JP2014087787A - Processing method and processing device for manganese-containing water - Google Patents

Processing method and processing device for manganese-containing water Download PDF

Info

Publication number
JP2014087787A
JP2014087787A JP2013206524A JP2013206524A JP2014087787A JP 2014087787 A JP2014087787 A JP 2014087787A JP 2013206524 A JP2013206524 A JP 2013206524A JP 2013206524 A JP2013206524 A JP 2013206524A JP 2014087787 A JP2014087787 A JP 2014087787A
Authority
JP
Japan
Prior art keywords
water
manganese
treated
contact
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013206524A
Other languages
Japanese (ja)
Other versions
JP2014087787A5 (en
JP6359257B2 (en
Inventor
Takashi Yamamoto
崇史 山本
Giichi Ito
義一 伊藤
Yoshifusa Kaitani
吉英 貝谷
Original Assignee
Swing Corp
水ing株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012223710 priority Critical
Priority to JP2012223710 priority
Application filed by Swing Corp, 水ing株式会社 filed Critical Swing Corp
Priority to JP2013206524A priority patent/JP6359257B2/en
Publication of JP2014087787A publication Critical patent/JP2014087787A/en
Publication of JP2014087787A5 publication Critical patent/JP2014087787A5/ja
Application granted granted Critical
Publication of JP6359257B2 publication Critical patent/JP6359257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a processing method for manganese-containing water which supplies purified water having significantly low manganese concentration (approximately less than 0.001 mg/L).SOLUTION: A processing method for manganese-containing water comprises: an adjustment step in which chlorine is added to raw water containing soluble manganese so as to supply water to be treated; and a contact step in which the water to be treated is brought into contact with solid manganese dioxide so as to eliminate the soluble manganese contained in the water to be treated and supply purified water.

Description

本発明はマンガン含有水の処理方法および処理装置に関する。   The present invention relates to a method and apparatus for treating manganese-containing water.
水道法第4条では「マンガンおよびその化合物の水質基準値は0.05mg/Lとすること」と定められている。マンガンイオンは塩素共存下において緩やかに反応し、送水管などにおいて黒色の固形物(水和二酸化マンガン)として析出するからである。
また、この固形物が水流によって給水栓などに流出すると、水道水への着色障害(黒水障害)として問題となる。したがって、近年、一部の水道事業体ではマンガンおよびその化合物について、自主的に管理基準値をより厳しくし、0.001mg/L未満などと定めるようになってきている。
Article 4 of the Water Supply Law stipulates that the water quality standard value for manganese and its compounds is 0.05 mg / L. This is because manganese ions react slowly in the presence of chlorine and precipitate as black solids (hydrated manganese dioxide) in water pipes and the like.
Moreover, when this solid substance flows out to a faucet etc. by a water flow, it will become a problem as a coloring trouble (black water trouble) to tap water. Therefore, in recent years, some water utilities have voluntarily set stricter management reference values for manganese and its compounds, such as less than 0.001 mg / L.
一般的に、浄水場において使用されるマンガンおよびその化合物の除去装置は、マンガン砂ろ過法によるものである。この手法では、二酸化マンガンが表面に塗布されたマンガン砂と遊離残留塩素とを共存させることが必要である。水中のマンガンイオンは、マンガン砂の表面において、その二酸化マンガンを触媒として、マンガンイオンの除去活性を有さない酸化マンガンの形態に変化し、水中から除去される。マンガン砂の表面に生じた酸化マンガンは、遊離残留塩素によって二酸化マンガンへ酸化されてマンガン砂と同化するので、マンガン砂はマンガンイオンへの除去活性を回復する。   Generally, the removal apparatus of manganese and its compound used in a water purification plant is based on the manganese sand filtration method. In this method, it is necessary that manganese sand coated with manganese dioxide on the surface and free residual chlorine coexist. Manganese ions in the water are removed from the surface of the manganese sand in the form of manganese oxide having no manganese ion removal activity using the manganese dioxide as a catalyst. Manganese oxide generated on the surface of the manganese sand is oxidized to manganese dioxide by free residual chlorine and assimilated with the manganese sand, so that the manganese sand recovers its activity of removing manganese ions.
このような手法に関連する具体的な従来法として、特許文献1には、膜浸漬槽内に、外圧式管型の膜エレメントを多数組み入れた膜モジュールと、その下方部に散気手段を配設した膜ろ過装置の前段に、次亜混和槽または次亜混和槽と粉末炭吸着槽による塩素接触池を設け、原水に、塩素についで粉末活性炭を注入し、原水中の溶解性マンガンを酸化して二酸化マンガンとするとともに、塩素の注入による消毒副生成物の生成を抑制した後、これを膜ろ過装置に送って、生物学的処理及び固体成分の分離除去を行うことを特徴とする、マンガン含有水の処理方法が記載されている。   As a specific conventional method related to such a technique, Patent Document 1 discloses a membrane module in which a large number of external pressure tubular membrane elements are incorporated in a membrane immersion tank, and an air diffuser is disposed below the membrane module. A hypoxia tank or a hypochlorite tank and a pulverized charcoal adsorption tank are installed in the previous stage of the membrane filtration device, and chlorine is added to the raw water followed by powdered activated carbon to oxidize soluble manganese in the raw water. It is made into manganese dioxide, and after suppressing the production of disinfection by-products due to the injection of chlorine, it is sent to a membrane filtration device to perform biological treatment and separation and removal of solid components, A method for treating manganese-containing water is described.
また、特許文献2には、原水中の溶解性マンガンを除去するにあたり、原水にアルカリ性物質を供給してpHを9〜10に調節し、溶存酸素の存在下で前記溶解性マンガンを不溶性の二酸化マンガンにした後、生成した二酸化マンガン粒子を膜ろ過によって原水から除去することを特徴とするマンガンの除去方法が記載されている。   Further, in Patent Document 2, when removing soluble manganese in raw water, an alkaline substance is supplied to the raw water to adjust the pH to 9 to 10, and the soluble manganese is dissolved in insoluble dioxide in the presence of dissolved oxygen. A method for removing manganese is described in which after manganese is formed, the produced manganese dioxide particles are removed from raw water by membrane filtration.
特開2003−230895号公報JP 2003-230895 A 特開2001−316118号公報JP 2001-316118 A
しかし、特許文献1に記載の方法では、次亜塩素酸ナトリウムを1.3mg/L以上の高濃度で注入する必要があり、薬品使用量が多くなり、経済的ではない。また、次亜塩素酸ナトリウムを高濃度で注入するため、水質基準項目の1つである総トリハロメタンが高くなり、基準値を超過する懸念があるため、粉末活性炭による吸着が必要になる。   However, in the method described in Patent Document 1, it is necessary to inject sodium hypochlorite at a high concentration of 1.3 mg / L or more, which increases the amount of chemical used and is not economical. Further, since sodium hypochlorite is injected at a high concentration, the total trihalomethane, which is one of the water quality standard items, becomes high and there is a concern that the standard value may be exceeded, so adsorption with powdered activated carbon is necessary.
また、特許文献2に記載の方法では、アルカリ物質を注入した後、pHを9〜10に調整し、その後、水道水質基準を準拠するために、硫酸等を注入してpH5.8〜8.6に下げる操作が必要となるため経済的ではない。   Moreover, in the method of patent document 2, after inject | pouring an alkaline substance, after adjusting pH to 9-10, in order to comply with a tap water quality standard, sulfuric acid etc. are inject | poured and pH5.8-8. It is not economical because an operation to lower it to 6 is required.
また、特許文献1や特許文献2に記載のような従来法によって処理して得られる浄水のマンガン濃度は高く、さらに低減させる余地があった。   Moreover, the manganese density | concentration of the purified water obtained by processing by the conventional method as described in patent document 1 or patent document 2 is high, and there was room for further reduction.
本発明は上記のような課題を解決することを目的とする。
すなわち、マンガン濃度が非常に低い(概ね0.001mg/L未満)浄水が得られるマンガン含有水の処理方法および処理装置を提供することを目的とする。
An object of the present invention is to solve the above problems.
That is, an object of the present invention is to provide a method and an apparatus for treating manganese-containing water from which purified water having a very low manganese concentration (approximately less than 0.001 mg / L) can be obtained.
本発明者は上記のような課題を解決するために鋭意検討し、本発明を完成させた。
本発明は、以下の(1)〜(12)である。
(1)溶解性マンガンを含む原水に塩素を加え、処理対象水を得る調整工程と、
前記処理対象水を固体の二酸化マンガンに接触させて、前記処理対象水に含まれる溶解性マンガンを除去して浄水を得る接触工程と、
を備えるマンガン含有水の処理方法。
(2)溶解性マンガンを含む原水に塩素を加え、さらにpHを6.5〜8.5とし、処理対象水[1]を得る調整工程[1]と、
前記処理対象水[1]を固体の二酸化マンガンに接触させて、前記処理対象水[1]に含まれる溶解性マンガンを除去して浄水を得る接触工程と、
を備える、上記(1)に記載のマンガン含有水の処理方法。
(3)前記接触工程における前記浄水のpHと残留塩素濃度(mg/L)との関係が下記式(I)を満たすように、前記調整工程[1]において塩素を加え、pHを調整する、上記(2)に記載のマンガン含有水の処理方法。
式(I):8.18−2.3×残留塩素濃度≦pH≦8.46−1.2×残留塩素濃度
(4)溶解性マンガンを含む原水に塩素を加え、さらに次亜塩素酸イオン(OCl-)の濃度を0.06〜2.4mg/Lとし、処理対象水[2]を得る調整工程[2]と、
前記処理対象水[2]を固体の二酸化マンガンに接触させて、前記処理対象水[2]に含まれる溶解性マンガンを除去して浄水を得る接触工程と、
を備える、上記(1)に記載のマンガン含有水の処理方法。
(5)前記調整工程が、
前記原水へ凝集剤を添加し、不純物を凝集して沈降させて、上澄みとしての凝集処理水を得る凝集工程、
前記原水または前記凝集処理水を活性炭と接触させて、不純物の少なくとも一部を除去した精製水を得る吸着工程、および、
前記原水、前記凝集処理水または前記精製水をろ過して、不純物の少なくとも一部を除去したろ過処理水を得るろ過工程
からなる群から選ばれる少なくとも一つの工程を含む、上記(1)〜(4)のいずれかに記載のマンガン含有水の処理方法。
(6)前記原水に塩素を加え、処理対象水を排出する調整部と、
前記処理対象水を固体の二酸化マンガンに接触させて、前記処理対象水に含まれる溶解性マンガンを除去して浄水を排出する接触部と
を有するマンガン含有水の処理装置。
(7)前記原水に塩素を加え、さらにpHを6.5〜8.5に調製して、前記処理対象水を排出する調整部である、上記(6)に記載のマンガン含有水の処理装置。
(8)前記調整部が、前記原水のpHを調製するために用いる前記原水へアルカリ成分を添加するためのアルカリ添加手段を有し、
前記接触部が、さらに、前記アルカリ成分を添加する前の処理対象水を用いて、前記固体の二酸化マンガンを洗浄する洗浄手段を有する、上記(6)または(7)に記載のマンガン含有水の処理装置。
(9)前記調整部が、
前記原水へ凝集剤を添加し、不純物を凝集して沈降させて、上澄みとしての凝集処理水を得る凝集部、
前記原水または前記凝集処理水を活性炭と接触させて、不純物の少なくとも一部を除去した精製水を得る吸着部、および、
前記原水、前記凝集処理水または前記精製水をろ過して、不純物の少なくとも一部を除去したろ過処理水を得るろ過部
からなる群から選ばれる少なくとも一つを含む、上記(6)〜(8)のいずれかに記載のマンガン含有水の処理装置。
(10)前記接触部において、前記処理対象水を下向流にて前記固体の二酸化マンガンに接触させる、上記(6)〜(9)のいずれかに記載のマンガン含有水の処理装置。
(11)前記接触部において、前記処理対象水を上向流にて前記固体の二酸化マンガンに接触させる、上記(6)〜(9)のいずれかに記載のマンガン含有水の処理装置。
(12)上記(1)〜(5)のいずれかに記載のマンガン含有水の処理方法を行うことができる、上記(6)〜(11)のいずれかに記載のマンガン含有水の処理装置。
The present inventor has intensively studied to solve the above-described problems and completed the present invention.
The present invention includes the following (1) to (12).
(1) An adjustment step of adding chlorine to raw water containing soluble manganese to obtain water to be treated;
A contact step of contacting the water to be treated with solid manganese dioxide to remove soluble manganese contained in the water to be treated to obtain purified water; and
A method for treating manganese-containing water.
(2) An adjustment step [1] for adding chlorine to the raw water containing soluble manganese and further adjusting the pH to 6.5 to 8.5 to obtain the water to be treated [1];
Contacting the water to be treated [1] with solid manganese dioxide to obtain soluble water by removing soluble manganese contained in the water to be treated [1];
The method for treating manganese-containing water according to (1) above, comprising:
(3) Chlorine is added in the adjustment step [1] to adjust the pH so that the relationship between the pH of the purified water and the residual chlorine concentration (mg / L) in the contact step satisfies the following formula (I). The method for treating manganese-containing water according to (2) above.
Formula (I): 8.18-2.3 × residual chlorine concentration ≦ pH ≦ 8.46-1.2 × residual chlorine concentration (4) Chlorine is added to raw water containing soluble manganese, and hypochlorite ion An adjustment step [2] to obtain a water to be treated [2] by setting the concentration of (OCl ) to 0.06 to 2.4 mg / L;
Contacting the water to be treated [2] with solid manganese dioxide to obtain soluble water by removing soluble manganese contained in the water to be treated [2];
The method for treating manganese-containing water according to (1) above, comprising:
(5) The adjustment step includes
A flocculating step of adding a flocculant to the raw water, flocculating and sedimenting impurities, and obtaining flocculated water as a supernatant;
An adsorption step of bringing the raw water or the flocculated water into contact with activated carbon to obtain purified water from which at least some of the impurities have been removed; and
The above (1) to (1) comprising at least one step selected from the group consisting of a filtration step of filtering the raw water, the agglomerated treated water or the purified water to obtain a filtered treated water from which at least a part of impurities has been removed. The method for treating manganese-containing water according to any one of 4).
(6) an adjustment unit that adds chlorine to the raw water and discharges water to be treated;
An apparatus for treating manganese-containing water, comprising: a contact portion that brings the treatment target water into contact with solid manganese dioxide, removes soluble manganese contained in the treatment target water, and discharges purified water.
(7) The manganese-containing water treatment apparatus according to (6), which is an adjustment unit that adds chlorine to the raw water, further adjusts the pH to 6.5 to 8.5, and discharges the water to be treated. .
(8) The adjustment unit has an alkali addition means for adding an alkaline component to the raw water used to adjust the pH of the raw water,
The manganese-containing water according to (6) or (7), wherein the contact portion further includes a cleaning unit that cleans the solid manganese dioxide using the water to be treated before the alkali component is added. Processing equipment.
(9) The adjustment unit is
A flocculant to add a flocculant to the raw water, agglomerate and settle impurities, and obtain agglomerated water as a supernatant;
An adsorbing part that obtains purified water from which at least a part of impurities has been removed by bringing the raw water or the agglomerated water into contact with activated carbon, and
The above (6) to (8) comprising at least one selected from the group consisting of a filtration unit for filtering the raw water, the agglomerated treated water or the purified water to obtain filtered treated water from which at least a part of impurities has been removed. ) The manganese-containing water treatment apparatus according to any one of the above.
(10) The treatment apparatus for manganese-containing water according to any one of (6) to (9), wherein the water to be treated is brought into contact with the solid manganese dioxide in a downward flow in the contact portion.
(11) The manganese-containing water treatment apparatus according to any one of (6) to (9), wherein the water to be treated is brought into contact with the solid manganese dioxide in an upward flow in the contact portion.
(12) The manganese-containing water treatment apparatus according to any one of (6) to (11), wherein the manganese-containing water treatment method according to any one of (1) to (5) can be performed.
本発明によれば、マンガン濃度が非常に低い(概ね0.001mg/L未満)浄水が得られるマンガン含有水の処理方法および処理装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the processing method and processing apparatus of the manganese containing water from which the manganese concentration is very low (generally less than 0.001 mg / L) can be provided.
次亜塩素酸(HOCl)と次亜塩素酸イオン(OCl-)との存在割合(質量比)を示すグラフである。It is a graph which shows the abundance ratio (mass ratio) of hypochlorous acid (HOCl) and hypochlorite ion (OCl < - >). 本発明の処理方法を行うことができる装置の例である。It is an example of the apparatus which can perform the processing method of this invention. 本発明の処理方法を行うことができる好ましい装置の例である。It is an example of the preferable apparatus which can perform the processing method of this invention. 実施例における測定結果を表すグラフである。It is a graph showing the measurement result in an Example.
本発明について説明する。
本発明は、溶解性マンガンを含む原水に塩素を加え、処理対象水を得る調整工程と、前記処理対象水を固体の二酸化マンガンに接触させて、前記処理対象水に含まれる溶解性マンガンを除去して浄水を得る接触工程と、を備えるマンガン含有水の処理方法である。
このようなマンガン含有水の処理方法を、以下では「本発明の処理方法」ともいう。
The present invention will be described.
The present invention adds chlorine to raw water containing soluble manganese to obtain a treatment target water, and contacts the treatment target water with solid manganese dioxide to remove the soluble manganese contained in the treatment target water And a contact process for obtaining purified water.
Hereinafter, such a method for treating manganese-containing water is also referred to as “treatment method of the present invention”.
本発明の処理方法には好ましい態様として、2つの態様が含まれる。
本発明の処理方法の1つの目の態様は、溶解性マンガンを含む原水に塩素を加え、さらにpHを6.5〜8.5とし、処理対象水[1]を得る調整工程[1]と、前記処理対象水[1]を固体の二酸化マンガンに接触させて、前記処理対象水[1]に含まれる溶解性マンガンを除去して浄水を得る接触工程と、を備えるマンガン含有水の処理方法である。
このようなマンガン含有水の処理方法を、以下では「本発明の第1処理方法」ともいう。
The treatment method of the present invention includes two embodiments as preferred embodiments.
The first aspect of the treatment method of the present invention is the adjustment step [1] for adding chlorine to the raw water containing soluble manganese and further adjusting the pH to 6.5 to 8.5 to obtain the treatment target water [1]. A method of treating manganese-containing water, comprising: contacting the treatment target water [1] with solid manganese dioxide to remove soluble manganese contained in the treatment target water [1] to obtain purified water. It is.
Hereinafter, such a method for treating manganese-containing water is also referred to as “first treatment method of the present invention”.
本発明の処理方法の2つの目の態様は、溶解性マンガンを含む原水に塩素を加え、さらに次亜塩素酸イオン(OCl-)の濃度を0.06〜2.4mg/Lとし、処理対象水[2]を得る調整工程[2]と、前記処理対象水[2]を固体の二酸化マンガンに接触させて、前記処理対象水[2]に含まれる溶解性マンガンを除去して浄水を得る接触工程と、を備えるマンガン含有水の処理方法である。
このようなマンガン含有水の処理方法を、以下では「本発明の第2処理方法」ともいう。
In the second aspect of the treatment method of the present invention, chlorine is added to raw water containing soluble manganese, and the concentration of hypochlorite ion (OCl ) is set to 0.06 to 2.4 mg / L. The adjustment step [2] for obtaining water [2] and the treatment target water [2] are brought into contact with solid manganese dioxide to remove the soluble manganese contained in the treatment target water [2] to obtain purified water. A method for treating manganese-containing water comprising a contact step.
Hereinafter, such a method for treating manganese-containing water is also referred to as a “second treatment method of the present invention”.
本発明の第1処理方法と本発明の第2処理方法とは、接触工程が共通する。
本発明の第1処理方法における調整工程[1]と、本発明の第2処理方法における調整工程[2]とは、一部が共通する。
The first treatment method of the present invention and the second treatment method of the present invention have a common contact process.
The adjustment step [1] in the first processing method of the present invention and the adjustment step [2] in the second processing method of the present invention are partly in common.
以下において、単に「本発明の処理方法」と記した場合、本発明の第1処理方法と本発明の第2処理方法との両方を含むものとする。
また、単に「調整工程」と記した場合、本発明の第1処理方法における調整工程[1]と本発明の第2処理方法における調整工程[2]との両方を含むものとする。
In the following, the simple description “the processing method of the present invention” includes both the first processing method of the present invention and the second processing method of the present invention.
In addition, the simple description of “adjustment step” includes both the adjustment step [1] in the first treatment method of the present invention and the adjustment step [2] in the second treatment method of the present invention.
<調整工程>
本発明の処理方法における調整工程について説明する。
調整工程では、初めに、溶解性マンガンを含む原水に塩素を加える。
<Adjustment process>
The adjustment process in the processing method of the present invention will be described.
In the adjustment step, chlorine is first added to raw water containing soluble manganese.
原水は、溶解性マンガン(すなわちマンガンイオン)を含む水であれば特に限定されない。溶解していない固体のマンガンをさらに含んでいてもよい。
このような原水として、水道原水(河川水、地下水、湖沼水など)、下排水、海水、汽水などが挙げられる。
The raw water is not particularly limited as long as it is water containing soluble manganese (that is, manganese ions). It may further contain undissolved solid manganese.
Examples of such raw water include tap raw water (river water, groundwater, lake water, etc.), sewage, seawater, brackish water, and the like.
原水に含まれる溶解性マンガンの濃度は特に限定されないが、0.005〜0.06mg/L程度であってよい。   Although the density | concentration of the soluble manganese contained in raw | natural water is not specifically limited, About 0.005-0.06 mg / L may be sufficient.
なお、本発明の処理方法において、溶解性マンガンの濃度は、測定対象水(例えば原水や浄水)を孔径0.1μmのメンブランフィルターでろ過した後、そのろ過水を水質基準に関する省令の規定に基づき厚生労働大臣が定める方法(平成15年7月22日厚生労働省告示第261号(最終改正 平成24年3月30日厚生労働省告示第290号))で測定して得た値を意味するものとする。   In the treatment method of the present invention, the concentration of soluble manganese is determined based on the provisions of a ministerial ordinance concerning water quality standards after filtering water to be measured (for example, raw water or purified water) with a membrane filter having a pore size of 0.1 μm. It means the value obtained by measuring by the method stipulated by the Minister of Health, Labor and Welfare (Ministry of Health, Labor and Welfare Notification No. 261 on July 22, 2003 (Final Revision March 30, 2012 Ministry of Health, Labor and Welfare Notification No. 290)) To do.
調整工程では、このような原水に塩素を加える。
ここで塩素を含む物質(例えば塩素原子を含む化合物)を前記原水に加えてもよい。
このような塩素原子を含む化合物としては、次亜塩素酸ナトリウム、液化塩素、次亜塩素酸カルシウムが挙げられる。なかでも次亜塩素酸ナトリウムを加えることで、原水に塩素を加えることが好ましい。広く流通しており、入手が容易であるからである。また、他の塩素源と比較して、注入が容易だからである。
In the adjustment process, chlorine is added to such raw water.
Here, a substance containing chlorine (for example, a compound containing a chlorine atom) may be added to the raw water.
Examples of such a compound containing a chlorine atom include sodium hypochlorite, liquefied chlorine, and calcium hypochlorite. Especially, it is preferable to add chlorine to raw water by adding sodium hypochlorite. This is because it is widely distributed and easily available. Moreover, it is because injection | pouring is easy compared with another chlorine source.
前記原水に加える塩素の量は特に限定されないが、本発明の処理方法を実施することで生じる浄水に残留している塩素の濃度(以下「残留塩素濃度」ともいう)が、好ましくは2mg/L以下、より好ましくは1.5mgL以下、より好ましくは1.0mgL以下、さらに好ましくは0.6mgL以下となるような量の塩素を、前記原水に加える。   The amount of chlorine added to the raw water is not particularly limited, but the concentration of chlorine remaining in the purified water produced by carrying out the treatment method of the present invention (hereinafter also referred to as “residual chlorine concentration”) is preferably 2 mg / L. Below, more preferably 1.5 mgL or less, more preferably 1.0 mgL or less, and even more preferably 0.6 mgL or less of chlorine is added to the raw water.
なお、浄水における残留塩素濃度は、水道法施行規則第17条第2項の規定に基づき厚生労働大臣が定める遊離残留塩素および結合残留塩素の検査方法(平成15年9月29日厚生労働省告示第318号(最終改正 平成17年3月11日厚生労働省告示第75号))で測定して得る値を意味するものとする。   The residual chlorine concentration in clean water is determined by the inspection method for free and combined residual chlorine specified by the Minister of Health, Labor and Welfare based on the provisions of Article 17 Paragraph 2 of the Water Supply Law Enforcement Regulations (Ministry of Health, Labor and Welfare Notification No. 29 September 2003 It shall mean the value obtained by measuring 318 (final revision March 11, 2005 Ministry of Health, Labor and Welfare Notification No. 75)).
浄水中の残留塩素濃度を上記のような範囲とするために、前記原水に加える塩素の量は、原水中の塩素濃度が2.0mg/L以下となる量とすることができる。   In order to set the residual chlorine concentration in the purified water within the above range, the amount of chlorine added to the raw water can be set to an amount that provides a chlorine concentration of 2.0 mg / L or less in the raw water.
調整工程では、上記のようにして前記原水に塩素を加える。塩素は塩素源添加装置を用いて加えることができる。   In the adjustment step, chlorine is added to the raw water as described above. Chlorine can be added using a chlorine source addition device.
調整工程[1]の場合について説明する。
調整工程[1]では、上記のような原水のpHを6.5〜8.5とする。このpHは7.0以上とすることが好ましく、7.5以上とすることがより好ましい。また、このpHは8.0以下とすることが好ましい。
The case of the adjustment process [1] will be described.
In the adjustment step [1], the pH of the raw water as described above is set to 6.5 to 8.5. This pH is preferably 7.0 or more, and more preferably 7.5 or more. The pH is preferably 8.0 or less.
前記原水に塩素を加えた後、または塩素を加える前に、例えば従来公知の方法(例えばpHメーター等を用いる方法)によってpHを測定し、必要に応じて、酸(硫酸、塩酸、液化二酸化炭素など)やアルカリ(水酸化ナトリウム、消石灰、ソーダ灰など)を適量、前記原水へ添加してpHを調整することができる。酸やアルカリを添加しなくてもpHが所定の範囲内であれば、酸やアルカリは添加しなくてもよい。このような場合であっても本発明の処理方法の技術的範囲内である。   After adding chlorine to the raw water or before adding chlorine, the pH is measured by, for example, a conventionally known method (for example, a method using a pH meter), and if necessary, an acid (sulfuric acid, hydrochloric acid, liquefied carbon dioxide) Etc.) and alkali (sodium hydroxide, slaked lime, soda ash, etc.) can be added to the raw water in an appropriate amount to adjust the pH. Even if no acid or alkali is added, as long as the pH is within a predetermined range, no acid or alkali may be added. Even such a case is within the technical scope of the processing method of the present invention.
ここで、調整工程[1]では、後述する接触工程における浄水のpHと残留塩素濃度(mg/L)との関係が下記式(I)を満たすように、前記原水に塩素を加え、pHを調整することが好ましい。   Here, in the adjustment step [1], chlorine is added to the raw water so that the relationship between the pH of purified water and the residual chlorine concentration (mg / L) in the contact step described later satisfies the following formula (I), and the pH is adjusted. It is preferable to adjust.
式(I):8.18−2.3×残留塩素濃度≦pH≦8.46−1.2×残留塩素濃度   Formula (I): 8.18-2.3 × residual chlorine concentration ≦ pH ≦ 8.46−1.2 × residual chlorine concentration
本発明者は鋭意検討し、浄水におけるpHと残留塩素濃度(mg/L)との関係が式(I)を満たすように、調整工程[1]において前記原水に塩素を加え、pHを調整すると、本発明の第1処理方法によって得られる浄水におけるマンガン濃度が非常に低くなり、概ね0.001mg/L未満となることを見出した。   The present inventor diligently studied and adjusted the pH by adding chlorine to the raw water in the adjustment step [1] so that the relationship between the pH in purified water and the residual chlorine concentration (mg / L) satisfies the formula (I). The manganese concentration in the purified water obtained by the first treatment method of the present invention was found to be very low, generally less than 0.001 mg / L.
調整工程[1]では、上記のように、溶解性マンガンを含む原水に塩素を加え、さらにpHを6.5〜8.5として処理対象水[1]を得ることができる。   In the adjustment step [1], as described above, chlorine can be added to the raw water containing soluble manganese, and the water to be treated [1] can be obtained at a pH of 6.5 to 8.5.
調整工程[2]の場合について説明する。
調整工程[2]では、上記のような原水の次亜塩素酸イオン(OCl-)の濃度を0.06〜2.4mg/Lとする。この次亜塩素酸イオン(OCl-)の濃度は0.12mg/L以上とすることが好ましく、0.36mg/L以上とすることがより好ましい。また、この次亜塩素酸イオン(OCl-)の濃度は1.9mg/L以下とすることが好ましく、0.57mg/L以下とすることがより好ましく、0.48mg/L以下とすることがさらに好ましい。
The case of the adjustment process [2] will be described.
In the adjustment step [2], the concentration of hypochlorite ion (OCl ) in the raw water as described above is set to 0.06 to 2.4 mg / L. The concentration of hypochlorite ion (OCl ) is preferably 0.12 mg / L or more, and more preferably 0.36 mg / L or more. The concentration of this hypochlorite ion (OCl ) is preferably 1.9 mg / L or less, more preferably 0.57 mg / L or less, and 0.48 mg / L or less. Further preferred.
本発明者は鋭意検討し、次亜塩素酸イオンの濃度が所定範囲であると、本発明の第2処理方法によって得られる浄水におけるマンガン濃度が非常に低くなり、概ね0.001mg/L未満となることを見出した。   The present inventor has intensively studied, and when the concentration of hypochlorite ion is within a predetermined range, the manganese concentration in the purified water obtained by the second treatment method of the present invention becomes very low, generally less than 0.001 mg / L. I found out that
処理対象水[2]における次亜塩素酸イオンの濃度が所定範囲であると浄水におけるマンガン濃度が非常に低くなる理由は明らかではないものの、本発明者は次のように推定している。
接触工程において、処理対象水[2]を触媒としての固体の二酸化マンガン(以下「触媒二酸化マンガン」ともいう)に接触させると、処理対象水[2]に含まれるマンガンイオンは、触媒二酸化マンガンの表面において酸化マンガンに変化し、さらに残留塩素によって二酸化マンガンへ酸化される。
ここで、酸化マンガンを二酸化マンガンへ酸化する残留塩素は、対象処理水[2]において次亜塩素酸イオン(OCl-)または次亜塩素酸(HOCl)の態様で存在していると考えられるが、次亜塩素酸イオン(OCl-)の態様で存在している残留塩素によって酸化されて生成した二酸化マンガンは、触媒二酸化マンガンの表面に吸着し、これと同化しやすいと推定される。これに対して次亜塩素酸(HOCl)の態様で存在している塩素によって酸化されて生成した二酸化マンガンは、触媒二酸化マンガンの表面に吸着し難いため、触媒二酸化マンガンには吸着しない場合があり、浄水中に微粒子として存在することになるため、浄水におけるマンガン濃度はその分高くなると、本発明者は推定している。
Although the reason why the manganese concentration in the purified water is so low that the concentration of hypochlorite ion in the treatment target water [2] is within the predetermined range is not clear, the present inventor estimates as follows.
In the contacting step, when the water to be treated [2] is brought into contact with solid manganese dioxide (hereinafter also referred to as “catalytic manganese dioxide”) as a catalyst, manganese ions contained in the water to be treated [2] It changes to manganese oxide on the surface and is further oxidized to manganese dioxide by residual chlorine.
Here, it is considered that residual chlorine that oxidizes manganese oxide to manganese dioxide is present in the form of hypochlorite ions (OCl ) or hypochlorous acid (HOCl) in the target treated water [2]. It is presumed that manganese dioxide produced by oxidation by residual chlorine present in the form of hypochlorite ions (OCl ) is adsorbed on the surface of the catalyst manganese dioxide and is easily assimilated with it. In contrast, manganese dioxide produced by oxidation with chlorine present in the form of hypochlorous acid (HOCl) is difficult to adsorb on the surface of the catalyst manganese dioxide and may not be adsorbed on the catalyst manganese dioxide. The present inventors presume that the manganese concentration in the purified water becomes higher by that amount because it exists as fine particles in the purified water.
調整工程[2]において、上記のような原水の次亜塩素酸イオン(OCl-)の濃度を調整する方法は特に限定されないが、前記原水に含まれる塩素とpHとを調整することで、次亜塩素酸イオン(OCl-)の濃度を調整することができる。
水中に塩素または塩素を含む化合物が添加された場合、次亜塩素酸(HOCl)が生じ、さらに次亜塩素酸イオン(OCl-)が生じ、特定の平衡状態となると考えられる。そして、次亜塩素酸(HOCl)と次亜塩素酸イオン(OCl-)との存在割合は、水のpHに依存すると考えられる。具体的には、次亜塩素酸(HOCl)と次亜塩素酸イオン(OCl-)との存在割合(質量比)は、概ね、pHが6.5の場合は90:10であり、pHが7.0の場合は80:20であり、pHが7.5の場合は60:40であり、pHが8.0の場合は20:80であり、pHが8.5の場合は5:95である。次亜塩素酸(HOCl)と次亜塩素酸イオン(OCl-)との存在割合(質量比)の詳細は、図1に示すとおりである。
したがって、例えば、前記原水に含まれる塩素の濃度が高い場合は、pHを低くして(例えばpH:6〜7程度)、次亜塩素酸イオン(OCl-)の濃度を所定範囲に調整することができる。また、例えば、前記原水に含まれる塩素の濃度が低い場合は、pHを高くして(例えばpH:7.5〜8.5程度)、次亜塩素酸イオン(OCl-)の濃度を所定範囲に調整することができる。
In the adjustment step [2], the method for adjusting the concentration of hypochlorite ion (OCl ) of the raw water as described above is not particularly limited, but by adjusting the chlorine and pH contained in the raw water, The concentration of chlorite ion (OCl ) can be adjusted.
When chlorine or a compound containing chlorine is added to water, hypochlorous acid (HOCl) is generated, and hypochlorite ions (OCl ) are generated, which is considered to be in a specific equilibrium state. And it is thought that the abundance ratio of hypochlorous acid (HOCl) and hypochlorite ion (OCl ) depends on the pH of water. Specifically, the abundance ratio (mass ratio) of hypochlorous acid (HOCl) and hypochlorite ion (OCl ) is approximately 90:10 when the pH is 6.5, and the pH is 7.0: 80:20, pH 7.5: 60:40, pH 8.0: 20:80, pH 8.5: 5: 95. Details of the abundance ratio (mass ratio) between hypochlorous acid (HOCl) and hypochlorite ions (OCl ) are as shown in FIG.
Therefore, for example, when the concentration of chlorine contained in the raw water is high, the pH is lowered (for example, pH: about 6 to 7), and the concentration of hypochlorite ion (OCl ) is adjusted to a predetermined range. Can do. Further, for example, when the concentration of chlorine contained in the raw water is low, the pH is increased (for example, pH: about 7.5 to 8.5), and the concentration of hypochlorite ion (OCl ) is within a predetermined range. Can be adjusted.
調整工程[2]において、原水中の次亜塩素酸イオン(OCl-)の濃度は、次に示す方法で特定するものとする。
初めに、水道法施行規則第17条第2項の規定に基づき厚生労働大臣が定める遊離残留塩素および結合残留塩素の検査方法(平成15年9月29日厚生労働省告示第318号(最終改正 平成17年3月11日厚生労働省告示第75号))によって原水中の次亜塩素酸(HOCl)と次亜塩素酸イオン(OCl-)との合計濃度、すなわち遊離残留塩素濃度を測定する。そして、図1から次亜塩素酸イオン(OCl-)の濃度を求めるものとする。
In the adjustment step [2], the concentration of hypochlorite ion (OCl ) in the raw water is specified by the following method.
First, the inspection method of free residual chlorine and combined residual chlorine specified by the Minister of Health, Labor and Welfare based on the provisions of Article 17 paragraph 2 of the Water Supply Law Enforcement Regulations (Ministry of Health, Labor and Welfare Notification No. 318 on September 29, 2003 (final revision Heisei The total concentration of hypochlorous acid (HOCl) and hypochlorite ion (OCl ) in raw water, that is, free residual chlorine concentration, is measured according to the Ministry of Health, Labor and Welfare Notification No. 75) on March 11, 2005. Then, the concentration of hypochlorite ion (OCl ) is determined from FIG.
調整工程[2]では、上記のように、溶解性マンガンを含む原水に塩素を加え、さらに次亜塩素酸イオン(OCl-)の濃度を0.06〜2.4mg/Lとして処理対象水[2]を得ることができる。 In the adjustment step [2], as described above, chlorine is added to the raw water containing soluble manganese, and the concentration of hypochlorite ion (OCl ) is set to 0.06 to 2.4 mg / L. 2] can be obtained.
前記調整工程は、凝集工程、吸着工程およびろ過工程からなる群から選ばれる少なくとも一つの工程を含むことが好ましい。
前記調整工程が前記吸着工程を含む場合、前記ろ過工程も含むことが好ましい。
前記調整工程は、前記凝集工程、前記吸着工程および前記ろ過工程の全ての工程を含むことがより好ましい。
The adjustment step preferably includes at least one step selected from the group consisting of an aggregation step, an adsorption step, and a filtration step.
When the said adjustment process includes the said adsorption process, it is preferable that the said filtration process is also included.
More preferably, the adjustment step includes all steps of the aggregation step, the adsorption step, and the filtration step.
前記調整工程は、前記凝集工程、前記吸着工程および前記ろ過工程の全ての工程をこの順に含むことがより好ましい。
すなわち、調整工程[1]は、前記原水へ凝集剤を添加し、不純物を凝集して沈降させて、上澄みとしての凝集処理水を得る凝集工程、前記凝集処理水を活性炭と接触させて、不純物の少なくとも一部を除去した精製水を得る吸着工程、および、前記精製水をろ過して、不純物の少なくとも一部を除去したろ過処理水を得るろ過工程を含み、前記ろ過処理水に塩素を加え、さらにpHを6.5〜8.5とし、処理対象水[1]を得る工程であることが好ましい。
また、調整工程[2]は、前記原水へ凝集剤を添加し、不純物を凝集して沈降させて、上澄みとしての凝集処理水を得る凝集工程、前記凝集処理水を活性炭と接触させて、不純物の少なくとも一部を除去した精製水を得る吸着工程、および、前記精製水をろ過して、不純物の少なくとも一部を除去したろ過処理水を得るろ過工程を含み、前記ろ過処理水に塩素を加え、さらに次亜塩素酸イオン(OCl-)の濃度を0.06〜2.4mg/Lとし、処理対象水[2]を得る工程であることが好ましい。
More preferably, the adjustment step includes all steps of the aggregation step, the adsorption step, and the filtration step in this order.
That is, in the adjusting step [1], a flocculant is added to the raw water, and the impurities are aggregated and settled to obtain an agglomerated treated water as a supernatant. An adsorption step for obtaining purified water from which at least a part of the product has been removed, and a filtration step for obtaining filtered water from which the purified water has been removed by filtering the purified water, and adding chlorine to the filtered water Further, it is preferable to set the pH to 6.5 to 8.5 and obtain the treatment target water [1].
In addition, the adjustment step [2] is performed by adding a flocculant to the raw water, aggregating and precipitating impurities to obtain agglomerated treated water as a supernatant, contacting the agglomerated treated water with activated carbon, An adsorption step for obtaining purified water from which at least a part of the product has been removed, and a filtration step for obtaining filtered water from which the purified water has been removed by filtering the purified water, and adding chlorine to the filtered water Furthermore, it is preferable that the concentration of hypochlorite ion (OCl ) is 0.06 to 2.4 mg / L to obtain the water to be treated [2].
例えば、前記原水が水道原水(河川水、湖沼水、地下水など)の場合、前記調整工程が、凝集工程、吸着工程およびろ過工程からなる群から選ばれる少なくとも一つの工程を含むことが好ましく、これらの全ての工程を含むことがより好ましく、これらの全ての工程をこの順に含むことがさらに好ましい。全ての工程を含む場合、吸着工程、凝集工程、ろ過工程の順に含んでもよく、凝集工程、吸着工程、ろ過工程の順に含んでもよい。原水に含まれる不純物、主に紫外線吸光度発現物質の少なくとも一部を原水から分離して除去できるからである。
ここで紫外線吸光度発現物質とは、紫外部(200〜300nm、好ましくは220〜280nm、より好ましくは250〜260nmの波長)に吸収を示す物質を意味するものとする。原水に含まれる不飽和結合を有する有機物は、概ね紫外線吸光度発現物質と考えられる。具体的な紫外線吸光度発現物質としてはフミン質が挙げられる。フミン質とは、植物などが微生物によって分解されるときの最終分解生成物で、直鎖炭化水素および多環芳香族化合物等からなる高分子化合物である。
このような不純物を原水中から分離し除去する方法は特に限定されず、例えば従来公知の方法を適用することができるが、凝集工程、吸着工程およびろ過工程からなる群から選ばれる少なくとも一つの工程によることが好ましい。
For example, when the raw water is raw tap water (river water, lake water, groundwater, etc.), the adjustment step preferably includes at least one step selected from the group consisting of an aggregation step, an adsorption step, and a filtration step. It is more preferable that all the steps are included, and it is more preferable that all these steps are included in this order. When all processes are included, the adsorption process, the aggregation process, and the filtration process may be included in this order, or the aggregation process, the adsorption process, and the filtration process may be included in this order. This is because impurities contained in the raw water, mainly at least a part of the substance exhibiting ultraviolet absorbance, can be separated and removed from the raw water.
Here, the substance exhibiting UV absorbance means a substance that absorbs in the UV region (200 to 300 nm, preferably 220 to 280 nm, more preferably 250 to 260 nm). The organic substance having an unsaturated bond contained in the raw water is generally considered to be a substance exhibiting ultraviolet absorbance. Specific examples of the substance exhibiting UV absorbance include humic substances. The humic substance is a final decomposition product when a plant or the like is decomposed by a microorganism, and is a polymer compound composed of a linear hydrocarbon, a polycyclic aromatic compound, and the like.
A method for separating and removing such impurities from the raw water is not particularly limited. For example, a conventionally known method can be applied, but at least one step selected from the group consisting of a coagulation step, an adsorption step, and a filtration step. Is preferred.
前記調整工程が含み得る凝集工程、吸着工程およびろ過工程の各工程について、以下に説明する。   Each step of the aggregation step, the adsorption step, and the filtration step that can be included in the adjustment step will be described below.
<凝集工程>
凝集工程は、前記原水へ凝集剤を添加し、不純物を凝集して沈降させて、上澄みとしての凝集処理水を得る工程である。
<Aggregation process>
The coagulation step is a step of adding coagulant to the raw water to coagulate and settle the impurities to obtain coagulated treated water as a supernatant.
凝集剤は特に限定されず、例えば従来公知のものを用いることができる。例えば、Al系および/またはFe系の凝集剤を用いることができる。
Al系の凝集剤とは、アルミニウム化合物を主成分(含有率が50質量%以上、好ましくは80質量%以上、より好ましくは95質量%以上、さらに好ましくは100質量%である(実質的に他の成分を含まない)ことを意味するものとする。以下、同様。)とする凝集剤を意味する。
ここで、アルミニウム化合物とはAl原子を含む化合物を意味する。アルミニウム化合物としてはポリ塩化アルミニウム、硫酸ばん土(硫酸アルミニウム)が挙げられる。
Fe系の凝集剤とは、鉄系化合物を主成分とする凝集剤を意味する。
ここで、鉄系化合物とはFe原子を含む化合物を意味する。鉄系化合物としては塩化第二鉄、ポリ硫酸第二鉄が挙げられる。
The flocculant is not particularly limited, and for example, a conventionally known one can be used. For example, Al-based and / or Fe-based flocculants can be used.
The Al-based flocculant contains an aluminum compound as a main component (content is 50% by mass or more, preferably 80% by mass or more, more preferably 95% by mass or more, and further preferably 100% by mass (substantially other In the following, the same applies to the flocculant.
Here, the aluminum compound means a compound containing Al atoms. Examples of the aluminum compound include polyaluminum chloride and sulfuric acid clay (aluminum sulfate).
The Fe-based flocculant means a flocculant mainly composed of an iron-based compound.
Here, the iron-based compound means a compound containing Fe atoms. Examples of iron-based compounds include ferric chloride and polyferric sulfate.
凝集剤の添加量は、原水1Lに対する添加量として0〜150mg/Lであることが好ましく、25〜120mg/Lであることがより好ましい。   The addition amount of the flocculant is preferably 0 to 150 mg / L, more preferably 25 to 120 mg / L as the addition amount with respect to 1 L of raw water.
前記凝集剤は粉状の態様のものであってよいし、粉状のアルミニウム系化合物および/または鉄系化合物が液体に分散した態様のものであってもよい。   The flocculant may be in a powdery form, or in a form in which a powdery aluminum-based compound and / or iron-based compound is dispersed in a liquid.
上記のような凝集剤を添加した後、必要に応じて撹拌することで、不純物を凝集し、生じた凝集物の少なくとも一部を分離、除去して、上澄みとしての凝集処理水を得ることができる。   After adding the aggregating agent as described above, the impurities are aggregated by stirring as necessary, and at least a part of the generated aggregate is separated and removed to obtain agglomerated water as a supernatant. it can.
凝集処理水に塩素を加え、さらにpHを6.5〜8.5とし、接触工程に供する処理対象水[1]を得ることができる。
凝集処理水に塩素を加え、さらに次亜塩素酸イオン(OCl-)の濃度を0.06〜2.4mg/Lとし、接触工程に供する処理対象水[2]を得ることができる。
Chlorine is added to the agglomerated treated water, and the pH is set to 6.5 to 8.5, so that the treatment target water [1] to be used in the contact step can be obtained.
Chlorine is added to the agglomerated treated water, and the concentration of hypochlorite ion (OCl ) is set to 0.06 to 2.4 mg / L to obtain treated water [2] for use in the contacting step.
<吸着工程>
吸着工程は、前記原水または前記凝集処理水を活性炭と接触させて、不純物の少なくとも一部を除去した精製水を得る工程である。ここで前記原水および前記凝集処理水に活性炭を接触させてもよい。
具体的には、例えば粉状の活性炭を前記原水または前記凝集処理水へ添加し、必要に応じて撹拌することで、不純物を活性炭に吸着させ、活性炭を分離、除去して精製水を得ることができる。また、例えば活性炭を充填した固定床へ前記原水または前記凝集処理水を流入させることで前記原水または前記凝集処理水を活性炭と接触させて、不純物の少なくとも一部を除去した精製水を得ることもできる。
<Adsorption process>
The adsorption step is a step of obtaining purified water from which at least a part of impurities has been removed by bringing the raw water or the flocculated water into contact with activated carbon. Here, activated carbon may be brought into contact with the raw water and the flocculated water.
Specifically, for example, powdered activated carbon is added to the raw water or the agglomerated water, and if necessary, the impurities are adsorbed on the activated carbon, and the purified carbon is obtained by separating and removing the activated carbon. Can do. In addition, for example, by flowing the raw water or the agglomerated water into a fixed bed filled with activated carbon, the raw water or the agglomerated water is brought into contact with the activated carbon to obtain purified water from which at least a part of impurities has been removed. it can.
活性炭の添加量は、前記原水または前記凝集処理水の1Lに対する添加量として0〜100mg/Lであることが好ましく、0〜25mg/Lであることがより好ましい。   The addition amount of the activated carbon is preferably 0 to 100 mg / L, more preferably 0 to 25 mg / L as the addition amount with respect to 1 L of the raw water or the coagulated water.
精製水に塩素を加え、さらにpHを6.5〜8.5とし、接触工程に供する処理対象水[1]を得ることができる。
精製水に塩素を加え、さらに次亜塩素酸イオン(OCl-)の濃度を0.06〜2.4mg/Lとし、接触工程に供する処理対象水[2]を得ることができる。
Chlorine is added to the purified water, and the pH is set to 6.5 to 8.5, so that water to be treated [1] to be used in the contact step can be obtained.
Chlorine is added to the purified water, and the concentration of hypochlorite ion (OCl ) is set to 0.06 to 2.4 mg / L to obtain water to be treated [2] to be used in the contacting step.
<ろ過工程>
ろ過工程は、前記原水、前記凝集処理水または前記精製水をろ過して、不純物の少なくとも一部を除去したろ過処理水を得る工程である。
ここで前記原水、前記凝集処理水および前記精製水における2以上についてろ過してもよい。
<Filtration process>
The filtration step is a step of obtaining filtered water from which at least a part of impurities has been removed by filtering the raw water, the agglomerated water or the purified water.
Here, two or more of the raw water, the flocculated water, and the purified water may be filtered.
ろ過処理の方法は特に限定されず、例えば従来公知の方法を適用することができ、例えばろ過膜を用いた処理を適用することができる。ろ過膜としては、精密ろ過膜(MF)、限外ろ過膜(UF)、逆浸透膜(RO)、ナノろ過膜(NF)などを用いることができる。   The method of the filtration treatment is not particularly limited, and for example, a conventionally known method can be applied. For example, a treatment using a filtration membrane can be applied. As a filtration membrane, a microfiltration membrane (MF), an ultrafiltration membrane (UF), a reverse osmosis membrane (RO), a nanofiltration membrane (NF), etc. can be used.
ろ過処理水に塩素を加え、さらにpHを6.5〜8.5とし、接触工程に供する処理対象水[1]を得ることができる。
ろ過処理水に塩素を加え、さらに次亜塩素酸イオン(OCl-)の濃度を0.06〜2.4mg/Lとし、接触工程に供する処理対象水[2]を得ることができる。
Chlorine is added to the filtered treated water, and the pH is set to 6.5 to 8.5, so that water to be treated [1] to be used in the contact step can be obtained.
Chlorine is added to the filtered water, and the concentration of hypochlorite ion (OCl ) is set to 0.06 to 2.4 mg / L, so that water to be treated [2] to be used in the contacting step can be obtained.
<接触工程>
次に、接触工程について説明する。
本発明の第1処理方法における接触工程と、本発明の第2処理方法における接触工程とは同一である。
すなわち、本発明の処理方法において接触工程は、前記処理対象水(本発明の第1処理方法においては処理対象水[1]であり、本発明の第2処理方法においては処理対象水[2]である。以下、同様。)を固体の二酸化マンガンに接触させて、前記処理対象水に含まれる溶解性マンガンを除去して浄水を得る工程である。
<Contact process>
Next, a contact process is demonstrated.
The contact process in the 1st processing method of this invention and the contact process in the 2nd processing method of this invention are the same.
That is, in the treatment method of the present invention, the contact step is the treatment target water (treatment target water [1] in the first treatment method of the present invention, and treatment target water [2] in the second treatment method of the present invention. The same applies hereinafter) is brought into contact with solid manganese dioxide to remove the soluble manganese contained in the water to be treated to obtain purified water.
接触工程では、前記処理対象水を固体の二酸化マンガン(触媒二酸化マンガン)に接触させる。
触媒二酸化マンガンは、少なくとも固体表面の一部が二酸化マンガンからなるものであれば特に限定されない。例えば、ひも状や網状の固体マトリックスの表面に二酸化マンガンの被膜が形成されたものであってもよい。触媒二酸化マンガンとして、従来公知のマンガン砂を用いることが好ましい。
In the contacting step, the water to be treated is brought into contact with solid manganese dioxide (catalyst manganese dioxide).
The catalyst manganese dioxide is not particularly limited as long as at least a part of the solid surface is made of manganese dioxide. For example, a film of manganese dioxide may be formed on the surface of a string-like or net-like solid matrix. It is preferable to use conventionally known manganese sand as the catalyst manganese dioxide.
ここでマンガン砂は、有効径0.45〜0.7mmであることが好ましく、0.6mm程度のものであることがより好ましい。
また、マンガン砂は、比表面積が2〜25m2/gであることが好ましく、2〜3m2/gであることがより好ましい。
Here, the manganese sand preferably has an effective diameter of 0.45 to 0.7 mm, more preferably about 0.6 mm.
The manganese sand preferably has a specific surface area of 2 to 25 m 2 / g, and more preferably 2 to 3 m 2 / g.
このような触媒二酸化マンガンに前記処理対象水を接触させる。
例えば、マンガン砂を充填した接触槽へ前記処理対象水を供給し、通水させることで、触媒二酸化マンガンに前記処理対象水を接触させることができる。
The water to be treated is brought into contact with such catalyst manganese dioxide.
For example, the water to be treated can be brought into contact with catalytic manganese dioxide by supplying the water to be treated to a contact tank filled with manganese sand and allowing the water to pass through.
上向流および下向流のいずれによって前記処理対象水を接触槽へ通水してもよいが、下向流で前記処理対象水を接触槽へ通水することが好ましい。得られる浄水に含まれるマンガン濃度がより低くなる傾向があるからである。
接触槽へ下向流で前記処理対象水を通水する場合、通水速度は360〜2200m/日とすることが好ましく、2000m/日以下とすることがより好ましい。
接触槽へ上向流で前記処理対象水を通水する場合、通水速度は300m/日以上とすることが好ましい。
The treatment target water may be passed through the contact tank by either an upward flow or a downward flow, but the treatment target water is preferably passed through the contact tank by a downward flow. This is because the manganese concentration contained in the obtained purified water tends to be lower.
When passing the water to be treated in a downward flow to the contact tank, the water flow rate is preferably 360 to 2200 m / day, and more preferably 2000 m / day or less.
When passing the water to be treated in an upward flow to the contact tank, the water flow rate is preferably 300 m / day or more.
このような本発明の処理方法によって、マンガン濃度が非常に低い(概ね0.001mg/L未満である)浄水を得ることができる。
なお、浄水におけるマンガン濃度は、水質基準に関する省令の規定に基づき厚生労働大臣が定める方法(平成15年7月22日厚生労働省告示第261号(最終改正 平成24年3月30日厚生労働省告示第290号))で測定して得る値を意味するものとする。
By such a treatment method of the present invention, purified water having a very low manganese concentration (generally less than 0.001 mg / L) can be obtained.
The manganese concentration in the purified water is determined by the Minister of Health, Labor and Welfare based on the provisions of the Ministerial Ordinance on Water Quality Standards (Ministry of Health, Labor and Welfare Notification No. 261 issued on July 22, 2003 (final revision March 30, 2012 Notification of the Ministry of Health, Labor and Welfare) 290))).
<本発明の装置>
次に、本発明の処理方法を実施することができるマンガン含有水の処理装置について説明する。
本発明の処理方法は、前記原水に塩素を加え、処理対象水を排出する調整部と、前記処理対象水を固体の二酸化マンガンに接触させて、前記処理対象水に含まれる溶解性マンガンを除去して浄水を排出する接触部とを有するマンガン含有水の処理装置によって実施することができる。
このような処理装置を、以下では「本発明の装置」ともいう。
<Apparatus of the present invention>
Next, a manganese-containing water treatment apparatus that can carry out the treatment method of the present invention will be described.
The treatment method of the present invention removes soluble manganese contained in the water to be treated by adding chlorine to the raw water and discharging the water to be treated, and bringing the water to be treated into contact with solid manganese dioxide. And it can implement by the processing apparatus of manganese containing water which has a contact part which discharges purified water.
Hereinafter, such a processing apparatus is also referred to as “the apparatus of the present invention”.
本発明の装置において調整部は、前記原水に塩素を加え、さらにpHを6.5〜8.5に調製して、前記処理対象水を排出する調整部であることが好ましい。   In the apparatus of the present invention, the adjustment unit is preferably an adjustment unit that adds chlorine to the raw water, further adjusts the pH to 6.5 to 8.5, and discharges the water to be treated.
本発明の装置は、前記調整部が、前記凝集部、前記吸着部および前記ろ過部からなる群から選ばれる少なくとも一つを含むことが好ましい。
ここで凝集部は、前記原水へ凝集剤を添加し、不純物を凝集して沈降させて、上澄みとしての凝集処理水を得る部分である。凝集処理水に塩素を加え(好ましくは、さらにpHを調整して)、接触部に供する処理対象水を排出することができる。
吸着部は、前記原水または前記凝集処理水を活性炭と接触させて、不純物の少なくとも一部を除去した精製水を得る部分である。精製水に塩素を加え(好ましくは、さらにpHを調整して)、接触部に供する処理対象水を排出することができる。
ろ過部は、前記原水、前記凝集処理水または前記精製水をろ過して、不純物の少なくとも一部を除去したろ過処理水を得る部分である。ろ過処理水に塩素を加え(好ましくは、さらにpHを調整して)、接触部に供する処理対象水を排出することができる。
In the apparatus of the present invention, it is preferable that the adjustment unit includes at least one selected from the group consisting of the aggregation unit, the adsorption unit, and the filtration unit.
Here, the agglomeration part is a part in which an aggregating agent is added to the raw water, and impurities are aggregated and settled to obtain agglomerated treated water as a supernatant. Chlorine can be added to the agglomerated treated water (preferably, the pH is further adjusted) to discharge the water to be treated to be provided to the contact portion.
The adsorbing part is a part for obtaining purified water from which at least a part of impurities has been removed by bringing the raw water or the flocculated water into contact with activated carbon. Chlorine can be added to the purified water (preferably, the pH is further adjusted) to discharge the water to be treated to be provided to the contact portion.
The filtration unit is a part that obtains filtered treated water from which at least a part of impurities has been removed by filtering the raw water, the agglomerated treated water or the purified water. Chlorine can be added to the filtered water (preferably, the pH is further adjusted) to discharge the water to be treated to be provided to the contact portion.
本発明の装置は、前記調整部が前記吸着部を含む場合、前記ろ過部も含むことが好ましい。
本発明の装置は、前記調整部が、前記凝集部、前記吸着部および前記ろ過部の全てを含むことがより好ましい。
The apparatus of the present invention preferably includes the filtering unit when the adjusting unit includes the adsorption unit.
In the apparatus of the present invention, it is more preferable that the adjustment unit includes all of the aggregation unit, the adsorption unit, and the filtration unit.
本発明の装置は、前記調整部が、前記凝集部、前記吸着部および前記ろ過部の全てをこの順に含むことがより好ましい。
すなわち、本発明の装置は、前記原水へ凝集剤を添加し、不純物を凝集して沈降させて、上澄みとしての凝集処理水を得る凝集部、前記凝集処理水を活性炭と接触させて、不純物の少なくとも一部を除去した精製水を得る吸着部、および、前記精製水をろ過して、不純物の少なくとも一部を除去したろ過処理水を得るろ過部を含み、前記ろ過処理水に塩素を加え(好ましくは、さらにpHを調製して)、処理対象水を排出する調整部と、前記処理対象水を固体の二酸化マンガンに接触させて、前記処理対象水に含まれる溶解性マンガンを除去して浄水を排出する接触部とを有するマンガン含有水の処理装置であることがより好ましい。
このような装置を、以下では「本発明の好適装置」ともいう。
本発明の好適装置について、以下に図2を用いて説明する。
In the apparatus of the present invention, it is more preferable that the adjustment unit includes all of the aggregation unit, the adsorption unit, and the filtration unit in this order.
That is, the apparatus of the present invention adds a flocculant to the raw water, agglomerates and precipitates impurities, and agglomerates to obtain agglomerated treated water as a supernatant. An adsorption part for obtaining purified water from which at least a part has been removed, and a filtration part for filtering the purified water to obtain filtered water from which at least some of the impurities have been removed, and adding chlorine to the filtered water ( Preferably, the pH is further adjusted), the adjustment unit for discharging the water to be treated, and the water to be treated are brought into contact with solid manganese dioxide to remove soluble manganese contained in the water to be treated, thereby purifying the water. It is more preferable that it is a manganese-containing water treatment device having a contact portion for discharging water.
Hereinafter, such a device is also referred to as a “preferred device of the present invention”.
A preferred apparatus of the present invention will be described below with reference to FIG.
図2に示す本発明の好適装置(以下「装置10」ともいう)は、上流側から順に、原水槽12、凝集処理装置14、膜ろ過装置16、および接触酸化槽18を有し、さらに活性炭添加装置22およびアルカリおよび塩素源添加装置24を有する装置である。
凝集処理装置14が凝集部に相当し、本発明の処理方法における凝集工程を行うことができる。
活性炭添加装置22が吸着部に相当し、本発明の処理方法における吸着工程を行うことができる。
膜ろ過装置16がろ過部に相当し、本発明の処理方法におけるろ過工程を行うことができる。
凝集処理装置14、活性炭添加装置22、膜ろ過装置16およびアルカリおよび塩素源添加装置24が調整部に相当し、本発明の処理方法における調整工程を行うことができる。
接触酸化槽18が接触部に相当し、本発明の処理方法における接触工程を行うことができる。
The preferred apparatus of the present invention (hereinafter also referred to as “apparatus 10”) shown in FIG. 2 has, in order from the upstream side, a raw water tank 12, a coagulation treatment apparatus 14, a membrane filtration apparatus 16, and a contact oxidation tank 18, and further activated carbon. It is an apparatus having an adding device 22 and an alkali and chlorine source adding device 24.
The aggregation processing device 14 corresponds to the aggregation part, and the aggregation process in the processing method of the present invention can be performed.
The activated carbon addition device 22 corresponds to the adsorption part, and can perform the adsorption step in the treatment method of the present invention.
The membrane filtration device 16 corresponds to a filtration part, and can perform the filtration step in the treatment method of the present invention.
Aggregation treatment device 14, activated carbon addition device 22, membrane filtration device 16, and alkali and chlorine source addition device 24 correspond to the adjustment unit, and the adjustment step in the treatment method of the present invention can be performed.
The contact oxidation tank 18 corresponds to a contact portion, and the contact step in the treatment method of the present invention can be performed.
装置10が有する各部について説明する。   Each part of the apparatus 10 will be described.
原水槽12は、原水を貯留することができる槽であればよく、例えばタンクであってよい。装置10を用いて本発明の処理方法を実施する場合、初めに原水3を原水槽12に貯留する。   The raw water tank 12 may be any tank that can store raw water, and may be, for example, a tank. When the processing method of the present invention is performed using the apparatus 10, the raw water 3 is first stored in the raw water tank 12.
凝集処理装置14は原水3へ凝集剤を添加し、不純物を分離し除去できる態様のものであれば特に限定されない。
例えば凝集沈殿槽および凝集剤添加手段を備えるものが例示される。このような場合、凝集沈殿槽に原水槽12から原水3を受け入れ、ここへ凝集剤添加手段によって所望量の凝集剤を加えて、必要に応じて撹拌し、上澄みとしての凝集処理水を排出する。
The coagulation treatment apparatus 14 is not particularly limited as long as it has an aspect capable of adding a coagulant to the raw water 3 and separating and removing impurities.
For example, what is provided with a coagulation sedimentation tank and a coagulant addition means is illustrated. In such a case, the raw water 3 is received from the raw water tank 12 into the coagulation sedimentation tank, and a desired amount of the coagulant is added thereto by the coagulant adding means, stirred as necessary, and the coagulated treated water as the supernatant is discharged. .
活性炭添加装置22は、凝集処理水へ、所望量の粉末活性炭を添加できる構造を備えるものである。粉末活性炭を添加すると凝集処理水に含まれる不純物が吸着され、不純物を除去した精製水を得ることができる。   The activated carbon addition device 22 has a structure capable of adding a desired amount of powdered activated carbon to the agglomerated treated water. When powdered activated carbon is added, impurities contained in the flocculated water are adsorbed, and purified water from which impurities are removed can be obtained.
膜ろ過装置16は、例えば公称孔径0.05μmのMF膜を備えるものである。
膜ろ過装置16は前記精製水をろ過し、ろ過処理水を排出することができる構造を備えている。
The membrane filtration device 16 includes, for example, an MF membrane having a nominal pore diameter of 0.05 μm.
The membrane filtration device 16 has a structure capable of filtering the purified water and discharging the filtered water.
アルカリおよび塩素源添加装置24は、ろ過処理水へ、アルカリ(例えば水酸化ナトリウム)および塩素源(例えば次亜塩素酸ナトリウム)を、各々添加できる構造を備えるものである。これによって所望量の塩素源をろ過処理水へ添加することができる。また、必要に応じて所望量のアルカリを添加して、pHを調整することができる。   The alkali and chlorine source adding device 24 has a structure capable of adding an alkali (for example, sodium hydroxide) and a chlorine source (for example, sodium hypochlorite) to the filtered water. This allows a desired amount of chlorine source to be added to the filtered water. In addition, a desired amount of alkali can be added as necessary to adjust the pH.
接触酸化槽18は、マンガン砂が充填された充填槽を備えるものであり、前記ろ過処理水を下向流で通水して、マンガンが除去された浄水5を排出することができる構造を備えている。
なお、本発明の装置では、接触酸化槽において前記ろ過処理水を上向流で通水してもよい。
The contact oxidation tank 18 is provided with a filling tank filled with manganese sand, and has a structure capable of passing the filtered water in a downward flow and discharging the purified water 5 from which manganese has been removed. ing.
In the apparatus of the present invention, the filtered water may be passed in an upward flow in the contact oxidation tank.
前記原水が水道原水(河川水、湖沼水、地下水など)の場合、本発明の処理方法は、図2に示す態様の本発明の好適装置を用いて処理することが好ましい。
前記原水が例えば井戸水など、原水においてマンガン以外の水質項目が、水道水質基準を満足するような清澄な水の場合は、図2に示す装置10における、凝集処理装置14、膜ろ過装置16および活性炭添加装置22を備えない態様(すなわち、上流側から順に、原水槽12および接触酸化槽18を有し、さらにアルカリおよび塩素源添加装置24を有する装置)であることが好ましい。
When the raw water is tap raw water (river water, lake water, groundwater, etc.), the treatment method of the present invention is preferably treated using the preferred apparatus of the present invention in the form shown in FIG.
In the case where the raw water is clear water such as well water and water quality items other than manganese satisfy the tap water quality standard, the agglomeration treatment device 14, membrane filtration device 16 and activated carbon in the device 10 shown in FIG. It is preferable that the addition apparatus 22 is not provided (that is, an apparatus having the raw water tank 12 and the contact oxidation tank 18 and further having an alkali and chlorine source addition apparatus 24 in order from the upstream side).
なお、図2に示した装置10は、凝集処理装置14から排出された凝集処理水へ、活性炭添加装置22から活性炭を添加する態様であるが、本発明の装置では、例えば、凝集処理装置14へ流入する原水3へ、活性炭添加装置22から活性炭を添加してもよい。また、活性炭添加装置22に代わりに、例えば活性炭を充填した固定床へ凝集処理水や原水を流入させて処理する態様であってもよい。
また、図2に示した装置10は、膜ろ過装置16から排出されたろ過処理水へアルカリおよび塩素源を添加できる態様であるが、本発明の装置では、例えば、膜ろ過装置16へ流入する前記精製水へアルカリおよび塩素源を添加してもよい。アルカリおよび塩素源は、活性炭添加装置22から活性炭を添加した後に添加することが好ましい。
また、図2に示した装置10において、アルカリおよび塩素源添加装置24は一つの装置として示されているが、本発明の装置では、これらが独立している、アルカリを添加する装置と塩素源を添加する装置とを備えるものであってよい。
2 is an embodiment in which activated carbon is added from the activated carbon adding device 22 to the aggregating treated water discharged from the aggregating treatment device 14, but in the apparatus of the present invention, for example, the aggregating treatment device 14 is used. Activated carbon may be added from the activated carbon addition device 22 to the raw water 3 flowing into the water. Further, instead of the activated carbon addition device 22, for example, an agglomeration treatment water or raw water may be flowed into a fixed bed filled with activated carbon for treatment.
2 is a mode in which alkali and chlorine sources can be added to the filtered water discharged from the membrane filtration device 16, but in the device of the present invention, for example, it flows into the membrane filtration device 16. An alkali and chlorine source may be added to the purified water. The alkali and chlorine sources are preferably added after the activated carbon is added from the activated carbon addition device 22.
In addition, in the apparatus 10 shown in FIG. 2, the alkali and chlorine source addition apparatus 24 is shown as one apparatus. However, in the apparatus of the present invention, the apparatus for adding alkali and the chlorine source are independent of each other. And a device for adding the.
接触部(接触酸化槽18)は、さらに、前記アルカリ成分を添加する前の処理対象水を用いて、前記固体の二酸化マンガンを洗浄する洗浄手段を有することが好ましい。
具体的には、本発明の装置が、図3に示すような態様の浄水処理システムであることが好ましい。
It is preferable that the contact portion (contact oxidation tank 18) further has a cleaning means for cleaning the solid manganese dioxide using the water to be treated before adding the alkali component.
Specifically, it is preferable that the apparatus of the present invention is a water purification system having an aspect as shown in FIG.
図3に示す装置10´は、図2に示した装置10に、さらに、アルカリ成分を添加する前の処理対象水(以下「処理前水」ともいう)を接触酸化槽18へ供給する流路32を備える。そして、この流路32を介して処理前水を接触酸化槽18へ供給し、接触酸化槽18が備えている固体の二酸化マンガンを洗浄することができる。具体的には、例えばマンガン砂が充填された充填槽へ、逆方向から処理対象水を供給して、マンガン砂を洗浄(逆洗)することができる。   The apparatus 10 ′ shown in FIG. 3 is a flow path for supplying, to the apparatus 10 shown in FIG. 32. The pre-treatment water is supplied to the contact oxidation tank 18 through the flow path 32, and the solid manganese dioxide provided in the contact oxidation tank 18 can be washed. Specifically, for example, water to be treated can be supplied from a reverse direction to a filling tank filled with manganese sand to wash (backwash) the manganese sand.
本発明の処理方法を行うことができる浄水処理システムでは、処理前水(図3の態様では、アルカリ成分を添加する前のろ過処理水)の濁質成分濃度が非常に低い(概ね0.05度以下)。よって、この処理前水を、接触酸化槽18が備えている固体の二酸化マンガンを洗浄するために用いることができる。この場合、接触酸化槽を洗浄するための水を貯留する槽が不要となるので好ましい。   In the water purification system capable of performing the treatment method of the present invention, the concentration of turbid components in pre-treatment water (in the embodiment of FIG. 3, the filtered treatment water before adding an alkali component) is very low (generally 0.05). Less than). Therefore, this pre-treatment water can be used to wash the solid manganese dioxide provided in the contact oxidation tank 18. In this case, a tank for storing water for cleaning the contact oxidation tank is unnecessary, which is preferable.
図3に示す装置10´は、アルカリ成分を添加する前の処理対象水(処理前水)を接触酸化槽18へ供給する流路32およびアルカリ成分を添加した後の処理対象水を接触酸化槽18へ供給する流路34の各々に、切り替えバルブ36、38が設置されている。これらのバルブを切り替えるだけで、アルカリ成分を添加した後の処理対象水を接触酸化槽18へ供給したり、処理前水を接触酸化槽18へ供給して逆洗したりすることができる。   The apparatus 10 ′ shown in FIG. 3 has a flow path 32 for supplying water to be treated (water before treatment) to the contact oxidation tank 18 before adding the alkali component and the water to be treated after addition of the alkali component to the contact oxidation tank Switching valves 36 and 38 are installed in each of the flow paths 34 to be supplied to 18. By simply switching these valves, the water to be treated after the addition of the alkali component can be supplied to the contact oxidation tank 18 or the pre-treatment water can be supplied to the contact oxidation tank 18 and backwashed.
このような装置10、装置10´を用いて、本発明の処理方法を好ましく実施することができる。   Using such apparatus 10 and apparatus 10 ', the processing method of the present invention can be preferably implemented.
図2に示す浄水処理システムを用いて、原水を連続的に処理した。
実施例において用いた図2に示す浄水処理システムについて、より具体的に説明する。
Raw water was continuously treated using the water purification system shown in FIG.
The water purification system shown in FIG. 2 used in the examples will be described more specifically.
原水槽12は、原水を貯留することができる容量500Lの円筒状の槽である。
凝集処理装置14は凝集槽および凝集剤添加手段を備えるものである。凝集処理装置14では、凝集槽に原水槽12から原水3を受け入れ、ここへ所望量の凝集剤を加えて、必要に応じて撹拌し、凝集処理水を排出することができる構造を備えている。
活性炭添加装置22は、凝集処理水へ、所望量の粉末活性炭を添加できる構造を備えるものである。
膜ろ過装置16は、公称孔径0.05μmのMF膜を備えるものであり、必要に応じて粉末活性炭を加えた凝集処理水(精製水)をろ過し、ろ過処理水を排出することができる構造を備えている。
アルカリおよび塩素源添加装置24は、ろ過処理水へ、所望量の水酸化ナトリウムおよび次亜塩素酸ナトリウムを添加できる構造を備えるものである。
接触酸化槽18は、マンガン砂が充填された充填槽を備えるものであり、次亜塩素酸ナトリウムを添加し、さらに必要に応じて水酸化ナトリウムを添加したろ過処理水について、下向流で通水して、溶解性マンガンが除去された浄水5を排出することができる構造を備えている。マンガン砂は有孔径が約0.6mmのものを用いた。また、マンガン砂の比表面積は2.2m2/gである。
The raw water tank 12 is a cylindrical tank having a capacity of 500 L capable of storing raw water.
The aggregating apparatus 14 includes an aggregating tank and an aggregating agent adding means. The coagulation treatment apparatus 14 has a structure that can receive the raw water 3 from the raw water tank 12 into the coagulation tank, add a desired amount of the coagulant to the coagulation tank, stir as necessary, and discharge the coagulation treatment water. .
The activated carbon addition device 22 has a structure capable of adding a desired amount of powdered activated carbon to the agglomerated treated water.
The membrane filtration device 16 is provided with an MF membrane having a nominal pore size of 0.05 μm, and has a structure capable of filtering the agglomerated treated water (purified water) to which powdered activated carbon is added if necessary and discharging the filtered treated water. It has.
The alkali and chlorine source adding device 24 has a structure capable of adding a desired amount of sodium hydroxide and sodium hypochlorite to the filtered water.
The contact oxidation tank 18 is provided with a filling tank filled with manganese sand. Filtered water to which sodium hypochlorite is added and sodium hydroxide is further added as required is passed in a downward flow. It has a structure that can be drained with purified water 5 from which soluble manganese has been removed. Manganese sand having a pore diameter of about 0.6 mm was used. The specific surface area of manganese sand is 2.2 m 2 / g.
原水3は、新釧路川河川水であり、マンガン濃度は0.016〜0.12mg/L程度であり、pHは6.5〜7.2程度、濁度が2〜80度の河川水である。   Raw water 3 is river water of Shin-Kushiro River, manganese concentration is about 0.016-0.12 mg / L, pH is about 6.5-7.2, and turbidity is river water of 2-80 degrees. is there.
このような原水3について、予め、紫外線吸光度の目標値を定め、紫外線吸光度除去率と凝集剤注入率との関係を求めた。また、不純物濃度(濁質成分濃度)と凝集剤注入率の補正値との関係を求めた。
ここで紫外線吸光度除去率は、次の式から算出するものとする。
紫外線吸光度除去率(%)=(原水の紫外線吸光度−紫外線吸光度の目標値)/原水の紫外線吸光度×100
For such raw water 3, a target value of ultraviolet absorbance was previously determined, and the relationship between the ultraviolet absorbance removal rate and the flocculant injection rate was determined. Further, the relationship between the impurity concentration (turbidity component concentration) and the correction value of the flocculant injection rate was determined.
Here, the ultraviolet absorbance removal rate is calculated from the following equation.
UV absorbance removal rate (%) = (UV absorbance of raw water−target value of UV absorbance) / UV absorbance of raw water × 100
このような浄水処理システム(装置10)を用いて、原水を連続的に処理した。
初めに、原水3を原水槽12に貯留し、原水槽12にて原水3を定期的にサンプリングし、紫外線吸光度および不純物濃度を測定して、添加すべき凝集剤の量を求めた。
Raw water was continuously treated using such a water purification system (apparatus 10).
First, the raw water 3 was stored in the raw water tank 12, the raw water 3 was periodically sampled in the raw water tank 12, the ultraviolet absorbance and the impurity concentration were measured, and the amount of the flocculant to be added was determined.
次に、凝集処理装置14に原水3を受け入れ、上記で求めた量の凝集剤を添加し、撹拌した。また、合わせてpH調整剤(硫酸)を加え、pHを6.0〜6.3に調整して凝集効率の向上を図った。
なお、凝集剤としてはPACを用いた。凝集剤の添加量は50〜100mg/Lの範囲であった。
Next, the raw water 3 was received in the coagulation treatment apparatus 14, and the amount of the coagulant obtained above was added and stirred. In addition, a pH adjuster (sulfuric acid) was added to adjust the pH to 6.0 to 6.3 to improve the aggregation efficiency.
PAC was used as the flocculant. The amount of flocculant added was in the range of 50-100 mg / L.
次に、凝集処理装置14から排出された凝集処理水をサンプリングし、紫外線吸光度を測定した。そして、予め定めた目標紫外線吸光度と比較し、これを達成できていない場合は、活性炭添加装置22から凝集処理水へ粉末活性炭を添加した。なお、前述の原水3における凝集剤添加量の場合と同様に、紫外線吸光度除去率と、添加すべき粉末活性炭添加量との関係を予め求めておき、これに基づいて凝集処理水へ粉末活性炭を添加した。粉末活性炭の添加量は0〜10mg/Lの範囲であった。   Next, the agglomerated water discharged from the agglomeration processing apparatus 14 was sampled, and the ultraviolet absorbance was measured. And compared with the predetermined target ultraviolet-ray light absorbency, when this was not able to be achieved, the powdered activated carbon was added to the aggregating process water from the activated carbon addition apparatus 22. FIG. As in the case of the amount of flocculant added in the raw water 3 described above, the relationship between the UV absorbance removal rate and the amount of powdered activated carbon to be added is obtained in advance, and based on this, the powdered activated carbon is added to the flocculent treated water. Added. The amount of powdered activated carbon added was in the range of 0 to 10 mg / L.
次に、膜ろ過装置16を用い、必要に応じて粉末活性炭を加えた後の凝集処理水(精製水)をろ過して、ろ過処理水を得た。   Next, using the membrane filtration device 16, the agglomerated treated water (purified water) after adding powdered activated carbon as necessary was filtered to obtain filtered treated water.
次に、アルカリおよび塩素源添加装置24を用い、ろ過処理水へ、所望量の水酸化ナトリウムおよび次亜塩素酸ナトリウムを各々添加してpHを6.5〜8.5、次亜塩素酸イオン(OCl-)の濃度を0.06〜2.4mg/Lとした後、接触酸化槽18を用いて処理して浄水5を得た。
ここで、浄水5におけるpHと残留塩素含有率との関係が前述の式(I)を満たすように水酸化ナトリウムおよび次亜塩素酸ナトリウムを添加した。水酸化ナトリウムは3〜8mg/Lの範囲で、次亜塩素酸ナトリウムは0.7〜1.2mg/Lの範囲で添加した。
接触酸化槽18における通水速度は360〜2200m/日とした。
Next, using the alkali and chlorine source addition device 24, the desired amounts of sodium hydroxide and sodium hypochlorite are added to the filtered water to make the pH 6.5 to 8.5 and hypochlorite ions, respectively. After the concentration of (OCl ) was set to 0.06 to 2.4 mg / L, purified water 5 was obtained by treatment using the contact oxidation tank 18.
Here, sodium hydroxide and sodium hypochlorite were added so that the relationship between the pH in the purified water 5 and the residual chlorine content satisfied the above-described formula (I). Sodium hydroxide was added in the range of 3-8 mg / L, and sodium hypochlorite was added in the range of 0.7-1.2 mg / L.
The water flow rate in the contact oxidation tank 18 was 360 to 2200 m / day.
次に、浄水5のpH、残留塩素濃度(mg/L)およびマンガン濃度(mg/L)を測定した。測定結果を第1表に示す。   Next, the pH of the purified water 5, the residual chlorine concentration (mg / L), and the manganese concentration (mg / L) were measured. The measurement results are shown in Table 1.
また、浄水5の中でマンガン濃度が0.001mg/L未満となった場合についてのpHと残留塩素濃度(mg/L)との関係を図4を示した。
図4より、式(I)を満たす場合に、マンガン濃度が0.001mg/L未満となるといえる。
Moreover, FIG. 4 shows the relationship between the pH and the residual chlorine concentration (mg / L) when the manganese concentration in the purified water 5 is less than 0.001 mg / L.
From FIG. 4, it can be said that when the formula (I) is satisfied, the manganese concentration is less than 0.001 mg / L.
3 原水
5 浄水
10 装置
12 原水槽
14 凝集処理装置
16 膜ろ過装置
18 接触酸化槽
22 活性炭添加槽
24 アルカリおよび塩素源添加装置
DESCRIPTION OF SYMBOLS 3 Raw water 5 Purified water 10 Apparatus 12 Raw water tank 14 Aggregation processing apparatus 16 Membrane filtration apparatus 18 Contact oxidation tank 22 Activated carbon addition tank 24 Alkali and chlorine source addition apparatus

Claims (12)

  1. 溶解性マンガンを含む原水に塩素を加え、処理対象水を得る調整工程と、
    前記処理対象水を固体の二酸化マンガンに接触させて、前記処理対象水に含まれる溶解性マンガンを除去して浄水を得る接触工程と、
    を備えるマンガン含有水の処理方法。
    An adjustment step of adding chlorine to raw water containing soluble manganese to obtain water to be treated;
    A contact step of contacting the water to be treated with solid manganese dioxide to remove soluble manganese contained in the water to be treated to obtain purified water; and
    A method for treating manganese-containing water.
  2. 溶解性マンガンを含む原水に塩素を加え、さらにpHを6.5〜8.5とし、処理対象水[1]を得る調整工程[1]と、
    前記処理対象水[1]を固体の二酸化マンガンに接触させて、前記処理対象水[1]に含まれる溶解性マンガンを除去して浄水を得る接触工程と、
    を備える、請求項1に記載のマンガン含有水の処理方法。
    An adjustment step [1] for adding chlorine to the raw water containing soluble manganese, further adjusting the pH to 6.5 to 8.5, and obtaining the water to be treated [1];
    Contacting the water to be treated [1] with solid manganese dioxide to obtain soluble water by removing soluble manganese contained in the water to be treated [1];
    The processing method of the manganese containing water of Claim 1 provided with these.
  3. 前記接触工程における前記浄水のpHと残留塩素濃度(mg/L)との関係が下記式(I)を満たすように、前記調整工程[1]において塩素を加え、pHを調整する、請求項2に記載のマンガン含有水の処理方法。
    式(I):8.18−2.3×残留塩素濃度≦pH≦8.46−1.2×残留塩素濃度
    The pH is adjusted by adding chlorine in the adjustment step [1] so that the relationship between the pH of the purified water and the residual chlorine concentration (mg / L) in the contacting step satisfies the following formula (I). The method for treating manganese-containing water as described in 1. above.
    Formula (I): 8.18-2.3 × residual chlorine concentration ≦ pH ≦ 8.46−1.2 × residual chlorine concentration
  4. 溶解性マンガンを含む原水に塩素を加え、さらに次亜塩素酸イオン(OCl-)の濃度を0.06〜2.4mg/Lとし、処理対象水[2]を得る調整工程[2]と、
    前記処理対象水[2]を固体の二酸化マンガンに接触させて、前記処理対象水[2]に含まれる溶解性マンガンを除去して浄水を得る接触工程と、
    を備える、請求項1に記載のマンガン含有水の処理方法。
    Chlorine is added to the raw water containing soluble manganese, and the concentration of hypochlorite ion (OCl ) is set to 0.06 to 2.4 mg / L, and the adjustment step [2] to obtain the water to be treated [2];
    Contacting the water to be treated [2] with solid manganese dioxide to obtain soluble water by removing soluble manganese contained in the water to be treated [2];
    The processing method of the manganese containing water of Claim 1 provided with these.
  5. 前記調整工程が、
    前記原水へ凝集剤を添加し、不純物を凝集して沈降させて、上澄みとしての凝集処理水を得る凝集工程、
    前記原水または前記凝集処理水を活性炭と接触させて、不純物の少なくとも一部を除去した精製水を得る吸着工程、および、
    前記原水、前記凝集処理水または前記精製水をろ過して、不純物の少なくとも一部を除去したろ過処理水を得るろ過工程
    からなる群から選ばれる少なくとも一つの工程を含む、請求項1〜4のいずれかに記載のマンガン含有水の処理方法。
    The adjusting step is
    A flocculating step of adding a flocculant to the raw water, flocculating and sedimenting impurities, and obtaining flocculated water as a supernatant;
    An adsorption step of bringing the raw water or the flocculated water into contact with activated carbon to obtain purified water from which at least some of the impurities have been removed; and
    5. The method according to claim 1, comprising at least one step selected from the group consisting of a filtration step of filtering the raw water, the agglomerated treated water or the purified water to obtain a filtered treated water from which at least a part of impurities has been removed. The method for treating manganese-containing water according to any one of the above.
  6. 前記原水に塩素を加え、処理対象水を排出する調整部と、
    前記処理対象水を固体の二酸化マンガンに接触させて、前記処理対象水に含まれる溶解性マンガンを除去して浄水を排出する接触部と
    を有するマンガン含有水の処理装置。
    An adjustment unit for adding chlorine to the raw water and discharging the water to be treated;
    An apparatus for treating manganese-containing water, comprising: a contact portion that brings the treatment target water into contact with solid manganese dioxide, removes soluble manganese contained in the treatment target water, and discharges purified water.
  7. 前記原水に塩素を加え、さらにpHを6.5〜8.5に調製して、前記処理対象水を排出する調整部である、請求項6に記載のマンガン含有水の処理装置。   The treatment apparatus for manganese-containing water according to claim 6, which is an adjustment unit that adds chlorine to the raw water, further adjusts the pH to 6.5 to 8.5, and discharges the water to be treated.
  8. 前記調整部が、前記原水のpHを調製するために用いる前記原水へアルカリ成分を添加するためのアルカリ添加手段を有し、
    前記接触部が、さらに、前記アルカリ成分を添加する前の処理対象水を用いて、前記固体の二酸化マンガンを洗浄する洗浄手段を有する、請求項6または7に記載のマンガン含有水の処理装置。
    The adjusting unit has an alkali addition means for adding an alkaline component to the raw water used to adjust the pH of the raw water;
    8. The apparatus for treating manganese-containing water according to claim 6, wherein the contact portion further includes a cleaning unit that cleans the solid manganese dioxide using water to be treated before adding the alkali component.
  9. 前記調整部が、
    前記原水へ凝集剤を添加し、不純物を凝集して沈降させて、上澄みとしての凝集処理水を得る凝集部、
    前記原水または前記凝集処理水を活性炭と接触させて、不純物の少なくとも一部を除去した精製水を得る吸着部、および、
    前記原水、前記凝集処理水または前記精製水をろ過して、不純物の少なくとも一部を除去したろ過処理水を得るろ過部
    からなる群から選ばれる少なくとも一つを含む、請求項6〜8のいずれかに記載のマンガン含有水の処理装置。
    The adjustment unit is
    A flocculant to add a flocculant to the raw water, agglomerate and settle impurities, and obtain agglomerated water as a supernatant;
    An adsorbing part that obtains purified water from which at least a part of impurities has been removed by bringing the raw water or the agglomerated water into contact with activated carbon, and
    Any one of Claims 6-8 including at least 1 chosen from the group which consists of the filtration part which filters the said raw | natural water, the said coagulation | flourization process water, or the said purified water, and obtains the filter process water which removed at least one part of the impurity. An apparatus for treating manganese-containing water according to claim 1.
  10. 前記接触部において、前記処理対象水を下向流にて前記固体の二酸化マンガンに接触させる、請求項6〜9のいずれかに記載のマンガン含有水の処理装置。   The treatment apparatus for manganese-containing water according to any one of claims 6 to 9, wherein, in the contact portion, the water to be treated is brought into contact with the solid manganese dioxide in a downward flow.
  11. 前記接触部において、前記処理対象水を上向流にて前記固体の二酸化マンガンに接触させる、請求項6〜9のいずれかに記載のマンガン含有水の処理装置。   The treatment apparatus for manganese-containing water according to any one of claims 6 to 9, wherein in the contact portion, the water to be treated is brought into contact with the solid manganese dioxide in an upward flow.
  12. 請求項1〜5のいずれかに記載のマンガン含有水の処理方法を行うことができる、請求項6〜11のいずれかに記載のマンガン含有水の処理装置。   The processing apparatus of manganese containing water in any one of Claims 6-11 which can perform the processing method of manganese containing water in any one of Claims 1-5.
JP2013206524A 2012-10-06 2013-10-01 Method and apparatus for treating manganese-containing water Active JP6359257B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012223710 2012-10-06
JP2012223710 2012-10-06
JP2013206524A JP6359257B2 (en) 2012-10-06 2013-10-01 Method and apparatus for treating manganese-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013206524A JP6359257B2 (en) 2012-10-06 2013-10-01 Method and apparatus for treating manganese-containing water

Publications (3)

Publication Number Publication Date
JP2014087787A true JP2014087787A (en) 2014-05-15
JP2014087787A5 JP2014087787A5 (en) 2016-11-04
JP6359257B2 JP6359257B2 (en) 2018-07-18

Family

ID=50790192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013206524A Active JP6359257B2 (en) 2012-10-06 2013-10-01 Method and apparatus for treating manganese-containing water

Country Status (1)

Country Link
JP (1) JP6359257B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106915840A (en) * 2015-12-24 2017-07-04 乐金电子研发中心(上海)有限公司 A kind of integrated refractory wastewater and reclamation set and sewage water treatment method
WO2018198714A1 (en) 2017-04-24 2018-11-01 メタウォーター株式会社 Method for removing soluble manganese
JP2019171228A (en) * 2018-03-26 2019-10-10 水ing株式会社 Water purifying treatment method and water purifying treatment apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103275A (en) * 2001-07-24 2003-04-08 Ngk Insulators Ltd Cleaning treatment method for manganese-containing water
JP2003251370A (en) * 2002-02-28 2003-09-09 Ngk Insulators Ltd Manganese-containing water purifying method
JP2003305485A (en) * 2002-04-15 2003-10-28 Japan Organo Co Ltd Method for removing manganese and equipment therefor
JP2004275832A (en) * 2003-03-13 2004-10-07 Japan Organo Co Ltd Desalinization system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103275A (en) * 2001-07-24 2003-04-08 Ngk Insulators Ltd Cleaning treatment method for manganese-containing water
JP2003251370A (en) * 2002-02-28 2003-09-09 Ngk Insulators Ltd Manganese-containing water purifying method
JP2003305485A (en) * 2002-04-15 2003-10-28 Japan Organo Co Ltd Method for removing manganese and equipment therefor
JP2004275832A (en) * 2003-03-13 2004-10-07 Japan Organo Co Ltd Desalinization system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106915840A (en) * 2015-12-24 2017-07-04 乐金电子研发中心(上海)有限公司 A kind of integrated refractory wastewater and reclamation set and sewage water treatment method
WO2018198714A1 (en) 2017-04-24 2018-11-01 メタウォーター株式会社 Method for removing soluble manganese
JP2019171228A (en) * 2018-03-26 2019-10-10 水ing株式会社 Water purifying treatment method and water purifying treatment apparatus

Also Published As

Publication number Publication date
JP6359257B2 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
CN105384316B (en) A kind of processing method of the fluorine-containing nitrogen-containing wastewater of electronics industry
Katsou et al. Industrial wastewater pre-treatment for heavy metal reduction by employing a sorbent-assisted ultrafiltration system
JP4862361B2 (en) Waste water treatment apparatus and waste water treatment method
WO2010109556A1 (en) Water treatment method and water treatment system
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
KR20150100950A (en) Method for processing toxic matter-containing water and processing device
JP4981726B2 (en) Aggregation-membrane filtration method
JP6359257B2 (en) Method and apparatus for treating manganese-containing water
JP2014198291A (en) Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof
Liu et al. Coupling ferrate pretreatment and in-situ ozonation/ceramic membrane filtration for wastewater reclamation: water quality and membrane fouling
JP2008043898A (en) Water treatment system and water treatment method
JP3698093B2 (en) Water treatment method and water treatment apparatus
TWI494282B (en) Water treatment method and manufacturing method of ultra pure water
JP2007209886A (en) Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP2011230038A (en) Water treatment apparatus
Chen et al. Evaluation of enhanced coagulation combined with densadeg-ultrafiltration process in treating secondary effluent: Organic micro-pollutants removal, genotoxicity reduction, and membrane fouling alleviation
JP2014198288A (en) Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof
JP2018094510A (en) Water treatment device
WO2014136651A1 (en) Silica-containing water treatment apparatus, water treatment system, and method for treating silica-containing water
JP2011056411A (en) System and method for desalination of water to be treated
JP5003058B2 (en) Decolorization treatment method for colored beverage drainage
AU2009200113A1 (en) Water purification
JP2007268359A (en) Membrane separation method
JP2002059194A (en) Treatment method of raw water
WO2013061057A1 (en) Water treatment methods and systems

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160912

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170724

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180620

R150 Certificate of patent or registration of utility model

Ref document number: 6359257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250