JP2010011596A - 圧電トランスを用いた電源回路 - Google Patents

圧電トランスを用いた電源回路 Download PDF

Info

Publication number
JP2010011596A
JP2010011596A JP2008166270A JP2008166270A JP2010011596A JP 2010011596 A JP2010011596 A JP 2010011596A JP 2008166270 A JP2008166270 A JP 2008166270A JP 2008166270 A JP2008166270 A JP 2008166270A JP 2010011596 A JP2010011596 A JP 2010011596A
Authority
JP
Japan
Prior art keywords
voltage
switching element
piezoelectric transformer
turn
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008166270A
Other languages
English (en)
Inventor
Hiroyasu Kitamura
浩康 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008166270A priority Critical patent/JP2010011596A/ja
Publication of JP2010011596A publication Critical patent/JP2010011596A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

【課題】設計と品質管理が容易である圧電トランスを用いた電源回路を提供する。
【解決手段】電源回路Aは、圧電トランス30と、MOSFETからなる駆動用スイッチング素子Q1を有する圧電トランス駆動回路部10と、駆動用スイッチング素子Q1をターンオフするターンオフ回路部60とを備える。圧電トランス30は、圧電トランス30の固有共振周波数に一致する周波数で電圧が変化する検出電圧を出力する検出電極34を備える。駆動用スイッチング素子Q1は、検出電極34が出力する検出電圧により圧電トランス30の固有共振周波数でターンオンされる。ターンオフ回路部60は、駆動用スイッチング素子Q1に流れる電流により充電され充電されることにより駆動用スイッチング素子Q1をターンオフするターンオフ用コンデンサC5を備える。
【選択図】図1

Description

本発明は、圧電トランスを備え直流電圧を昇圧して出力する圧電トランスを用いた電源回路に関するものである。
従来から、図7に示すように、圧電素子30’の固有共振周波数で自励発振する発振回路が提供されている(特許文献1参照)。この発振回路は、コンパレータCP1の出力端に接続される相補型の2個のトランジスタQ10,Q11からなるバッファによりコンパレータCP1の出力信号を増幅して圧電素子30’に入力し、圧電素子30’の出力を帰還信号としてコンパレータCP1の非反転入力端子に入力する。
コンパレータCP1は、反転入力端子に入力される一定電圧と圧電素子30’から帰還される脈動電圧とを比較して矩形波信号を出力する。すなわち、コンパレータCP1が出力する矩形波信号の周波数は、圧電素子30’の固有共振周波数に一致する。
この発振回路の圧電素子30’に代えて圧電トランス30を用いることにより電源回路が構成される(特許文献2参照)。
特許文献2に記載の構成では、図8に示すように、直流電源Eの両端間にインダクタL1とMOSFETからなるスイッチング素子Q1との直列回路を接続し、スイッチング素子Q1に波形整形のためのコンデンサC1を並列接続するとともに、コンデンサC1の両端電圧を圧電トランス30に印加する。圧電トランス30から出力される2次電圧は負荷70に印加される。
圧電トランス30は、圧電振動体31と、電圧が印加される一対の1次側電極32と、電圧を出力する2次側電極33と、検出電極(電圧検出電極)34とを備えている。
圧電振動体31は板状に形成され、一対の1次側電極32は厚み方向に対向する一対の面における長手方向の一端部にそれぞれ形成され、2次側電極33は長手方向に対向する一対の面のうち1次側電極32から遠い方の面に形成されている。
検出電極34は一方の1次側電極32が形成された表面の一端部(2次側電極33に近い方の端部)において前記表面に沿うように、圧電トランス30が実装される基板上にパターンとして形成されている。検出電極34からは圧電トランス30の固有共振周波数に相当する周波数で電圧が変動する検出電圧が出力される。
検出電極34から出力される検出電圧はコンパレータCP1’の非反転入力端子に入力される。すなわち、図8に示す構成における圧電素子30’からの帰還信号の代わりに検出電圧を用いている。
コンパレータCP1’の出力信号は、バッファを通してスイッチング素子Q1のゲートに入力される。また、コンパレータCP1’の反転入力端子には、図8に示す構成における定電圧信号の代わりに、バッファの出力電圧の平均値となる電圧が入力される。
したがって、コンパレータCP1’は、圧電トランス30の固有共振周波数に相当する周波数の矩形波信号を出力し、スイッチング素子Q1は圧電トランス30の固有共振周波数に相当する周波数でオンオフが行われるから、圧電トランス30は圧電トランス30の固有共振周波数で駆動さることになる。
ところで、電圧検出電極34が出力する検出電圧の位相は、電圧検出電極34の形状や圧電振動体31との相対位置により変化する。特許文献2では、発振を正常に起こさせるため、検出電圧の位相を調整している。すなわち、電圧検出電極34の形状を枠状や渦巻き状に形成することにより電圧検出電極34にインダクタンスを付与し、検出電圧の位相を調整している。
特開昭55−58604号公報 特開2005−184896号公報
特許文献2に記載された構成では、発振が正常に起きる位相に検出電圧の位相がなるように電圧検出電極34を設計しなければならないから、電源回路の設計が困難になるという問題があり、また、検出電圧の位相は電圧検出電極34と圧電振動体31の表面との間の隙間寸法などによっても変化するから、電源回路の品質管理が困難になるという問題があった。
本発明は上記事由に鑑みて為されたものであり、その目的は、圧電トランスの固有共振周波数で圧電トランスを駆動させる電源回路において、従来構成よりも設計が容易であり、また、品質管理が容易である圧電トランスを用いた電源回路を提供することにある。
請求項1の発明は、入力直流電圧を昇圧して出力する電源回路であって、電圧が印加される一対の1次側電極と圧電材料で形成され1次側電極に印加された電圧を昇圧する昇圧部と昇圧部の変形量に応じた電圧を出力する検出電極と昇圧部で昇圧された電圧を出力する2次側電極とを備え2次側電極から負荷への出力電圧を取り出す圧電トランスと、駆動用スイッチング素子を有し1次側電極に電圧を印加することにより圧電トランスを駆動させる圧電トランス駆動回路部と、駆動用スイッチング素子の制御端子に接続され駆動用スイッチング素子をターンオフさせるターンオフ回路部とを備え、駆動用スイッチング素子は、検出電極が出力する検出電圧によりターンオンされ、ターンオフ回路部は、駆動用スイッチング素子に流れる電流の積算値に応じて駆動用スイッチング素子をターンオフさせることを特徴とする。
請求項2の発明は、請求項1の発明において、前記ターンオフ回路部は、入力直流電圧が印加される入力端の低圧側に一端が接続され他端が前記駆動用スイッチング素子の制御端子に接続されるターンオフ用スイッチング素子と、入力直流電圧が印加される入力端の低圧側に一端が接続され他端がターンオフ用スイッチング素子の制御端子に接続されるターンオフ用コンデンサと、2個の抵抗からなる直列回路であって入力端の低圧側に一端が接続され他端が駆動用スイッチング素子の制御端子に接続され2個の抵抗の接続点が駆動用スイッチング素子の一端に接続される充放電回路部とを備え、ターンオフ用コンデンサは、駆動用スイッチング素子を流れる電流で充電され駆動用スイッチング素子がオフ状態である間に駆動用スイッチング素子を流れる電流で充電された電荷を放電することを特徴とする。
請求項3の発明は、請求項2に記載の発明において、入力直流電圧が印加される入力端の高圧側に一端が接続され他端が前記ターンオフ用コンデンサの一端に接続される抵抗を備えることを特徴とする。
請求項4の発明は、請求項1または請求項2に記載の発明において、入力直流電圧が印加される入力端の高圧側に一端が接続される起動抵抗と、起動抵抗と前記駆動用スイッチング素子の制御端子との間に接続される起動抵抗用スイッチング素子と、入力直流電圧を分圧して分圧した電圧を起動抵抗用スイッチング素子の制御端子に印加する分圧回路部とを備えることを特徴とする。
請求項5の発明は、請求項1または請求項2の何れか1項に記載の発明において、前記負荷が接続される出力端間にダミー抵抗を接続したことを特徴とする。
請求項1の発明の構成によれば、駆動用スイッチング素子は、検出電極が出力する検出電圧によりターンオンされ、駆動用スイッチング素子に流れる電流の積算値に応じてターンオフ回路部によりターンオフされるから、コンパレータを用いる従来構成とは異なり、検出電極が出力する検出電圧の位相に関わりなく圧電トランスの固有共振周波数で駆動用スイッチング素子を駆動させることができるという利点がある。
請求項2の発明の構成によれば、ターンオフ用コンデンサは、駆動用スイッチング素子を流れる電流で充電され駆動用スイッチング素子がオフ状態である間に駆動用スイッチング素子を流れる電流で充電された電荷を放電するから、駆動用スイッチング素子のオン時間が一定に保たれ、出力電圧が安定するという利点がある。
請求項3の発明の構成によれば、入力直流電圧が印加される入力端の高圧側に一端が接続され他端が前記ターンオフ用コンデンサの一端に接続される抵抗を備えるから、入力直流電圧の大きさに応じてターンオフ用コンデンサが充電され、入力直流電圧の大きさに応じて前記駆動用スイッチング素子のオン時間を短くすることができ、駆動用スイッチング素子として、より定格電圧と定格電流の低いものを使用できるという利点がある。
請求項4の発明の構成によれば、起動抵抗の一端は入力直流電圧が印加される入力端の高圧側に接続され、起動抵抗と前記スイッチング素子の制御端子との間には起動抵抗用スイッチング素子が接続されるから、直流電源投入開始時において起動抵抗によりスイッチング素子をターンオンさせることができるとともに起動抵抗用スイッチング素子により駆動用スイッチング素子をターンオンさせるタイミングを調整することができる。駆動抵抗用スイッチング素子の制御端子には分圧された入力直流電圧が印加されるから、入力直流電圧の大きさに応じて駆動用スイッチング素子の最初のターンオンのタイミングが変化する。したがって、圧電トランスの駆動を圧電トランスの固有共振周波数近傍の周波数で開始することができるという利点がある。
請求項5の発明の構成によれば、負荷が接続される出力端間にダミー抵抗を接続するから、負荷のインピーダンスの変動に比べ出力端間のインピーダンスの変動が小さくなり、負荷のインピーダンスの変動に比べスイッチング素子の駆動周波数およびオン時間の変動を抑えることができるという利点がある。
以下の各実施形態では、直流電圧を昇圧して負荷に直流電圧を供給する電源回路を例示する。
(実施形態1)
図1を参照して本実施形態の構成について説明する。本実施形態の電源回路Aは、圧電トランス30と、駆動用スイッチング素子Q1を有し圧電トランス30を駆動させる圧電トランス駆動回路部10と、圧電トランス30が出力する交流電圧を整流して直流電圧にする整流回路部40と、負荷80に供給する直流電圧を検出する出力検出回路部50と、駆動用スイッチング素子Q1をターンオフさせるターンオフ回路部60と、起動抵抗R2と、出力調整回路部70とを備える。
圧電トランス30は、PZT(チタン酸ジルコン酸鉛)などの圧電材料で形成される昇圧部31と、圧電トランス駆動回路部10により電圧が印加される一対の1次側電極32と、昇圧した電圧を出力する2次側電極33と、検出電極34とを備える。
昇圧部31は矩形板状に形成され、一対の1次側電極32は厚み方向に対向する一対の面における長手方向の一端部にそれぞれ形成され、2次側電極33は長手方向に対向する一対の面のうち1次側電極32から遠い方の面に形成される。
検出電極34は一方の1次側電極32が形成された表面の一端部(2次側電極33に近い方の端部)において前記表面に沿って配設され、昇圧部31の変形量に応じた電圧を出力する。すなわち、検出電極34からは、圧電トランス30の固有共振周波数に一致する周波数で電圧が変化する検出電圧が出力される。
圧電トランス駆動回路部10は、共振用コイルL1と共振用コンデンサC1とで形成される共振回路部20を備える。共振用コイルL1と共振用コンデンサC1とは直列に接続され、共振用コイルL1の一端は直流電源Eの高圧側に接続され、共振用コンデンサC1の一端は直流電源Eの低圧側に接続される。一対の1次側電極32は共振用コンデンサC1の両端にそれぞれ接続される。すなわち、圧電トランス30は共振回路部20とともに共振回路を形成する。
駆動用スイッチング素子Q1にはMOSFETが用いられ、ドレインは共振用コンデンサC1の一端(共振用コイルL1に接続されている側の一端)に接続される。
駆動用スイッチング素子Q1のゲート(制御端子)は、抵抗R1とコンデンサC4とからなる直列回路を介して検出電極34に接続される。
起動抵抗R2は、直流電源Eの高圧側と駆動用スイッチング素子Q1のゲートとの間に接続される。
ターンオフ回路部60は、ターンオフ用スイッチング素子Q2と、ターンオフ用コンデンサC5と、充放電回路部61とを備える。ターンオフ用スイッチング素子Q2にはNPN型のトランジスタが用いられる。ターンオフ用スイッチング素子Q2のコレクタはスイッチング素子Q1のゲートに接続され、エミッタは直流電源Eの低電圧側に接続される。ターンオフ用コンデンサC5の両端は、ターンオフ用スイッチング素子Q2のベースとエミッタとにそれぞれ接続され、充電されることによりターンオフ用スイッチング素子Q2のベース(制御端子)、エミッタ間に電圧を印加する。
充放電回路部61は、抵抗R6,R7を備える。抵抗R6とR7とは直列接続され、抵抗R6の一端は直流電源Eの低圧側に接続され、抵抗R7の一端はターンオフ用スイッチング素子Q2のベース(すなわち、ターンオフ用コンデンサC5の一端)に接続される。また、抵抗R6とR7との接続点は駆動用スイッチング素子Q1の一端(ソース)に接続される。
すなわち、充放電回路部61は、駆動用スイッチング素子Q1を流れる電流によりターンオフ用コンデンサC5が充電される充電経路と、駆動用スイッチング素子Q1がオフ状態にあるときにターンオフ用コンデンサC5が放電する放電経路とを形成する。
整流回路部40は、2個の整流ダイオードD1,D2と平滑コンデンサC2とから構成される。整流ダイオードD1のカソードと整流ダイオードD2のアノードとは2次側電極33に接続され、整流ダイオードD1のアノードは直流電源Eの低圧側に接続される。平滑コンデンサC2の両端は、整流ダイオードD2のカソードと直流電源Eの低圧側とにそれぞれ接続される。
出力検出回路部50は、ダミー抵抗R3,R4と平滑用のコンデンサC3とで構成される。ダミー抵抗R3とR4とは直列接続され、ダミー抵抗R4の一端は直流電源Eの低圧側に接続され、ダミー抵抗R3の一端は平滑コンデンサC2の一端(整流ダイオードD2のカソードに接続されている側の一端)に接続される。
出力調整回路部70は、オペアンプ71と、2個の抵抗R8,R9からなる直列回路と、オペアンプ71の反転入力端子と出力端子との間に接続されるコンデンサC6と、出力調整用トランジスタQ3と、出力調整用トランジスタQ3のベースとオペアンプ71の出力端子との間に接続される抵抗R10とを備える。
抵抗R9の一端は直流電源Eの高圧側(直流電圧源)に接続され、抵抗R8の一端は直流電源Eの低圧側に接続され、抵抗R8とR9との接続点はオペアンプ71の反転入力端子に接続される。すなわち、抵抗R8,R9は直流電源Eの直流電圧を分圧してオペアンプ71の反転入力端子に入力する。また、オペアンプ71の非反転入力端子は、ダミー抵抗R3とR4との接続点に接続される。すなわち、オペアンプ71の非反転入力端子には出力検出回路50から出力される検出直流電圧が入力される。
出力調整用トランジスタQ3にはNPN型が用いられ、コレクタは直流電源Eの高圧側に接続され、エミッタはターンオフ用スイッチング素子Q2のベース(すなわち、ターンオフ用コンデンサC5の一端)に接続される。
平滑コンデンサC2の一端には抵抗R5が接続され、負荷80は、抵抗R5の一端と直流電源Eの低圧側との間に接続される。
次に、電源回路Aの動作について説明する。直流電源Eから電源回路Aに直流電圧が供給されると、共振用コイルL1に電流が流れ、共振用コンデンサC1が充電されるとともに1次側電極32に電圧が印加される。
一方、共振用コンデンサC1が充電されるにしたがい共振用コイルL1に流れる電流が減少し、起動抵抗R2を介して直流電源Eの高圧側に接続された駆動用スイッチング素子Q1のゲートの電圧が上昇する。駆動用スイッチング素子Q1のゲートの電圧が駆動用スイッチング素子Q1のオンオフが切り替わる閾値電圧を超えると駆動用スイッチング素子Q1がターンオンする。
駆動用スイッチング素子Q1がターンオンすると駆動用スイッチング素子Q1に電流が流れ、1次側電極32に印加されていた電圧の電圧値が低下する。1次側電極32の電圧が低下することにより検出電極34から検出電圧が出力される。ここに、検出電極34は、出力される検出電圧により駆動用スイッチング素子Q1のゲートの電圧が前記閾値電圧よりも高い電圧に維持されるように形成される。したがって、駆動用スイッチング素子Q1のオン状態が維持される。
また、駆動用スイッチング素子Q1がターンオンすることにより駆動用スイッチング素子Q1に流れる電流は抵抗R6とR7とで分流され、ターンオフ用コンデンサC5は抵抗R7を流れる電流により充電される。充電される電荷によりターンオフ用コンデンサC5の両端間の電圧が時間の経過とともに大きくなる。ターンオフ用コンデンサC5の両端間の電圧がターンオフ用スイッチング素子Q2のオンオフが切り替わる電圧(例えば、約0.6V)を超えるとターンオフ用スイッチング素子Q2がターンオンし、駆動用スイッチング素子Q1がターンオフする。
ここに、ターンオフ用コンデンサC5の容量と抵抗R6,R7の抵抗値とは、検出電極34が出力する検出電圧が前記閾値電圧より低い電圧になるまでターンオフ用スイッチング素子Q2をオン状態に維持できるように設定される。したがって、駆動用スイッチング素子Q1のオフ状態が維持される。
駆動用スイッチング素子Q1がターンオフすると、抵抗R6,R7で形成される放電経路でターンオフ用コンデンサC5が放電し、ターンオフ用スイッチング素子Q2がターンオフする。
一方、駆動用スイッチング素子Q1がターンオンし共振用コイルL1に電圧が加わると、共振用コイルL1には電磁エネルギーが蓄えられる。駆動用スイッチング素子Q1がターンオフすると、共振用コイルL1に蓄えられた電磁エネルギーにより共振回路部20と圧電トランス30とで形成される共振回路(以下、単に共振回路と呼ぶ)において共振電圧が発生し、図2(a)に示すように1次側電極32に共振電圧が印加される。
1次側電極32に共振電圧が印加されることにより、図2(c)に示すように、検出電極34は圧電トランス30の固有共振周波数に一致する周波数の検出電圧を出力する。出力された検出電圧により駆動用スイッチング素子Q1がターンオンされる。
一方、共振回路に共振電圧が発生した後においては、図2(b)に示すように、共振回路に流れる共振電流により駆動用スイッチング素子Q1のドレイン電流はターンオン時において負の値となる。図2(d)に示すように、ドレイン電流が正の値になった時からターンオフ用コンデンサC5の充電が始まる。
ターンオフ用コンデンサC5が充電されると、前述と同様に駆動用スイッチング素子Q1のゲート電圧が低下して駆動用スイッチング素子Q1がターンオフし、駆動用スイッチング素子Q1がターンオフすると、ターンオフ用コンデンサC5の放電が開始される。したがって、駆動用スイッチング素子Q1は検出電極34が出力する検出電圧の周波数(すなわち、圧電トランス30の固有共振周波数)でオンオフされる。
ここにおいて、駆動用スイッチング素子Q1のオン時間を一定に保つために、ターンオフ用コンデンサC5の容量と抵抗R6,R7の抵抗値とは、駆動用スイッチング素子Q1がターンオンするまでにターンオフ用コンデンサC5が放電を終えるような値に設定される。
ところで、1次側電極32に印加する電圧と2次側電極33が出力する電圧との比の値である昇圧比は、図3に示すように、圧電トランス30の駆動周波数に応じて変化し、複数個の極大値が存在する。昇圧比が最も高くなる周波数で圧電トランス30を駆動させるためには、昇圧比が最も高くなる周波数(図におけるb点)の近傍の周波数で圧電トランス30の駆動を開始する必要がある。a点やc点近傍の周波数で圧電トランス30の駆動を開始すると、圧電トランス30は、a点やc点の周波数で駆動することになり、必要な出力を得ることができなくなる虞がある。
したがって、起動抵抗R2により行われる最初のターンオンから検出電極34が出力する検出電圧により行われる次のターンオンまでの時間を周期とする周波数が、昇圧比が最も高くなるb点近傍の周波数になるように、抵抗R1および抵抗R2の抵抗値と、コンデンサC4の容量とが決められるとともに検出電極34が形成される。
なお、駆動用スイッチング素子Q1がゼロボルトスイッチングできるように、共振用コイルL1と共振用コンデンサC1とは、共振回路の共振周波数が圧電トランス30の固有共振周波数の半分より大きくなるように設定される。
上述のように駆動用スイッチング素子Q1がオンオフを繰り返し1次側電極32に共振電圧が印加されると、2次側電極33からは昇圧された交流電圧が出力される。出力される交流電圧は、整流回路部40で倍電圧整流される。ここに、電源回路Aには負荷80が接続され、また、平滑コンデンサC2に並列にダミー抵抗R3,R4が接続されるから、平滑コンデンサC2の両端間の電圧は、図2(e)に示すような、鋸歯状で変動する。
また、平滑コンデンサC2に並列にダミー抵抗R3,R4が接続されるから、負荷80のインピーダンスの変化に比べて平滑コンデンサC2の両端間のインピーダンスの変化が小さくなり、駆動用スイッチング素子Q1の駆動周波数およびオン時間の変動が抑えられる。
出力調整回路部70は、駆動用スイッチング素子Q1のオン時間を変えることにより負荷80に供給する直流電圧の電圧値を安定に保つ。具体的に説明すると、ダミー抵抗R3,R4は平滑コンデンサC2の両端間の電圧を分圧し、分圧された直流電圧はコンデンサC3により変動成分が除去され、図2(f)に示すような安定した検出直流電圧として出力される。
オペアンプ71は、検出直流電圧と抵抗R8,R9で生成される直流電圧との差を増幅して出力する。抵抗R8,R9の抵抗値は、抵抗R8,R9で生成される電圧が検出直流電圧に一致する場合に電源回路Aの出力電圧が設計時に規定した目標値になるように設定される。
オペアンプ71の出力は、出力調整用トランジスタQ3のベースに入力され、出力調整用トランジスタQ3は、ベースに入力された電圧に応じてターンオフ用コンデンサC5を充電する。
したがって、検出直流電圧が抵抗R8,R9で生成される電圧(以下、基準電圧と呼ぶ)よりも大きい場合、検出直流電圧と基準電圧との差に応じた電圧が出力調整用トランジスタQ3のベースに印加され、ベースに印加された電圧に応じてターンオフ用コンデンサC5が充電され、駆動用スイッチング素子Q1を流れる電流によって充電されるターンオフ用コンデンサC5の電圧がターンオフ用スイッチング素子Q2をターンオフさせる電圧(約0.6V)に上昇するまでの時間が短くなり、結果、駆動用スイッチング素子Q1のオン時間が短くなる。
駆動用スイッチング素子Q1のオン時間が短くなることにより電源回路Aの出力電圧が低下し、出力電圧が前記目標値に合わせ込まれる。
上述のように本実施形態では、検出電極34が出力する検出電圧により駆動用スイッチング素子Q1がターンオンするから、検出電極34が出力する検出電圧の位相に関わりなく駆動用スイッチング素子Q1は圧電トランス30の固有共振周波数で駆動され、コンパレータを用いる従来構成のように検出電圧の位相を調整するために検出電極34を枠状や渦巻き状に形成する必要がなく、電源回路Aの設計が容易になり、また、電源回路Aの品質管理が容易になる。
また、上述のように駆動用スイッチング素子Q1のターンオフは、駆動用スイッチング素子Q1を流れる電流の一部を用いてターンオフ用コンデンサC5を充電することにより行うから、駆動用スイッチング素子Q1のオン時間は駆動用スイッチング素子Q1を流れる電流の積算値に応じて決まり、負荷80のインピーダンスが変化して共振電流が変化しない限り駆動用スイッチング素子Q1のオン時間は一定に保たれ、出力が安定する。
さらに、負荷80のインピーダンスが変化する場合は、ダミー抵抗R3,R4により出力端間のインピーダンスの変化抑えられるとともに、出力調整回路部により出力が安定に保たれる。
(実施形態2)
本実施形態の電源回路Bは、図4に示すように、一端が直流電源Eの高圧側に接続され、他端がターンオフ用スイッチング素子Q2のベースに接続される抵抗R11が付加されている点が実施形態1と異なる。他の構成は実施形態1と同様である。
抵抗R11により、直流電源Eが出力する直流電圧の電圧値に応じてターンオフ用コンデンサC5が充電される。すなわち、直流電源Eが出力する直流電圧の大きさに合わせて駆動用スイッチング素子Q1のオン時間が短くなる。
ここに、抵抗R11の抵抗値は、抵抗R11により充電される電荷のみによってターンオフ用スイッチング素子Q2がオン状態にならない範囲で設定される。すなわち、駆動用スイッチング素子Q1を流れる電流によりターンオフ用スイッチング素子Q2はターンオンする。
ところで、駆動用スイッチング素子Q1がオン状態のときに駆動用スイッチング素子Q1を流れる電流と、駆動用スイッチング素子Q1がオフ状態のときにソース、ドレイン間に加わる電圧とは、入力直流電圧が高いほど大きくなり、駆動用スイッチング素子Q1のオン時間が短いほど小さくなる。
したがって、本実施形態では、入力直流電圧が設計時に規定した値よりも大きくなっても、入力直有電圧の増加に応じて駆動用スイッチング素子Q1のオン時間が短くなり、駆動用スイッチング素子Q1に流れる電流と、ソース、ドレイン間に加わる電圧との増加を抑えることができる。したがって、定格電圧と定格電流とがより低い仕様のMOSFETを駆動用スイッチング素子Q1として使用することができる。
(実施形態3)
本実施形態の電源回路Cは、図5に示すように直流電源Eの低圧側と高圧側に両端がそれぞれ接続されるコンデンサC7と、直列に接続される2個の抵抗R12,R13からなる分圧回路部90と、起動抵抗R2と駆動用スイッチング素子Q1のゲートとの間に挿入される起動抵抗用スイッチング素子Q4とを備える点が実施形態1の構成と異なる。他の構成は実施形態1と同様である。
起動抵抗用スイッチング素子Q4にはNPN型のトランジスタが用いられ、起動抵抗用スイッチング素子Q4のコレクタは起動抵抗R2の一端に接続され、エミッタは駆動用スイッチング素子Q1のゲートに接続される。
抵抗R12の一端は直流電源Eの高圧側に接続され、抵抗R13の一端は直流電源Eの低圧側に接続され、抵抗R12とR13との接続点は起動抵抗用スイッチング素子Q4のベースに接続される。すなわち、抵抗R12とR13とでコンデンサC7の両端間の電圧を分圧し、分圧した電圧を起動抵抗用スイッチング素子Q4のベースに印加する。
ところで、1次側電極31に印加される電圧が低いとその分2次側電極33が出力する電圧が低くなり、駆動用スイッチング素子Q1がターンオンするタイミングがずれ、昇圧比が最も高くなる周波数近傍の周波数で圧電トランス30の駆動を開始することができなくなる虞がある。
本実施形態では、入力直流電圧が変動しても、起動抵抗R2により駆動用スイッチング素子Q1がターンオンしてから次に検出電圧によりターンオンされるまでの時間がほぼ一定に保たれるように、抵抗12とR13との抵抗値が設定されている。
したがって、電源投入開始時において入力直流電圧が変動しても、昇圧比が高くなる周波数近傍の周波数で圧電トランス30の駆動を開始することができる。
(実施形態4)
本実施形態では、図6に示すように、静電霧化装置に負の直流電圧を供給する電源回路Dを例示する。本実施形態の電源回路Dにおいては、整流回路部40と出力検出回路部50’とが実施形態1と異なる。
具体的には、整流ダイオードD1のアノードと整流ダイオードD2のカソードとは2次側電極33に接続され、整流ダイオードD1のカソードは直流電源Eの低圧側に接続され、整流ダイオードD2のアノードはコンデンサC2の一端(直流電源Eの低圧側に接続されていない側の一端)に接続される。すなわち、実施形態1とは整流ダイオードD1,D2の向きが逆向きになっている。
したがって、整流回路部40は、2次側電極33が出力する交流電圧を負の直流電圧に倍電圧整流する。
ダミー抵抗R3とダミー抵抗R4とは直列に接続され、ダミー抵抗R3の一端はコンデンサC2の一端に接続され、ダミー抵抗R4の一端は直流電源Eの高圧側に接続される。ダミー抵抗R3とR4との抵抗値は、ダミー抵抗R3とR4との接続点から出力される検出電圧が、平滑コンデンサC2により平滑された直流電圧の電圧値に応じた電圧であるとともに正の電圧になるように設定される。
出力検出回路部50’が出力する検出直流電圧は、オペアンプ71の非反転入力端子に入力される。他の構成は実施形態1の構成と同様である。
静電霧化装置は、負荷80として、霧化電極71と、霧化電極71に対向して配設される対極72とを備える。霧化電極71は平滑コンデンサC2の一端に接続され、霧化電極71には負の電圧が印加される。
また、静電霧化装置は、霧化電極71に水を供給する給水手段(図示せず)を備える。給水手段としては、例えば霧化電極71を冷却することにより霧化電極71に結露水を生じさせる冷却手段がある。
上述したように霧化電極71には負の電圧が印加されるから、霧化電極71に供給された水は負に帯電され、負に帯電された水はクーロン力により対極72に引き寄せられて霧化電極71より放出され、帯電微粒子水(ナノミクロオーダーの水粒子)となって空中に飛散する。
静電霧化装置においては、霧化される水の量に応じて負荷80のインピーダンスが変化する。上述したように本実施形態では、ダミー抵抗R3,R4により圧電トランス30の駆動周波数の変化とオン時間の変化とが抑えられ、また、出力調整回路部70により出力が前記目標値に維持されるから、静電霧化装置は、霧化量に関わらず安定して静電霧化を行うことができる。
実施形態1の回路図である。 実施形態1の電圧または電流の波形図であり、(a)は駆動用スイッチング素子のコレクタ、ドレイン間の電圧の波形図、(b)は駆動用スイッチング素子のドレイン電流の波形図、(c)は検出電極から出力される検出電圧の波形図、(d)はターンオフ用スイッチング素子のベース電圧の波形図、(e)は電源回路の出力電圧の波形図、(f)は出力検出回路部の出力電圧の波形図である。 実施形態2の回路図である。 実施形態3の回路図である。 圧電トランスの駆動周波数と昇圧比との関係を表す図である。 実施形態4の回路図である。 従来例を示す回路図である。 従来例を示す回路図である。
符号の説明
10 圧電トランス駆動回路部
30 圧電トランス
31 昇圧部
32 1次側電極
33 2次側電極
34 検出電極
60 ターンオフ回路部
61 充放電回路部
80 負荷
90 分圧回路部
A,B,C,D 電源回路
E 直流電源
C5 ターンオフ用コンデンサ
Q1 駆動用スイッチング素子
Q2 ターンオフ用スイッチング素子
Q3 起動抵抗用スイッチング素子
R2 起動抵抗
R3,R4 ダミー抵抗

Claims (5)

  1. 入力直流電圧を昇圧して出力する電源回路であって、電圧が印加される一対の1次側電極と圧電材料で形成され1次側電極に印加された電圧を昇圧する昇圧部と昇圧部の変形量に応じた電圧を出力する検出電極と昇圧部で昇圧された電圧を出力する2次側電極とを備え2次側電極から負荷への出力電圧を取り出す圧電トランスと、駆動用スイッチング素子を有し1次側電極に電圧を印加することにより圧電トランスを駆動させる圧電トランス駆動回路部と、駆動用スイッチング素子の制御端子に接続され駆動用スイッチング素子をターンオフさせるターンオフ回路部とを備え、駆動用スイッチング素子は、検出電極が出力する検出電圧によりターンオンされ、ターンオフ回路部は、駆動用スイッチング素子に流れる電流の積算値に応じて駆動用スイッチング素子をターンオフさせることを特徴とする圧電トランスを用いた電源回路。
  2. 前記ターンオフ回路部は、入力直流電圧が印加される入力端の低圧側に一端が接続され他端が前記駆動用スイッチング素子の制御端子に接続されるターンオフ用スイッチング素子と、入力直流電圧が印加される入力端の低圧側に一端が接続され他端がターンオフ用スイッチング素子の制御端子に接続されるターンオフ用コンデンサと、2個の抵抗からなる直列回路であって入力端の低圧側に一端が接続され他端が駆動用スイッチング素子の制御端子に接続され2個の抵抗の接続点が駆動用スイッチング素子の一端に接続される充放電回路部とを備え、ターンオフ用コンデンサは、駆動用スイッチング素子を流れる電流で充電され駆動用スイッチング素子がオフ状態である間に駆動用スイッチング素子を流れる電流で充電された電荷を放電することを特徴とする請求項1に記載の圧電トランスを用いた電源回路。
  3. 入力直流電圧が印加される入力端の高圧側に一端が接続され他端が前記ターンオフ用コンデンサの一端に接続される抵抗を備えることを特徴とする請求項2に記載の圧電トランスを用いた電源回路。
  4. 入力直流電圧が印加される入力端の高圧側に一端が接続される起動抵抗と、起動抵抗と前記駆動用スイッチング素子の制御端子との間に接続される起動抵抗用スイッチング素子と、入力直流電圧を分圧して分圧した電圧を起動抵抗用スイッチング素子の制御端子に印加する分圧回路部とを備えることを特徴とする請求項1または請求項2に記載の圧電トランスを用いた電源回路。
  5. 前記負荷が接続される出力端間にダミー抵抗を接続したことを特徴とする請求項1乃至請求項4の何れか1項に記載の圧電トランスを用いた電源回路。
JP2008166270A 2008-06-25 2008-06-25 圧電トランスを用いた電源回路 Withdrawn JP2010011596A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008166270A JP2010011596A (ja) 2008-06-25 2008-06-25 圧電トランスを用いた電源回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008166270A JP2010011596A (ja) 2008-06-25 2008-06-25 圧電トランスを用いた電源回路

Publications (1)

Publication Number Publication Date
JP2010011596A true JP2010011596A (ja) 2010-01-14

Family

ID=41591401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008166270A Withdrawn JP2010011596A (ja) 2008-06-25 2008-06-25 圧電トランスを用いた電源回路

Country Status (1)

Country Link
JP (1) JP2010011596A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149405A1 (ja) * 2020-01-21 2021-07-29 日立Astemo株式会社 昇圧回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149405A1 (ja) * 2020-01-21 2021-07-29 日立Astemo株式会社 昇圧回路
JPWO2021149405A1 (ja) * 2020-01-21 2021-07-29

Similar Documents

Publication Publication Date Title
CN100490287C (zh) 开关电源及它的控制电路以及使用它的电子设备
CN111740612B (zh) 用于开关电源的功率转换器及其操作方式
US20080309303A1 (en) Switching power supply and regulation circuit
JP2007295761A (ja) スイッチング電源装置
JP2010057326A (ja) 半波整流電流共振型スイッチング電源装置、及びその起動方法
JP2011067746A (ja) 静電霧化装置
US20110085356A1 (en) Switching element driving control circuit and switching power supply device
JP5505429B2 (ja) 交流電源装置
US20200119647A1 (en) Power supply apparatus and image forming apparatus
JP5097029B2 (ja) 圧電トランスを用いた電源回路
EP3292915B1 (en) Voltage application device and discharge device
JP4729468B2 (ja) 圧電トランスを用いた電源装置、電子写真用電源装置、圧電トランス用駆動電圧制御方法及びそのプログラム
US9467071B2 (en) Voltage resonant inverter, control method, and surface treatment device
JP2010011596A (ja) 圧電トランスを用いた電源回路
JP2011182482A (ja) スイッチング昇圧型dc−dcコンバータおよび半導体集積回路装置
US20130083445A1 (en) Ion generator
JP2004221031A (ja) 放電灯点灯装置
US20100102148A1 (en) Electrostatic atomizer
JP2008220048A (ja) 電源装置
JP2009268945A (ja) 高圧発生装置及び静電霧化装置
JP2009028432A (ja) 加熱送風装置
JP2005198462A (ja) 圧電トランスを用いた電源装置
WO2012053314A1 (ja) 高電圧発生回路、イオン発生装置及び静電霧化装置
WO2022118687A1 (ja) 放電装置
WO2022118686A1 (ja) 放電装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100809

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906