連の処理について、図7、図8を参照して説明する。
(ステップS1)CCDカメラで撮像
上述した実施例1のステップS1と同じであるので、その説明を省略する。
(ステップS2)画像取り込み
上述した実施例1のステップS2と同じであるので、その説明を省略する。ただし、本実施例2では、基準格子Lにおいて格子幅L1とスリット幅L2とを等しくする必要はない。上述した実施例1と同様に、基準格子Lと直交する方向をx方向とするとともに、基準格子Lに平行な方向をy方向とする。また、各画素値をf(x、y)とする。
(ステップT3)フーリエ変換
ステップS2で取得された(ディジタル変換後の)等高線モアレ縞の画像f(x、y)に対して2次元直交変換の1つであるフーリエ変換を適用する。具体的には、空間周波数領域上のフーリエ変換後の各画素値をF(μ、ν)とすると、フーリエ変換部42は、下記(6)式のようにモアレ縞の画像f(x、y)を用いてF(μ、ν)にフーリエ変換を行う。
F(μ、ν)=ΣΣf(x、y)・e−j2π(μx+νy)/N …(6)
ただし、上記(6)式中のjは複素数であり、Σはy=0〜N−1までの総和、x=0〜N−1までの総和である。
(ステップS4)特異画素算出
上述した実施例1のステップS4と同様に、特異画素を求める。本実施例2では、上記(6)式によってモアレ縞の画像f(x、y)に対してフーリエ変換された空間周波数領域上の画像F(μ、ν)においてノイズの周波数成分については以下の通りである。すなわち、x方向の周波数成分は空間周波数面上では基準格子Lのピッチ周波数に対応する特定の周波数値ωiを有し、y方向の周波数成分は直流となる。したがって、上述した実施例1と同様に、この特定の周波数値を特異画素とすれば、特異画素は複数個の拡がりを有する。すなわち、x方向では複数個の周波数成分を持つ。
図6において、被測定物体Mを除いて基準格子Lだけの状態で画像f(x、y)を取り込み、フーリエ変換を施して画像F(μ、ν)を計算すれば、これはノイズ成分だけの画像であるので、容易に複数個の特異画素の拡がりを特定することができる。
特定の周波数値ωiを特異画素として求めるためには、フーリエ変換後の画像F(μ、ν)を、予め設定した所定の大きさのブロックに分割し、各々のブロックにおいて画素の平均値を求める。各々のブロックにおけるその画素の平均値を各ブロックごとに求めながら、各ブロックを順番に走査しながら各ブロックの平均値同士を比較する。極大値を示す位置のブロックを抽出した結果を図8に示す。図8では、図中の黒塗りで示した位置のブロックを、極大値として抽出している。
これらの複数の極大値がピッチ周波数に対応する特定の周波数値ωiである。なお、分割されるブロックの大きさを小さくすれば、特定の周波数値ωiをより一層に正確に求めることができる。以上をまとめると、x方向およびy方向に対応する直交変換画像であるフーリエ変換後の画像F(μ、ν)の位置を特異画素として特異画素算出部33は求める。なお、ノイズ以外のモアレ縞の画像の画像に対してフーリエ変換を施すと、上述した実施例1と同様に、フーリエ変換後の画像F(μ、ν)において一様に広い分布を持つので極大値として抽出されることはない。
(ステップS5)補間
ステップS4で特異画素をそれぞれ求めたら、補間部34は、各々の特異画素の画素値(すなわちフーリエ変換された変換後のノイズ成分)を、周囲の画素の画素値(フーリエ変換された変換後のモアレ縞成分)で補間する。
(ステップT6)逆フーリエ変換
ステップS5で補間されたフーリエ変換後の画像F(μ、ν)に対して、2次元逆直交変換手段の1つである2次元逆フーリエ変換を適用する。具体的には、逆フーリエ変換部45は、下記(7)式のようにフーリエ変換後の画像F(μ、ν)を用いて逆フーリエ変換を行い、f(x、y)に戻して実空間に変換する。
f(x、y)=ΣΣF(μ、ν)・ej2π(μx+νy)/N …(7)
ただし、上記(7)式中のΣはν=0〜N−1までの総和、μ=0〜N−1までの総和である。
上述した本実施例2に係るモアレ縞測定装置によれば、基準格子Lからの反射回折光によるノイズ成分については、2次元直交変換(本実施例ではフーリエ変換)で変換された直交変換画像において、周囲の画素の画素値に対して特異な画素値を有する画素となる特異画素に変換される。したがって、特異画素算出部33で求められた特異画素の画素値を周囲の画素の画素値で補間部34が補間し、その補間部34で補間された直交変換画像に対して2次元逆直交変換の1つである逆フーリエ変換部45は逆フーリエ変換を施して元の画像に戻すことで、ノイズを除去することになる。その結果、余分な構成を必要とせずに、基準格子Lからの反射回折光によるノイズを除去することができる。
本実施例2では、2次元直交変換は、フーリエ変換であるとともに、2次元逆直交変換手段は、逆フーリエ変換である。直交変換画像であるフーリエ変換後の画像において、基準格子Lと直交するx方向に対しては基準格子Lのピッチ周波数に基づく特定値を有する周波数(特定の周波数値ωi)に対応し、かつ、基準格子Lに平行なy方向に対しては直流成分に対応する直交変換画像(フーリエ変換後)の位置(極大値を抽出した位置)を特異画素として特異画素算出部33は求める。
このように、本実施例2の場合、フーリエ変換を施すことで、フーリエ変換後のノイズ成分については、x方向に対しては基準格子Lのピッチ周波数に基づく特定値を有する周波数(特定の周波数値ωi)を有し、y方向に対しては直流成分となる。x方向の周波数成分については、通常では複数個の成分を持つ。このx方向およびy方向に対応する直交変換画像であるフーリエ変換後の画像の位置(極大値を抽出した位置)を特異画素として特異画素算出部33は求める。
この発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
(1)上述した各実施例では、2次元直交変換として、アダマール変換やフーリエ変換を例に採って説明したが、ウェーブレット(Wavelet)変換やガボールフィルタなどに代表される2次元直交変換を適用してもよい。
(2)上述した実施例1では、基準格子の格子パターンに合わせた行列変換として、アダマール変換を例に採って説明したが、基準格子の格子パターンに合わせた行列変換として、アダマール変換以外の行列変換を適用してもよい。また、基準格子として、格子幅(格子の幅)L1とスリット幅(隣接する格子間の空間部幅)L2とが同じ長さの基準格子を必ずしも使用する必要はなく、格子幅L1とスリット幅L2とが異なる長さの基準格子を使用してもよい。
実施例1に係るモアレ縞測定装置の概略図およびブロック図である。 格子の幅(格子幅)と空間部幅(スリット幅)とが同じ長さの基準格子の模式図である。 実施例1に係るモアレ縞測定装置による一連の処理の流れを示すフローチャートである。 画像とx,y方向との関係を模式的に示した図である。 n=16のときのアダマール変換と各行ベクトルとの関係を示した図である。 実施例2に係るモアレ縞測定装置の概略図およびブロック図である。 実施例2に係るモアレ縞測定装置による一連の処理の流れを示すフローチャートである。 フーリエ変換後の画像に表れる特定の周波数を模式的に表した図である。 発散光束を使用するモアレ縞測定装置の概略図である。 平行光束を使用するモアレ縞測定装置の概略図である。
符号の説明
1 … 照射系
2 … 撮像系
32 … アダマール変換部
33 … 特異画素算出部
34 … 補間部
35 … 逆アダマール変換部
42 … フーリエ変換部
45 … 逆フーリエ変換部
L … 基準格子
O … 平行光束

Claims (4)

  1. (a)被測定物体に平行光束を照射する照射手段と、(b)その照射手段と前記被測定物体との間に挿入された基準格子と、(c)その基準格子の影を被測定物体上に形成し、この影により被測定物体上に形成される変形格子と前記基準格子との重なりによって生じる等高線モアレ縞を撮像面上に撮像する撮像手段とを備え、その撮像手段へ向かう光軸と前記照射手段からの光軸とが、基準格子の格子面の法線に対して略対称となるように構成されている実体格子型のモアレ縞測定装置であって、(A)前記基準格子に照射された照射手段からの照射光が基準格子の格子面で反射回折されて撮像手段の撮像面上にノイズとして混入した画像に対して2次元直交変換を施す2次元直交変換手段と、(B)その2次元直交変換手段で変換された直交変換画像において、周囲の画素の画素値に対して特異な画素値を有する画素となる特異画素を求める特異画素算出手段と、(C)その特異画素算出手段で求められた特異画素の画素値を周囲の画素の画素値で補間する補間手段と、(D)その補間手段で補間された直交変換画像に対して2次元逆直交変換を施す2次元逆直交変換手段とを備え、前記補間手段によって補間して、前記2次元逆直交変換手段によって元の画像に戻すことで前記ノイズを除去することを特徴とするモアレ縞測定装置。
  2. 請求項1に記載のモアレ縞測定装置において、前記2次元直交変換は、前記基準格子の格子パターンに合わせた行列変換であるとともに、前記2次元逆直交変換手段は、逆行列変換であることを特徴とするモアレ縞測定装置。
  3. 請求項2に記載のモアレ縞測定装置において、前記基準格子として、格子の幅と隣接する格子間の空間部幅とが同じ長さの基準格子を使用し、前記行列変換はアダマール変換であるとともに、前記逆行列変換は逆アダマール変換であって、前記ノイズが前記アダマール変換で唯一の点に変換された唯一の画素を前記特異画素として前記特異画素算出手段は求め、その特異画素の画素値を周囲の画素の画素値で前記補間手段が補間することを特徴とするモアレ縞測定装置。
  4. 請求項1に記載のモアレ縞測定装置において、前記2次元直交変換は、フーリエ変換であるとともに、前記2次元逆直交変換手段は、逆フーリエ変換であって、前記直交変換画像において、前記基準格子と直交するx方向に対しては基準格子のピッチ周波数に基づく特定値を有する周波数に対応し、かつ、基準格子に平行なy方向に対しては直流成分に対応する直交変換画像の位置を前記特異画素として前記特異画素算出手段は求めることを特徴とするモアレ縞測定装置。
JP2008188772A 2008-07-22 2008-07-22 モアレ縞測定装置 Pending JP2010025809A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008188772A JP2010025809A (ja) 2008-07-22 2008-07-22 モアレ縞測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008188772A JP2010025809A (ja) 2008-07-22 2008-07-22 モアレ縞測定装置

Publications (1)

Publication Number Publication Date
JP2010025809A true JP2010025809A (ja) 2010-02-04

Family

ID=41731775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008188772A Pending JP2010025809A (ja) 2008-07-22 2008-07-22 モアレ縞測定装置

Country Status (1)

Country Link
JP (1) JP2010025809A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182833B1 (ja) * 2012-06-19 2013-04-17 バイスリープロジェクツ株式会社 表面検査装置および表面検査方法
US9672598B2 (en) 2014-12-05 2017-06-06 Hanwha Techwin Co., Ltd. Color moire reducing method, color moire reducing apparatus, and image processing apparatus
CN111095114A (zh) * 2017-09-13 2020-05-01 Asml荷兰有限公司 对准互补衍射图案对的方法及相关联的量测方法和装置
CN111915515A (zh) * 2020-07-21 2020-11-10 无锡声亚医疗科技有限公司 超声图像中噪声去除的方法、超声设备及存储介质
KR20210033212A (ko) * 2019-09-18 2021-03-26 (주)엘지하우시스 창호용 필터의 무아레 현상 분석 방법 및 분석 장치

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182833B1 (ja) * 2012-06-19 2013-04-17 バイスリープロジェクツ株式会社 表面検査装置および表面検査方法
US9672598B2 (en) 2014-12-05 2017-06-06 Hanwha Techwin Co., Ltd. Color moire reducing method, color moire reducing apparatus, and image processing apparatus
CN111095114A (zh) * 2017-09-13 2020-05-01 Asml荷兰有限公司 对准互补衍射图案对的方法及相关联的量测方法和装置
KR20210033212A (ko) * 2019-09-18 2021-03-26 (주)엘지하우시스 창호용 필터의 무아레 현상 분석 방법 및 분석 장치
KR102626230B1 (ko) 2019-09-18 2024-01-18 (주)엘엑스하우시스 창호용 필터의 무아레 현상 분석 방법 및 분석 장치
CN111915515A (zh) * 2020-07-21 2020-11-10 无锡声亚医疗科技有限公司 超声图像中噪声去除的方法、超声设备及存储介质

Similar Documents

Publication Publication Date Title
JP5595473B2 (ja) 被検体情報取得装置、x線撮像装置、被検体情報取得方法及びプログラム
JP4865930B2 (ja) 構造化された照射および均一な照射の両方を用いて光学的に切片化された画像を生成するためのシステムおよび方法
JP5777360B2 (ja) X線撮像装置
EP2852153B1 (en) Method and apparatus for providing panorama image data
JP2015072263A (ja) X線撮像システム
JP5848697B2 (ja) X線画像診断装置
JP5673017B2 (ja) 振動測定システム、振動測定装置および振動測定方法
JP2010025809A (ja) モアレ縞測定装置
JP2005317818A (ja) パターン検査装置およびパターン検査方法
JP4950607B2 (ja) 画像処理方法およびx線ct装置
JP2015078976A (ja) X線撮像システム
JP2015205174A (ja) 画像処理装置および画像処理装置の制御方法
JP6108575B2 (ja) 画像処理装置及びx線撮影装置
US9696255B2 (en) Image processing method of two-photon structured illumination point scanning microscopy
JP2017093496A (ja) 撮像装置
JP5821790B2 (ja) X線診断装置
TW201837458A (zh) 用於從低解析度檢測影像重建高解析度點擴散函數之系統及方法
JP5407937B2 (ja) X線撮影装置
WO2019145157A1 (en) Arrangement for omnidirectional scattering imaging
JPWO2018168621A1 (ja) 放射線画像生成装置
JP7131625B2 (ja) X線位相イメージング装置
WO2013051647A1 (ja) 放射線撮影装置及び画像処理方法
Gravel et al. Resolution enhancement in digital x-ray imaging
WO2020140004A1 (en) Apparatuses and methods for imaging incoherently illuminated objects
Kachatkou et al. In situ micro-focused X-ray beam characterization with a lensless camera using a hybrid pixel detector