JP2010019149A - ディーゼルエンジン - Google Patents

ディーゼルエンジン Download PDF

Info

Publication number
JP2010019149A
JP2010019149A JP2008179602A JP2008179602A JP2010019149A JP 2010019149 A JP2010019149 A JP 2010019149A JP 2008179602 A JP2008179602 A JP 2008179602A JP 2008179602 A JP2008179602 A JP 2008179602A JP 2010019149 A JP2010019149 A JP 2010019149A
Authority
JP
Japan
Prior art keywords
cylinder
combustion
compression
ratio
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008179602A
Other languages
English (en)
Other versions
JP5206179B2 (ja
Inventor
Kazuhisa Inagaki
和久 稲垣
Junichi Mizuta
準一 水田
Matsue Ueda
松栄 上田
Takayuki Fuyugashira
孝之 冬頭
Yoshihiro Hotta
義博 堀田
Kiyomi Nakakita
清己 中北
Akio Kawaguchi
暁生 川口
Takeshi Hashizume
剛 橋詰
Hirokazu Ito
弘和 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2008179602A priority Critical patent/JP5206179B2/ja
Publication of JP2010019149A publication Critical patent/JP2010019149A/ja
Application granted granted Critical
Publication of JP5206179B2 publication Critical patent/JP5206179B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

【課題】拡散燃焼と予混合圧縮着火燃焼とのいずれかを選択的に行うディーゼルエンジンにおいて、拡散燃焼時のトルクの低下を抑えつつ予混合圧縮着火燃焼の運転範囲を拡大する。
【解決手段】拡散燃焼と予混合圧縮着火燃焼とのいずれかを選択的に行うディーゼルエンジン10は、燃料がシリンダ11内へ噴出する噴孔13aが多数形成された多孔インジェクタ13を備え、噴孔13aの直径が0.09mm以下で、圧縮比εが14〜15の範囲にある。
【選択図】図2

Description

本発明は、拡散燃焼と予混合圧縮着火燃焼とのいずれかを選択的に行うディーゼルエンジンに関する。
ほぼ圧縮上死点前60°以前の圧縮行程中または吸気行程中において燃焼室内に燃料を噴射するとともに、このときの噴射燃料の平均粒径を燃料粒子の温度がほぼ圧縮上死点または圧縮上死点後にそのときの圧力により定まる主要燃料成分の沸点に達する粒径以下とし、排気ガス再循環率(EGR率)をほぼ40%以上に制御し、噴射後ほぼ圧縮上死点に達するまでは燃料粒子からの沸騰による燃料の蒸発を阻止するとともにほぼ圧縮上死点後に燃料粒子の燃料を沸騰蒸発させて燃料を着火燃焼せしめるようにした圧縮着火式内燃機関(ディーゼルエンジン)が公知である(例えば下記特許文献1参照)。この圧縮着火式内燃機関では、500μm以上の粒径の極めて大きな燃料粒子を燃焼室内に分散させた後、これら燃料粒子の燃料を圧縮上死点後に着火燃焼させ、それによって窒素酸化物(NOx)及び煤を同時に低減するようにしている。
また、圧縮着火式内燃機関(ディーゼルエンジン)において、NOx及び煤の低減を図るために、シリンダ内に形成した燃料と吸気との予混合気を自着火させる予混合圧縮着火燃焼(PCCI燃焼)が行われる。予混合圧縮着火燃焼を行う場合は、EGRにより吸気側へ供給するEGRガス量(EGR率)を拡散燃焼(通常燃焼)を行う場合よりも増大させる。
特開平9−287527号公報 Kazuhisa INAGAKI他,"Universal Diesel Engine Simulator(UniDES) 1st Report:Phenomenological Multi-zone PDF Model for Predicting the Transient Behavior of Diesel Engine Combustion",SAE Paper 2008-01-0843,Society of Automotive Engineers,2008 北畠亮他、「油圧駆動カムレスシステムの適用による予混合ディーゼル燃焼領域の拡大」、自動車技術会学術講演会前刷集 No.48-08、233-20085275、2008年5月
ディーゼルエンジンにおいて、NOxや煤等のエミッションの低減を図るためには、予混合圧縮着火燃焼の運転範囲を拡大できることが望ましい。そのためには、貫徹力の弱い燃料噴霧をシリンダ内に噴射して、シリンダ内に形成される予混合気の濃度を均質化することが望ましい。しかし、拡散燃焼を行う場合に、貫徹力の弱い燃料噴霧をシリンダ内に噴射すると、燃料噴霧の飛散範囲が狭くなるため、特に燃料噴射量が多いときにスモーク濃度が増大しやすくなる。スモーク濃度を抑えるためには、燃料噴射量を制限する必要があり、拡散燃焼時のトルクが低下する。
本発明は、拡散燃焼と予混合圧縮着火燃焼とのいずれかを選択的に行うディーゼルエンジンにおいて、拡散燃焼時のトルクの低下を抑えつつ予混合圧縮着火燃焼の運転範囲を拡大することを目的とする。
超小径多穴インジェクタを用いることで、燃料噴霧が低貫徹力のため、早期に噴射してもシリンダ壁面への付着が回避できる。そのため、着火するまでに十分な混合時間を確保できて混合気が均質化できる。その結果、図20に示すように、予混合圧縮着火燃焼(PCCI)の運転範囲の拡大を図ることが可能となる。しかし、超小径多穴インジェクタを用いると、燃料噴霧が飛ばないため、図20に示すように、拡散燃焼時のトルク(全負荷トルク、フル性能)が低下するというデメリットが生じる。図20において、×は従来より劣ることを表し、△は従来並を表し、○は従来より優れていることを表し、◎は従来よりかなり優れていることを表す。
ただし、低圧縮比化することで、シリンダ内最高圧力Pmaxが低減され、圧縮端圧力の低下によりPmax制限が同じでも燃焼による圧力増加代を大きく取ることができる。そのため、燃料噴射時期を進角できるので、スートの燃焼する時間を確保できてスモークが低減できる。その結果、図20に示すように、超小径多穴インジェクタによるデメリット(フル性能の低下)を回避できる。また、PCCIの燃焼騒音が低下するので、PCCI運転領域をさらに拡大することができる。非特許文献2では、インジェクタの噴孔の直径を0.08mmに小さくして燃料噴霧の低貫徹力化を図っているが、圧縮比が16.8と高いため、燃料噴射時期を進角することは困難であり、スートの燃焼時間を十分に確保することは困難である。また、図21に示すように、従来のディーゼルエンジンの圧縮比で最も低いのは15.8程度である。しかし、低圧縮比化すると、圧縮端温度が低下するので、図20に示すように、冷間始動性が悪化するというデメリットが生じる。
ただし、スワール比を低減して超低流動化することで、スワール低減による熱損失低減によって圧縮端温度の低下が抑制できるので、図20に示すように、低圧縮比化によるデメリット(冷間始動性の悪化)を回避できる。また、体積効率の高いポート形状(ストレートポート)を用いることができるので、空気がたくさん入ることで全負荷トルク(フル性能)を向上させることができる。また、同様の理由によりPCCI運転領域をさらに拡大することができる。ただし、スワール比を低減して超低流動化すると、通常の拡散燃焼では、混合不足によってスモーク、NOxが悪化する。しかし、これは、超小径多穴インジェクタでPCCI運転を行うことで回避できる。
最も望ましくは、超小径多穴インジェクタ、低圧縮比、超低流動の3つを組み合わせて適用することで、それぞれの欠点を補完し合い、超低エミッション、低燃費、高出力のエンジンが実現できる。
そこで、本発明に係るディーゼルエンジンは、上述した目的を達成するために以下の手段を採った。
本発明に係るディーゼルエンジンは、拡散燃焼と予混合圧縮着火燃焼とのいずれかを選択的に行うディーゼルエンジンであって、燃料がシリンダ内へ噴出する噴孔が多数形成された多孔インジェクタを備え、噴孔の直径が0.09mm以下で、圧縮比εが14〜15の範囲にあることを要旨とする。
本発明の一態様では、スワール比が(0.7×ε−9.0)以下の範囲にあることが好適である。また、本発明の一態様では、噴孔の数が14〜24の範囲にあることが好適である。
本発明によれば、拡散燃焼と予混合圧縮着火燃焼とのいずれかを選択的に行うディーゼルエンジンにおいて、拡散燃焼時のトルクの低下を抑えつつ予混合圧縮着火燃焼の運転範囲を拡大することができる。
以下、本発明を実施するための形態(以下実施形態という)を図面に従って説明する。
図1〜3は、本発明の実施形態に係るディーゼルエンジン(圧縮着火式内燃機関)10の概略構成を示す図である。図1は全体構成の概略を示し、図2はシリンダ11内の概略構成を示し、図3はシリンダ11内に臨むインジェクタ(燃料噴射弁)13の先端部の概略構成を示す。図1,2では、1気筒分の構成を示しているが、多気筒の場合も同様の構成である。ディーゼルエンジン10は、例えばピストン−クランク機構を用いて構成可能である。ディーゼルエンジン10では、吸気行程にて吸気ポート14からシリンダ11内に吸気(空気)が吸入され、圧縮行程にてシリンダ11内に吸入された吸気がピストン12により圧縮される。ここでは、シリンダ11内への吸気を図示しないターボチャージャー等の過給器で加圧することもできる。そして、例えばピストン12が圧縮上死点付近に位置するときに燃料(例えば軽油等の液体燃料)をインジェクタ13からシリンダ11内に直接噴射することで、シリンダ11内の燃料が自着火して燃焼(ディーゼル燃焼)する。燃焼後の排出ガスは、排気行程にて排気ポート15へ排出される。図2に示す例では、シリンダ11内に面するピストン12の頂面12aにキャビティ部12bが形成されており、インジェクタ13の先端部がキャビティ部12bと対向する状態でシリンダ11内の中央部に配置されている。ディーゼルエンジン10においては、排気ポート15と吸気ポート14とを繋ぐ還流通路16が設けられており、燃焼後の排出ガスの一部が還流通路16を通って吸気ポート14(吸気側)へEGRガスとして供給される排気再循環(EGR)が行われる。還流通路16にはEGR制御弁17が設けられており、EGR制御弁17の開度を制御することで、排気ポート15から吸気ポート14への排出ガス(EGRガス)の還流量が制御され、吸気側へ供給され筒内に吸入されるEGRガス量(EGR率)が制御される。
ディーゼルエンジン10では、圧縮上死点付近にて燃料をシリンダ11内に直接噴射してシリンダ11内の燃料を自着火させる通常のディーゼル燃焼(拡散燃焼)だけでなく、シリンダ11内に形成した燃料と吸気との予混合気を自着火させる予混合圧縮着火燃焼(PCCI燃焼)を行うこともできる。この予混合圧縮着火燃焼を行うことで、黒煙の発生の抑制を図ることができる。予混合圧縮着火燃焼を行う際には、吸気行程または圧縮行程にて燃料をインジェクタ13からシリンダ11内に直接噴射して燃料と吸気との予混合気をシリンダ11内に形成し、シリンダ11内の予混合気をピストン12により圧縮して自着火させる。予混合圧縮着火燃焼を行う場合は、EGRにより吸気側へ供給するEGRガス量(EGR率)を拡散燃焼(通常燃焼)を行う場合よりも増大させることが好ましい。空気(新気)に比べて熱容量の大きいEGRガスを吸気中に多量に混在させ、予混合気中の燃料及び酸素の濃度を低下させることで、自着火遅れ時間を延長して予混合気の自着火タイミングを圧縮上死点近傍に制御することができる。しかも、その予混合気中では、燃料及び酸素の周囲に不活性なEGRガスが略均一に分散し、これが燃焼熱を吸収することになるので、窒素酸化物(NOx)の生成が大幅に抑制される。
ディーゼルエンジン10では、その回転数Ne及びトルクTe(負荷)に基づいて、拡散燃焼を行うか、または予混合圧縮着火燃焼を行うかを選択することが可能である。例えば、ディーゼルエンジン10の回転数Ne及びトルクTeが図4に示す特性線Aを超えない領域である低速・低負荷領域内にある場合は、予混合圧縮着火燃焼を行う方を選択する。一方、ディーゼルエンジン10の回転数Ne及びトルクTeが図4に示す特性線Aを超える領域である高速・高負荷領域内にある場合は、拡散燃焼を行う方を選択する。燃料噴射時期を圧縮上死点付近に制御するか吸気行程(あるいは圧縮行程)に制御するかによって、ディーゼルエンジン10の燃焼として、拡散燃焼と予混合圧縮着火燃焼とのいずれかを選択的に行うことができる。
インジェクタ13は、図3に示すように、燃料がシリンダ11内へ噴出する小径の噴孔13aが先端部に多数形成された小径多穴インジェクタである。多数の噴孔13aは、インジェクタ周方向に沿って略均等に配置されている。小径の噴孔13aを多数形成することで、予混合圧縮着火燃焼を行う場合に、各噴孔13aから貫徹力の弱い小粒径の燃料噴霧を早期に大量に噴射することができる。これによって、燃料噴霧の微粒化を促進させることができるとともに、燃料と空気の混合期間を十分に確保することができる。そのため、シリンダ11内に形成される混合気の濃度(空燃比)分布を均質化させることができ、燃焼騒音を低減することができる。その結果、図20に示すように、予混合圧縮着火燃焼の運転範囲をより高負荷側に広げることができ、NOxや煤等のエミッションを抑制することができる。
また、直径φ0.13mmの噴孔13aを10個形成した場合と、直径φ0.08mmの噴孔13aを22個形成した場合とにおいて、燃料噴射開始時期を変化させたときの排出ガス中のHC濃度を実験により調べた結果を図5に示す。図5に示すように、直径φ0.13mmの噴孔13aを10個形成した場合は、HC濃度が低くなる燃料噴射開始時期が狭い範囲(圧縮上死点前22°近傍)に限られるのに対して、直径φ0.08mmの噴孔13aを22個形成した場合は、HC濃度が低くなる燃料噴射開始時期の範囲を広げることができる。このように、噴孔13aの数を増やすとともに直径を小さくすることで、燃料噴射開始時期に対するエミッションのロバスト性を向上させることができる。
しかし、噴孔13aの直径を小さくすると、拡散燃焼(ディーゼル燃料)を行う場合に、噴孔13aからの燃料噴霧の飛散範囲が狭くなるため、燃料噴射量が多いときにスモーク濃度が増大しやすくなる。その結果、拡散燃焼を行う全負荷運転時には、スモーク濃度を抑えるために燃料噴射量を制限する必要があり、図20に示すように全負荷トルク(フル性能)が低下する。例えば図6Aに示すように、直径φ0.08mmの噴孔13aを22個形成した場合は、直径φ0.13mmの噴孔13aを10個形成した場合と比較して、拡散燃焼を行う全負荷運転時のトルクが約8%低下する結果が実機の実験により得られた。この実機の実験の際には、シリンダ11内最高圧力Pmax=15MPa、圧縮比e=16の同じ条件で全負荷トルクを測定している。
ただし、ディーゼルエンジン10の圧縮比を低くして、拡散燃焼を行う場合の燃料噴射開始時期を進角させることで、図20に示すように、燃焼期間を長くしてスモーク濃度を抑えることができるとともに、燃焼による圧力増加分を大きくして全負荷トルクを増大させることができる。一例として、直径φ0.08mmの噴孔13aを22個形成した圧縮比e=14のディーゼルエンジン10の全負荷トルクを測定した実験結果を図6Bに示す。噴孔13aの直径φ=0.08mm、圧縮比e=14のディーゼルエンジン10においては、シリンダ11内最高圧力Pmaxを15MPaから、16MPa、17MPaに増加させると、燃料噴射開始時期は、例えばそれぞれ最大で約10°、20°だけ進角することができる。なお、圧縮比は、行程容積と隙間容積との和を隙間容積で除した量で表される。
図6Bに示す実験結果においては、シリンダ11内最高圧力Pmaxを2MPa高くするように燃料噴射開始時期を進角させることで、全負荷トルクが10%程度回復する。しかし、実際には最大筒内圧力の値はシリンダ11の機械的強度で決まっているので、最大筒内圧力は許容値を超えることができない。このため、圧縮比を低減させ、燃焼前の圧縮端の圧力を低下させることで、燃料噴射開始時期を進角化でき、噴孔の直径を小さくすることにより生じる全負荷トルクの低下分を補償することができる。すなわち図6Bに示したようなシリンダ11内最高圧力Pmaxを増加させたときと同様な効果を低圧縮比化で得ることができる。具体例を以下に示す。シリンダ11内のガスの状態変化をポリトロープ変化(P・Vk=一定、Pは圧力、Vは容積、k=1.34)とすると、圧縮比を16→13に低くすることで、シリンダ11内最高圧力Pmaxが約2.3MPa低下するため、シリンダ11内最高圧力Pmaxを2.3MPa高くするように燃料噴射開始時期を進角させることで、全負荷トルクを11%程度回復させることが可能となる。また、圧縮比を16→14に低くすることで、シリンダ11内最高圧力Pmaxが約1.6MPa低下するため、シリンダ11内最高圧力Pmaxを1.6MPa高くするように燃料噴射開始時期を進角させることで、全負荷トルクを8%程度回復させることが可能となる。また、圧縮比を16→15に低くすることで、シリンダ11内最高圧力Pmaxが約0.8MPa低下するため、シリンダ11内最高圧力Pmaxを0.8MPa高くするように燃料噴射開始時期を進角させることで、全負荷トルクを4%程度回復させることが可能となる。
また、図20に示すように、圧縮比を低くすることで、摩擦損失を低減することができる。さらに、シリンダ11内の最高温度を低下させてNOx生成量及び冷却損失を低減することができる。さらに、予混合圧縮着火燃焼を行う場合に反応速度を低下させて燃焼騒音を低減することができ、予混合圧縮着火燃焼の運転範囲をより高負荷側に広げることができる。
圧縮比を変化させた場合において予混合圧縮着火燃焼時の燃焼騒音が一定値となる図示平均有効圧力Piを計算した結果を図7に示す。ここでは、非特許文献1に開示されているサイクルシミュレーション(UniDES)を用いて、予混合圧縮着火燃焼時の燃焼騒音が所定値(90dB)となる圧縮比と図示平均有効圧力Piとの関係を計算している。このシミュレーションは、非特許文献1に示す通り、ゾーンモデルとPDF(Probability Density Function)モデルを用いることで、幅広い運転条件に対して実機の燃焼特性が再現できることを確認している。計算の際には、噴孔13aの直径を0.08mm、機関回転数を1600rpm、吸入空気温度を60℃としている。図7に示すように、圧縮比が低いほど燃焼騒音が所定値(90dB)となる図示平均有効圧力Piの値が高くなるため、圧縮比を低くすることで、燃焼騒音が所定値以下となる予混合圧縮着火燃焼の運転範囲をより高負荷側に広げることができる。
ただし、圧縮比が15を上回ると、予混合圧縮着火燃焼時の燃焼騒音が所定値となる図示平均有効圧力Piの低下幅が大きくなり、予混合圧縮着火燃焼の運転範囲が低負荷側に狭くなる。燃焼騒音が所定値を超えないためには予混合圧縮着火燃焼から通常燃焼(拡散燃焼)に移行する必要があるが、図8に示すように、拡散燃焼に移行すると排出ガス中のNOx濃度が急激に増大する。そこで、圧縮比を15以下に設定する必要がある。図8において、圧縮比13〜15でのNOx濃度は予混合圧縮着火燃焼を行った場合のNOx濃度であり、圧縮比16でのNOx濃度は拡散燃焼を行った場合のNOx濃度である。
また、圧縮比を変化させた場合において軸熱効率及び熱損失割合を計算した結果を図9(A)に示し、圧縮比を変化させた場合において図示平均有効圧力(IMEP)及び摩擦平均有効圧力(FMEP)を計算した結果を図9(B)に示す。ここでは、非特許文献1に開示されているサイクルシミュレーション(UniDES)を用いて、燃料噴射開始時期に対する軸熱効率、熱損失割合、図示平均有効圧力、及び摩擦平均有効圧力の特性を、圧縮比εを変化させながら計算している。図9に示す計算結果を基にして、圧縮比と軸熱効率との関係を整理した結果を図10に示す。図10に示すように、圧縮比が14以下になると、軸熱効率が大幅に低下する。そこで、圧縮比を14より高く設定する必要がある。
前述のように、圧縮比を低くして、拡散燃焼を行う場合の燃料噴射開始時期を進角させることで、噴孔13aの直径を小さくすることにより生じる全負荷トルクの低下分を補償することができるが、圧縮比が14〜15の範囲にある場合は、拡散燃焼を行う場合の燃料噴射開始時期を例えば圧縮上死点前7.5°〜24°の範囲まで進角させることで、全負荷トルクの低下分を補償することができる。
しかし、圧縮比を低くすると、圧縮上死点でのシリンダ11内温度Ttdcが低下し、図20に示すようにディーゼルエンジン10の冷間始動性が低下しやすくなる。圧縮比を変化させた場合において圧縮上死点でのシリンダ11内温度Ttdcを計算した結果を図11に示す。計算の際には、シリンダ11内のガスの状態変化をポリトロープ変化(T・Vk-1=一定、Tは温度、Vは容積、k=1.34)とし、吸入空気温度を−20℃としている。図11の縦軸では、圧縮比が16の場合の温度を基準(0)としている。図11に示すように、圧縮比が低いほど、圧縮上死点でのシリンダ11内温度Ttdcが低下する。
ただし、ディーゼルエンジン10のスワール比を小さくする(低流動化する)ことで、冷却損失を低減することができ、圧縮上死点でのシリンダ11内温度Ttdcを高くすることができる。その結果、図20に示すように冷間始動性を向上させることができる。スワール比を変化させた場合において圧縮上死点でのシリンダ11内温度Ttdcを計算した結果を図12に示す。ここでは、非特許文献1に開示されているサイクルシミュレーション(UniDES)を用いて、スワール比とシリンダ11内温度Ttdcとの関係を計算している。計算の際には、吸入空気温度を−20℃、シリンダ壁温度を−20℃、圧縮比を16とし、熱損失はWoshiniの式を用いている。図12の縦軸では、スワール比が2.3の場合の温度を基準(0)としている。図12に示すように、スワール比が小さいほど、圧縮上死点でのシリンダ11内温度Ttdcが高くなる。なお、スワール比は、スワールの回転角速度のクランク軸角速度に対する比で表され、吸気ポート14のシリンダ11に対する配置や、ヘリカルポートやタンジェンシャルポート等の吸気ポート14の形状によりその値を調整することが可能である。
圧縮比を固定してスワール比を変化させた場合において冷間始動時の図示平均有効圧力Piを計算した結果を図13に示す。ここでは、非特許文献1に開示されているサイクルシミュレーション(UniDES)を用いて、スワール比に対する図示平均有効圧力Piの特性を計算している。計算の際には、圧縮比を14、吸入空気温度を−20℃、機関回転数を790rpm、パイロット噴射開始時期を圧縮上死点前40°、パイロット噴射量を5.2mg、メイン噴射開始時期を圧縮上死点前15°、メイン噴射量を5mgとしている。図13に示すように、圧縮比が14の場合は、スワール比が0.8を上回ると、冷間始動時の図示平均有効圧力Piが大幅に低下する。そこで、圧縮比が14の場合は、冷間始動性を低下させないためには、スワール比が0.8以下であることが好ましい。
圧縮比14且つスワール比0.8の場合と同等の圧縮上死点でのシリンダ11内温度Ttdcが得られる、圧縮比とスワール比との関係を計算した結果を図14に示す。ここでは、非特許文献1に開示されているサイクルシミュレーション(UniDES)を用いて、圧縮比とスワール比との関係を計算している。図14に示すように、圧縮比13且つスワール比0.3の場合と圧縮比14且つスワール比0.8の場合とで、圧縮上死点でのシリンダ11内温度Ttdcが同等となる。また、圧縮比15且つスワール比1.5の場合と圧縮比14且つスワール比0.8の場合とで、圧縮上死点でのシリンダ11内温度Ttdcが同等となる。また、圧縮比16且つスワール比2.3の場合と圧縮比14且つスワール比0.8の場合とで、圧縮上死点でのシリンダ11内温度Ttdcが同等となる。図14の計算結果から、圧縮比及びスワール比が図14に示す特性線Bを超えない領域内にある場合は、冷間始動時の図示平均有効圧力Piが低下しないシリンダ11内温度Ttdcを確保することができ、冷間始動性の低下を防ぐすることができる。そこで、圧縮比εが14〜15の範囲にある場合は、冷間始動性を低下させないためには、スワール比を(0.7×ε−9.0)以下の範囲に調整することが好ましい。
スワール比を(0.7×ε−9.0)以下の範囲にするよう例えば0(あるいはほぼ0)にする、すなわちシリンダ11内にスワール流を発生させないためには、例えば図15Aに示すように、一対の吸気ポート14をストレートポート(タンジェンシャルポート)により構成するとともに、シリンダ中心軸を通る平面11aに対して一対の吸気ポート14を互いに対称に配置する。つまり、一対の吸気ポート14において、平面11aに対する傾斜方向を互いに反対方向にし、平面11aに対する傾斜角度の大きさを互いに等しくする。図15Aに示す構成例では、各吸気ポート14からシリンダ11内に流入する吸気流れにおけるスワール成分(シリンダ周方向の旋回成分)が互いに打ち消し合うことで、シリンダ11内にスワール流は発生せず、スワール比が0(あるいはほぼ0)になる。
また、スワール比を(0.7×ε−9.0)以下の範囲にするよう例えば0.8程度の低い値にする、すなわちシリンダ11内に弱いスワール流を発生させるためには、例えば図15Bに示すように、一対の吸気ポート14をストレートポート(タンジェンシャルポート)により構成するとともに、シリンダ中心軸を通る平面11aに対して一対の吸気ポート14を互いに非対称に配置する。図15Bに示す構成例では、一対の吸気ポート14において平面11aに対する傾斜方向が互いに同方向である。一対の吸気ポート14において平面11aに対する傾斜角度の大きさを互いに近づけることで、各吸気ポート14からシリンダ11内に流入する吸気流れにおけるスワール成分(シリンダ周方向の旋回成分)が互いに打ち消し合わず、シリンダ11内に弱いスワール流が発生する。さらに、各吸気ポート14の平面11aに対する傾斜角度の差を調整することで、スワール比の値を調整することが可能である。例えば、平面11aに対する各吸気ポート14の傾斜方向が互いに同方向である場合は、各吸気ポート14の平面11aに対する傾斜角度の差を大きくすることで、スワール比の値を減少させることが可能である。また、一方の吸気ポート14をストレートポートにより構成するとともに他方の吸気ポート14をヘリカルポート(スワールポート)により構成することによっても、シリンダ11内に弱いスワール流を発生させることが可能であり、スワール比を(0.7×ε−9.0)以下の範囲にするよう例えば0.8程度の低い値に調整することが可能である。なお、スワールコントロールバルブ(SCV)が付いてスワール比が可変の場合は、スワールコントロールバルブが全開時のスワール比を(0.7×ε−9.0)以下の範囲に調整することが好ましい。
スワール比の計測方法を以下に示す。スワール比を計測する際には、図16Aに示すように、ベーン式のスワールメータ20をシリンダヘッド下面から所定距離(例えばシリンダボア径Dの1〜1.5倍の距離)に配置する。そして、あるバルブリフトlにおいて、スワールメータ(シリンダ)内部圧力と大気圧との差ΔPが一定値(例えば2.49kPa、254mmH2O)になるように空気流量dm/dtを調整し、空気流量dm/dt[g/s]及びベーン回転数nD[rps]を記録する。この手順を、図16Bに示すようにバルブリフトlが1mmから最大リフトを超えるまで1mm間隔で行う。
スワール比を算出する際には、まず各計測点(各バルブリフトl)で仮想エンジン回転数n[rps]を計算する。仮想エンジン回転数nは以下の(1)式で表される。
Figure 2010019149
次に、吸気行程(TDC〜BDC)の期間でスワール比を積算する。積算されたスワール比は以下の(2)式で表される。(2)式において、nD/nは各計測点から内挿して計算する。なお、C(α)/Cmはエンジン回転数に関係なくクランク角αのみの関数となる。
Figure 2010019149
また、噴孔13aの直径を変化させた場合において予混合圧縮着火燃焼時の図示平均有効圧力Piを計算した結果を図17Aに示す。ここでは、非特許文献1に開示されているサイクルシミュレーション(UniDES)を用いて、噴孔13aの直径に対する図示平均有効圧力Piの特性を計算している。計算の際には、機関回転数を2600rpm、燃料噴射開始時期を圧縮上死点前30°、燃料噴射量を20.3mg、EGR率を0%としている。機関回転数2600rpmのような比較的高回転の条件では、混合気の形成が遅れるとPCCIは失火する。噴孔13aの直径が大きくなるほど、噴霧の微粒化が悪くなるので、蒸発が遅く、混合気の形成が遅れ、失火しやすくなる。噴孔13aの直径φが0.09mmを上回ると、図17Bに示すように予混合圧縮着火燃焼時の熱発生率が急激に低下し、図17Aに示すように予混合圧縮着火燃焼時の図示平均有効圧力Piが急激に低下する。予混合圧縮着火燃焼時のトルクを低下させないためには、噴孔13aの直径を0.09mm以下に設定する必要がある。そして、噴孔13aの直径を0.08mm以下またはその近傍(例えば0.08mm±5%の範囲)以下に設定することで、予混合圧縮着火燃焼時のトルクをさらに増大させることができる。
なお、広安の式によると、噴霧のペネトレーション(貫徹力)は以下の(3)式で表される(広安博之他、「ディーゼル噴霧の到達距離と噴霧角」、自動車技術界論文集、No.21、1980参照)。(3)式から、噴孔13aの直径が小さくなっても、噴射圧力を高くすることで同じペネトレーションを確保することができるので、全負荷トルクの低下を抑えることができる。
Figure 2010019149
以上の検討結果から、本実施形態では、多孔インジェクタ13の噴孔13aの直径を0.09mm以下の範囲に設定するとともに、圧縮比εを14〜15の範囲に設定する。これによって、予混合圧縮着火燃焼を行う場合にトルクの低下を防ぎつつ燃焼騒音を抑制することができ、予混合圧縮着火燃焼の運転範囲をより高負荷側に広げることができる。さらに、熱効率の低下を抑えることができるとともに、拡散燃焼を行う全負荷運転時のトルクの低下を抑えることができる。
さらに、本実施形態では、スワール比を(0.7×ε−9.0)以下の範囲に調整することで、冷間始動時の図示平均有効圧力Piが低下しないシリンダ11内温度Ttdcを確保することができ、冷間始動性の低下を防ぐことができる。さらに、スワール比を小さくすることで、冷却損失を低減することができるので、燃費を向上させることができる。
また、噴孔13aの直径が0.08mmからさらに小さくなると、拡散燃焼を行う全負荷運転時におけるトルクの低下代が前述の約8%からさらに大きくなる。その場合において、全負荷トルクの低下分の補償効果を向上させるためには、圧縮比を14よりさらに低くする必要があるが、圧縮比が14を下回ると軸熱効率が大幅に低下する。軸熱効率の大幅な低下を招くことなく全負荷トルクの低下分の補償効果を向上させるためには、噴孔13aの直径の下限値を0.08mmまたはその近傍(例えば0.08mm±5%の範囲)に設定することが好ましい。また、図17Aに示す計算結果から、軸熱効率の大幅な低下を招くことなく予混合圧縮着火燃焼時のトルクをさらに増大させるためには、噴孔13aの直径を0.08mmまたはその近傍(例えば0.08mm±5%の範囲)に設定することが好ましい。将来、さらに噴射圧力が高くなった場合には、(3)式に示されるように噴霧のペネトレーションが増加するので、噴孔13aの直径が0.08mmよりも小さい方が好ましい条件となり得る場合もある。
また、噴孔13aの数が少なすぎると、燃料噴射期間が長くなり、高負荷運転時にスモーク濃度が増加しやすくなる。一方、噴孔13aの数が多すぎると、単位時間あたりの燃料噴射量が増大し、微少量の燃料噴射が困難になる。噴孔13aからの燃料の流量については、従来の構成(例えば直径0.13mmの噴孔を10個形成した場合)から大きく変化しないことが好ましく、噴孔13aの数については、例えば14〜24の範囲に設定することが好ましい。
なお、噴孔13aの直径0.13mm程度のインジェクタで貫徹力の強い燃料噴霧を噴射して通常の燃焼を行うと、燃料噴霧がシリンダ壁に激しく衝突し、熱損失が大きくなって燃費が悪化する。その場合における圧縮上死点前6°でのシリンダ内の温度分布及びシリンダ壁(ピストン頂面12a)への熱損失(熱流束)分布を計算した結果を図18(A)に示す。計算の際には、噴孔13aの直径を0.13mm、噴孔13aの数を10個、燃料噴射開始時期を圧縮上死点前10°、スワール比を1.9としている。図18(A)に示すように、燃料噴霧が衝突する箇所で熱損失(熱流束)が大きくなっていることがわかる。これに対して噴孔13aの直径0.09mm以下の小径のインジェクタ13では、燃料噴霧の貫徹力が低下しているので、燃料噴霧がシリンダ壁に衝突するのを抑えることができ、熱損失を低減することができる。その場合における圧縮上死点前6°でのシリンダ内の温度分布及びシリンダ壁(ピストン頂面12a)への熱損失(熱流束)分布を計算した結果を図18(B)に示す。計算の際には、噴孔13aの直径を0.08mm、噴孔13aの数を22個、燃料噴射開始時期を圧縮上死点前10°、スワール比を1.1としている。図18(B)に示すように、シリンダ壁への熱損失(熱流束)が低減してることがわかる。さらに、噴孔13aの直径φ0.13mmの場合と噴孔13aの直径φ0.08mmの場合とで、クランク角の変化に対する熱損失履歴を計算した結果を図19に示す。図19に示すように、噴孔13aの直径φ0.08mmの小径のインジェクタ13により、熱損失を低減できていることがわかる。
以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明の実施形態に係るディーゼルエンジンの概略構成を示す図である。 本発明の実施形態に係るディーゼルエンジンの概略構成を示す図である。 本発明の実施形態に係るディーゼルエンジンの概略構成を示す図である。 拡散燃焼と予混合圧縮着火燃焼との切り替えを行う条件の一例を説明する図である。 燃料噴射開始時期を変化させたときの排出ガス中のHC濃度を実験により調べた結果を示す図である。 同じ圧縮比、同じ最大筒内圧力の条件で噴孔径を変化させた場合に全負荷トルクを測定した実験結果を示す図である。 同じ圧縮比、同じ噴孔径の条件で最大筒内圧力を変化させた場合に全負荷トルクを測定した実験結果を示す図である。 圧縮比を変化させた場合において予混合圧縮着火燃焼時の燃焼騒音が一定値となる図示平均有効圧力Piを計算した結果を示す図である。 圧縮比を変化させた場合においてNOx濃度を計算した結果を示す図である。 圧縮比を変化させた場合において軸熱効率、熱損失割合、図示平均有効圧力、及び摩擦平均有効圧力を計算した結果を示す図である。 圧縮比と軸熱効率との関係を計算した結果を示す図である。 圧縮比を変化させた場合において圧縮上死点でのシリンダ内温度Ttdcを計算した結果を示す図である。 スワール比を変化させた場合において圧縮上死点でのシリンダ内温度Ttdcを計算した結果を示す図である。 圧縮比を固定してスワール比を変化させた場合において冷間始動時の図示平均有効圧力Piを計算した結果を示す図である。 圧縮上死点でのシリンダ内温度Ttdcが一定値となる圧縮比とスワール比との関係を計算した結果を示す図である。 吸気ポートの構成例を示す図である。 吸気ポートの他の構成例を示す図である。 スワール比の計測方法を説明する図である。 スワール比の計測方法を説明する図である。 噴孔の直径を変化させた場合において予混合圧縮着火燃焼時の図示平均有効圧力Piを計算した結果を示す図である。 噴孔の直径を変化させた場合において予混合圧縮着火燃焼時の熱発生率を計算した結果を示す図である。 シリンダ内の温度分布及びシリンダ壁への熱損失分布を計算した結果を示す図である。 クランク角の変化に対する熱損失履歴を計算した結果を示す図である。 超小径多穴インジェクタ、低圧縮比、及び超低流動がディーゼルエンジンの性能に与える影響を説明する図である。 従来のディーゼルエンジンの圧縮比を示す図である。
符号の説明
10 ディーゼルエンジン、11 シリンダ、12 ピストン、12b キャビティ部、13 インジェクタ、13a 噴孔、14 吸気ポート、15 排気ポート、16 還流通路、17 EGR制御弁。

Claims (3)

  1. 拡散燃焼と予混合圧縮着火燃焼とのいずれかを選択的に行うディーゼルエンジンであって、
    燃料がシリンダ内へ噴出する噴孔が多数形成された多孔インジェクタを備え、
    噴孔の直径が0.09mm以下で、圧縮比εが14〜15の範囲にある、ディーゼルエンジン。
  2. 請求項1に記載のディーゼルエンジンであって、
    スワール比が(0.7×ε−9.0)以下の範囲にある、ディーゼルエンジン。
  3. 請求項1または2に記載のディーゼルエンジンであって、
    噴孔の数が14〜24の範囲にある、ディーゼルエンジン。
JP2008179602A 2008-07-09 2008-07-09 ディーゼルエンジン Expired - Fee Related JP5206179B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008179602A JP5206179B2 (ja) 2008-07-09 2008-07-09 ディーゼルエンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008179602A JP5206179B2 (ja) 2008-07-09 2008-07-09 ディーゼルエンジン

Publications (2)

Publication Number Publication Date
JP2010019149A true JP2010019149A (ja) 2010-01-28
JP5206179B2 JP5206179B2 (ja) 2013-06-12

Family

ID=41704310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179602A Expired - Fee Related JP5206179B2 (ja) 2008-07-09 2008-07-09 ディーゼルエンジン

Country Status (1)

Country Link
JP (1) JP5206179B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012998A (ja) * 2010-06-30 2012-01-19 Mazda Motor Corp 自動車搭載用ディーゼルエンジン
JP2012041892A (ja) * 2010-08-20 2012-03-01 Mazda Motor Corp ディーゼルエンジン
CN107076007A (zh) * 2014-04-24 2017-08-18 Ifp新能源公司 带有用于在具有低压缩比的双区燃烧室中生产燃料混合物的双锥角的直喷式内燃机及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274286A (ja) * 1999-03-19 2000-10-03 Nissan Motor Co Ltd 直噴式ディーゼルエンジン
JP2001193527A (ja) * 2000-01-17 2001-07-17 Mitsubishi Motors Corp ディーゼルエンジン
JP2002256924A (ja) * 2001-02-23 2002-09-11 Fuji Heavy Ind Ltd 圧縮着火式エンジンの燃焼制御装置
JP2006125376A (ja) * 2004-10-01 2006-05-18 Isuzu Motors Ltd ディーゼルエンジン
WO2006077472A1 (en) * 2005-01-18 2006-07-27 Deyang Hou Mixed-mode fuel injector with a variable orifice
JP2007170377A (ja) * 2005-11-24 2007-07-05 Honda Motor Co Ltd 内燃機関

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274286A (ja) * 1999-03-19 2000-10-03 Nissan Motor Co Ltd 直噴式ディーゼルエンジン
JP2001193527A (ja) * 2000-01-17 2001-07-17 Mitsubishi Motors Corp ディーゼルエンジン
JP2002256924A (ja) * 2001-02-23 2002-09-11 Fuji Heavy Ind Ltd 圧縮着火式エンジンの燃焼制御装置
JP2006125376A (ja) * 2004-10-01 2006-05-18 Isuzu Motors Ltd ディーゼルエンジン
WO2006077472A1 (en) * 2005-01-18 2006-07-27 Deyang Hou Mixed-mode fuel injector with a variable orifice
JP2007170377A (ja) * 2005-11-24 2007-07-05 Honda Motor Co Ltd 内燃機関

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012998A (ja) * 2010-06-30 2012-01-19 Mazda Motor Corp 自動車搭載用ディーゼルエンジン
JP2012041892A (ja) * 2010-08-20 2012-03-01 Mazda Motor Corp ディーゼルエンジン
CN107076007A (zh) * 2014-04-24 2017-08-18 Ifp新能源公司 带有用于在具有低压缩比的双区燃烧室中生产燃料混合物的双锥角的直喷式内燃机及其使用方法
CN107076007B (zh) * 2014-04-24 2020-01-17 Ifp新能源公司 带有用于在具有低压缩比的双区燃烧室中生产燃料混合物的双锥角的直喷式内燃机及其使用方法

Also Published As

Publication number Publication date
JP5206179B2 (ja) 2013-06-12

Similar Documents

Publication Publication Date Title
JP4100401B2 (ja) 内燃機関
JP5158266B2 (ja) 内燃機関の燃焼制御装置
JP5062340B2 (ja) 燃料噴射装置
JP4161974B2 (ja) ディーゼル式内燃機関の制御装置
CN107429625B (zh) 直喷发动机的燃料喷射控制装置
JP2009299490A (ja) 内燃機関の燃料噴射制御装置
JP2006328999A (ja) 予混合圧縮自着火式内燃機関
JP5031794B2 (ja) 圧縮着火式内燃機関及びその未燃hc低減方法
Spicher et al. High pressure gasoline direct injection in spark ignition engines-efficiency optimization through detailed process analyses
JP5206179B2 (ja) ディーゼルエンジン
WO2011059059A1 (ja) ディーゼルエンジン
EP1031711B1 (en) Compression-ignition type engine
JP2004211688A (ja) 内燃機関
JP5093407B2 (ja) 内燃機関の燃焼制御装置
JP4023434B2 (ja) 2種類の燃料を用いる予混合圧縮自着火運転可能な内燃機関
JP6292249B2 (ja) 予混合圧縮着火式エンジン
JP2006257999A (ja) 内燃機関
JP4412055B2 (ja) 予混合圧縮自着火内燃機関
WO2023105860A1 (ja) ディーゼルエンジン
JP2001020744A (ja) エンジンの燃焼制御方法およびエンジン
JP2006266182A (ja) ディーゼルエンジンの作動方法
JP2010209791A (ja) 圧縮着火式内燃機関の燃焼制御装置
JP2004316557A (ja) 圧縮着火式内燃機関
JP2006002719A (ja) 内燃機関の制御装置
KR101459913B1 (ko) 디젤/가솔린 혼합연소 적용 엔진의 연소 제어 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110530

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110607

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5206179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees