JP2008043919A - Decolorization method of colored beverage drain - Google Patents

Decolorization method of colored beverage drain Download PDF

Info

Publication number
JP2008043919A
JP2008043919A JP2006224352A JP2006224352A JP2008043919A JP 2008043919 A JP2008043919 A JP 2008043919A JP 2006224352 A JP2006224352 A JP 2006224352A JP 2006224352 A JP2006224352 A JP 2006224352A JP 2008043919 A JP2008043919 A JP 2008043919A
Authority
JP
Japan
Prior art keywords
added
catalyst
colored beverage
water
colored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006224352A
Other languages
Japanese (ja)
Other versions
JP5003058B2 (en
Inventor
Shogo Anzai
奨吾 安財
Ryohei Miwa
良平 三輪
Yoshihiro Eto
良弘 恵藤
Ryusei Hashimoto
龍星 橋本
Mitsuomi Narita
光臣 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Suntory Ltd
Original Assignee
Kurita Water Industries Ltd
Suntory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Suntory Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006224352A priority Critical patent/JP5003058B2/en
Publication of JP2008043919A publication Critical patent/JP2008043919A/en
Application granted granted Critical
Publication of JP5003058B2 publication Critical patent/JP5003058B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a decolorization method of colored beverage drain having inexpensive and excellent decolorization effect. <P>SOLUTION: Raw water is introduced into a coagulation reactor 1 where settled sludge of a settling tank 2 of the next stage, PAC, and sodium hydroxide as pH adjusting alkali are added thereto, to keep pH to 6.5-7 for coagulation-reaction. Coagulation-reaction water is introduced into the settling tank 2 for settling separation. Part of the settled sludge is added to the reactor, with the remaining discharged as surplus sludge. Supernatant from the settling tank 2 is filtered in a filter 3, the filtrate of the filter 3 being added with sodium hypochlorite, passed through a catalytic column 5 packed with a catalyst, and taken out as treated water. Peroxide of a metal such as nickel is suitable as the catalyst. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有色飲料排水を脱色処理する方法に関するものであり、特に凝集処理及び酸化処理により有色飲料排水を脱色する脱色処理方法に関するものである。   The present invention relates to a method for decolorizing colored beverage wastewater, and more particularly, to a decolorizing method for decolorizing colored beverage wastewater by aggregation treatment and oxidation treatment.

従来、色度成分を含む水から色度成分を除去する方法としては、硫酸アルミニウムや塩化第二鉄等の凝集剤を添加して凝集沈殿処理する方法や、活性炭による吸着処理法、塩素やオゾン等の酸化剤による酸化分解法などがある。   Conventionally, as a method for removing chromaticity components from water containing chromaticity components, a coagulating and precipitating method by adding a coagulant such as aluminum sulfate or ferric chloride, an adsorption treatment method using activated carbon, chlorine or ozone. There are oxidative decomposition methods using oxidizing agents such as

また、特開2004−181283号、特開2004−181284号、特開2004−181285号には次亜塩素酸ナトリウム等の酸化剤を有色排水に添加すると共に、過酸化金属触媒によって色度成分を酸化処理する方法が記載されている。
特開2004−181283号 特開2004−181284号 特開2004−181285号
In addition, in JP-A Nos. 2004-181283, 2004-181284, and 2004-181285, an oxidant such as sodium hypochlorite is added to colored wastewater, and a chrominance component is added by a metal peroxide catalyst. A method of oxidizing treatment is described.
JP 2004-181283 A JP 2004-181284 A JP 2004-181285 A

前述した、従来技術における凝集沈殿処理により色度成分を除去する方法にあっては、処理の際、汚泥が発生するため、その処理費用がかかるという問題があった。そのため、かかる課題の解決が望まれていた。   In the above-described method for removing the chromaticity component by the coagulation sedimentation treatment in the prior art, there is a problem that sludge is generated during the treatment, and the treatment cost is high. Therefore, it has been desired to solve this problem.

本発明者は、従来技術における凝集沈殿処理方法に、上述した、色度成分の酸化処理方法を併せて行うことにより、処理コストをかけることなく、色度を十分に低下させる方法を提供できることを見出した。即ち、本発明は安価に優れた脱色処理効果を得ることができる有色飲料排水の脱色処理方法を提供することを目的とする。   The present inventor can provide a method for sufficiently reducing the chromaticity without incurring a processing cost by performing the above-described aggregation treatment method in the prior art together with the above-described oxidation treatment method of the chromaticity component. I found it. That is, an object of the present invention is to provide a decolorization treatment method for colored beverage drainage that can obtain an excellent decolorization effect at low cost.

請求項1の有色飲料排水の脱色処理方法は、有色飲料排水を、無機凝集剤による凝集処理工程と、酸化剤による酸化処理工程とにより脱色処理することを特徴とするものである。   According to a first aspect of the present invention, there is provided a method for decolorizing a colored beverage wastewater, wherein the colored beverage wastewater is decolorized by an aggregation treatment step using an inorganic flocculant and an oxidation treatment step using an oxidizing agent.

請求項2の有色飲料排水の脱色処理方法は、請求項1において、凝集処理工程の反応槽に金属水酸化物含有汚泥を添加することを特徴とするものである。   According to a second aspect of the present invention, there is provided a decolorization treatment method for colored beverage wastewater, wherein the metal hydroxide-containing sludge is added to the reaction tank in the aggregation treatment step.

請求項3の有色飲料排水の脱色処理方法は、請求項1又は2において、酸化剤は塩素系酸化剤であることを特徴とするものである。   According to a third aspect of the present invention, the oxidant is a chlorinated oxidant.

請求項4の有色飲料排水の脱色処理方法は、請求項1ないし3のいずれか1項において、前記酸化処理工程において過酸化金属を触媒として用いることを特徴とするものである。   According to a fourth aspect of the present invention, there is provided a decolorization treatment method for colored beverage wastewater according to any one of the first to third aspects, wherein a metal peroxide is used as a catalyst in the oxidation treatment step.

本発明では、処理コストをかけることなく、安価に優れた脱色処理効果を得ることができる。   In the present invention, an excellent decolorization effect can be obtained at low cost without incurring processing costs.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明において処理対象とする有色飲料排水としては、ビール、発泡酒、ウィスキー、焼酎、ワイン、ジュース、非アルコール系炭酸飲料等の製造工程からの排水が例示される。この排水の色度は、通常50〜2000程度である。   Examples of the colored beverage wastewater to be treated in the present invention include wastewater from manufacturing processes such as beer, sparkling liquor, whiskey, shochu, wine, juice, and non-alcoholic carbonated beverages. The chromaticity of this drainage is usually about 50 to 2000.

本発明では、この有色飲料排水を無機凝集剤による凝集処理と、酸化剤による酸化処理とによって脱色処理する。この凝集処理と酸化剤とはいずれを先に行ってもよい。   In the present invention, this colored beverage wastewater is decolorized by a coagulation treatment with an inorganic coagulant and an oxidation treatment with an oxidant. Any of the aggregation treatment and the oxidizing agent may be performed first.

この有色飲料排水を凝集処理するための無機凝集剤としては、硫酸バンドやPAC(ポリ塩化アルミニウム)等のアルミニウム化合物が、処理水を着色させないところから好適であり、特に、中和反応させるためのアルカリ添加量が少なくて足りるところからPACが好適である。なお、塩化第2鉄は、色度を増加させる場合があるので、好ましくない。上記の中和用アルカリとしては、水酸化ナトリウム等が好適である。   As an inorganic flocculant for aggregating this colored beverage wastewater, aluminum compounds such as sulfuric acid bands and PAC (polyaluminum chloride) are suitable because they do not color the treated water. PAC is preferred because a small amount of alkali is sufficient. In addition, since ferric chloride may increase chromaticity, it is not preferable. As the neutralizing alkali, sodium hydroxide or the like is preferable.

アルミニウム化合物よりなる無機凝集剤による凝集処理を行う場合、凝集反応槽に水酸化アルミニウム含有汚泥を添加することにより、凝集処理に必要とする凝集添加量を減少させることができる。これは、添加される水酸化アルミニウム含有汚泥が凝集核として作用するためである。   In the case of performing a coagulation treatment with an inorganic coagulant made of an aluminum compound, the amount of coagulation added required for the coagulation treatment can be reduced by adding aluminum hydroxide-containing sludge to the coagulation reaction tank. This is because the added aluminum hydroxide-containing sludge acts as agglomeration nuclei.

この水酸化アルミニウム含有汚泥としては、有色飲料排水を凝集反応後、固液分離した際に生じる固液分離汚泥(例えば沈降汚泥)が好適である。この固液分離汚泥は、脱水処理することなく、そのまま凝集反応槽に添加すればよい。   As this aluminum hydroxide containing sludge, the solid-liquid separation sludge (for example, sedimentation sludge) produced when the colored beverage wastewater is subjected to solid-liquid separation after the coagulation reaction is suitable. The solid-liquid separation sludge may be added as it is to the agglomeration reaction tank without dehydration.

通常の有色飲料排水をPACで凝集処理する場合、PAC添加量は400〜600mg/L程度であるが、固液分離汚泥を有色飲料排水1m当り1〜3L特に1.5〜2.5L程度添加することにより、PAC添加量は200〜300mg/L程度で十分なものとなる。 When normal colored beverage wastewater is agglomerated with PAC, the amount of PAC added is about 400 to 600 mg / L, but solid-liquid separation sludge is about 1 to 3 L, especially about 1.5 to 2.5 L per 1 m3 of colored beverage wastewater When added, the amount of PAC added is about 200 to 300 mg / L, which is sufficient.

有色飲料排水を酸化剤によって脱色処理する場合の酸化剤としては、塩素系酸化剤が好適であり、例えば、塩素、次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜塩素酸カルシウムなどの次亜塩素酸塩;亜塩素酸ナトリウム、亜塩素酸カリウムなどの亜塩素酸塩;塩素酸ナトリウム、塩素酸カリウム、塩素酸カルシウムなどの塩素酸塩;過塩素酸ナトリウム、過塩素酸カルシウムなどの過塩素酸塩などを挙げることができる。これらの中で、次亜塩素酸塩は適度の酸化性を有するので、好適に使用することができる。   As an oxidizing agent in the case where the colored beverage wastewater is decolorized with an oxidizing agent, a chlorine-based oxidizing agent is suitable. For example, chlorine, sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, etc. Chlorite salt; Chlorite salt such as sodium chlorite and potassium chlorite; Chlorate salt such as sodium chlorate, potassium chlorate and calcium chlorate; Perchlorite such as sodium perchlorate and calcium perchlorate A chlorate etc. can be mentioned. Among these, hypochlorite has moderate oxidation properties and can be used preferably.

塩素系酸化剤の添加量は、塩素換算値として、2〜50mg−Cl/L特に5〜50mg−Cl/L程度が好適である。 The addition amount of the chlorine-based oxidant is preferably about 2 to 50 mg-Cl 2 / L, particularly about 5 to 50 mg-Cl 2 / L as a chlorine conversion value.

本発明では、有色飲料排水に酸化剤を添加すると共に、触媒、好ましくは金属酸化物触媒、特に好ましくは金属過酸化物触媒と接触させるのが好適である。   In the present invention, it is preferable to add an oxidizing agent to the colored beverage wastewater and to contact the catalyst, preferably a metal oxide catalyst, particularly preferably a metal peroxide catalyst.

金属過酸化物触媒としては、例えば、過酸化コバルト、過酸化ニッケル、過酸化銅、過酸化銀などの1種又は2種以上、好ましくは過酸化ニッケル及び/又は過酸化コバルトを挙げることができ、特に過酸化ニッケルが好ましい。   Examples of the metal peroxide catalyst include one or more of cobalt peroxide, nickel peroxide, copper peroxide, silver peroxide, and preferably nickel peroxide and / or cobalt peroxide. In particular, nickel peroxide is preferable.

この金属過酸化物触媒は、リン酸カルシウム系化合物、ゼオライト、チタニア、γ−アルミナ、α−アルミナなどの担体、好ましくはリン酸カルシウム系化合物に担持させて使用することが好ましい。ここで、リン酸カルシウム系化合物としては、ヒドロキシアパタイト(Ca10(POOH)、クロロアパタイト(Ca10(POCl)、フロロアパタイト(Ca10(PO)等のアパタイト、リン酸一水素カルシウム、リン酸二水素カルシウム等のリン酸カルシウム、好ましくはヒドロキシアパタイト、クロロアパタイト、フロロアパタイト等のアパタイトが挙げられるが、その他、天然産出リン鉱石のような天然鉱物を用いることができる。これらの担体は1種を単独で用いても良く、2種以上を混合して用いても良い。 This metal peroxide catalyst is preferably used by being supported on a carrier such as calcium phosphate compound, zeolite, titania, γ-alumina, α-alumina, preferably a calcium phosphate compound. Here, as the calcium phosphate compound, hydroxyapatite (Ca 10 (PO 4 ) 6 OH 2 ), chloroapatite (Ca 10 (PO 4 ) 6 Cl 2 ), fluoroapatite (Ca 10 (PO 4 ) 6 F 2 ) Such as apatite, calcium phosphate such as calcium monohydrogen phosphate, calcium dihydrogen phosphate, and preferably apatite such as hydroxyapatite, chloroapatite, and fluoroapatite, but other natural minerals such as naturally occurring phosphate ore be able to. These carriers may be used alone or in combination of two or more.

このような金属酸化物担持触媒の金属担持量は、担体の重量当たり0.01〜10重量%とすることが好ましい。この担持量が0.01重量%未満では触媒金属量が少なく、十分な触媒作用を得ることができず、10重量%を超える担持量で担持させることは、技術的に困難である。   The amount of metal supported by such a metal oxide supported catalyst is preferably 0.01 to 10% by weight based on the weight of the support. If the supported amount is less than 0.01% by weight, the amount of catalytic metal is small and sufficient catalytic action cannot be obtained, and it is technically difficult to support the supported amount exceeding 10% by weight.

このような触媒の調製方法を、ヒドロキシアパタイトを担体とする過酸化ニッケル担持触媒を例として、以下に説明する。   A method for preparing such a catalyst will be described below with a nickel peroxide-supported catalyst using hydroxyapatite as a carrier.

ヒドロキシアパタイトへのニッケルの担持は、ニッケルの硫酸塩、硝酸塩、塩化物などの水溶液又はこれらの混合水溶液と接触させることにより行う。接触方法としては、ヒドロキシアパタイトの粒子をニッケル化合物水溶液に浸漬する方法、或いは、ヒドロキシアパタイトの粒子をカラムなどに充填し、ニッケル化合物水溶液を一過式又は循環式に通水する方法などが挙げられる。ニッケル化合物水溶液の濃度や接触時間は、ヒドロキシアパタイト上に必要量のニッケルが担持されるように設定すれば良い。ニッケル化合物の水溶液で処理したヒドロキシアパタイトを、水溶液と分離した後、必要に応じて水洗する。   The nickel is supported on the hydroxyapatite by bringing it into contact with an aqueous solution of nickel sulfate, nitrate, chloride, or a mixed aqueous solution thereof. Examples of the contact method include a method in which hydroxyapatite particles are immersed in an aqueous nickel compound solution, or a method in which hydroxyapatite particles are filled in a column and the nickel compound aqueous solution is passed in a transient or circulating manner. . The concentration and contact time of the nickel compound aqueous solution may be set so that a necessary amount of nickel is supported on the hydroxyapatite. The hydroxyapatite treated with the aqueous solution of the nickel compound is separated from the aqueous solution and then washed with water as necessary.

次いで、このようにして得られたニッケル担持ヒドロキシアパタイトを、酸化剤を含むアルカリ水溶液と接触させることにより、過酸化ニッケル担持触媒を得る。この場合の接触方法としては、ニッケルイオンを担持したヒドロキシアパタイトを酸化剤を含むアルカリ水溶液に浸漬する方法、或いは、このヒドロキシアパタイトをカラムなどに充填し、酸化剤を含むアルカリ水溶液を一過式又は循環式に通水する方法などが挙げられる。ここで、酸化剤としては、例えば、次亜塩素酸ナトリウム、塩素ガス、電解により発生させた塩素など、遊離塩素を発生する各種の塩素系酸化剤が好適に用いられる。また、アルカリ水溶液としては、水酸化ナトリウム、水酸化カリウムなどの水溶液を用いることができる。   Next, the nickel-supported hydroxyapatite thus obtained is brought into contact with an alkaline aqueous solution containing an oxidizing agent to obtain a nickel peroxide-supported catalyst. As a contact method in this case, a method in which hydroxyapatite carrying nickel ions is immersed in an alkaline aqueous solution containing an oxidizing agent, or a column or the like is filled with this hydroxyapatite and an alkaline aqueous solution containing an oxidizing agent is transiently or For example, a method of circulating water. Here, as the oxidizing agent, various chlorine-based oxidizing agents that generate free chlorine such as sodium hypochlorite, chlorine gas, and chlorine generated by electrolysis are preferably used. Moreover, as aqueous alkali solution, aqueous solution, such as sodium hydroxide and potassium hydroxide, can be used.

図1は、無機凝集剤(PAC)による凝集処理後に酸化剤(次亜塩素酸ナトリウム)による酸化処理を行う処理装置の一例を示すフロー図である。   FIG. 1 is a flowchart showing an example of a processing apparatus that performs an oxidation treatment with an oxidizing agent (sodium hypochlorite) after an aggregation treatment with an inorganic flocculant (PAC).

原水は、凝集反応槽1に導入され、次段の沈殿槽2の沈降汚泥と、PACと、pH調整用アルカリとしての水酸化ナトリウムとが添加され、pH6.5〜7程度に維持されて凝集反応処理される。凝集反応水は、沈殿槽2に導入され、沈降分離処理される。沈降した汚泥の一部は反応槽に添加され、その他は余剰汚泥として排出される。沈殿槽2からの上澄水は、濾過器3で濾過される。   The raw water is introduced into the agglomeration reaction tank 1, and the sedimentation sludge in the next precipitation tank 2, PAC, and sodium hydroxide as pH adjusting alkali are added to maintain the pH at about 6.5 to 7 and agglomerate. The reaction is processed. The agglomeration reaction water is introduced into the sedimentation tank 2 and subjected to sedimentation treatment. Part of the settled sludge is added to the reaction tank, and the other is discharged as excess sludge. The supernatant water from the settling tank 2 is filtered by the filter 3.

この濾過器3の濾材としては、アンスラサイト、砂などが好適である。   As the filter medium of the filter 3, anthracite, sand and the like are suitable.

この濾過器3の濾過水は、調整槽4において次亜塩素酸ナトリウムが添加され、次いで触媒が充填された触媒塔5に通水され、処理水として取り出される。   The filtered water of the filter 3 is added with sodium hypochlorite in the adjustment tank 4, and then passed through the catalyst tower 5 filled with the catalyst, and is taken out as treated water.

なお、図1のフローは本発明の一例であり、本発明はこれに限定されるものではない。   1 is an example of the present invention, and the present invention is not limited to this.

例えば、金属酸化物触媒による接触酸化は、触媒塔ではなく、金属酸化物触媒を添加して撹拌する反応槽で行っても良い。触媒塔や濾過器は各々2塔以上設けることも可能である。   For example, the catalytic oxidation using a metal oxide catalyst may be performed in a reaction vessel in which a metal oxide catalyst is added and stirred instead of the catalyst tower. Two or more catalyst towers and filter can be provided respectively.

なお、本発明の有色飲料排水の脱色処理方法によると、排水中の色度成分と共にCOD成分も分解除去することができる。   In addition, according to the decoloring treatment method of the colored beverage wastewater of the present invention, the COD component can be decomposed and removed together with the chromaticity component in the wastewater.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1
図1のフローに従って、有色飲料排水として色度950、CODMn85mg/L飲料水製造工程排水を処理した。なお、触媒塔5内の金属酸化物触媒として、以下の方法で調製した過酸化ニッケル担持ヒドロキシアパタイト触媒を用いた。
Example 1
According to the flow of FIG. 1, chromaticity 950 and COD Mn 85 mg / L drinking water manufacturing process waste water were processed as colored drinking water. In addition, as the metal oxide catalyst in the catalyst tower 5, a nickel peroxide-supported hydroxyapatite catalyst prepared by the following method was used.

[過酸化ニッケル担持ヒドロキシアパタイト触媒の調製]
(1) 担体として、ヒドロキシアパタイト(キシダ化学社製特級,粒径0.5mm)1000gを採り、SS成分がなくなるまで洗浄した。
(2) 硫酸ニッケル(NiSO・6HO)112g(25g−Ni/1000g−dry担体)を800mLの超純水に溶解した。これを上記(1)の水洗した担体に添加し、20hr放置した(担体に対して2.5重量%−Ni添加)。
(3) 上記(2)の上澄み液を廃棄した。
(4) 上記(3)で分離した担体を、1000mLの超純水で3度洗浄した。
(5) 35gの水酸化ナトリウム(NaOH)を500mLの超純水に溶解し、400mLの10重量%次亜塩素酸ナトリウム(NaClO)水溶液を添加した溶液を上記(4)の担体に添加し、20hr放置した。
(6) (5)の上澄み液を廃棄した後、洗浄水のpHが10になるまで分離した担体を超純水で洗浄した。
[Preparation of nickel peroxide-supported hydroxyapatite catalyst]
(1) As a carrier, 1000 g of hydroxyapatite (special grade manufactured by Kishida Chemical Co., Ltd., particle size 0.5 mm) was taken and washed until the SS component disappeared.
(2) Nickel sulfate (NiSO 4 .6H 2 O) 112 g (25 g-Ni / 1000 g-dry carrier) was dissolved in 800 mL of ultrapure water. This was added to the carrier washed with water in the above (1) and allowed to stand for 20 hours (2.5 wt% -Ni added to the carrier).
(3) The supernatant liquid of (2) above was discarded.
(4) The carrier separated in (3) above was washed 3 times with 1000 mL of ultrapure water.
(5) 35 g of sodium hydroxide (NaOH) is dissolved in 500 mL of ultrapure water, and 400 mL of a 10 wt% sodium hypochlorite (NaClO) aqueous solution is added to the carrier of (4) above. It was left for 20 hours.
(6) After discarding the supernatant of (5), the separated carrier was washed with ultrapure water until the pH of the washing water reached 10.

処理条件は次の通りとした。
反応槽1の滞留時間:10分
PAC添加量:300mg/L
NaOH添加量:pH6.5〜7となるように制御
汚泥添加量:1.8L/m−排水
沈殿槽2の滞留時間:300分
濾過器3の濾材:アンスラサイト
調整槽4の滞留時間:30分
NaClO添加量:55mg−Cl/L
触媒塔5のSV:10h−1
The processing conditions were as follows.
Retention time of reaction tank 1: 10 minutes PAC addition amount: 300 mg / L
NaOH addition amount: controlled to be pH 6.5-7 Sludge addition amount: 1.8 L / m 3 -drainage Residence time of sedimentation tank 2: 300 minutes Filter medium of filter 3: Anthracite Residence time of adjustment tank 4: 30 minutes NaClO addition amount: 55 mg-Cl 2 / L
SV of catalyst tower 5: 10 h −1

処理結果(処理水質等)を表1に示す。   The treatment results (treated water quality etc.) are shown in Table 1.

比較例1(塩化第2鉄による凝集処理のみ)
次の比較例2において、無機凝集剤としてPACの代りに塩化第2鉄(濃度38wt%)を1200mg/L添加した他は比較例2と同様にして処理を行った。結果を表1に示す。
Comparative Example 1 (only aggregation treatment with ferric chloride)
In the following Comparative Example 2, treatment was performed in the same manner as in Comparative Example 2 except that 1200 mg / L of ferric chloride (concentration 38 wt%) was added as an inorganic flocculant instead of PAC. The results are shown in Table 1.

比較例2(PACによる凝集処理のみ)
無機凝集剤としてPAC1200mg/Lを添加し、凝集反応のみを行ったものを比較例2とする。
即ち、実施例1において、沈殿槽2からの上澄水をこの比較例2の処理水とした。
水質測定結果を表1に示す。
Comparative Example 2 (only flocculation treatment with PAC)
A comparative example 2 is obtained by adding PAC 1200 mg / L as an inorganic flocculant and performing only agglutination reaction.
That is, in Example 1, the supernatant water from the sedimentation tank 2 was used as the treated water of Comparative Example 2.
Table 1 shows the water quality measurement results.

Figure 2008043919
Figure 2008043919

表1の通り、本発明によると、色度を十分に低下させることができる。   As shown in Table 1, according to the present invention, the chromaticity can be sufficiently reduced.

本発明の有色飲料排水の脱色処理方法を示すフロー図である。It is a flowchart which shows the decoloring processing method of the colored beverage waste_water | drain of this invention.

符号の説明Explanation of symbols

1 反応槽
2 沈殿槽
5 触媒塔
1 reaction tank 2 sedimentation tank 5 catalyst tower

Claims (4)

有色飲料排水を、無機凝集剤による凝集処理工程と、酸化剤による酸化処理工程とにより脱色処理することを特徴とする有色飲料排水の脱色処理方法。   A method for decolorizing colored beverage wastewater, wherein the colored beverage wastewater is decolorized by an aggregation treatment step using an inorganic flocculant and an oxidation treatment step using an oxidizing agent. 請求項1において、凝集処理工程の反応槽に金属水酸化物含有汚泥を添加することを特徴とする有色飲料排水の脱色処理方法。   2. The method for decolorizing drainage of colored beverages according to claim 1, wherein the metal hydroxide-containing sludge is added to the reaction tank in the aggregation treatment step. 請求項1又は2において、酸化剤は塩素系酸化剤であることを特徴とする有色飲料排水の脱色処理方法。   3. A decolorizing treatment method for colored beverage drainage according to claim 1, wherein the oxidizing agent is a chlorine-based oxidizing agent. 請求項1ないし3のいずれか1項において、前記酸化処理工程において過酸化金属を触媒として用いることを特徴とする有色飲料排水の脱色処理方法。   4. The method for decolorizing treatment of colored beverage wastewater according to any one of claims 1 to 3, wherein a metal peroxide is used as a catalyst in the oxidation treatment step.
JP2006224352A 2006-08-21 2006-08-21 Decolorization treatment method for colored beverage drainage Expired - Fee Related JP5003058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006224352A JP5003058B2 (en) 2006-08-21 2006-08-21 Decolorization treatment method for colored beverage drainage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006224352A JP5003058B2 (en) 2006-08-21 2006-08-21 Decolorization treatment method for colored beverage drainage

Publications (2)

Publication Number Publication Date
JP2008043919A true JP2008043919A (en) 2008-02-28
JP5003058B2 JP5003058B2 (en) 2012-08-15

Family

ID=39178163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006224352A Expired - Fee Related JP5003058B2 (en) 2006-08-21 2006-08-21 Decolorization treatment method for colored beverage drainage

Country Status (1)

Country Link
JP (1) JP5003058B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162493A (en) * 2009-01-16 2010-07-29 Kurita Water Ind Ltd Method and device for flocculation and sedimentation treatment of low organic compound concentration wastewater
JP2010167398A (en) * 2008-12-22 2010-08-05 Tosoh Corp Cod removal method and cod decomposition catalyst packed tower
CN104003559A (en) * 2014-06-23 2014-08-27 重庆市亚太环保工程技术设计研究所有限公司 Integrated water purifying device capable of strengthening pretreatment
KR101896240B1 (en) * 2018-06-20 2018-10-18 주식회사 아리바이오 Decolorization method of Aureobasidium pullulans fermentation broth

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152600A (en) * 1979-05-17 1980-11-27 Takuma Co Ltd Decolorizing treatment of heat treated separated liquid from sewage sludge
JPH07163987A (en) * 1993-12-15 1995-06-27 Ngk Insulators Ltd Complete treatment of water
JPH11244870A (en) * 1998-03-05 1999-09-14 Nkk Corp Flocculating and settling device for sewage and cleaning method thereof
JP2004181285A (en) * 2002-11-29 2004-07-02 Kurita Water Ind Ltd Chromaticity treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152600A (en) * 1979-05-17 1980-11-27 Takuma Co Ltd Decolorizing treatment of heat treated separated liquid from sewage sludge
JPH07163987A (en) * 1993-12-15 1995-06-27 Ngk Insulators Ltd Complete treatment of water
JPH11244870A (en) * 1998-03-05 1999-09-14 Nkk Corp Flocculating and settling device for sewage and cleaning method thereof
JP2004181285A (en) * 2002-11-29 2004-07-02 Kurita Water Ind Ltd Chromaticity treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167398A (en) * 2008-12-22 2010-08-05 Tosoh Corp Cod removal method and cod decomposition catalyst packed tower
JP2010162493A (en) * 2009-01-16 2010-07-29 Kurita Water Ind Ltd Method and device for flocculation and sedimentation treatment of low organic compound concentration wastewater
CN104003559A (en) * 2014-06-23 2014-08-27 重庆市亚太环保工程技术设计研究所有限公司 Integrated water purifying device capable of strengthening pretreatment
KR101896240B1 (en) * 2018-06-20 2018-10-18 주식회사 아리바이오 Decolorization method of Aureobasidium pullulans fermentation broth

Also Published As

Publication number Publication date
JP5003058B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP4862361B2 (en) Waste water treatment apparatus and waste water treatment method
US9499420B2 (en) Formulations and methods for removing heavy metals from waste solutions containing chelating agents
HU231153B1 (en) Process for the treatment of concentrated water by reverse osmosis
JP2007130518A (en) Fluorine and/or phosphorus treatment method of chelating agent-containing water, and apparatus
CN103787537A (en) Sewage processing method and application thereof
JP5003058B2 (en) Decolorization treatment method for colored beverage drainage
JP6359257B2 (en) Method and apparatus for treating manganese-containing water
JP3871749B2 (en) Treatment method of flue gas desulfurization waste water
JP2002316173A (en) Method for treating wastewater containing arsenic and hydrogen peroxide
JP4572812B2 (en) Fluorine-containing water treatment method
JP2007125481A (en) Method and apparatus for chelating agent-containing water with fluorine and phosphorus
JP2014198288A (en) Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof
US6936177B2 (en) Method for removing metal from wastewater
JP4631425B2 (en) Method and apparatus for treating fluorine-containing wastewater containing phosphoric acid
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
JP5217883B2 (en) Method and apparatus for treating phosphoric acid, nitric acid and water containing organic acid
JPS6211634B2 (en)
AU2017221284B2 (en) Process for reduction of sulfide from water and wastewater
JP2006263553A (en) Method for treating anionic organic material-containing waste water
JP2000117265A (en) Treatment for molybdenum-containing waste water
JPH10180008A (en) Membrane separation device
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JP2010069413A (en) Organic waste water treatment method
JP7426520B1 (en) Recycled aqueous solution treated with an inorganic flocculant that is non-selective to iodide ions
JP4726216B2 (en) Fluorine / phosphorus treatment method and apparatus for water containing chelating agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5003058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees