JP2005013833A - Reductive hydrogen water and manufacturing apparatus therefor - Google Patents

Reductive hydrogen water and manufacturing apparatus therefor Download PDF

Info

Publication number
JP2005013833A
JP2005013833A JP2003180637A JP2003180637A JP2005013833A JP 2005013833 A JP2005013833 A JP 2005013833A JP 2003180637 A JP2003180637 A JP 2003180637A JP 2003180637 A JP2003180637 A JP 2003180637A JP 2005013833 A JP2005013833 A JP 2005013833A
Authority
JP
Japan
Prior art keywords
water
hydrogen
pressure
mineral
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003180637A
Other languages
Japanese (ja)
Inventor
Fumihiro Saito
斉藤文博
Kenji Yamazaki
山崎憲治
Mitsuhiro Tokuno
徳野光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eco Japan Co Ltd
Original Assignee
Eco Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eco Japan Co Ltd filed Critical Eco Japan Co Ltd
Priority to JP2003180637A priority Critical patent/JP2005013833A/en
Publication of JP2005013833A publication Critical patent/JP2005013833A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Alcoholic Beverages (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for more simplifying the production of reductive hydrogen water and facilitating mass production. <P>SOLUTION: Reductive hydrogen water set to a higher energy state by a synergistic effect of a metal and hydrogen is estimated to be preferable from the aspect of effect on a living body and this effect on the living body can be verified on the basis of an NMR spectrum half value width. This apparatus is constituted so as to mix mineral-containing water and a hydrogen gas under pressure higher than atmospheric pressure. When an ejector is used, the mixing efficiency of mineral-containing water and the hydrogen gas is enhanced. The energy of solution molecules is relatively enhanced by the synergistic effect of minerals and the hydrogen gas and the good effect on the living body becomes large. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本案は、ミネラルを含む天然水に水素ガスを通気した液体からなる還元性水素水を利用した食品、特に飲用の還元性水素水と製造装置に関する。本明細書にては水素と水とを混合することで還元作用を付加した液体を「還元性水素水」と記載する。
【0002】
【従来の技術】
水は地球上でもっともありふれた物質であるが、液体としては特異な性質を持っている。それを列挙すると、沸点、融点が比較的高い。蒸発熱、凝固熱が比較的大きい。熱容量が比較的大きい。4℃で最大密度になる。固相(氷)が液相よりも低密度である(普通は結晶を作り固体化した方が高密度)。4℃で熱膨張係数が符号を変える。等温圧縮率が46℃で極小になる。粘性率の圧力依存性が30℃で負になる。表面張力が比較的大きい。誘電率が比較的大きい、などである。
【0003】
これらの性質は、定性的には水分子同士が複雑な相互作用をしていることを示す。水分子は水素結合で3次元的につながっている。水素結合には異方性があり集合状態で水分子の向きやすい方向とそうでない方向が生じ、熱揺らぎによって結合ができたり壊れたりしている。つまり、水は異方性分子の集合体なので空間的にも時間的にも動的に変化している物質である。さらに水は電解質やアルコールなど多様な物質を溶かし、その溶液では水分子の動的変化がさらに複雑になっていると考えられる。
【0004】
上記のような動的変化の科学的解明は未完であって、水の特性の説明は定性的なものにとどまっている。しかも、水中に多様なものがごく微小量混入した状態は多種多様であり、それらの科学的解明は至難である。ごく微小量とはppm、ppbのオーダであって、このオーダの混入物質の特定と定量化そのものが難しい。いわゆるミネラルウォータはまさしく特性解析困難なものであり、ミネラルウォータ以外の市販されている、おいしい水、健康によい水、特定の病気を改善する水といった、付加価値をつけた数多くの飲用の水も同様である。水の特異さに微量混入物質が輪をかけ、いわゆる水のサイエンスは意外にも遅れている。
【0005】
サイエンスとは無関係においしい水、健康によい水、といった付加価値飲用水につき、<O17のNMR><ORP><pH>などの測定データを引用し「水自体が特別な状態」に変化していると記載された公知文献があるし、「特別な状態の水」をクレームした特許や、その水を「特別な状態」にする製法の特許等も多数出願されている。統一的ではないが特許文献4〜特許文献8にそれらの例を挙げる。これら個別の説明は略すが、これら製法は、「電気エネルギーを付与」または「磁気エネルギーを付与」または「触媒を作用させる」の単独か組みあわせ製法による付加価値飲用水である。「電気エネルギー付与」では放電も含む「電気分解」が多い。静電界、静磁界ばかりでなく高周波電界、高周波磁界での製法も提案されている。
【0006】
これらの公知の付加価値飲用水は、<O17のNMR><ORP><pH>などで水を特徴づけ、新規性を主張しているがそれらによる特徴づけ、および測定データの再現性には疑問がある。ここで、<O17のNMR>とは、酸素原子の同位体である17酸素(O17)のNMR(核磁気共鳴)緩和時間、<ORP>とは、Oxdation Reduction Potential:酸化還元電位、<pH>は水素イオン濃度である。
【0007】
非特許文献1にては、<O17のNMR>と<pH>とは相関があり、<O17のNMR>半値幅が小さいことは単に<pH>が7から前後に外れていることを意味するという実験的記載がある。また非特許文献2では、<O17のNMR>から水のcluster(クラスター)について議論することは問題があり、おいしいなどの水の官能評価に<O17のNMR>を用いることは誤りであることが示されている。
【0008】
<ORP(酸化還元電位:Oxdation Reduction Potential)>値は、測定電極を蒸留水等で洗浄・乾燥を繰り返して測定したとしても電極表面の電気化学状態のわずかな変化が起こり、測定のたびに100mV近く変動する。またよく用いられる簡易型ORP測定器では、相対的な基準電極が用いられており、その相対電極が200mV電位であるのに、その校正を無視した200mVずれていると思われるデータが公表されている。200mVに限らず、このような相対基準電極で測定されたずれたデータが広く流布されていて、評価が不統一となり混乱している。さらに原理的に、ORP値自体が、水に混入した物質の量と種類、それらのバランスで大きく変わる。とりわけ対象としている極めて希薄に物質が解けている水では、ごくわずかな成分変化で酸化還元性とは無関係に大きく変わる。こういったことからORPデータによる水の特徴づけは信頼性と再現性に欠ける。
【0009】
<pH>についても同様に、水のわずかな成分変化で電解イオン等と水素イオンとのバランスが変わるため測定データも変わる。これらのことから、現状で定量困難なppm、ppbオーダの水の微量成分を定量評価しない限り、<O17のNMR><ORP><pH>、およびそれらの組み合わせのみで付加価値水の特徴づけをしようとしても難しい。つまり物質としての権利主張は難しいと考えられる。
【0010】
一方、水素と液体を混合することで抗酸化効果を得た付加価値付き液体とその製法が特許文献1〜特許文献3に記載されている。水素との混合にて水に還元性が付加される。特許文献1〜特許文献3に記載の水も還元性水素水である。特許文献1では、真空下で脱気する工程を必要としている。特許文献2では、水素飽和槽でそれに付属する撹拌子と動力モーターで急速撹拌しながら還元性水素水を製造すると記載されている。特許文献3では、ORP測定器をセンサーとしてORP値を制御量としたプロセス制御での製造法と装置が記載されている。図9が特許文献3の還元性水素水を含むガス溶存液状媒体(水素あるいは酸素溶存水)の製造装置説明図である。
【0011】
また一方、エジェクタと呼称される気液噴流を利用した流体機器を気液の混合プロセスに用いることは公知である。すなわち、任意の反応で撹拌子と動力モーターなどによる気液撹拌をエジェクタの気液噴流による撹拌に置き換えること(特許文献9参照)、より具体的にはオゾンにより水を浄化するプロセスでオゾン・水の気液混合にエジェクタをもちいること(特許文献10、図10参照)、有機化合物の水素化や酸化における気液触媒反応にてエジェクタをもちいること(特許文献11、図11参照)、などである。エジェクタの構成を図6に示す。エジェクタの構成は公知であるので図6の説明は略す。
【0012】
【特許文献1】
特許2890342「食品等の還元性水素水とその製造方法並びに製造装置」熊本県
【0013】
【特許文献2】
特開2000−354696「洗濯水、風呂水等へ供給する水素飽和水の大量連続供給装置」有限会社情報科学研究所
【0014】
【特許文献3】
特開2003−019426「ガス溶存液状媒体の生産方法およびガス溶存液状媒体の生産システム」有限会社情報科学研究所
【0015】
【特許文献4】
特開平09−168783「還元性電解水及びその生成方法」佐藤文平
【0016】
【特許文献5】
特開平10−118653「電解水素溶存水の製造方法ならびにその製造装置」日本トリム:(株)
【0017】
【特許文献6】
特開2000−212784「医療用の水、その製造方法およびその製造装置」日本トリム:(株)
【0018】
【特許文献7】
米国特許US6284293「Method for generating oxygenated water」CRANDALL,et al.
【0019】
【特許文献8】
米国特許US6251259「Method and apparatus for producing electrolyzed water」Satoh,et al.l
【0020】
【特許文献9】
特開2003−170039「反応装置」石川島播磨重工業株式会社
【0021】
【特許文献10】
特開2002−301489「水浄化方法およびその装置」三菱重工業株式会社
【0022】
【特許文献11】
米国特許US6506361「Gas−liquid reaction process including ejector and monolith catalyst」AIR PROD & CHEM (US)
【0023】
【非特許文献1】
上平恒著,「水の分子工学」,講談社サイエンティフィク,講談社,ISBN4−06−153378−9,p.100−103
【0024】
【非特許文献2】
日本電子株式会社分析機器技術本部NMRグループ「水の味と17ONMRの信号幅との関連性について」日本電子ニュース,vol.31,No.1,(1990)
【0025】
【発明が解決しようとする課題】
本発明は、高機能で信頼性ある付加価値をつけた水の物質としての提案が課題である。しかしながら、従来技術でも述べた事情から現状では「付加価値水そのもの」の機能、信頼性を物性データ等で科学的に証明し主張することは困難である。したがって、相対的に付加価値水の差を示し新規性を主張する。付加価値水は、より具体的には還元性水素水である。
【0026】
また本発明は、還元性水素水の製法が課題である。すなわち、特許文献1記載のような真空下で脱気する工程を経ることをせず、そのままの状態で水素ガスと気液混合する製造装置、特に飲用の還元性水素水、および、その飲用の還元性水素水の製造装置の提供を課題とする。
【0027】
【課題を解決するための手段】
おいしい水や奇跡の水の機能にて、酸化性物質に作用しそれを中和する還元性がある。ある種の水が活性酸素やラジカルを還元するスカベンジャー(排除物質)として機能している、といった報告も多い。したがって何らかの還元性物質が自然環境下で水に富化されたものが、おいしい天然水や奇跡の水、ではないかと推定される。
【0028】
発明者らは還元性物質を水素、高圧下での水素ガス・水混合による水素ガス富化に注目した。さらに金属元素と水素が複合的に作用して上記還元性が増す効果が出ると考えた。水に含有された金属が、イオンや錯体の状態で電子伝達すなわち酸化還元反応で何らかの役割を果たしていると推定している。
【0029】
高圧下での水素ガスと水の気液混合については特許文献1〜特許文献3で開示されている。しかしながら、特許文献1の真空下で脱気する工程は必ずしも必要としない。また特許文献2の撹拌手段も必ずしも必要としない。さらにまた特許文献3のORP測定器をセンサーとしたプロセス制御は前述のORP測定の問題から実用性に欠ける。
【0030】
本案は(請求項1)、大気圧より高い内圧の圧力容器にミネラル含有原料水と水素ガスを供給することで、含有ミネラルと水素により液体中の分子のエネルギーを増加させた還元性水素水であって、圧力容器の内圧が(請求項2)、大気圧との差圧で0.01MPa〜0.9MPaである。また、原料水の含有ミネラルとその含有量が(請求項3)、少なくともカルシウム(Ca)が5ppm以上、マグネシウム(Mg)が0.5ppm以上である。
【0031】
現状では、天然水に含有される微量金属の種類と含有量、および水分子中での金属の状態は研究段階である。同様に水素の含有量と水分子中での水素の状態も研究段階である。こういった現状で発明者らは、天然水に水素富化を行った。これは従来製法よりシンプルであり、実用的である。天然水はいわゆるミネラル水である。
【0032】
水硬度は、炭酸カルシウムを基準としたものであるので含有ミネラルとの対応はあいまいである。本案のミネラル含有原料水は、水の硬度でいえば軟水の領域が好ましく、カルシウム(Ca)が5ppm〜10ppm、マグネシウム(Mg)が0.5ppm〜3ppmが好適である。ここでppmはmg/リットルと等価である。
【0033】
<他の付加価値水との相対的な差の説明>(図1参照)
本案の還元性水素水にては(請求項4)、液体中の分子のエネルギー増加が、水の17酸素(O17)のNMRスペクトルの半値幅で計測され、原料水の17酸素のNMRスペクトル半値幅の値を100%としたときに、本案の還元性水素水は97%以下の半値幅である。これは、原料水よりもエネルギー状態が高くなっていることを示す。たとえば、富山県産天然ミネラルウォータ原料水の17酸素のNMRスペクトル半値幅が40Hz、それに対し本案プロセスをかけた後の水の、17酸素のNMRスペクトルの半値幅は38.8Hzであった。したがって、およそ97%(38.8÷40)である。よって、原料水の17酸素のNMRスペクトル半値幅に対して97%以下の半値幅となる。他の測定例では、44.4Hzの原料水に対して38.5Hzとなり、この場合は87%である。
【0034】
図1は、本案による還元性水素水(実線)と従来法による付加価値水(点線)の<O17のNMR>スペクトルを示す図である。従来法による付加価値水は、特許文献1〜特許文献4のものの一部である市販品を用いた。また、重水、滅菌精製純水(MilliQ)、水道水も比較のため用い、その結果も点線で示した。測定は温度27℃、160回の自動スキャン測定の平均値である。NMRスペクトルの半値幅計測値を図中上方に記載した。
【0035】
参考までに、同サンプルで実施したpH測定値は、重水:7.56、水道水:8.01、特許文献1〜特許文献4のものの一部である市販品:9.91および9.31。これらに対して、本案による還元性水素水は、8.17−8.87あるいは7.87−7.60であった。
【0036】
非特許文献1では、<O17のNMR>と<pH>との相関が記載されている。それによれば、<O17のNMR>半値幅が小さいことは単に<pH>が7から前後に外れていることを意味する。しかしながら、それは定常状態であり、非定常なエネルギー活性状態が生じていれば単純相関はないと考える。よって本案の還元性水素水は相対的に分子エネルギーが高い状態であり、高活性(高機能)であると考えられる。
【0037】
<機能の説明>
図2が、本案の還元性水素水の機能を検証した動物実験の結果の図である。アトピー性皮膚炎自然発症モデル動物NC/Ngaマウスへの飲用水交換と水スプレー塗布を午前9時と午後5時の2回実施した。その際の水を本案の水と水道水(control)を使用した。臨床スコアと動画撮影は午前11時に実施した。その結果が図1(a)であってマウスの15分間スクラッチ(擦過)回数測定値、および図1(b)がアトピー性皮膚炎臨床スコアのグラフである。スクラッチ(擦過)回数はノベルテック社のSCLABAソフトを使用して解析した。臨床スコアは、5つの臨床症状項目に対しそれぞれ0〜3の重篤度でマックス15ポイントとなるよう点をつけたものである。マウス数は4+4(conterl:水道水での対照)の計8匹使用した。図3は、図2に用いたマウスの実験後の写真である。
【0038】
【発明の実施の形態】
本案の還元性水素水の製造装置は(請求項5)、水素ガスの供給手段と、上下離隔距離が300mm以上で内部上方にミネラル含有原料水の供給ノズルと内部下方に水素ガス供給ノズルが配設された圧力容器と、前記圧力容器の内圧を大気圧以上に維持する圧力調整手段を有する。図4が本案の還元性水素水の製造装置第一例で、図5が本案の還元性水素水の製造装置第二例である。第2例のように水素を再利用する循環配管を設けてもよい。循環配管については、図10図11のような気体の循環再利用を考慮した配管系が公知なので容易に設計と実現が可能である。
【0039】
良好なる気液混合をなすために、原水(原料水)散布スプレーノズル1と水素ガス供給ノズル2の間隔(上下距離)が300mm以上であることが必要である。圧力容器の内圧は、大気圧に対しての差圧0.01MPa〜0.9MPaの範囲で維持するのが好適である。
【0040】
公知のエジェクタを応用した本案の還元性水素水の製造装置第三例は(請求項6)、水素ガスの供給手段と、塩素除去手段と、ミネラル含有原料水を大気圧以上に加圧する加圧手段と、前記加圧手段による加圧ミネラル含有原料水供給部と水素ガス吸引部をもつ加圧ミネラル含有原料水圧で水素ガス吸引するエジェクタが内部に配設され、かかるエジェクタでミネラル含有原料水と水素ガスの気液混相流が内部で形成される圧力容器と、前記圧力容器の内圧を大気圧以上に維持する圧力調整手段を有する。図6が、エジェクタを使用した本案の還元性水素水の製造装置第三例説明図である。図6にて、塩素除去手段は塩素除去装置、圧力調整手段は減圧弁と記されている。水素ガスの供給は水素ガスボンベを接続し、ボンベ内水素圧で接続配管へ供給する。
【0041】
ミネラル含有原料水の加圧は、大気圧に対しての差圧0.1MPa〜0.3MPaの範囲に加圧するのが好適である。圧力容器3の内圧は、大気圧に対しての差圧0.01MPa〜0.9MPaの範囲で維持するのが好適である。
【0042】
エジェクタを使用した本案の還元性水素水の製造装置第四例は(請求項7)、水素ガスの供給手段と、塩素除去手段と、ミネラル含有水道水の供給手段と前記塩素除去手段を経由したミネラル含有水道水の水圧によって水素ガスを吸引する吸引部をもつエジェクタとを有する。図7が、エジェクタを使用した本案の還元性水素水の製造装置第四例説明図である。図7にて、塩素除去手段は塩素除去装置と記されている。塩素除去手段の下流側に逆流防止弁(逆止弁)を配設したほうがよい。また塩素除去装置の下流の配管長さは1m程度ある方が配管中で気液混合がなされて好適である。水素ガスの供給は水素ガスボンベを接続し、ボンベ内水素圧で接続配管へ供給する。
【0043】
水道水の中にも有効ミネラルが混じっているのでこれを直接用いたものが、図8に示す本案製造装置第四例である。水道水の中に有効ミネラルが混じっている場合について家庭内設置が可能である。水道管を塩素除去装置に接続する。水道水の水圧は、大気圧に対しての差圧0.1MPa〜0.15MPaである。これに加圧して0.3MPa程度までの圧力としてエジェクタ効果を強化してもよい。加圧は公知のポンプ、コンプレッサ、ブースターなどを利用すればよい。エジェクタの下流の配管長は、気液混合に充分な配管の長さが必要であるがエジェクタ下流の乱流混合の状況によっては1m程度の長さでも十分である。
【0044】
図8の製造装置第四例のより詳細な構成例を図12に示す。図12の5は飲用水の蛇口、4は上方閉鎖下方開放のフードである。家庭内設置の場合、屋内に水素が充満するのは好ましくない。図示されるように水素を屋外排気するため、大気より軽い水素をフード4内の上部に集め、外部に排出する配管を配設するとよい。また、エジェクタの下流の配管は気液混合が十分なされるように図12中に図示されるU字ループ配管の組み合わせとして配管長をかせいでもよい。その場合は原料水圧を適宜加圧する。図12の構成例の斜視図を図13に示す。
【0045】
【発明の効果】
還元性水素水の製造をより簡素化し量産容易となるミネラル含有水と水素ガスとを大気圧以上の圧力下で気液混合させる装置を提供した。特にエジェクタの利用で水素ガスとの混合効率を上げた。ミネラルと水素ガスとの相乗効果で溶液分子のエネルギーが相対的に向上し生体への良好な影響が大きくなる。
【0046】
本案の装置は、ミネラル含有原料水が原料対象として限定されず、水素との相乗効果を出す物質(元素)が含有される液体に対して利用できる。すなわち、コーヒー・蒸留酒・お茶に代表される飲料の製造、豆腐や味噌などの発酵醸造食品の製造にも利用できる。
【0047】
生体への影響は、飲用水よりも輸液へ水素混合して血液内に入れることでより顕著になる。これは未検証であり研究段階であるが有望である。同様に化粧品の製造に適用して美容効果向上も期待される。さらにまた、コンクリート混練での減水効果なども期待される。
【図面の簡単な説明】
【図1】本案の水と比較例の水の17酸素(O17)のNMRスペクトル図(上方にNMRスペクトルの半値幅計測値を示す)
【図2】本案の還元性水素水の機能を検証した動物実験の結果の図:アトピー性皮膚炎自然発症モデル動物NC/Ngaマウスへの飲用水交換と水スプレー塗布を午前9時と午後5時の2回実施。臨床スコアと動画撮影は午前11時に実施:(a)マウスの15分間スクラッチ(擦過)回数測定値、(b)アトピー性皮膚炎臨床スコアのグラフである。スクラッチ(擦過)回数はノベルテック社のSCLABAソフトを使用して解析。臨床スコアは、5つの臨床症状項目に対しそれぞれ0〜3の重篤度でマックス15ポイントとなるよう点をつけたもの。マウス数は4+4(conterl:水道水での対照)の計8匹。
【図3】図2に用いたマウスの実験後の写真
【図4】本案の還元性水素水の製造装置第一例説明図
【図5】本案の還元性水素水の製造装置第二例説明図
【図6】公知のエジェクタの説明図
【図7】エジェクタを使用した本案の還元性水素水の製造装置第三例説明図
【図8】エジェクタを使用した本案の還元性水素水の製造装置第四例説明図
【図9】特開2003−019426のガス溶存液状媒体(水素あるいは酸素溶存水)の製造装置説明図
【図10】(a)特開2002−301489のエジェクタを使用した水のオゾン浄化装置説明図、(b)特開2002−301489に記載されたオゾンを用いた公知の水浄化装置説明図
【図11】米国特許US6506361のエジェクタを使用したGas−liquid reaction process装置説明図
【図12】エジェクタを使用した本案の還元性水素水の製造装置第四例である図8のより詳細な構成例
【図13】図12の構成例の斜視図
【符号の説明】
1 原水(原料水)散布スプレーノズル
2 水素ガス供給ノズル
3 圧力容器
4 上方閉鎖下方開放の水素排気用フード
5 還元性水素水の水供給部(蛇口)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to foods using reductive hydrogen water composed of a liquid in which hydrogen gas is passed through natural water containing minerals, and particularly to drinking reducible hydrogen water and a production apparatus. In this specification, a liquid added with a reducing action by mixing hydrogen and water is referred to as “reducing hydrogen water”.
[0002]
[Prior art]
Water is the most common substance on earth, but it has unique properties as a liquid. When it is enumerated, the boiling point and melting point are relatively high. Evaporation heat and heat of solidification are relatively large. The heat capacity is relatively large. The maximum density is reached at 4 ° C. The solid phase (ice) has a lower density than the liquid phase (usually, it is more dense when crystallized and solidified). The coefficient of thermal expansion changes sign at 4 ° C. The isothermal compression ratio becomes minimum at 46 ° C. Pressure dependence of viscosity becomes negative at 30 ° C. Surface tension is relatively large. The dielectric constant is relatively large.
[0003]
These properties qualitatively indicate that water molecules have complex interactions. Water molecules are three-dimensionally connected by hydrogen bonds. Hydrogen bonds have anisotropy, and in the aggregated state, there are directions in which water molecules are easily oriented and those that are not, and the bonds are broken or broken due to thermal fluctuations. In other words, since water is an aggregate of anisotropic molecules, it is a substance that changes dynamically both spatially and temporally. Furthermore, water dissolves various substances such as electrolytes and alcohol, and the dynamic change of water molecules is considered to be more complicated in the solution.
[0004]
The scientific elucidation of the dynamic change as described above is incomplete, and the explanation of the characteristics of water remains qualitative. Moreover, there are a wide variety of conditions in which a very small amount of various substances are mixed in water, and it is very difficult to elucidate them scientifically. The extremely small amount is in the order of ppm and ppb, and it is difficult to identify and quantify the contaminants in this order. The so-called mineral water is very difficult to characterize, and there are also many drinking waters with added value, such as commercially available delicious water, healthy water, and water that improves specific diseases. It is the same. The so-called science of water is surprisingly delayed because of the uniqueness of water and trace contaminants.
[0005]
For added-value drinking water such as delicious water and health-friendly water regardless of science, the measurement data such as <O17 NMR><ORP><pH> is cited, and the water itself changes to a special state. There are well-known literatures that state that there are patents claiming “special state water”, and patents for manufacturing methods that make the water “special state”. Although not uniform, Patent Documents 4 to 8 give examples thereof. Although these individual explanations are omitted, these production methods are value-added drinking water by a production method of “applying electric energy” or “applying magnetic energy” or “acting a catalyst” alone or in combination. “Electrical energy application” often includes “electrolysis” including electric discharge. A manufacturing method using not only an electrostatic field and a static magnetic field but also a high frequency electric field and a high frequency magnetic field has been proposed.
[0006]
These known value-added drinking waters are characterized by <O17 NMR><ORP><pH>, etc., claiming novelty, but the characterization by them and the reproducibility of measured data are questionable. There is. Here, <O17 NMR> is the NMR (nuclear magnetic resonance) relaxation time of 17 oxygen (O17) which is an isotope of an oxygen atom, <ORP> is the oxidation reduction potential: redox potential, <pH> Is the hydrogen ion concentration.
[0007]
In Non-Patent Document 1, <O17 NMR> and <pH> are correlated, and <O17 NMR> a small half-value width simply means that <pH> deviates from about 7 to around. There is an experimental description. Further, in Non-Patent Document 2, it is problematic to discuss water clusters from <O17 NMR>, and it is wrong to use <O17 NMR> for sensory evaluation of water such as delicious. It is shown.
[0008]
<ORP (Oxidation Reduction Potential)> The value is 100 mV for each measurement even when the measurement electrode is repeatedly washed and dried with distilled water, etc. Fluctuate nearby. Moreover, in a frequently used simple ORP measuring instrument, a relative reference electrode is used, and even though the relative electrode is 200 mV potential, data that seems to be shifted by 200 mV is ignored. Yes. Not only 200 mV but also misaligned data measured with such a relative reference electrode is widely disseminated, resulting in confusing evaluations. Further, in principle, the ORP value itself varies greatly depending on the amount and type of substances mixed in water and the balance between them. In particular, the extremely dilute water, which is the target, is greatly changed regardless of the oxidation-reduction properties with very little change in the components. For these reasons, the characterization of water by ORP data lacks reliability and reproducibility.
[0009]
Similarly, with respect to <pH>, the measurement data also changes because the balance between electrolytic ions and hydrogen ions changes due to slight changes in water components. From these facts, unless quantitative evaluation of trace components of water in ppm and ppb order, which is difficult to quantify at present, <O17 NMR><ORP><pH>, and combinations thereof, characterize value-added water. It is difficult to try. In other words, it is considered difficult to claim rights as a substance.
[0010]
On the other hand, Patent Document 1 to Patent Document 3 describe a liquid with added value that has obtained an antioxidant effect by mixing hydrogen and a liquid. Reducing properties are added to water by mixing with hydrogen. The water described in Patent Documents 1 to 3 is also reducing hydrogen water. In patent document 1, the process deaerated under a vacuum is required. Patent Document 2 describes that reducing hydrogen water is produced in a hydrogen saturation tank while stirring rapidly with a stirrer attached to the hydrogen saturation tank and a power motor. Patent Document 3 describes a manufacturing method and apparatus in process control using an ORP measuring device as a sensor and an ORP value as a controlled variable. FIG. 9 is an explanatory view of an apparatus for producing a gas-dissolved liquid medium (hydrogen or oxygen-dissolved water) containing reducing hydrogen water in Patent Document 3.
[0011]
On the other hand, it is well known that a fluid device using a gas-liquid jet called an ejector is used for a gas-liquid mixing process. That is, in any reaction, gas-liquid agitation by a stirrer and a power motor is replaced with agitation by a gas-liquid jet of an ejector (see Patent Document 9), more specifically, ozone / water in a process of purifying water with ozone. Using an ejector for gas-liquid mixing (see Patent Document 10 and FIG. 10), using an ejector in a gas-liquid catalytic reaction in hydrogenation or oxidation of an organic compound (see Patent Document 11 and FIG. 11), etc. It is. The configuration of the ejector is shown in FIG. Since the structure of the ejector is known, the description of FIG. 6 is omitted.
[0012]
[Patent Document 1]
Patent 2890342 "Reducible hydrogen water for foods and its manufacturing method and manufacturing equipment" Kumamoto Prefecture
[Patent Document 2]
Japanese Patent Laid-Open No. 2000-354696 “Continuous supply device for hydrogen-saturated water supplied to washing water, bath water, etc.” Institute of Information Science, Ltd.
[Patent Document 3]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2003-019426 “Production Method of Gas Dissolved Liquid Medium and Production System of Gas Dissolved Liquid Medium” Information Science Laboratory Co., Ltd.
[Patent Document 4]
Japanese Patent Application Laid-Open No. 09-168783 “Reduced electrolyzed water and its production method” Fumihei Sato
[Patent Document 5]
Japanese Patent Application Laid-Open No. 10-118653 “Method for producing electrolytic hydrogen-dissolved water and its production apparatus” Nippon Trim Co., Ltd.
[0017]
[Patent Document 6]
Japanese Patent Application Laid-Open No. 2000-212784 “Medical Water, Method for Producing the Same and Device for Producing the Same” Nippon Trim Co., Ltd.
[0018]
[Patent Document 7]
U.S. Pat. No. 6,284,293 “Method for generating oxygenated water” CRANDALL, et al.
[0019]
[Patent Document 8]
US Pat. No. 6,251,259 “Method and apparatus for producing electrified water”, Satoh, et al. l
[0020]
[Patent Document 9]
JP 2003-170039 “Reactor” Ishikawajima-Harima Heavy Industries Co., Ltd.
[Patent Document 10]
Japanese Patent Application Laid-Open No. 2002-301489 “Water Purification Method and Apparatus” Mitsubishi Heavy Industries, Ltd.
[Patent Document 11]
US Pat. No. 6,506,361 “Gas-liquid reaction process inclusion ejector and monochrome catalyst” AIR PROD & CHEM (US)
[0023]
[Non-Patent Document 1]
Tsuyoshi Uehira, “Molecular Engineering of Water”, Kodansha Scientific, Kodansha, ISBN 4-06-153378-9, p. 100-103
[0024]
[Non-Patent Document 2]
JEOL Ltd. Analytical Instruments Technology Group NMR Group “Relationship between taste of water and signal width of 17O NMR” JEOL News, vol. 31, no. 1, (1990)
[0025]
[Problems to be solved by the invention]
An object of the present invention is to propose a highly functional and reliable water-added substance. However, due to the circumstances described in the prior art, it is difficult to scientifically prove and assert the function and reliability of “added value water itself” with physical property data. Therefore, it shows a relative difference in value-added water and claims novelty. More specifically, the value-added water is reducing hydrogen water.
[0026]
Another object of the present invention is to produce a reducing hydrogen water. That is, a manufacturing apparatus that mixes hydrogen gas and gas-liquid in a state as it is without passing through a step of degassing under vacuum as described in Patent Document 1, in particular, reducing hydrogen water for drinking, and its drinking An object of the present invention is to provide an apparatus for producing reducing hydrogen water.
[0027]
[Means for Solving the Problems]
With the function of delicious water and miracle water, it acts on oxidizing substances and has a reducing ability to neutralize them. There are many reports that certain types of water function as scavengers (exclusion substances) that reduce active oxygen and radicals. Therefore, it is presumed that some reductive substances enriched with water in the natural environment are delicious natural water or miracle water.
[0028]
The inventors focused on hydrogen as a reducing substance, and enrichment of hydrogen gas by mixing hydrogen gas and water under high pressure. Furthermore, it was thought that the metal element and hydrogen acted in combination to increase the above-described reduction. It is presumed that the metal contained in water plays some role in electron transfer, that is, redox reaction in the state of ions or complexes.
[0029]
The gas-liquid mixing of hydrogen gas and water under high pressure is disclosed in Patent Documents 1 to 3. However, the process of deaeration under the vacuum of patent document 1 is not necessarily required. Moreover, the stirring means of patent document 2 is not necessarily required. Furthermore, the process control using the ORP measuring instrument of Patent Document 3 as a sensor lacks practicality due to the above-mentioned problem of ORP measurement.
[0030]
The present plan (Claim 1) is a reductive hydrogen water in which the energy of molecules in the liquid is increased by supplying mineral-containing raw material water and hydrogen gas to a pressure vessel having an internal pressure higher than atmospheric pressure, by containing mineral and hydrogen. Thus, the internal pressure of the pressure vessel (Claim 2) is 0.01 MPa to 0.9 MPa as a differential pressure from the atmospheric pressure. Further, the mineral content of the raw water and the content thereof (Claim 3) are at least 5 ppm or more for calcium (Ca) and 0.5 ppm or more for magnesium (Mg).
[0031]
At present, the types and contents of trace metals contained in natural water and the state of metals in water molecules are still in the research stage. Similarly, the content of hydrogen and the state of hydrogen in water molecules are under study. Under these circumstances, the inventors enriched natural water with hydrogen. This is simpler and more practical than conventional methods. Natural water is so-called mineral water.
[0032]
Since the water hardness is based on calcium carbonate, the correspondence with the mineral content is ambiguous. The mineral-containing raw material water of the present plan is preferably a soft water region in terms of water hardness, and calcium (Ca) is preferably 5 ppm to 10 ppm and magnesium (Mg) is preferably 0.5 ppm to 3 ppm. Here, ppm is equivalent to mg / liter.
[0033]
<Explanation of relative difference from other value-added water> (See Figure 1)
In the present reducing hydrogen water (Claim 4), the increase in molecular energy in the liquid is measured by the half width of the NMR spectrum of 17 oxygen (O17) of water, and the NMR spectrum half of the 17 oxygen of the raw water is used. When the value range is 100%, the reducible hydrogen water of the present plan has a half-value width of 97% or less. This indicates that the energy state is higher than that of the raw water. For example, the half-width of the NMR spectrum of 17 oxygen of natural mineral water raw material produced in Toyama Prefecture was 40 Hz, and the half-width of the NMR spectrum of 17 oxygen of water after applying this process was 38.8 Hz. Therefore, it is approximately 97% (38.8 ÷ 40). Therefore, the half-value width is 97% or less with respect to the NMR spectrum half-value width of 17 oxygen of the raw water. In another measurement example, it becomes 38.5 Hz with respect to 44.4 Hz raw material water, and in this case, it is 87%.
[0034]
FIG. 1 is a diagram showing <O17 NMR> spectra of reducing hydrogen water according to the present plan (solid line) and value-added water according to the conventional method (dotted line). As the value-added water by the conventional method, a commercially available product that is a part of those of Patent Documents 1 to 4 was used. In addition, heavy water, sterilized purified water (MilliQ), and tap water were also used for comparison, and the results are also shown by dotted lines. The measurement is an average value of 160 automatic scan measurements at a temperature of 27 ° C. The measured half-width value of the NMR spectrum is shown in the upper part of the figure.
[0035]
For reference, the pH measurement values carried out on the same samples are as follows: heavy water: 7.56, tap water: 8.01, commercial products that are part of those of Patent Documents 1 to 4: 9.91 and 9.31. . On the other hand, the reducible hydrogen water by this proposal was 8.17-8.87 or 7.87-7.60.
[0036]
Non-Patent Document 1 describes the correlation between <O17 NMR> and <pH>. According to it, the <O17 NMR> full width at half maximum simply means that <pH> deviates from around 7. However, it is a steady state and there is no simple correlation if an unsteady energy active state occurs. Therefore, it is considered that the reducing hydrogen water of this proposal has a relatively high molecular energy and is highly active (high function).
[0037]
<Description of functions>
FIG. 2 is a diagram of the results of animal experiments that verified the function of the reducing hydrogen water of the present proposal. Drinking water exchange and water spray application to NC / Nga mice with spontaneous atopic dermatitis were performed twice at 9 am and 5 pm. The water of this case and the tap water (control) were used for the water at that time. Clinical scores and video recording were performed at 11:00 am. The result is FIG. 1 (a), the mouse 15-minute scratch count measurement value, and FIG. 1 (b) are graphs of the atopic dermatitis clinical score. The number of scratches was analyzed using SCLABA software manufactured by Noveltec. The clinical score is a score of 5 points for 5 clinical symptom items, each with a severity of 0 to 3. The total number of mice was 4 + 4 (conterel: control with tap water). FIG. 3 is a photograph of the mouse used in FIG. 2 after the experiment.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
The apparatus for producing reducible hydrogen water according to the present invention (Claim 5) is provided with a hydrogen gas supply means, a supply nozzle of mineral-containing raw material water at the top and inside and a hydrogen gas supply nozzle at the bottom of the interior with a vertical separation distance of 300 mm or more. A pressure vessel provided, and pressure adjusting means for maintaining the internal pressure of the pressure vessel at atmospheric pressure or higher. FIG. 4 is a first example of a reductive hydrogen water production apparatus according to the present plan, and FIG. 5 is a second example of a reductive hydrogen water production apparatus according to the present plan. As in the second example, a circulation pipe for reusing hydrogen may be provided. As for the circulation piping, since a piping system considering gas circulation reuse as shown in FIG. 10 and FIG. 11 is known, it can be easily designed and realized.
[0039]
In order to achieve good gas-liquid mixing, the distance (vertical distance) between the raw water (raw water) spray nozzle 1 and the hydrogen gas supply nozzle 2 needs to be 300 mm or more. The internal pressure of the pressure vessel is preferably maintained in the range of a differential pressure of 0.01 MPa to 0.9 MPa with respect to the atmospheric pressure.
[0040]
A third example of a reducing hydrogen water production apparatus according to the present invention using a known ejector (Claim 6) is a hydrogen gas supply means, a chlorine removal means, and a pressurization for pressurizing mineral-containing raw water above atmospheric pressure. And an ejector for sucking hydrogen gas at a pressurized mineral-containing raw material water pressure having a pressurized mineral-containing raw water supply unit and a hydrogen gas suction unit by the pressurizing unit, A pressure vessel in which a gas-liquid mixed phase flow of hydrogen gas is formed; and pressure adjusting means for maintaining the internal pressure of the pressure vessel at an atmospheric pressure or higher. FIG. 6 is an explanatory diagram of a third example of the reducing hydrogen water production apparatus of the present invention using an ejector. In FIG. 6, the chlorine removing means is indicated as a chlorine removing device, and the pressure adjusting means is indicated as a pressure reducing valve. Hydrogen gas is supplied by connecting a hydrogen gas cylinder to the connecting pipe with hydrogen pressure in the cylinder.
[0041]
It is preferable to pressurize the mineral-containing raw material water in a range of a differential pressure of 0.1 MPa to 0.3 MPa with respect to the atmospheric pressure. The internal pressure of the pressure vessel 3 is preferably maintained in the range of a differential pressure of 0.01 MPa to 0.9 MPa with respect to the atmospheric pressure.
[0042]
The fourth example of the present invention for producing reducible hydrogen water using an ejector (Claim 7) passes through the hydrogen gas supply means, the chlorine removal means, the mineral-containing tap water supply means, and the chlorine removal means. And an ejector having a suction part for sucking hydrogen gas by the water pressure of mineral-containing tap water. FIG. 7 is an explanatory diagram of a fourth example of a reducing hydrogen water production apparatus of the present invention using an ejector. In FIG. 7, the chlorine removing means is described as a chlorine removing device. It is better to provide a check valve (check valve) downstream of the chlorine removing means. Further, it is preferable that the pipe length downstream of the chlorine removing device is about 1 m because gas-liquid mixing is performed in the pipe. Hydrogen gas is supplied by connecting a hydrogen gas cylinder to the connecting pipe with hydrogen pressure in the cylinder.
[0043]
Since the effective mineral is also mixed in the tap water, a direct use of this is the fourth example of the proposed manufacturing apparatus shown in FIG. It can be installed at home when tap water contains active minerals. Connect the water pipe to the chlorine removal device. The water pressure of tap water is a differential pressure of 0.1 MPa to 0.15 MPa with respect to atmospheric pressure. The ejector effect may be strengthened by applying pressure to the pressure up to about 0.3 MPa. The pressurization may be performed using a known pump, compressor, booster or the like. The pipe length downstream of the ejector needs to be long enough for gas-liquid mixing. However, a length of about 1 m is sufficient depending on the turbulent flow mixing condition downstream of the ejector.
[0044]
FIG. 12 shows a more detailed configuration example of the fourth example of the manufacturing apparatus of FIG. In FIG. 12, 5 is a drinking water faucet, and 4 is a hood that is open upward and downward. In the case of home installation, it is not preferable that the room is filled with hydrogen. As shown in the drawing, in order to exhaust the hydrogen outdoors, it is preferable to arrange a pipe that collects hydrogen lighter than the atmosphere in the upper portion of the hood 4 and discharges it to the outside. Further, the piping downstream of the ejector may have a piping length as a combination of U-shaped loop piping shown in FIG. 12 so that gas-liquid mixing is sufficient. In that case, the raw material water pressure is appropriately increased. FIG. 13 shows a perspective view of the configuration example of FIG.
[0045]
【The invention's effect】
Provided is an apparatus for gas-liquid mixing of mineral-containing water and hydrogen gas, which can simplify the production of reducing hydrogen water and facilitate mass production under a pressure of atmospheric pressure or higher. In particular, the efficiency of mixing with hydrogen gas was increased by using an ejector. The synergistic effect of minerals and hydrogen gas improves the energy of solution molecules relatively and increases the positive impact on the living body.
[0046]
The apparatus of this proposal is not limited to mineral-containing raw water, but can be used for liquids containing substances (elements) that produce a synergistic effect with hydrogen. That is, it can also be used for the production of beverages represented by coffee, distilled liquor and tea, and the production of fermented brewed foods such as tofu and miso.
[0047]
The effect on the living body becomes more prominent by mixing the hydrogen into the infusion solution and putting it in the blood rather than drinking water. This is unverified and in the research stage, but promising. Similarly, it is expected to improve the beauty effect when applied to the manufacture of cosmetics. Furthermore, a water reduction effect in concrete mixing is also expected.
[Brief description of the drawings]
FIG. 1 is an NMR spectrum diagram of 17 oxygen (O17) of water of the present invention and water of a comparative example (the half-width measurement value of the NMR spectrum is shown above).
FIG. 2 is a diagram of the results of an animal experiment in which the function of reducing hydrogen water of the present plan was verified: drinking water exchange and water spray application to NC / Nga mice spontaneously developing atopic dermatitis at 9 am and 5 pm Held twice a time. The clinical score and video recording were carried out at 11:00 am: (a) 15-minute scratch count of mice, (b) Atopic dermatitis clinical score graph. The number of scratches is analyzed using SCLABA software from Novellec. The clinical score is the maximum score of 15 points for each of the 5 clinical symptom items with a severity of 0-3. The total number of mice is 4 + 4 (conterl: control with tap water).
FIG. 3 is a photograph of the mouse used in FIG. 2 after the experiment. FIG. 4 is a diagram illustrating a first example of a reducing hydrogen water production apparatus according to the present plan. FIG. FIG. 6 is an explanatory diagram of a known ejector. FIG. 7 is an explanatory diagram of a third example of a reductive hydrogen water production apparatus using the ejector. FIG. 8 is a reductive hydrogen water production apparatus using the ejector. FIG. 9 is an explanatory diagram of an apparatus for producing a gas-dissolved liquid medium (hydrogen or oxygen-dissolved water) disclosed in Japanese Patent Application Laid-Open No. 2003-018426. Explanatory drawing of ozone purification device, (b) Well-known water purification device using ozone described in JP-A No. 2002-301490 FIG. 11 shows a gas-liquid reaction p using an ejector of US Pat. No. 6,506,361. FIG. 12 is a fourth example of the production apparatus for reducing hydrogen water according to the present invention using an ejector. FIG. 13 is a more detailed configuration example of FIG. 8. FIG. 13 is a perspective view of the configuration example of FIG. ]
DESCRIPTION OF SYMBOLS 1 Raw water (raw material water) spray nozzle 2 Hydrogen gas supply nozzle 3 Pressure vessel 4 Hydrogen exhaust hood with upper and lower opening 5 Reducing hydrogen water supply section (faucet)

Claims (7)

大気圧より高い内圧の圧力容器にミネラル含有原料水と水素ガスを供給することで、含有ミネラルと水素により液体中の分子のエネルギーを増加させた還元性水素水Reducing hydrogen water in which the energy of molecules in the liquid is increased by supplying mineral-containing raw material water and hydrogen gas to a pressure vessel with an internal pressure higher than atmospheric pressure by containing mineral and hydrogen. 圧力容器の内圧が、大気圧との差圧で0.01MPa〜0.9MPaである請求項1の還元性水素水The reducing hydrogen water according to claim 1, wherein the internal pressure of the pressure vessel is 0.01 MPa to 0.9 MPa as a differential pressure from the atmospheric pressure. 原料水の含有ミネラルとその含有量が、少なくともカルシウム(Ca)が5ppm以上、マグネシウム(Mg)が0.5ppm以上である請求項1の還元性水素水The reducing hydrogen water according to claim 1, wherein the mineral content of the raw material water and the content thereof are at least 5 ppm or more for calcium (Ca) and 0.5 ppm or more for magnesium (Mg). 液体中の分子のエネルギー増加が、水の17酸素のNMRスペクトル半値幅で計測され、該スペクトル半値幅計測値が、原料水の17酸素のNMRスペクトル半値幅計測値に対して97%以下の値である請求項1の還元性水素水The increase in molecular energy in the liquid is measured by the half-width of the NMR spectrum of 17 oxygen in water. The reducing hydrogen water of claim 1 水素ガスの供給手段と、上下離隔距離が300mm以上で内部上方にミネラル含有原料水の供給ノズルと内部下方に水素ガス供給ノズルが配設された圧力容器と、前記圧力容器の内圧を大気圧以上に維持する圧力調整手段を有する請求項1から請求項4のいずれかに記載された還元性水素水の製造装置Hydrogen gas supply means, a pressure vessel in which a vertical separation distance is 300 mm or more and a mineral-containing raw material water supply nozzle is disposed in the upper part of the interior, and a hydrogen gas supply nozzle is disposed in the lower part of the interior. The apparatus for producing reducing hydrogen water according to any one of claims 1 to 4, further comprising a pressure adjusting means for maintaining the pressure at a constant level. 水素ガスの供給手段と、塩素除去手段と、ミネラル含有原料水を大気圧以上に加圧する加圧手段と、前記加圧手段による加圧ミネラル含有原料水供給部と水素ガス吸引部をもつ加圧ミネラル含有原料水圧で水素ガス吸引するエジェクタが配設され、かかるエジェクタでミネラル含有原料水と水素ガスの気液混相流が流入される圧力容器と、前記圧力容器の内圧を大気圧以上に維持する圧力調整手段を有する請求項1から請求項4のいずれかに記載された還元性水素水の製造装置Hydrogen gas supply means, chlorine removal means, pressurization means for pressurizing mineral-containing raw water to atmospheric pressure or higher, pressurization with pressurized mineral-containing raw water supply section and hydrogen gas suction section by the pressurization means An ejector that sucks hydrogen gas at a mineral-containing raw material water pressure is disposed, and a pressure vessel into which a gas-liquid mixed flow of mineral-containing raw material water and hydrogen gas flows and the internal pressure of the pressure vessel are maintained at atmospheric pressure or higher. The apparatus for producing reducing hydrogen water according to any one of claims 1 to 4, further comprising pressure adjusting means. 水素ガスの供給手段と、塩素除去手段と、ミネラル含有水道水の供給手段と前記塩素除去手段を経由したミネラル含有水道水の水圧によって水素ガスを吸引する吸引部をもつエジェクタとを有する請求項1から請求項4のいずれかに記載された還元性水素水の製造装置2. A hydrogen gas supply means, a chlorine removal means, a mineral-containing tap water supply means, and an ejector having a suction part for sucking hydrogen gas by the water pressure of the mineral-containing tap water via the chlorine removal means. The apparatus for producing reducing hydrogen water according to claim 4
JP2003180637A 2003-06-25 2003-06-25 Reductive hydrogen water and manufacturing apparatus therefor Pending JP2005013833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003180637A JP2005013833A (en) 2003-06-25 2003-06-25 Reductive hydrogen water and manufacturing apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003180637A JP2005013833A (en) 2003-06-25 2003-06-25 Reductive hydrogen water and manufacturing apparatus therefor

Publications (1)

Publication Number Publication Date
JP2005013833A true JP2005013833A (en) 2005-01-20

Family

ID=34181569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003180637A Pending JP2005013833A (en) 2003-06-25 2003-06-25 Reductive hydrogen water and manufacturing apparatus therefor

Country Status (1)

Country Link
JP (1) JP2005013833A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263641A (en) * 2005-03-25 2006-10-05 Toyobo Engineering Kk Gas dissolution method and its apparatus
WO2006120761A1 (en) * 2005-05-13 2006-11-16 Wataru Murota Method and apparatus for producing oxygen-containing reducing aqueous beverage
JP2007228936A (en) * 2006-03-03 2007-09-13 Hiroshima Kasei Ltd Method for washing skin of mammal and system for washing skin of mammal
JP2007261242A (en) * 2006-03-28 2007-10-11 Japan Landcare Technologies Co Ltd Method for producing kneading water for hydraulic cement
WO2008026785A1 (en) * 2006-08-31 2008-03-06 Shigeo Ohta Lipid metabolism improving agent containing hydrogen molecule
JPWO2006103789A1 (en) * 2005-03-28 2008-09-04 渉 室田 Oxygen-containing reducing aqueous beverage and method for producing the same
WO2009008046A1 (en) * 2007-07-06 2009-01-15 Hiroshima Kasei Ltd. Process for producing water added with hydrogen and apparatus therefor
JP2010005530A (en) * 2008-06-26 2010-01-14 Osamu Hirota Hydrogen-containing mineral water and its production method
JP5699232B1 (en) * 2014-02-12 2015-04-08 有限会社ジェニス・ホワイト Hydrogen water production apparatus and production method and storage method thereof
JP2018034148A (en) * 2016-08-29 2018-03-08 株式会社光未来 Hydrogen water production device and hydrogen water production method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263641A (en) * 2005-03-25 2006-10-05 Toyobo Engineering Kk Gas dissolution method and its apparatus
JPWO2006103789A1 (en) * 2005-03-28 2008-09-04 渉 室田 Oxygen-containing reducing aqueous beverage and method for producing the same
KR101004850B1 (en) 2005-05-13 2010-12-28 와타루 무로타 Method and apparatus for producing oxygen-containing reducing aqueous beverage
WO2006120761A1 (en) * 2005-05-13 2006-11-16 Wataru Murota Method and apparatus for producing oxygen-containing reducing aqueous beverage
EP1880618A1 (en) * 2005-05-13 2008-01-23 Wataru Murota Method and apparatus for producing oxygen-containing reducing aqueous beverage
EP1880618A4 (en) * 2005-05-13 2009-08-19 Wataru Murota Method and apparatus for producing oxygen-containing reducing aqueous beverage
JPWO2006120761A1 (en) * 2005-05-13 2008-12-18 渉 室田 Method and apparatus for producing oxygen-containing reducing aqueous beverage
JP2007228936A (en) * 2006-03-03 2007-09-13 Hiroshima Kasei Ltd Method for washing skin of mammal and system for washing skin of mammal
JP2007261242A (en) * 2006-03-28 2007-10-11 Japan Landcare Technologies Co Ltd Method for producing kneading water for hydraulic cement
WO2008026785A1 (en) * 2006-08-31 2008-03-06 Shigeo Ohta Lipid metabolism improving agent containing hydrogen molecule
JPWO2008026785A1 (en) * 2006-08-31 2010-01-21 太田 成男 Lipid metabolism improving agent containing hydrogen molecule
WO2009008046A1 (en) * 2007-07-06 2009-01-15 Hiroshima Kasei Ltd. Process for producing water added with hydrogen and apparatus therefor
US8038127B2 (en) 2007-07-06 2011-10-18 Hiroshima Kasei, Ltd. Method for manufacturing a hydrogen-added water and a device for the same
JP2010005530A (en) * 2008-06-26 2010-01-14 Osamu Hirota Hydrogen-containing mineral water and its production method
JP5699232B1 (en) * 2014-02-12 2015-04-08 有限会社ジェニス・ホワイト Hydrogen water production apparatus and production method and storage method thereof
JP2015150472A (en) * 2014-02-12 2015-08-24 有限会社ジェニス・ホワイト Manufacturing device for hydrogen water, and manufacturing method and storage method for hydrogen water
JP2018034148A (en) * 2016-08-29 2018-03-08 株式会社光未来 Hydrogen water production device and hydrogen water production method

Similar Documents

Publication Publication Date Title
Jadhav et al. Bulk nanobubbles or not nanobubbles: That is the question
JP5361325B2 (en) Dissolved hydrogen drinking water manufacturing apparatus and manufacturing method thereof
JP2005013833A (en) Reductive hydrogen water and manufacturing apparatus therefor
Sumikura et al. Ozone micro-bubble disinfection method for wastewater reuse system
Sivasankar et al. Physical insights into the sonochemical degradation of recalcitrant organic pollutants with cavitation bubble dynamics
JP2016221513A (en) Measurable ultra-fine bubble water having oxidizing radical or reducing radical, and ultra-fine bubble solution
Tay et al. High frequency ultrasonic-assisted CO2 absorption in a high pressure water batch system
JP2008149245A (en) Functional water and its manufacturing method
JPWO2002060576A1 (en) Active structure, device for activating substance, and method for activating substance
JP2006272232A (en) Method for forming superfine bubble, its device and sterilizing or disinfecting facility using it
US20140158639A1 (en) Water stabilization and revitalization
CN214270530U (en) Multifunctional water dispenser with hydrogen-rich water function
JP2003019426A (en) Method and system for producing gas dissolving liquid medium
JP5384158B2 (en) Drinking water production equipment
RU2003117462A (en) DEVICE FOR PRODUCING ACTIVATED WATER AND METHOD FOR ITS USE
JP2005013825A (en) Reductive hydrogen water and apparatus for making the same
Jabesa et al. Removal of dimethyl phthalate from water by ozone microbubbles
Manickam et al. Ultrasonics and sonochemistry: Editors’ perspective
Babu et al. Generation methods, stability, detection techniques, and applications of bulk nanobubbles in agro-food industries: A review and future perspective
Bensalah et al. Enhancing the performance of electro-peroxone by incorporation of UV irradiation and BDD anodes
Wang et al. Synergistic removal of ammonia nitrogen by UV photo-electrocatalytic process: Heterogeneous reaction pathways and mechanism
JP5810334B1 (en) Domestic nano bubble hydrogen water production and supply equipment.
Biernacki et al. Dissolved ozone decomposition in presence of activated carbon at low pH: how experimental parameters affect observed kinetics of the process
Kuvshinov et al. Efficient compact micro DBD plasma reactor for ozone generation for industrial application in liquid and gas phase systems
Peng et al. An effective heterogeneous ozone-based advanced oxidation process in acidic solution—Ti-MCM-41/H2O2/O3