JP2010005530A - Hydrogen-containing mineral water and its production method - Google Patents
Hydrogen-containing mineral water and its production method Download PDFInfo
- Publication number
- JP2010005530A JP2010005530A JP2008167726A JP2008167726A JP2010005530A JP 2010005530 A JP2010005530 A JP 2010005530A JP 2008167726 A JP2008167726 A JP 2008167726A JP 2008167726 A JP2008167726 A JP 2008167726A JP 2010005530 A JP2010005530 A JP 2010005530A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- water
- mineral
- ppm
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
本発明は、大気下での開放においても水素水の効果を長く維持できるミネラル水素水とその製造方法に関するものである。 The present invention relates to a mineral hydrogen water that can maintain the effect of the hydrogen water for a long time even when opened in the atmosphere, and a method for producing the same.
周知の通り、水素を多量に含む水素水は、一般に健康増強を期待する飲料水として用いられているが、その他、医療用途や製造ラインにおける洗浄水としても用いられ、広く普及している。そして、バブリングによって水中に水素ガスを溶解させることにより水素水を得る方法が汎用されている。 As is well known, hydrogen water containing a large amount of hydrogen is generally used as drinking water that is expected to enhance health. However, it is also widely used as washing water in medical applications and production lines. And the method of obtaining hydrogen water by dissolving hydrogen gas in water by bubbling is used widely.
例えば、0〜50℃の原水に−180〜60℃の水素ガスを0.5〜500気圧に加圧して溶解させて常温常圧下でpHが9.0以下6.5以上、酸化還元電位が−150mV以下−900mV以上の還元水を製造することにより、通常の溶解度の数倍ないし数百倍近い水素ガスを溶解させて水素ガスが一部気化しても常温下で安定して水素ガスが溶解している還元水を得る方法(例えば、特許文献1参照)や、原料水に0.1〜0.95MPaの水素ガスを注入してpHが7.5〜7.6、溶存水素量が0.8〜1.2ppm、酸化還元電位が−550mV〜−650mVの水素水を製造する装置(例えば、特許文献2参照)が提案されている。 For example, hydrogen gas at −180 to 60 ° C. is pressurized to 0.5 to 500 atm in raw water at 0 to 50 ° C., and pH is 9.0 to 6.5 and redox potential is −150 mV to −900 mV and above at normal temperature and normal pressure. Reduced water that dissolves hydrogen gas that is several times to several hundred times the normal solubility and is stable at room temperature even if the hydrogen gas partially vaporizes. (See, for example, Patent Document 1), or by injecting hydrogen gas of 0.1 to 0.95 MPa into raw water, pH is 7.5 to 7.6, dissolved hydrogen amount is 0.8 to 1.2 ppm, oxidation-reduction potential is −550 mV to − An apparatus for producing 650 mV hydrogen water has been proposed (for example, see Patent Document 2).
従来の水素水は製造直後あるいは密閉状態にあっては当初の溶存水素量が保持されるが、開封すれば、急速に水素量が激減するという問題点があった。例えば、前記特許文献1における還元水では、ペットボトルに密閉した酸化還元電位−624mVの還元水が、ペットボトルの開封によって9時間後には酸化還元電位+69mVとなり、また、前記特許文献2のおける水素水では、時間の経過と共に、酸化還元電位は原料水の値に戻り、当初の溶存水素量を保持できないという問題点を抱えていた。 Conventional hydrogen water retains the initial dissolved hydrogen amount immediately after production or in a sealed state, but there is a problem in that the hydrogen amount rapidly decreases when opened. For example, with the reducing water in Patent Document 1, the reducing water having a redox potential of −624 mV sealed in a PET bottle becomes the redox potential +69 mV after 9 hours by opening the PET bottle. With water, the redox potential returned to the value of the raw water with time and had the problem that the original amount of dissolved hydrogen could not be maintained.
そこで、本発明者等は、大気中に開放した状態であっても溶存水素量が激減しないミネラル水素水を提供することを技術的課題として、その具現化をはかるべく水素ガスを導入するミネラル水と溶存水素量の保持状態との関係について試行錯誤的に研究・実験を重ねてきた。 Therefore, the present inventors, as a technical problem, to provide mineral hydrogen water in which the amount of dissolved hydrogen does not drastically decrease even when it is open to the atmosphere, mineral water into which hydrogen gas is introduced in order to realize it. We have been researching and experimenting on the relationship between the amount of dissolved hydrogen and the amount of dissolved hydrogen retained.
本発明者等が行ったミネラル水の特性と水素ガスの導入方法と溶存水素量の保持状態とについての実験例を以下に説明する。 Experimental examples on the characteristics of mineral water, the method of introducing hydrogen gas, and the state of maintaining the dissolved hydrogen amount performed by the present inventors will be described below.
表1に示す特性を有する蒸留水(原水)と地下水(原料水)との二種類の水を使用した。 Two kinds of water, distilled water (raw water) and ground water (raw water) having the characteristics shown in Table 1, were used.
一次処理:先ず、地下水に含まれる浮遊物等の不純物を取り除くために、アクリル製容器に前記地下水を50リットル入れ、続いて、Mordenite-(Na2,Ca,K2)Al2Si10024・7H2O粉末(以下、「Mordenite粉末」ともいう。)を地下水の量に対して0.2wt%(100g)投入した。そして、攪拌機によって5分攪拌した後に静置した。攪拌開始直後からフロックの生成が始まり、攪拌終了と同時に沈殿が見られ、静置後2分で固液分離が完了した。この一次処理水を固液分離サンプル1とした(実験1)。 Primary treatment: First, in order to remove the impurities suspended matters and the like contained in the ground water, the ground water in the acrylic container placed 50 liters, followed by, Mordenite- (Na 2, Ca, K 2) Al 2 Si 10 0 24 -0.2 wt% (100 g) of 7H 2 O powder (hereinafter also referred to as “Mordenite powder”) was added to the amount of groundwater. And it left still, after stirring for 5 minutes with a stirrer. Immediately after the start of stirring, flocs started to form, and precipitation was observed simultaneously with the end of stirring. Solid-liquid separation was completed 2 minutes after standing. This primary treated water was used as a solid-liquid separation sample 1 (Experiment 1).
また、Mordenite粉末を1wt%(500g)投入した外、実験1と同様の処理を行った。静置後2分で固液分離が完了し、この一次処理水を固液分離サンプル2とした(実験2)。また、Mordenite粉末を0.05wt%(25g)投入した外、実験1と同様の処理を行ったが、静置後5分経っても固液分離は起こらなかった。この一次処理水を固液分離サンプル3とした(実験3)。さらに、Mordenite粉末に代えて硫酸アルミニウム粉末を使用した外、実験1と同様の処理を行った。静置後2分で固液分離が完了した。この一次処理水を固液分離サンプル4とした(実験4)。固液分離処理後における各一次処理水の特性を表2に示す。 In addition, the same treatment as in Experiment 1 was performed except that 1 wt% (500 g) of Mordenite powder was added. Solid-liquid separation was completed in 2 minutes after standing, and this primary treated water was used as solid-liquid separation sample 2 (Experiment 2). In addition, 0.05 wt% (25 g) of Mordenite powder was added, and the same treatment as in Experiment 1 was performed. However, no solid-liquid separation occurred even after 5 minutes from standing. This primary treated water was used as a solid-liquid separation sample 3 (Experiment 3). Further, the same treatment as in Experiment 1 was performed except that aluminum sulfate powder was used instead of Mordenite powder. Solid-liquid separation was completed in 2 minutes after standing. This primary treated water was used as a solid-liquid separation sample 4 (Experiment 4). Table 2 shows the characteristics of each primary treated water after the solid-liquid separation treatment.
なお、0.05wt%(25g)のMordenite粉末を投入した実験3では濁度が改善されなかったので、固液分離サンプル3は以後の処理には用いなかった。 In Experiment 3 in which 0.05 wt% (25 g) of Mordenite powder was added, the turbidity was not improved, so the solid-liquid separation sample 3 was not used for the subsequent treatment.
さらに、Mordenite粉末使用量と分離後の蒸発残留物との関係を調べた。地下水に対するMordenite粉末の必要十分な投入量を得るために、実験1と同様の方法によりMordenite粉末の投入量を表3に示す数値に代えて実験を行った(実験5〜14)。攪拌時間を5分、静置時間を5分としたときの蒸発残留物を表3に示す。 Furthermore, the relationship between the amount of Mordenite powder used and the evaporation residue after separation was examined. In order to obtain a necessary and sufficient amount of Mordenite powder for groundwater, experiments were conducted in the same manner as in Experiment 1 except that the amount of Mordenite powder was changed to the values shown in Table 3 (Experiments 5 to 14). Table 3 shows the evaporation residue when the stirring time is 5 minutes and the standing time is 5 minutes.
本実験よりMordenite粉末を使用する場合には、投入量0.10wt%から効果が現れ、1.00wt%を超えて投入しても更なる効果向上は得られなかった。本実験結果より、Mordenite粉末は原料水に対して少なくとも0.10wt%必要であり、1.00wt%で十分であることを確認できた。 From this experiment, when Mordenite powder was used, the effect appeared from an input amount of 0.10 wt%, and even if the amount exceeded 1.00 wt%, no further improvement in effect was obtained. From this experimental result, it was confirmed that the Mordenite powder needs to be at least 0.10 wt% with respect to the raw water, and 1.00 wt% is sufficient.
二次処理:次に、前記一次処理工程で得た固液分離サンプル1、2及び4の各一次処理水を用いて該一次処理水中のイオン化した元素を分離するために、当該各一次処理水を1万ガウスの磁場中に1分間置いて暴露した後、当該磁場環境から取り出して当該各二次処理水(原水)を各磁場印加サンプル1〜3とした(実験15〜17)。 Secondary treatment: Next, in order to separate the ionized elements in the primary treated water using the primary treated water of the solid-liquid separation samples 1, 2 and 4 obtained in the primary treatment step, each primary treated water is separated. Were exposed to a magnetic field of 10,000 gauss for 1 minute and then removed from the magnetic field environment, and the secondary treated water (raw water) was used as magnetic field applied samples 1 to 3 (Experiments 15 to 17).
また、前記一次処理を行っていない地下水に対して実験15〜17と同様の処理を行い、この二次処理水(原水)を磁場印加サンプル4とした(実験18)。また、固液分離サンプル1についてこの一次処理水を5000ガウスの磁場中に1分間置いて暴露した後、当該磁場環境から取り出してこの二次処理水(原水)を磁場印加サンプル5とした(実験19)。磁場印加処理後における各二次処理水の特性を表4に示す。 Moreover, the same process as Experiments 15-17 was performed with respect to the groundwater which has not performed the said primary process, and this secondary treated water (raw water) was made into the magnetic field application sample 4 (Experiment 18). In addition, the solid-liquid separation sample 1 was exposed to the primary treated water in a magnetic field of 5000 gauss for 1 minute, and then removed from the magnetic field environment, and the secondary treated water (raw water) was used as the magnetic field application sample 5 (experiment). 19). Table 4 shows the characteristics of each secondary treated water after the magnetic field application treatment.
本実験より前記一次処理において硫酸アルミニウム粉末を使用して得られた固液分離サンプル4を用いた実験17、前記一次処理を行っていない地下水を用いた実験18、及び、二次処理において磁場を5000ガウスとした場合の実験19では、磁場印加サンプル3と磁場印加サンプル4と磁場印加サンプル5との各特性において、いずれも鉛、亜鉛、銅等の重金属の低減率が悪い結果となった。これによって、重金属を含む不純物を水質基準を満たす値まで除去するには硫酸アルミニウム粉末よりMordenite粉末が適していると共に、1万ガウス以上(少なくとも1万ガウス)の磁場印加がよいことを確認できた。 From this experiment, the experiment 17 using the solid-liquid separation sample 4 obtained using the aluminum sulfate powder in the primary treatment, the experiment 18 using the groundwater not subjected to the primary treatment, and the magnetic field in the secondary treatment. In Experiment 19 with 5000 gauss, the reduction rate of heavy metals such as lead, zinc, and copper was poor in each of the characteristics of the magnetic field application sample 3, the magnetic field application sample 4, and the magnetic field application sample 5. As a result, it was confirmed that Mordenite powder was more suitable than aluminum sulfate powder to remove impurities containing heavy metals to a value satisfying the water quality standard, and that magnetic field application of 10,000 gauss or more (at least 10,000 gauss) was good. .
なお、固液分離サンプル4を用いた実験17と磁場を5000ガウスとした場合の実験19とは、重金属の低減率が悪い結果となったので、磁場印加サンプル3と磁場印加サンプル5とは以後の処理には用いなかった。ただし、前記未処理地下水を用いた実験18で得られた磁場印加サンプル4は比較のために以後の処理にも用いた。 The experiment 17 using the solid-liquid separation sample 4 and the experiment 19 in the case where the magnetic field was set to 5000 gauss resulted in a poor reduction rate of heavy metals, so the magnetic field application sample 3 and the magnetic field application sample 5 will be described later. It was not used for the treatment. However, the magnetic field application sample 4 obtained in Experiment 18 using the untreated groundwater was also used for the subsequent treatment for comparison.
前記各二次処理水をミネラル水を製造する原水とし、前記蒸留水を原水として加えて実験を行った。 Each secondary treated water was used as raw water for producing mineral water, and the distilled water was added as raw water for experiments.
三次処理:次に、前記二次処理水(原水)からミネラル水を得るために、前記二次処理工程で得た磁場印加サンプル1及び2を使用した。30リットルの磁場印加サンプル1及び2のそれぞれにSiO2を400〜800ppm、Caを5000〜20000ppm及びMgを2000〜5000ppm含有しているセラミックス粉末を1kg投入し、微細孔を有するノズルから圧力0.5MPa、噴射量10リットル/分のアルゴンガスを液中に5分間吹き込んで当該各三次処理水(ミネラル水)を分散処理サンプル1及び2とした(実験20及び21)。このときのアルゴンガスの気泡径は平均7.5μmであった。 Tertiary treatment: Next, in order to obtain mineral water from the secondary treated water (raw water), the magnetic field application samples 1 and 2 obtained in the secondary treatment step were used. 1 kg of ceramic powder containing 400 to 800 ppm of SiO 2 , 5000 to 20000 ppm of Ca and 2000 to 5000 ppm of Mg is charged into each of the 30 liter magnetic field applied samples 1 and 2, and the pressure is 0.5 MPa from a nozzle having a fine hole. Then, argon gas of 10 liters / min was blown into the liquid for 5 minutes, and the respective tertiary treated water (mineral water) was used as dispersion treated samples 1 and 2 (Experiments 20 and 21). The bubble diameter of the argon gas at this time was an average of 7.5 μm.
また、前記磁場印加サンプル1を使用してアルゴンガスの吹き込み圧力を0.1MPaとした外、実験20及び21と同様の処理を行った。アルゴンガスの気泡径は平均30μmであった。この三次処理水(ミネラル水)を分散処理サンプル3とした(実験22)。また、前記磁場印加サンプル1を使用してアルゴンガスの吹き込み時間を1時間とした外、実験20及び21と同様の処理を行った。この三次処理水(ミネラル水)を分散処理サンプル4とした(実験23)。 Further, the magnetic field application sample 1 was used, and the same treatment as in Experiments 20 and 21 was performed except that the argon gas blowing pressure was set to 0.1 MPa. The bubble diameter of argon gas was 30 μm on average. This tertiary treated water (mineral water) was used as dispersion treated sample 3 (Experiment 22). Further, the same treatment as in Experiments 20 and 21 was performed except that the magnetic field application sample 1 was used and the argon gas blowing time was set to 1 hour. This tertiary treated water (mineral water) was used as dispersion treated sample 4 (Experiment 23).
表1に示す蒸留水(原水)を使用し、30リットルの蒸留水にSiO2を400〜800ppm、Caを5000〜20000ppm及びMgを2000〜5000ppm含有しているセラミックス粉末を1kg投入し、微細孔を有するノズルから圧力0.5MPa、噴射量10リットル/分、気泡径平均7.5μmのアルゴンガスを液中に5分間吹き込んでこの三次処理水(ミネラル水)を分散処理サンプル5とした(実験24)。また、前記磁場印加サンプル4を使用した外、実験24と同様の処理を行い、この三次処理水(ミネラル水)を分散処理サンプル6とした(実験25)。また、前記固液分離サンプル1を使用した外、実験24と同様の処理を行い、この三次処理水(ミネラル水)を分散処理サンプル7とした(実験26)。分散処理後における各三次処理水の特性を表5及び表6に示す。 Using distilled water as shown in Table 1 (raw water), a SiO 2 400~800ppm, a ceramic powder that 2000~5000ppm contain 5000~20000ppm and Mg and Ca and 1kg charged 30 liters of distilled water, micropores A third treated water (mineral water) was blown into the liquid for 5 minutes from a nozzle having a pressure of 0.5 MPa, an injection amount of 10 liters / minute, and an average bubble diameter of 7.5 μm into the liquid, and this was treated as dispersion sample 5 (Experiment 24) . In addition to using the magnetic field application sample 4, the same treatment as in Experiment 24 was performed, and this tertiary treated water (mineral water) was used as the dispersion treated sample 6 (Experiment 25). In addition to using the solid-liquid separation sample 1, the same treatment as in Experiment 24 was performed, and this tertiary treated water (mineral water) was used as the dispersion treated sample 7 (Experiment 26). Tables 5 and 6 show the characteristics of each tertiary treated water after the dispersion treatment.
四次処理:次に、前記三次処理工程で得た分散処理サンプル1〜5の各ミネラル水を使用し、当該ミネラル水に水素ガスを飽和状態に溶存させるために、20リットルの各分散処理サンプル1〜5に300KHz、10KWの電磁波を照射しながら微細孔を有するノズルから圧力0.8PMa、噴射量5リットル/分の水素ガスを液中に10分間吹き込んだ。このときの水素ガスの気泡径は0.6μmであった。 Quaternary treatment: Next, each of the mineral waters of the dispersion treatment samples 1 to 5 obtained in the tertiary treatment step is used, and 20 liters of each dispersion treatment sample is used to dissolve hydrogen gas in a saturated state in the mineral water. While irradiating electromagnetic waves of 1 to 5 with 300 KHz and 10 KW, hydrogen gas was blown into the liquid for 10 minutes from a nozzle having fine holes at a pressure of 0.8 Pma and an injection amount of 5 liters / minute. The bubble diameter of the hydrogen gas at this time was 0.6 μm.
分散処理サンプル1から得られた四次処理水(ミネラル水素水)における飽和状態の溶存水素量は1.2ppmであった(水素処理サンプル1:実験27)。分散処理サンプル2から得られた四次処理水(ミネラル水素水)における飽和状態の溶存水素量は1.5ppmであった(水素処理サンプル2:実験28)。分散処理サンプル3から得られた四次処理水(ミネラル水素水)における飽和状態の溶存水素量は0.7ppmであった(水素処理サンプル3:実験29)。分散処理サンプル4から得られた四次処理水(ミネラル水素水)における飽和状態の溶存水素量は1.4ppmであった(水素処理サンプル4:実験30)。分散処理サンプル5から得られた四次処理水(ミネラル水素水)における飽和状態の溶存水素量は1.3ppmであった(水素処理サンプル5:実験31)。 The amount of saturated dissolved hydrogen in the quaternary treated water (mineral hydrogen water) obtained from the dispersion treated sample 1 was 1.2 ppm (hydrogen treated sample 1: experiment 27). The amount of dissolved dissolved hydrogen in the quaternary treated water (mineral hydrogen water) obtained from the dispersion treated sample 2 was 1.5 ppm (hydrogen treated sample 2: experiment 28). The amount of dissolved dissolved hydrogen in the quaternary treated water (mineral hydrogen water) obtained from the dispersion treated sample 3 was 0.7 ppm (hydrogen treated sample 3: experiment 29). The amount of dissolved dissolved hydrogen in the quaternary treated water (mineral hydrogen water) obtained from the dispersion treated sample 4 was 1.4 ppm (hydrogen treated sample 4: experiment 30). The amount of dissolved dissolved hydrogen in the quaternary treated water (mineral hydrogen water) obtained from the dispersion treated sample 5 was 1.3 ppm (hydrogen treated sample 5: Experiment 31).
また、分散処理サンプル1を使用して粒子径10μmのMg粉末を10g添加した外、実験27〜31と同様にして水素処理サンプル6(ミネラル水素水)を得た。当該水素処理サンプル6の飽和溶存水素量は1.1ppmであった(実験32)。分散処理サンプル1を使用して電磁波の周波数を1KHzとした外、実験27〜31と同様にして水素処理サンプル7(ミネラル水素水)を得た。当該水素処理サンプル7の飽和溶存水素量は0.8ppmであった(実験33)。分散処理サンプル1を使用して電磁波の周波数を100GHzとした外、実験27〜31と同様にして水素処理サンプル8(ミネラル水素水)を得た。当該水素処理サンプル8の飽和溶存水素量は1.0ppmであった(実験34)。分散処理サンプル1を使用して水素ガスの吹き込み圧力を0.1MPaとし、水素ガスの気泡径が30μmであった外、実験27〜31と同様にして水素処理サンプル9(ミネラル水素水)を得た。当該水素処理サンプル9の飽和溶存水素量は0.8ppmであった(実験35)。分散処理サンプル1を使用して水素ガスの吹き込み時間を5分間とした外、実験27〜31と同様にして水素処理サンプル10(ミネラル水素水)を得た。当該水素処理サンプル10の飽和溶存水素量は0.2ppmであった(実験36)。分散処理サンプル1を使用して水素ガス導入時に電磁波照射を行わなかった外、実験27〜31と同様にして水素処理サンプル11(ミネラル水素水)を得た。当該水素処理サンプル11の飽和溶存水素量は0.2ppmであった(実験37)。 In addition, 10 g of Mg powder having a particle diameter of 10 μm was added using the dispersion-treated sample 1, and a hydrogen-treated sample 6 (mineral hydrogen water) was obtained in the same manner as in Experiments 27 to 31. The saturated dissolved hydrogen content of the hydrogen-treated sample 6 was 1.1 ppm (Experiment 32). The dispersion-treated sample 1 was used, and the frequency of electromagnetic waves was set to 1 KHz, and a hydrogen-treated sample 7 (mineral hydrogen water) was obtained in the same manner as in Experiments 27 to 31. The saturated dissolved hydrogen content of the hydrogen-treated sample 7 was 0.8 ppm (Experiment 33). The dispersion-treated sample 1 was used, and the frequency of electromagnetic waves was set to 100 GHz, and a hydrogen-treated sample 8 (mineral hydrogen water) was obtained in the same manner as in Experiments 27 to 31. The saturated dissolved hydrogen content of the hydrogen-treated sample 8 was 1.0 ppm (Experiment 34). Hydrogen treatment sample 9 (mineral hydrogen water) was obtained in the same manner as in Experiments 27 to 31 except that the dispersion gas sample 1 was used and the hydrogen gas blowing pressure was 0.1 MPa and the hydrogen gas bubble diameter was 30 μm. . The saturated dissolved hydrogen content of the hydrogen-treated sample 9 was 0.8 ppm (Experiment 35). Hydrogen treatment sample 10 (mineral hydrogen water) was obtained in the same manner as in Experiments 27 to 31 except that the dispersion treatment sample 1 was used and the hydrogen gas blowing time was 5 minutes. The saturated dissolved hydrogen content of the hydrogen-treated sample 10 was 0.2 ppm (Experiment 36). In the same manner as in Experiments 27 to 31, except that the dispersion treatment sample 1 was not used to irradiate electromagnetic waves when hydrogen gas was introduced, a hydrogen treatment sample 11 (mineral hydrogen water) was obtained. The saturated dissolved hydrogen amount of the hydrogen-treated sample 11 was 0.2 ppm (Experiment 37).
一次処理を行っていない分散処理サンプル6と二次処理を行っていない分散処理サンプル7と三次処理を行っていない磁場印加サンプル1の各処理水を使用し、当該ミネラル水に水素ガスを飽和状態に溶存させるために、20リットルの各処理水に300KHz、10KWの電磁波を照射しながら微細孔を有するノズルから圧力0.8PMa、噴射量5リットル/分の水素ガスを液中に10分間吹き込んで当該各四次処理水を水素処理サンプル12〜13(ミネラル水素水)と水素処理サンプル14(水素水)とした。このときの水素ガスの気泡径は0.6μmであった。また、水素処理サンプル12の飽和溶存水素量は0.8ppm(実験38)、水素処理サンプル13の飽和溶存水素量は0.6ppm(実験39)、水素処理サンプル14の飽和溶存水素量は0.4ppm、であった(実験40)。 Using each treated water of the dispersion treatment sample 6 not subjected to the primary treatment, the dispersion treatment sample 7 not subjected to the secondary treatment, and the magnetic field application sample 1 not subject to the tertiary treatment, hydrogen gas is saturated in the mineral water. In order to dissolve in 20 liters of treated water, hydrogen gas was blown into the liquid for 10 minutes with a pressure of 0.8PMa and an injection rate of 5 liters / minute from a nozzle with fine holes while irradiating electromagnetic waves of 300KHz and 10KW to each treated water. Each quaternary treated water was designated as hydrogen treated samples 12-13 (mineral hydrogen water) and hydrogen treated sample 14 (hydrogen water). The bubble diameter of the hydrogen gas at this time was 0.6 μm. Further, the saturated dissolved hydrogen amount of the hydrogen-treated sample 12 is 0.8 ppm (experiment 38), the saturated dissolved hydrogen amount of the hydrogen-treated sample 13 is 0.6 ppm (experiment 39), and the saturated dissolved hydrogen amount of the hydrogen-treated sample 14 is 0.4 ppm. (Experiment 40).
四次処理で得られた水素処理サンプル1〜14の含有水素量及び酸化還元電位、当該各水素処理サンプル1〜14を大気環境下で開放した場合における水素量と酸化還元電位の時間経過推移を表7〜9に示す。 The amount of hydrogen and oxidation-reduction potential of the hydrogen treatment samples 1 to 14 obtained by the quaternary treatment, and the time course transition of the hydrogen amount and the oxidation-reduction potential when the respective hydrogen treatment samples 1 to 14 are opened in the atmospheric environment Shown in Tables 7-9.
表7〜9を参照すれば、水素処理サンプル1,2,4,5,6及び10のミネラル水素水において、大気開放直前の製造当初の溶存水素量を基準にして当該水素量が緩慢な減少を示しており、その半減期は1週間以上(短くとも1週間)という好成績であった。 Referring to Tables 7 to 9, in the mineral hydrogen water of the hydrotreated samples 1, 2, 4, 5, 6 and 10, the amount of hydrogen slowly decreases based on the amount of dissolved hydrogen at the beginning of production immediately before opening to the atmosphere. The half-life was 1 week or longer (1 week at the shortest).
前記水素処理サンプル1は、地下水を使用し、前記一次処理においてMordenite粉末を0.2wt%投入して浮遊物を除去し、前記二次処理において1万ガウスの磁場環境下で重金属を除去し、前記三次処理において10ppmのSiと55ppmのCaと2.5ppmのMgとのミネラル成分を含有する硬度148のミネラル水を得、前記四次処理において300KHzの電磁波を照射しながら気泡径0.6μmの水素ガスを導入して得られたミネラル水素水であった。開封直前の飽和溶存水素量は1.2ppm、開封後240時間経っても0.9ppmを示し、少なくとも10日目にあっても当該水素量の半減期における値0.6ppmには達していなかった。 The hydrogen-treated sample 1 uses groundwater, and 0.2 wt% of Mordenite powder is added in the primary treatment to remove suspended solids. In the secondary treatment, heavy metals are removed in a magnetic environment of 10,000 gauss, In the tertiary treatment, mineral water with a hardness of 148 containing mineral components of 10 ppm Si, 55 ppm Ca and 2.5 ppm Mg is obtained, and hydrogen gas with a bubble diameter of 0.6 μm is applied while irradiating 300 KHz electromagnetic waves in the fourth treatment. It was mineral hydrogen water obtained by introduction. The amount of saturated dissolved hydrogen immediately before opening was 1.2 ppm, 0.9 ppm even 240 hours after opening, and even at least on the 10th day, the hydrogen half-life value of 0.6 ppm was not reached.
また、前記水素処理サンプル2は、地下水を使用し、前記一次処理においてMordenite粉末を1wt%投入して浮遊物を除去し、前記二次処理において1万ガウスの磁場環境下で重金属を除去し、前記三次処理において12ppmのSiと45ppmのCaと1.9ppmのMgとのミネラル成分を含有する硬度120のミネラル水を得、前記四次処理において300KHzの電磁波を照射しながら気泡径0.6μmの水素ガスを導入して得られたミネラル水素水であった。開封直前の飽和溶存水素量は1.5ppm、開封後240時間経っても1.1ppmを示し、少なくとも10日目にあっても当該水素量の半減期における値0.75ppmには達していなかった。 In addition, the hydrogen-treated sample 2 uses groundwater, 1 wt% of Mordenite powder is added in the primary treatment to remove suspended solids, and heavy metals are removed in the secondary treatment in a magnetic environment of 10,000 gauss, In the third treatment, mineral water having a hardness of 120 containing mineral components of 12 ppm Si, 45 ppm Ca and 1.9 ppm Mg is obtained, and in the fourth treatment, hydrogen gas having a bubble diameter of 0.6 μm is irradiated while irradiating an electromagnetic wave of 300 KHz. It was the mineral hydrogen water obtained by introducing. The amount of saturated dissolved hydrogen immediately before opening was 1.5 ppm, 1.1 ppm even 240 hours after opening, and even at least on the 10th day, the hydrogen half-life value of 0.75 ppm was not reached.
また、前記水素処理サンプル4は、一次処理、二次処理及び四次処理は前記水素処理サンプル1と同様に処理され、三次処理において50ppmのSiと120ppmのCaと5.9ppmのMgとのミネラル成分を含有する硬度324のミネラル水を得たミネラル水素水であった。開封直前の飽和溶存水素量は1.4ppm、開封後240時間経っても1.0ppmを示し、少なくとも10日目にあっても当該水素量の半減期における値0.7ppmには達していなかった。 The hydrogen treatment sample 4 is treated in the same manner as the hydrogen treatment sample 1 in the primary treatment, secondary treatment and quaternary treatment. In the tertiary treatment, the mineral components are 50 ppm Si, 120 ppm Ca and 5.9 ppm Mg. It was the mineral hydrogen water which obtained the mineral water of the hardness 324 containing. The amount of saturated dissolved hydrogen immediately before opening was 1.4 ppm, and even after 240 hours from opening, it showed 1.0 ppm. Even at least on the 10th day, the hydrogen half-life value of 0.7 ppm was not reached.
また、前記水素処理サンプル5は、蒸留水を使用し、前記三次処理において10ppmのSiと40ppmのCaと1.5ppmのMgとのミネラル成分を含有する硬度106のミネラル水を得、前記四次処理において300KHzの電磁波を照射しながら気泡径0.6μmの水素ガスを導入して得られたミネラル水素水であった。開封直前の飽和溶存水素量は1.3ppm、開封後240時間経っても1.0ppmを示し、少なくとも10日目にあっても当該水素量の半減期における値0.65ppmには達していなかった。 The hydrotreated sample 5 uses distilled water to obtain mineral water having a hardness of 106 containing mineral components of 10 ppm Si, 40 ppm Ca, and 1.5 ppm Mg in the third treatment, and the fourth treatment. The mineral hydrogen water was obtained by introducing hydrogen gas having a bubble diameter of 0.6 μm while irradiating an electromagnetic wave of 300 KHz. The amount of saturated dissolved hydrogen immediately before opening was 1.3 ppm, 1.0 ppm even 240 hours after opening, and even at least on the 10th day, the hydrogen half-life value of 0.65 ppm was not reached.
また、前記水素処理サンプル6は、一次処理、二次処理及び三次処理は前記水素処理サンプル1と同様に処理されて三次処理において10ppmのSiと55ppmのCaと2.5ppmのMgとのミネラル成分を含有する硬度148のミネラル水を得、四次処理において粒子径10μmのMg粉末を10g添加して300KHzの電磁波を照射しながら気泡径0.6μmの水素ガスを導入して得られたミネラル水素水であった。開封直前の飽和溶存水素量は1.1ppm、開封後240時間経っても0.9ppmを示し、少なくとも10日目にあっても当該水素量の半減期における値0.55ppmには達していなかった。 In addition, the hydrogen treatment sample 6 is processed in the same manner as the hydrogen treatment sample 1 in the primary treatment, the secondary treatment, and the tertiary treatment. In the tertiary treatment, mineral components of 10 ppm Si, 55 ppm Ca, and 2.5 ppm Mg are added. The mineral water with a hardness of 148 was obtained, and 10g of Mg powder with a particle size of 10μm was added in the quaternary treatment, and hydrogen gas with a bubble size of 0.6μm was introduced while irradiating an electromagnetic wave of 300KHz. there were. The amount of saturated dissolved hydrogen immediately before opening was 1.1 ppm, 0.9 ppm even 240 hours after opening, and even at least on the 10th day, it did not reach the value of 0.55 ppm in the half-life of the hydrogen amount.
さらに、前記水素処理サンプル10は、一次処理、二次処理及び三次処理は前記水素処理サンプル1と同様に処理されて三次処理において10ppmのSiと55ppmのCaと2.5ppmのMgとのミネラル成分を含有する硬度148のミネラル水を得、四次処理において300KHzの電磁波を照射しながら気泡径0.6μmの水素ガスを5分間導入して得られたミネラル水素水であった。開封直前の飽和溶存水素量は0.2ppm、開封後240時間経っても0.15ppmを示し、少なくとも10日目にあっても当該水素量の半減期における値0.1ppmには達していなかった。 Further, the hydrogen-treated sample 10 is treated in the same manner as the hydrogen-treated sample 1 in the primary treatment, the secondary treatment, and the tertiary treatment. In the tertiary treatment, mineral components of 10 ppm Si, 55 ppm Ca, and 2.5 ppm Mg are added. It contained mineral water having a hardness of 148 and contained mineral hydrogen water obtained by introducing hydrogen gas having a bubble diameter of 0.6 μm for 5 minutes while irradiating an electromagnetic wave of 300 KHz in the fourth treatment. The amount of saturated dissolved hydrogen immediately before opening was 0.2 ppm, 0.15 ppm even 240 hours after opening, and even at least on the 10th day, the hydrogen half-life value of 0.1 ppm was not reached.
また、表7〜9によれば、大気開放直前の製造当初の溶存水素量を基準にして当該水素量が、水素処理サンプル7,8及び9においては略緩慢に減少してその半減期は1〜3日迄であり、水素処理サンプル3及び11〜14のミネラル水素水においては、開放時より溶存水素量が急激に減少していた。 Further, according to Tables 7 to 9, the amount of hydrogen decreased substantially slowly in the hydrogen-treated samples 7, 8 and 9 on the basis of the amount of dissolved hydrogen at the beginning of production immediately before opening to the atmosphere, and the half-life was 1 Until 3 days, in the hydrotreated samples 3 and 11-14, the amount of dissolved hydrogen sharply decreased from the time of opening.
前記水素処理サンプル7は、一次処理、二次処理及び三次処理は前記水素処理サンプル1と同様に処理されて三次処理において10ppmのSiと55ppmのCaと2.5ppmのMgとのミネラル成分を含有する硬度148のミネラル水を得、四次処理において1KHzの電磁波を照射しながら気泡径0.6μmの水素ガスを導入して得られたミネラル水素水であった。開封直前の飽和溶存水素量は0.8ppm、開封後1時間経った時点で0.5ppmを示し、10時間後には0.2ppmとなっていた。半減期は10時間までであった。 The hydrogen treatment sample 7 is treated in the same manner as the hydrogen treatment sample 1 in the primary treatment, the secondary treatment and the tertiary treatment, and contains the mineral components of 10 ppm Si, 55 ppm Ca and 2.5 ppm Mg in the tertiary treatment. Mineral water having a hardness of 148 was obtained, and the mineral hydrogen water was obtained by introducing hydrogen gas having a bubble diameter of 0.6 μm while irradiating an electromagnetic wave of 1 KHz in the fourth treatment. The amount of saturated dissolved hydrogen immediately before opening was 0.8 ppm, 0.5 ppm when 1 hour passed after opening, and 0.2 ppm after 10 hours. The half-life was up to 10 hours.
前記水素処理サンプル8は、一次処理、二次処理及び三次処理は前記水素処理サンプル1と同様に処理されて三次処理において10ppmのSiと55ppmのCaと2.5ppmのMgとのミネラル成分を含有する硬度148のミネラル水を得、前記四次処理において100GHzの電磁波を照射しながら気泡径0.6μmの水素ガスを導入して得られたミネラル水素水であった。開封直前の飽和溶存水素量は1.0ppm、開封後72時間経った時点で0.5ppmを示し、120時間後には0.2ppmとなっていた。半減期は3日間であった。 The hydrogen treatment sample 8 is treated in the same manner as the hydrogen treatment sample 1 in the primary treatment, the secondary treatment and the tertiary treatment, and contains the mineral components of 10 ppm Si, 55 ppm Ca and 2.5 ppm Mg in the tertiary treatment. Mineral water having a hardness of 148 was obtained, and the mineral water was obtained by introducing hydrogen gas having a bubble diameter of 0.6 μm while irradiating 100 GHz electromagnetic waves in the fourth treatment. The amount of saturated dissolved hydrogen immediately before opening was 1.0 ppm, 0.5 ppm at 72 hours after opening, and 0.2 ppm after 120 hours. The half-life was 3 days.
前記水素処理サンプル9は、一次処理、二次処理及び三次処理は前記水素処理サンプル1と同様に処理されて三次処理において10ppmのSiと55ppmのCaと2.5ppmのMgとのミネラル成分を含有する硬度148のミネラル水を得、気泡径30μmの水素ガスを導入して得られたミネラル水素水であった。開封直前の飽和溶存水素量は0.8ppm、開封後24時間経った時点で0.5ppmを示し、72時間後には0.3ppmとなっていた。半減期は3日間までであった。 The hydrogen treatment sample 9 is treated in the same manner as the hydrogen treatment sample 1 in the primary treatment, the secondary treatment, and the tertiary treatment, and contains the mineral components of 10 ppm Si, 55 ppm Ca, and 2.5 ppm Mg in the tertiary treatment. Mineral water having a hardness of 148 was obtained, and this was mineral hydrogen water obtained by introducing hydrogen gas having a bubble diameter of 30 μm. The saturated dissolved hydrogen content immediately before opening was 0.8 ppm, 0.5 ppm when 24 hours passed after opening, and 0.3 ppm after 72 hours. The half-life was up to 3 days.
前記水素処理サンプル3は、一次処理及び二次処理は前記水素処理サンプル1と同様に処理され、前記三次処理において5ppmのSiと26ppmのCaと1.2ppmのMgとのミネラル成分を含有する硬度70のミネラル水を得、前記四次処理において300KHzの電磁波を照射しながら気泡径0.6μmの水素ガスを導入して得られたミネラル水素水であった。開封直前の飽和溶存水素量は0.7ppm、開封後5分経った時点で0.4ppmを示し、1時間後には0.2ppmとなっていた。 The hydrogen-treated sample 3 is treated in the same manner as the hydrogen-treated sample 1 in the primary treatment and the secondary treatment, and in the tertiary treatment, the hardness 70 containing mineral components of 5 ppm Si, 26 ppm Ca, and 1.2 ppm Mg. This mineral water was obtained by introducing hydrogen gas having a bubble diameter of 0.6 μm while irradiating 300 KHz electromagnetic waves in the fourth treatment. The amount of saturated dissolved hydrogen immediately before opening was 0.7 ppm, 0.4 ppm when 5 minutes passed after opening, and 0.2 ppm after 1 hour.
前記水素処理サンプル11は、一次処理、二次処理及び三次処理は前記水素処理サンプル1と同様に処理されて三次処理において10ppmのSiと55ppmのCaと2.5ppmのMgとのミネラル成分を含有する硬度148のミネラル水を得、四次処理において電磁波を照射しないて気泡径0.6μmの水素ガスを導入して得られたミネラル水素水であった。開封直前の飽和溶存水素量は0.2ppm、開封後1分経った時点で0.1ppmを示し、1時間後には0ppmとなっていた。 The hydrogen treatment sample 11 is treated in the same manner as the hydrogen treatment sample 1 in the primary treatment, the secondary treatment, and the tertiary treatment, and contains the mineral components of 10 ppm Si, 55 ppm Ca, and 2.5 ppm Mg in the tertiary treatment. Mineral water having a hardness of 148 was obtained, and the mineral hydrogen water was obtained by introducing hydrogen gas having a bubble diameter of 0.6 μm without irradiating electromagnetic waves in the fourth treatment. The amount of saturated dissolved hydrogen immediately before opening was 0.2 ppm, 0.1 ppm when 1 minute passed after opening, and 0 ppm after 1 hour.
前記水素処理サンプル12は、一次処理を実施しなかった外は前記水素処理サンプル1と同様に二次、三次及び四次処理されて三次処理において11ppmのSiと70ppmのCaと2.6ppmのMgとのミネラル成分を含有する硬度185、濁度15のミネラル水から得たミネラル水素水であった。開封直前の飽和溶存水素量は0.8ppm、開封後1分経った時点で0.6ppmを示し、5分後には0.3ppmとなっていた。 The hydrogen-treated sample 12 was subjected to secondary, tertiary and quaternary treatment in the same manner as the hydrogen-treated sample 1 except that the primary treatment was not performed, and 11 ppm Si, 70 ppm Ca and 2.6 ppm Mg in the tertiary treatment. It was a mineral hydrogen water obtained from mineral water having a hardness of 185 and a turbidity of 15 containing mineral components. The amount of saturated dissolved hydrogen immediately before opening was 0.8 ppm, 0.6 ppm when 1 minute passed after opening, and 0.3 ppm after 5 minutes.
前記水素処理サンプル13は、二次処理を実施しなかった外は前記水素処理サンプル1と同様に一次、三次及び四次処理されて三次処理において9ppmのSiと65ppmのCaと1.9ppmのMgとのミネラル成分を含有する硬度170のミネラル水を得たミネラル水素水であった。開封直前の飽和溶存水素量は0.6ppm、開封後5分経った時点で0.4ppmを示し、1時間後には0.1ppmとなっていた。 The hydrogen-treated sample 13 was subjected to primary, tertiary and quaternary treatment in the same manner as the hydrogen-treated sample 1 except that secondary treatment was not performed, and 9 ppm Si, 65 ppm Ca and 1.9 ppm Mg in the tertiary treatment. It was the mineral hydrogen water which obtained the mineral water of the hardness 170 containing the mineral component of this. The amount of saturated dissolved hydrogen immediately before opening was 0.6 ppm, 0.4 ppm when 5 minutes passed after opening, and 0.1 ppm after 1 hour.
前記水素処理サンプル14は、三次処理を実施しなかった外は前記水素処理サンプル1と同様に一次、二次及び四次処理を実施した硬度4の水素水であった。開封直前の飽和溶存水素量は0.4ppm、開封後1分経った時点で0.3ppmを示し、5分後には0.2ppmとなっていた。 The hydrogen-treated sample 14 was hydrogen water having a hardness of 4 subjected to primary, secondary, and quaternary treatment in the same manner as the hydrogen-treated sample 1 except that the tertiary treatment was not performed. The amount of saturated dissolved hydrogen immediately before opening was 0.4 ppm, 0.3 ppm when 1 minute passed after opening, and 0.2 ppm after 5 minutes.
そこで、前記四次処理における電磁波の周波数と水素含有量の半減期との関係を明確にすべく、前記分散処理サンプル1のミネラル水を使用して、実験27〜31と同様の方法により電磁波の周波数を表10に示す数値に代えて実験を行った(実験41〜59)。 Therefore, in order to clarify the relationship between the frequency of the electromagnetic wave and the half life of the hydrogen content in the quaternary treatment, the mineral water of the dispersion-treated sample 1 is used and the electromagnetic wave is produced in the same manner as in Experiments 27 to 31. Experiments were performed by changing the frequencies to the values shown in Table 10 (Experiments 41 to 59).
表10によれば、電磁波の周波数が10KHz〜10GHzにおいて水素含有量の半減期が1週間以上(短くとも1週間)となって好成績を示していた。なお、表10中の「半減期(%)」は処理後大気開放直前の数値を分母とした168時間放置後の数値の割合である。 According to Table 10, the half-life of the hydrogen content was 1 week or longer (1 week at the shortest) when the frequency of the electromagnetic wave was 10 KHz to 10 GHz, indicating good results. The “half-life (%)” in Table 10 is the ratio of numerical values after standing for 168 hours using the numerical values immediately after the treatment immediately before opening to the atmosphere as the denominator.
本発明者等は、前掲各実験例を通じて、ミネラル成分の合計含有量が硬度換算で100以上、飲料水用としては硬度100〜300、より具体的にはミネラル成分に10〜50ppmのSiと39〜100ppmのCaと0.5〜12ppmのMgとが含まれているミネラル水に飽和状態まで水素ガスを充填すれば、製造当初の溶存水素量を基準にして半減期が1週間以上になるミネラル水素水を得ることができることを確認した。 Through the above-mentioned experimental examples, the present inventors have a total content of mineral components of 100 or more in terms of hardness, hardness 100 to 300 for drinking water, more specifically 10 to 50 ppm Si and 39 for mineral components. Mineral hydrogen water that has a half-life of one week or more based on the amount of dissolved hydrogen at the beginning of manufacture if hydrogen gas is filled to a saturated state with mineral water containing ~ 100ppm Ca and 0.5-12ppm Mg. Confirmed that you can get.
また、ミネラル水の製造において、原料水として地下水を使用する場合は、地下水に含まれる浮遊物等の不純物を除去し(一次処理)、イオン化した重金属元素を取り除いて(二次処理)ミネラル水の原水とするのが好ましく、濁度1以下等の水質基準を満たすわき水や水道水等の水(原水)や蒸留水(原水)を使用する場合は一次処理及び二次処理を実施するには及ばないことを確認できた。 In the production of mineral water, when groundwater is used as raw water, impurities such as suspended matters contained in groundwater are removed (primary treatment), ionized heavy metal elements are removed (secondary treatment), and mineral water is used. It is preferable to use raw water. When using water (raw water) or distilled water (raw water) such as water or tap water that meets water quality standards such as turbidity of 1 or less, it is necessary to carry out primary treatment and secondary treatment. I was able to confirm that there was no.
また、前記原水にミネラル成分を溶解させて合計含有量が硬度換算で100以上のミネラル成分が溶存するミネラル水を得(三次処理)、当該ミネラル水に10KHz〜10GHzの電磁波を照射しながら気泡径1μm以下の水素ガスを導入して水素を飽和状態(0.2〜1.5ppm)で溶存させればよいことを確認できた。 Further, mineral water is dissolved in the raw water to obtain mineral water in which a mineral content of 100 or more in terms of hardness is dissolved (tertiary treatment), and the bubble diameter while irradiating the mineral water with electromagnetic waves of 10 KHz to 10 GHz. It was confirmed that hydrogen gas of 1 μm or less was introduced to dissolve hydrogen in a saturated state (0.2 to 1.5 ppm).
本発明者等は、前掲各実験結果に基づき、大気開放環境にあっても飽和状態に溶存させた水素量の半減期が1週間以上となるミネラル水素水を提供することに成功したものである。 Based on the results of the above experiments, the present inventors have succeeded in providing mineral hydrogen water in which the half-life of the amount of hydrogen dissolved in a saturated state is one week or more even in an open atmosphere. .
前記技術的課題は、次の通りの本発明によって解決できる。 The technical problem can be solved by the present invention as follows.
即ち、本発明に係るミネラル水素水は、ミネラルと飽和状態の水素とが溶存するミネラル水素水であって、ミネラル成分の合計含有量が硬度換算で100〜300であり、かつ、前記飽和状態における含有水素量の大気開放下での半減期が短くとも1週間となっているものである。 That is, the mineral hydrogen water according to the present invention is a mineral hydrogen water in which mineral and saturated hydrogen are dissolved, the total content of mineral components is 100 to 300 in terms of hardness, and in the saturated state The half-life of the hydrogen content in the open atmosphere is at least one week.
また、本発明に係るミネラル水素水は、電磁波照射環境下で気泡径1μm以下の水素ガスを飽和状態に溶存させたミネラル水素水であって、ミネラル成分の合計含有量が少なくとも硬度換算で100であり、かつ、前記飽和状態における含有水素量の大気開放下での半減期が短くとも1週間となっているものである。 The mineral hydrogen water according to the present invention is mineral hydrogen water in which hydrogen gas having a bubble diameter of 1 μm or less is dissolved in a saturated state under an electromagnetic wave irradiation environment, and the total content of mineral components is at least 100 in terms of hardness. In addition, the half-life of the hydrogen content in the saturated state under the open atmosphere is at least one week.
また、本発明は、前記いずれかのミネラル水素水において、ミネラル成分に10〜50ppmのSiと39〜100ppmのCaと0.5〜12ppmのMgとが含まれているものである。 Further, according to the present invention, in any one of the above mineral hydrogen waters, the mineral component contains 10 to 50 ppm Si, 39 to 100 ppm Ca, and 0.5 to 12 ppm Mg.
また、本発明は、前記いずれかのミネラル水素水において、含有水素量を0.2〜1.5ppmとしたものである。 In the present invention, the content of hydrogen in any one of the mineral hydrogen waters is 0.2 to 1.5 ppm.
また、本発明に係るミネラル水素水の製造方法は、10〜50ppmのSiと39〜100ppmのCaと0.5〜12ppmのMgとを含むミネラル成分が溶存するミネラル水に10KHz〜10GHzの電磁波を照射しながら気泡径1μm以下の水素ガスを導入して水素を飽和状態で溶存させ、飽和状態における含有水素量の大気開放下での半減期を短くとも1週間とするものである。 Moreover, the manufacturing method of the mineral hydrogen water based on this invention irradiates the electromagnetic waves of 10KHz-10GHz to the mineral water in which the mineral component containing 10-50ppm Si, 39-100ppm Ca, and 0.5-12ppm Mg is dissolved. However, hydrogen gas having a bubble diameter of 1 μm or less is introduced to dissolve hydrogen in a saturated state, and the half-life of the hydrogen content in the saturated state under the open atmosphere is at least one week.
また、本発明は、前記ミネラル水素水の製造方法において、含有水素量を0.2〜1.5ppmとしたものである。 Moreover, this invention makes the content of hydrogen 0.2-1.5 ppm in the manufacturing method of the said mineral hydrogen water.
また、本発明に係るミネラル水素水の製造方法は、原水にSiO2とCaとMgとを含有してなるセラミックス粉末を分散させた後にバブリングしてミネラル成分を原水に溶解させて硬度換算で少なくとも100のミネラル成分が溶存するミネラル水を得、続いて、当該ミネラル水に10KHz〜10GHzの電磁波を照射しながら気泡径1μm以下の水素ガスを導入して水素を飽和状態で溶存させ、飽和状態における含有水素量の大気開放下での半減期を短くとも1週間とするものである。 In the method for producing mineral hydrogen water according to the present invention, ceramic powder containing SiO 2 , Ca and Mg is dispersed in raw water and then bubbled to dissolve mineral components in the raw water so that at least in terms of hardness. Obtain mineral water in which 100 mineral components are dissolved, and then introduce hydrogen gas with a bubble diameter of 1 μm or less into the mineral water while irradiating electromagnetic waves of 10 KHz to 10 GHz to dissolve hydrogen in a saturated state. The half-life of the hydrogen content in the open atmosphere is at least one week.
また、本発明は、前記ミネラル水素水の製造方法において、セラミックス粉末がSiO2を400〜800ppm、Caを5000〜20000ppm及びMgを2000〜5000ppm含有しているものである。 Further, the present invention is the manufacturing method of the mineral hydrogen water, in which ceramic powder is 400~800ppm the SiO 2, the 5000~20000ppm and Mg and Ca contained 2000~5000Ppm.
また、本発明は、前記いずれかのミネラル水素水の製造方法において、ミネラル成分に10〜50ppmのSiと39〜100ppmのCaと0.5〜12ppmのMgとが含まれているものである。 In the method for producing mineral hydrogen water according to any one of the above, the mineral component contains 10 to 50 ppm Si, 39 to 100 ppm Ca, and 0.5 to 12 ppm Mg.
また、本発明は、前記いずれかのミネラル水素水の製造方法において、含有水素量を0.2〜1.5ppmとしたものである。 Further, the present invention is the above-described method for producing mineral hydrogen water, wherein the hydrogen content is 0.2 to 1.5 ppm.
さらに、本発明に係るミネラル水素水の製造方法は、原料水に対してMordenite-(Na2,Ca,K2)Al2Si10024・7H2Oのセラミックス粉末0.1〜1.0wt%を投入して該原料水の浮遊不純物を固液分離し、当該固液分離後の処理水を1万ガウス以上の磁場中に置いてイオン化した重金属元素を分離し、当該重金属分離後の原水にSiO2を400〜800ppm、Caを5000〜20000ppm及びMgを2000〜5000ppm含有しているセラミックス粉末を分散させた後にバブリングして10〜50ppmのSiと39〜100ppmのCaと0.5〜12ppmのMgとが含まれているミネラル水を得、続いて、当該ミネラル水に10KHz〜10GHzの電磁波を照射しながら気泡径1μm以下の水素ガスを導入して水素を飽和状態に溶存させ、飽和状態における含有水素量の大気開放下での半減期が短くとも1週間であるミネラル水素水を製造するものである。 Furthermore, the manufacturing method of mineral hydrogen water according to the present invention, the raw material water Mordenite- (Na 2, Ca, K 2) Al 2 Si 10 0 24 · 7H 2 O of ceramic powder 0.1-1.0% poured Then, the floating impurities of the raw material water are separated into solid and liquid, the treated water after the solid-liquid separation is placed in a magnetic field of 10,000 gauss or more to separate the ionized heavy metal element, and the raw water after the heavy metal separation is separated into SiO 2. Containing 10 to 50 ppm Si, 39 to 100 ppm Ca, and 0.5 to 12 ppm Mg by dispersing ceramic powder containing 400 to 800 ppm, Ca 5000 to 20000 ppm and Mg 2000 to 5000 ppm. Next, hydrogen gas with a bubble diameter of 1 μm or less is introduced into the mineral water while irradiating it with an electromagnetic wave of 10 KHz to 10 GHz to dissolve the hydrogen in a saturated state. The short half-life in the open atmosphere is at least one week. To produce mineral hydrogen water.
本発明によれば、硬度換算で100以上のミネラル成分が溶存するミネラル水に電磁波を照射しながら気泡径1μm以下の水素ガスを導入して水素を飽和状態で溶存させたから、飽和状態における含有水素量の大気開放下での半減期が1週間以上となるミネラル水素水を得ることができる。 According to the present invention, hydrogen is dissolved in a saturated state by introducing hydrogen gas having a bubble diameter of 1 μm or less while irradiating electromagnetic waves to mineral water in which 100 or more mineral components are dissolved in terms of hardness. It is possible to obtain a mineral hydrogen water having a half-life of 1 week or more in an open atmosphere.
以下、本発明の実施の形態について説明する。 Embodiments of the present invention will be described below.
実施の形態1. Embodiment 1 FIG.
本実施の形態に係るミネラル水素水は、硬度換算で100以上のミネラル成分を含有し、電磁波照射環境下で気泡径1μm以下の水素ガスを飽和状態に溶存させたミネラル水素水であって、密封時の飽和含有水素量を基準にして大気中に開放した場合の水素含有量の減少する度合いを該水素含有量の半減期によって表したとき、水素量が半分の含有量になるには短くとも1週間(1週間以上)を要するミネラル水素水である。 The mineral hydrogen water according to the present embodiment is a mineral hydrogen water containing a mineral component of 100 or more in terms of hardness and in which hydrogen gas having a bubble diameter of 1 μm or less is dissolved in a saturated state in an electromagnetic wave irradiation environment, and is sealed. When the degree of decrease in the hydrogen content when it is opened to the atmosphere based on the saturated hydrogen content at the time is expressed by the half-life of the hydrogen content, at least one week for the hydrogen content to be halved It is mineral hydrogen water that requires (one week or more).
前記ミネラル成分の含有量は硬度換算で100〜300とすれば、大気開放下においても当初の水素量が安定して保持され、水素の蒸発を抑制する効果があることを確認している。この効果が得られる要因については未だ解明するに至っていないが、水中にてイオン化した元素と水素分子との電子の共有により蒸発が抑制されているのではないかと考えられる。硬度100未満では、水素分子を水中に保持するに十分なイオン量が得られず、水素含有量の半減期が1週間に満たないので好ましくない。また、硬度300を超えても水素保持力は十分得られるが、飲料用として適さなくなるので好ましくない。従って、飲料用以外であれば、硬度は少なくとも100あればよい。 If the content of the mineral component is 100 to 300 in terms of hardness, it has been confirmed that the initial amount of hydrogen is stably maintained even under open air, and the effect of suppressing hydrogen evaporation is confirmed. Although the cause of this effect has not yet been elucidated, it is thought that evaporation is suppressed by the sharing of electrons between elements ionized in water and hydrogen molecules. If the hardness is less than 100, an ion amount sufficient to hold hydrogen molecules in water cannot be obtained, and the half life of the hydrogen content is less than one week, which is not preferable. Further, even if the hardness exceeds 300, a sufficient hydrogen retention is obtained, but it is not preferable because it is not suitable for beverages. Therefore, the hardness should be at least 100 except for beverages.
前記硬度換算で100〜300となるミネラルの成分構成としては、Si含有量が10〜50ppm、Ca含有量が39〜100ppm、Mg含有量が0.5〜12ppmとなっているのが好ましい。これにより、大気開放下での水素含有量の半減期が1週間以上となる。 As the component composition of the mineral that becomes 100 to 300 in terms of hardness, it is preferable that the Si content is 10 to 50 ppm, the Ca content is 39 to 100 ppm, and the Mg content is 0.5 to 12 ppm. As a result, the half-life of the hydrogen content in the open atmosphere is one week or longer.
なお、当該硬度は、水1リット中に含まれるカルシウム(Ca)の量(mg)とマグネシウム(Mg)の量(mg)とを炭酸カルシウム(CaCO3)の量(mg)に換算した値である。Caの原子量は40、Mgの原子量は24.3、CaCO3の分子量は100であるから、
硬度(mg/L)≒カルシウム量(mg/L)×2.5+マグネシウム量(mg/L)×4.1
により算出することができる。
The hardness is a value obtained by converting the amount (mg) of calcium (Ca) and the amount (mg) of magnesium (Mg) contained in 1 liter of water into the amount (mg) of calcium carbonate (CaCO 3 ). is there. Since the atomic weight of Ca is 40, the atomic weight of Mg is 24.3, and the molecular weight of CaCO 3 is 100,
Hardness (mg / L) ≒ calcium (mg / L) x 2.5 + magnesium (mg / L) x 4.1
Can be calculated.
大気中に開封する前の当初含有水素量は0.2〜1.5ppmの飽和状態とすればよい。これにより、大気下での開放においても水素水の効果を長く維持することができる。0.2ppm未満では、ミネラル水中での水素の保持力を高めることが難しく所望の半減期を得ることができないので好ましくなく、1.5ppmを超える水素含有量を得るには製造コストが大幅に上昇するので好ましくない。なお、含有水素量0.2ppm以上は過飽和の状態であるが、0.2ppmの飽和状態と0.2ppm以上の過飽和状態とを総称して飽和状態と表現している。 The initial hydrogen content before opening in the atmosphere may be a saturated state of 0.2 to 1.5 ppm. As a result, the effect of hydrogen water can be maintained for a long time even in open air. If it is less than 0.2 ppm, it is difficult to increase the hydrogen retention in mineral water, and it is not preferable because the desired half-life cannot be obtained. To obtain a hydrogen content exceeding 1.5 ppm, the production cost increases significantly. It is not preferable. In addition, although the hydrogen content of 0.2 ppm or more is a supersaturated state, the saturated state of 0.2 ppm and the supersaturated state of 0.2 ppm or more are collectively expressed as a saturated state.
実施の形態2. Embodiment 2. FIG.
本実施の形態に係るミネラル水素水の製造方法は、原水にSiO2とCaとMgとを含有してなるセラミックス粉末を分散させる。この後、バブリングによってミネラル成分を原水に溶解させて硬度換算で100以上のミネラル成分が溶存するミネラル水を得る。続いて、当該ミネラル水に10KHz〜10GHzの電磁波を照射しながら気泡径1μm以下の水素ガスを導入して0.2〜1.5ppmの水素ガスを溶存させる。 In the method for producing mineral hydrogen water according to the present embodiment, ceramic powder containing SiO 2 , Ca, and Mg is dispersed in raw water. Thereafter, the mineral component is dissolved in the raw water by bubbling to obtain mineral water in which 100 or more mineral components are dissolved in terms of hardness. Subsequently, hydrogen gas having a bubble diameter of 1 μm or less is introduced while irradiating the mineral water with electromagnetic waves of 10 KHz to 10 GHz to dissolve 0.2 to 1.5 ppm of hydrogen gas.
これにより、大気開放下での当該水素量の半減期が短くとも1週間であるミネラル水素水を得ることができる。 Thereby, it is possible to obtain mineral hydrogen water having a short half-life of the amount of hydrogen in the open atmosphere for one week.
前記セラミックス粉末は、原水に必要なミネラル成分を溶解させるために、SiO2を400〜800ppm、Caを5000〜20000ppm及びMgを2000〜5000ppm含有しているものを使用するのがよい。また、気泡径10μm以下の不活性ガスにてバブリングするのがよい。これにより、硬度換算で100〜300のミネラル成分が溶存するミネラル水を得ることができ、10〜50ppmのSiと39〜100ppmのCaと0.5〜12ppmのMgとが含まれているミネラル成分を容易に得ることができる。気泡径10μmを超えると、溶解速度が低下し処理効率が落ち、10μm以下の気泡径により、気泡のキャビテイション効果により攪拌力が増加し処理効率を向上させることができる。また、アルゴンガスや窒素ガス等の不活性ガスを使用することにより、含有する成分変化を抑制することができる。 The ceramic powder is to dissolve the mineral components necessary for raw water, an SiO 2 400~800ppm, it is preferable to use those containing 2000~5000ppm the 5000~20000ppm and Mg and Ca. Further, it is preferable to bubble with an inert gas having a bubble diameter of 10 μm or less. As a result, it is possible to obtain mineral water in which 100 to 300 mineral components are dissolved in terms of hardness, and easy to obtain mineral components containing 10 to 50 ppm Si, 39 to 100 ppm Ca, and 0.5 to 12 ppm Mg. Can get to. When the bubble diameter exceeds 10 μm, the dissolution rate decreases and the processing efficiency decreases, and with a bubble diameter of 10 μm or less, the stirring force increases due to the cavitation effect of the bubbles, and the processing efficiency can be improved. Moreover, the change of the component to contain can be suppressed by using inert gas, such as argon gas and nitrogen gas.
導入する水素ガスは、高圧ボンベ等により外部から供給してもよく、処理水中に金属Mgの微細粉末を添加することにより内部で発生する水素ガスを用いてもよい。10KHz〜10GHzの電磁波を照射することにより水分子が微細化すると同時に、水分子の水素結合エネルギーが高位となり、水中に含有する各種イオンが活性となる。この状態で気泡径1μm以下の水素ガスを導入することにより、飽和溶存量以上である0.2ppm以上の水素を水中に安定して包含させることができ、大気開放下においても水素含有量の半減期を1週間以上とすることができる。 Hydrogen gas to be introduced may be supplied from the outside by a high-pressure cylinder or the like, or hydrogen gas generated inside by adding fine metal Mg powder into the treated water may be used. By irradiating electromagnetic waves of 10 KHz to 10 GHz, water molecules become finer, and at the same time, the hydrogen bond energy of water molecules becomes high, and various ions contained in water become active. By introducing hydrogen gas with a bubble diameter of 1 μm or less in this state, hydrogen of 0.2 ppm or more, which is more than the saturated dissolved amount, can be stably included in water, and the half-life of hydrogen content even in the open atmosphere Can be one week or longer.
地下水等(原料水)を使用する場合には当該原料水から不純物等を取り除いて原水とすればよく、濁度1以下等の水質基準を満たすわき水、水道水、蒸留水を使用する場合にはそのまま原水として用いればよい。 When using groundwater, etc. (raw water), impurities should be removed from the raw water and used as raw water. When using water, tap water, or distilled water that meets water quality standards such as turbidity of 1 or less. What is necessary is just to use as raw water as it is.
次に、地下水等の原料水から原水を得るまでの工程について説明する。 Next, processes for obtaining raw water from raw water such as groundwater will be described.
原料水から固形物を取り除くために、Mordenite-(Na2,Ca,K2)Al2Si10024・7H2Oのセラミックス粉末を当該原料水量に対して0.1wt%以上使用して固液分離する。これにより、処理水中に残存する成分を除去できる。さらに、活性炭に代表される炭素粉末を併用すれば、炭素粉末に不純成分が吸着され原料水の清浄化を効率的に行うことができる。その外、固液分離する方法としてフィルター法やフロッグ沈殿法等を採用してもよいが、フィルター法では、ろ過材の目詰まりが頻繁に発生して安定した操業には不向きであり、また、フロッグ沈殿法では、フロッグを生成するための凝集材が必要となり、一般的に硫酸アルミニウム等が使われ、処理中にアルミニウムイオンが残存して悪影響を及ぼすことがあるので好ましくない。Mordenite粉末を0.1wt%〜1.00wt%使用する固液分離方法がもっとも適している。 To remove solids from raw water, Mordenite- (Na 2, Ca, K 2) Al 2 Si 10 0 solid-liquid using least 0.1 wt% with respect to 24 · 7H 2 O of ceramic powder the material water To separate. Thereby, components remaining in the treated water can be removed. Furthermore, if carbon powder typified by activated carbon is used in combination, impure components are adsorbed on the carbon powder, and the raw water can be cleaned efficiently. In addition, a filter method or a frog precipitation method may be adopted as a method for solid-liquid separation, but the filter method is not suitable for stable operation due to frequent occurrence of clogging of the filter medium, In the frog precipitation method, an agglomerating material for generating frog is required, and aluminum sulfate or the like is generally used, and aluminum ions remain during the treatment, which may be adversely affected. A solid-liquid separation method using Mordenite powder of 0.1 wt% to 1.00 wt% is most suitable.
前記原料水から固形物を取り除いた処理水中には、イオン化した様々元素が含まれており、元素によっては人体に害を及ぼすものもあるので、続いて、イオン化した元素を分離するために、当該処理水に1万ガウス以上の磁場をかけて不純物成分を吸着除去する。これにより、前記処理水からイオン化した不純物を除去した原水が得られる。イオン化元素の分離方法として、その外、イオン交換膜等を使用する方法があり、当該方法が一般的であるが、処理できる量が少なく大量に処理するためには、巨大な設備を必要とするので、当該磁場をかけて不純物成分を吸着除去方法がもっとも適している。 The treated water from which the solids have been removed from the raw water contains various ionized elements, and some elements are harmful to the human body, so that in order to separate the ionized elements, Impurities are removed by applying a magnetic field of 10,000 gauss or more to the treated water. Thereby, the raw | natural water from which the ionized impurity was removed from the said treated water is obtained. In addition, there is a method of using an ion exchange membrane or the like as a method for separating ionized elements, and this method is general, but a large amount of equipment is required to process a large amount with a small amount that can be processed. Therefore, the most suitable method is to remove the impurity component by applying the magnetic field.
実施例1〜5
表1に示す特性を有する地下水(原料水)を使用した。
Examples 1-5
Groundwater (raw water) having the characteristics shown in Table 1 was used.
実施例1(実験27):地下水に含まれる浮遊物等の不純物を取り除くために、アクリル製容器に前記地下水を50リットル入れてMordenite-(Na2,Ca,K2)Al2Si10024・7H2O粉末を地下水の量に対して0.2wt%(100g)投入し、5分攪拌した後に静置して地下水に含まれる浮遊物等の不純物を取り除いた。一次処理水の濁度は4、蒸発残留物は700ppmであった。 Example 1 (Experiment 27): in order to remove the impurities suspended matters and the like contained in the ground water, the ground water in the acrylic container placed 50 liters Mordenite- (Na 2, Ca, K 2) Al 2 Si 10 0 24・ 0.2 wt% (100 g) of 7H 2 O powder was added to the amount of groundwater, stirred for 5 minutes, and allowed to stand to remove impurities such as suspended matters contained in the groundwater. The turbidity of the primary treated water was 4, and the evaporation residue was 700 ppm.
次に、一次処理水を1万ガウスの磁場中に1分間置いて暴露して水中のイオン化した重金属元素を分離した。二次処理水の濁度は1、蒸発残留物は50ppm、水銀は0.0002ppm、鉛は0.005ppm、亜鉛は0.5ppm、銅は0.6ppmであった。 Next, the primary treated water was exposed to a magnetic field of 10,000 gauss for 1 minute to separate ionized heavy metal elements in the water. The turbidity of the secondary treated water was 1, the evaporation residue was 50 ppm, mercury was 0.0002 ppm, lead was 0.005 ppm, zinc was 0.5 ppm, and copper was 0.6 ppm.
次に、二次処理水30リットルにSiO2を400〜800ppm、Caを5000〜20000ppm及びMgを2000〜5000ppm含有しているセラミックス粉末を1kg投入し、微細孔を有するノズルから気泡径平均7.5μmのアルゴンガスを条件:圧力0.5MPa、噴射量10リットル/分にて液中に5分間吹き込んでミネラル水(三次処理水)を得た。ミネラル成分10ppmのSiと55ppmのCaと2.5ppmのMgを含み、硬度148であった。 Next, 1 kg of ceramic powder containing 400 to 800 ppm of SiO 2 , 5000 to 20000 ppm of Ca and 2000 to 5000 ppm of Mg was introduced into 30 liters of secondary treated water, and the average bubble diameter was 7.5 μm from a nozzle having fine pores. Was blown into the liquid for 5 minutes under the conditions: pressure 0.5 MPa, injection amount 10 l / min to obtain mineral water (tertiary treated water). It contained 10 ppm Si, 55 ppm Ca and 2.5 ppm Mg, and had a hardness of 148.
次に、前記ミネラル水20リットルに300KHz、10KWの電磁波を照射しながら微細孔を有するノズルから気泡径0.6μmの水素ガスを条件:圧力0.8PMa、噴射量5リットル/分にて液中に10分間吹き込んで水素ガスが飽和状態で溶存したミネラル水素水を得た。密封状態での含有水素量は1.2ppmであった。大気中にて開封した後、含有水素量の減少推移を追ったところ、240時間後においても0.9ppmを保持し、本実施例1の大気開放下での水素量の半減期は10日間以上であった。 Next, hydrogen gas having a bubble diameter of 0.6 μm is supplied from a nozzle having fine pores while irradiating 20 K of mineral water with 300 KHz and 10 KW of electromagnetic waves into the liquid at a pressure of 0.8 Pma and an injection rate of 5 L / min. Mineral hydrogen water in which hydrogen gas was dissolved in a saturated state was obtained by blowing for a minute. The hydrogen content in the sealed state was 1.2 ppm. After opening in the atmosphere, the decrease in the amount of hydrogen contained was tracked, and 0.9 ppm was maintained even after 240 hours. The half-life of the amount of hydrogen in the open atmosphere of Example 1 was 10 days or more. there were.
実施例2(実験28):Mordenite粉末を1wt%(500g)投入した外、実施例1と同様にしてミネラル水素水を得た。一次処理水の濁度は3.5、蒸発残留物は650ppmであった。二次処理水の濁度は1、蒸発残留物は45ppm、水銀は0.0002ppm、鉛は0.004ppm、亜鉛は0.3ppm、銅は0.5ppmであった。ミネラル水はミネラル成分12ppmのSiと45ppmのCaと1.9ppmのMgを含み、硬度120であった。 Example 2 (Experiment 28): Mineral hydrogen water was obtained in the same manner as in Example 1 except that 1 wt% (500 g) of Mordenite powder was added. The turbidity of the primary treated water was 3.5, and the evaporation residue was 650 ppm. The turbidity of the secondary treated water was 1, the evaporation residue was 45 ppm, mercury was 0.0002 ppm, lead was 0.004 ppm, zinc was 0.3 ppm, and copper was 0.5 ppm. The mineral water contained 12 ppm Si, 45 ppm Ca and 1.9 ppm Mg, and had a hardness of 120.
ミネラル水素水の密封状態での含有水素量は1.5ppmであった。大気中にて開封した後、含有水素量の減少推移を追ったところ、240時間後においても1.1ppmを保持し、本実施例2の大気開放下での水素量の半減期は10日間以上であった。 The amount of hydrogen contained in the sealed state of mineral hydrogen water was 1.5 ppm. After opening in the atmosphere, the decrease in the amount of hydrogen contained was followed, and it was maintained at 1.1 ppm even after 240 hours. The half-life of the amount of hydrogen in the open atmosphere of Example 2 was 10 days or more. there were.
実施例3(実験30):アルゴンガスの吹き込み時間を1時間とした外、実施例1と同様にしてミネラル水素水を得た。一次処理水の濁度は4、蒸発残留物は700ppm。二次処理水の濁度は1、蒸発残留物は50ppm、水銀は0.0002ppm、鉛は0.005ppm、亜鉛は0.5ppm、銅は0.6ppm。ミネラル水はミネラル成分50ppmのSiと120ppmのCaと5.9ppmのMgを含み、硬度324であった。 Example 3 (Experiment 30): Mineral hydrogen water was obtained in the same manner as in Example 1 except that the argon gas blowing time was set to 1 hour. The turbidity of the primary treated water is 4, and the evaporation residue is 700ppm. The turbidity of secondary treated water is 1, evaporation residue is 50ppm, mercury is 0.0002ppm, lead is 0.005ppm, zinc is 0.5ppm, copper is 0.6ppm. The mineral water contained 50 ppm Si, 120 ppm Ca and 5.9 ppm Mg, and had a hardness of 324.
ミネラル水素水の密封状態での含有水素量は1.4ppmであった。大気中にて開封した後、含有水素量の減少推移を追ったところ、240時間後においても1.0ppmを保持し、本実施例3の大気開放下での水素量の半減期は10日間以上であった。 The hydrogen content in the sealed state of mineral hydrogen water was 1.4 ppm. After opening in the atmosphere, following the decrease in the hydrogen content, 1.0 ppm was maintained even after 240 hours, and the half-life of the hydrogen content in the open atmosphere of Example 3 was 10 days or more. there were.
実施例4(実験32):ミネラル水に粒子径10μmのMg粉末を10g添加した外、実施例1と同様にしてミネラル水素水を得た。一次処理水の濁度は4、蒸発残留物は700ppm。二次処理水の濁度は1、蒸発残留物は50ppm、水銀は0.0002ppm、鉛は0.005ppm、亜鉛は0.5ppm、銅は0.6ppm。ミネラル水はミネラル成分10ppmのSiと55ppmのCaと2.5ppmのMgを含み、硬度148であった。 Example 4 (Experiment 32): Mineral hydrogen water was obtained in the same manner as in Example 1 except that 10 g of Mg powder having a particle size of 10 μm was added to mineral water. The turbidity of the primary treated water is 4, and the evaporation residue is 700ppm. The turbidity of secondary treated water is 1, evaporation residue is 50ppm, mercury is 0.0002ppm, lead is 0.005ppm, zinc is 0.5ppm, copper is 0.6ppm. The mineral water contained 10 ppm Si, 55 ppm Ca and 2.5 ppm Mg, and had a hardness of 148.
ミネラル水素水の密封状態での含有水素量は1.1ppmであった。大気中にて開封した後、含有水素量の減少推移を追ったところ、240時間後においても0.9ppmを保持し、本実施例4の大気開放下での水素量の半減期は10日間以上であった。 The hydrogen content in the sealed state of mineral hydrogen water was 1.1 ppm. After opening in the atmosphere, the transition of decrease in the hydrogen content was followed, and 0.9 ppm was maintained even after 240 hours, and the half-life of the hydrogen content in the open atmosphere of Example 4 was 10 days or more. there were.
実施例5(実験36):水素ガスを5分間導入した外、実施例1と同様にしてミネラル水素水を得た。一次処理水の濁度は4、蒸発残留物は700ppm。二次処理水の濁度は1、蒸発残留物は50ppm、水銀は0.0002ppm、鉛は0.005ppm、亜鉛は0.5ppm、銅は0.6ppm。ミネラル水はミネラル成分10ppmのSiと55ppmのCaと2.5ppmのMgを含み、硬度148であった。 Example 5 (Experiment 36): Mineral hydrogen water was obtained in the same manner as in Example 1 except that hydrogen gas was introduced for 5 minutes. The turbidity of the primary treated water is 4, and the evaporation residue is 700ppm. The turbidity of secondary treated water is 1, evaporation residue is 50ppm, mercury is 0.0002ppm, lead is 0.005ppm, zinc is 0.5ppm, copper is 0.6ppm. The mineral water contained 10 ppm Si, 55 ppm Ca and 2.5 ppm Mg, and had a hardness of 148.
ミネラル水素水の密封状態での含有水素量は0.2ppmであった。大気中にて開封した後、含有水素量の減少推移を追ったところ、240時間後においても0.15ppmを保持し、本実施例5の大気開放下での水素量の半減期は10日間以上であった。 The hydrogen content in the sealed state of mineral hydrogen water was 0.2 ppm. After opening in the atmosphere, the change in the amount of hydrogen contained was tracked. As a result, 0.15 ppm was maintained even after 240 hours, and the half-life of the amount of hydrogen in the open atmosphere of Example 5 was 10 days or more. there were.
実施例6(実験31):表1に示す特性を有する蒸留水(原水)を使用した。蒸留水30リットルにSiO2を400〜800ppm、Caを5000〜20000ppm及びMgを2000〜5000ppm含有しているセラミックス粉末を1kg投入し、微細孔を有するノズルから気泡径平均7.5μmのアルゴンガスを条件:圧力0.5MPa、噴射量10リットル/分にて液中に5分間吹き込んでミネラル水(三次処理水)を得た。当ミネラル水の濁度は1、蒸発残留物は15ppm、水銀、鉛、亜鉛及び銅の元素イオン量は微量、ミネラル成分10ppmのSiと40ppmのCaと1.5ppmのMgを含み、硬度106であった。 Example 6 (Experiment 31): Distilled water (raw water) having the characteristics shown in Table 1 was used. 400~800ppm the SiO 2 distilled water 30 liters, the ceramic powder 1kg put that 2000~5000ppm contain 5000~20000ppm and Mg and Ca, condition of argon gas bubble diameter average 7.5μm through a nozzle having fine pores : Mineral water (tertiary treated water) was obtained by blowing into the liquid for 5 minutes at a pressure of 0.5 MPa and an injection rate of 10 liters / minute. The turbidity of this mineral water is 1, the evaporation residue is 15 ppm, the elemental ion content of mercury, lead, zinc and copper is trace, the mineral component contains 10 ppm Si, 40 ppm Ca and 1.5 ppm Mg, and the hardness is 106 It was.
次に、実施例1と同様にして前記ミネラル水に水素ガスを充填して水素ガスが飽和状態で溶存したミネラル水素水を得た。密封状態での含有水素量は1.3ppmであった。大気中にて開封した後、含有水素量の減少推移を追ったところ、240時間後においても1.0ppmを保持し、本実施例1の大気開放下での水素量の半減期は10日間以上であった。 Next, in the same manner as in Example 1, the mineral water was filled with hydrogen gas to obtain mineral hydrogen water in which the hydrogen gas was dissolved in a saturated state. The hydrogen content in the sealed state was 1.3 ppm. After opening in the atmosphere, following the decrease in the hydrogen content, 1.0 ppm was maintained even after 240 hours, and the half-life of the hydrogen amount in the open atmosphere of Example 1 was 10 days or more. there were.
実施例7〜21(実験43〜57):実施例1における電磁波周波数を表10に示す実験43〜57における周波数に代えた外、実施例1と同様にして各ミネラル水素水を得た。当該ミネラル水素水の水素含有量半減期はいずれも1週間以上であった。 Examples 7 to 21 (Experiments 43 to 57): Each mineral hydrogen water was obtained in the same manner as in Example 1 except that the electromagnetic wave frequency in Example 1 was replaced with the frequency in Experiments 43 to 57 shown in Table 10. The hydrogen content half-life of the mineral hydrogen water was 1 week or more.
本発明によれば、大気開放下での水素量の半減期が10日間以上のミネラル水素水を提供でき、電磁周波数10KHz〜10KHz照射下において大気開放下での水素量の半減期が1週間以上のミネラル水素水を提供できるから、栓を開放しても長時間溶存水素が存在する飲料水として利用できる。さらに、飲料用以外の用途にも期待できる。 According to the present invention, it is possible to provide mineral hydrogen water with a half-life of hydrogen amount in the open atmosphere of 10 days or more, and a half-life of hydrogen amount in the open atmosphere of 1 kHz or more under irradiation with electromagnetic frequency of 10 KHz to 10 KHz. Therefore, even if the stopper is opened, it can be used as drinking water in which dissolved hydrogen exists for a long time. Furthermore, it can be expected for uses other than for beverages.
従って、本発明の産業上利用性は非常に高いといえる。 Therefore, it can be said that the industrial applicability of the present invention is very high.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008167726A JP5534291B2 (en) | 2008-06-26 | 2008-06-26 | Mineral hydrogen water and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008167726A JP5534291B2 (en) | 2008-06-26 | 2008-06-26 | Mineral hydrogen water and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010005530A true JP2010005530A (en) | 2010-01-14 |
JP5534291B2 JP5534291B2 (en) | 2014-06-25 |
Family
ID=41586609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008167726A Expired - Fee Related JP5534291B2 (en) | 2008-06-26 | 2008-06-26 | Mineral hydrogen water and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5534291B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102730895A (en) * | 2011-04-11 | 2012-10-17 | 吴全海 | Household hydrogen-rich water production device |
CN106800331A (en) * | 2017-02-17 | 2017-06-06 | 李开生 | A kind of running water preparation facilities |
JP2017196572A (en) * | 2016-04-27 | 2017-11-02 | 株式会社 伊藤園 | Hydrogen content reduction inhibitor of hydrogen-containing liquid, hydrogen content reduction inhibition method of hydrogen-containing liquid and manufacturing method of hydrogen-containing liquid |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08173956A (en) * | 1994-12-26 | 1996-07-09 | Chuo Kaorin Kk | Ceramic molded body for improving water quality |
JPH1143365A (en) * | 1997-07-23 | 1999-02-16 | Tohoku Bankin Toso Kogyo Kk | Granular ceramic for producing reduced water and its production |
JP2001299295A (en) * | 2000-04-28 | 2001-10-30 | Kyodo:Kk | Mineral water and method for producing the same |
JP2004017032A (en) * | 2002-06-20 | 2004-01-22 | Yamada Yoshinori | Mineral releasing material, food and drink container using it, portable container for accommodating it, and rice cooker using it |
JP2004122088A (en) * | 2002-10-07 | 2004-04-22 | Yukio Hirose | Hydrogen water and manufacturing method of the same |
JP2004230370A (en) * | 2002-12-05 | 2004-08-19 | Wataru Murota | Reduced water and manufacturing method therefor |
JP2005013833A (en) * | 2003-06-25 | 2005-01-20 | Eko Japan Kk | Reductive hydrogen water and manufacturing apparatus therefor |
JP2005058891A (en) * | 2003-08-11 | 2005-03-10 | Kanto Sanbiken:Kk | Production method for functional water |
JP2005177724A (en) * | 2003-12-16 | 2005-07-07 | Hiroshima Kasei Ltd | Apparatus for producing hydrogen-containing water |
JP2005245817A (en) * | 2004-03-05 | 2005-09-15 | National Institute Of Advanced Industrial & Technology | Method for producing nanobubbles |
JP2005296794A (en) * | 2004-04-12 | 2005-10-27 | Ted:Kk | Hydrogen reduction water production method |
WO2006092920A1 (en) * | 2005-03-03 | 2006-09-08 | Sharp Kabushiki Kaisha | Wastewater treatment equipment and method of wastewater treatment |
JP2006305539A (en) * | 2005-04-30 | 2006-11-09 | Kazuhiko Kato | Method for producing functional water |
JP2007237161A (en) * | 2006-02-09 | 2007-09-20 | Hiroshima Kasei Ltd | Method and device for producing hydrogen-incorporated water |
JP2007267747A (en) * | 1998-02-18 | 2007-10-18 | Ako Kasei Co Ltd | Beverage utilizing seawater, and method for producing the same |
WO2008018637A1 (en) * | 2006-08-11 | 2008-02-14 | Nihon University | Functional water for enhancing osteogenic ability |
WO2008072615A1 (en) * | 2006-12-15 | 2008-06-19 | Nakazato, Mamiko | Functional water and process for producing the same |
WO2008117387A1 (en) * | 2007-03-23 | 2008-10-02 | Kuki-Shoukou, Co., Ltd. | Equipment for the production of reduced water |
JP2009226386A (en) * | 2008-03-21 | 2009-10-08 | Makoto Yafuji | Ultrafine-bubble water |
-
2008
- 2008-06-26 JP JP2008167726A patent/JP5534291B2/en not_active Expired - Fee Related
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08173956A (en) * | 1994-12-26 | 1996-07-09 | Chuo Kaorin Kk | Ceramic molded body for improving water quality |
JPH1143365A (en) * | 1997-07-23 | 1999-02-16 | Tohoku Bankin Toso Kogyo Kk | Granular ceramic for producing reduced water and its production |
JP2007267747A (en) * | 1998-02-18 | 2007-10-18 | Ako Kasei Co Ltd | Beverage utilizing seawater, and method for producing the same |
JP2001299295A (en) * | 2000-04-28 | 2001-10-30 | Kyodo:Kk | Mineral water and method for producing the same |
JP2004017032A (en) * | 2002-06-20 | 2004-01-22 | Yamada Yoshinori | Mineral releasing material, food and drink container using it, portable container for accommodating it, and rice cooker using it |
JP2004122088A (en) * | 2002-10-07 | 2004-04-22 | Yukio Hirose | Hydrogen water and manufacturing method of the same |
JP2004230370A (en) * | 2002-12-05 | 2004-08-19 | Wataru Murota | Reduced water and manufacturing method therefor |
JP2005013833A (en) * | 2003-06-25 | 2005-01-20 | Eko Japan Kk | Reductive hydrogen water and manufacturing apparatus therefor |
JP2005058891A (en) * | 2003-08-11 | 2005-03-10 | Kanto Sanbiken:Kk | Production method for functional water |
JP2005177724A (en) * | 2003-12-16 | 2005-07-07 | Hiroshima Kasei Ltd | Apparatus for producing hydrogen-containing water |
JP2005245817A (en) * | 2004-03-05 | 2005-09-15 | National Institute Of Advanced Industrial & Technology | Method for producing nanobubbles |
JP2005296794A (en) * | 2004-04-12 | 2005-10-27 | Ted:Kk | Hydrogen reduction water production method |
WO2006092920A1 (en) * | 2005-03-03 | 2006-09-08 | Sharp Kabushiki Kaisha | Wastewater treatment equipment and method of wastewater treatment |
JP2006305539A (en) * | 2005-04-30 | 2006-11-09 | Kazuhiko Kato | Method for producing functional water |
JP2007237161A (en) * | 2006-02-09 | 2007-09-20 | Hiroshima Kasei Ltd | Method and device for producing hydrogen-incorporated water |
WO2008018637A1 (en) * | 2006-08-11 | 2008-02-14 | Nihon University | Functional water for enhancing osteogenic ability |
WO2008072615A1 (en) * | 2006-12-15 | 2008-06-19 | Nakazato, Mamiko | Functional water and process for producing the same |
WO2008117387A1 (en) * | 2007-03-23 | 2008-10-02 | Kuki-Shoukou, Co., Ltd. | Equipment for the production of reduced water |
JP2009226386A (en) * | 2008-03-21 | 2009-10-08 | Makoto Yafuji | Ultrafine-bubble water |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102730895A (en) * | 2011-04-11 | 2012-10-17 | 吴全海 | Household hydrogen-rich water production device |
JP2017196572A (en) * | 2016-04-27 | 2017-11-02 | 株式会社 伊藤園 | Hydrogen content reduction inhibitor of hydrogen-containing liquid, hydrogen content reduction inhibition method of hydrogen-containing liquid and manufacturing method of hydrogen-containing liquid |
JP7075176B2 (en) | 2016-04-27 | 2022-05-25 | 株式会社 伊藤園 | A method for suppressing a decrease in the hydrogen content of a hydrogen-containing liquid, a method for suppressing a decrease in the hydrogen content of the hydrogen-containing liquid, and a method for producing a hydrogen-containing liquid. |
CN106800331A (en) * | 2017-02-17 | 2017-06-06 | 李开生 | A kind of running water preparation facilities |
Also Published As
Publication number | Publication date |
---|---|
JP5534291B2 (en) | 2014-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9499420B2 (en) | Formulations and methods for removing heavy metals from waste solutions containing chelating agents | |
TW508344B (en) | Composition and method for simultaneously precipitating metal ions from semiconductor wastewater and enhancing microfilter operation | |
TWI626990B (en) | Treatment method and treatment device for radioactive waste water | |
Peng et al. | Feasibility and enhancement of copper and ammonia removal from wastewater using struvite formation: a comparative research | |
JP4676898B2 (en) | Arsenic removal method and arsenic removal treatment agent in contaminated water | |
RU2695173C2 (en) | Method of extracting a calcium-containing solid component from steel-smelting slag and a recovered solid component | |
JP5534291B2 (en) | Mineral hydrogen water and method for producing the same | |
JP4662059B2 (en) | Purification process for steel manufacturing wastewater | |
US20100218645A1 (en) | Method of removal of heavy metal ions from water | |
TWI444338B (en) | Method and apparatus for removing organic matter | |
JP2017114705A (en) | Sodium hypochlorite manufacturing method and sodium hypochlorite manufacturing apparatus | |
JP5214756B2 (en) | Boron-containing water treatment method and boron-containing water treatment apparatus | |
WO2013176111A1 (en) | Processing method and apparatus for copper chloride-containing acidic waste liquids | |
US10870598B2 (en) | Method for deeply processing highly contaminated wastewater and wastewater processing system using | |
US11878922B2 (en) | Active substance for sewage treatment and dewatering of solid domestic wastes landfills | |
JP5526640B2 (en) | Method and apparatus for treating water containing biologically indegradable organic matter | |
CN105293659B (en) | A kind of emergent stabilization treatment method of the deposit of Heavy Metals in Waters pollutant | |
JP2014198288A (en) | Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof | |
CN107055744B (en) | Water treatment method for removing pollution by using secondary iron mineral activated peroxymonosulfate for oxidation | |
WO2015125667A1 (en) | Method and apparatus for treating ammonia-containing water | |
JP2008043919A (en) | Decolorization method of colored beverage drain | |
JP2007253073A (en) | Water treatment apparatus and water treatment method | |
TW201124346A (en) | Process for recovering copper from copper-containing waste liquid | |
JP2018202270A (en) | Agent and treatment method of selenium-containing wastewater | |
JP2010155181A (en) | Biological treating method of triazol derivative-containing waste water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110623 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130625 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131022 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140318 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5534291 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140416 |
|
LAPS | Cancellation because of no payment of annual fees |