WO2010109556A1 - Water treatment method and water treatment system - Google Patents

Water treatment method and water treatment system Download PDF

Info

Publication number
WO2010109556A1
WO2010109556A1 PCT/JP2009/005279 JP2009005279W WO2010109556A1 WO 2010109556 A1 WO2010109556 A1 WO 2010109556A1 JP 2009005279 W JP2009005279 W JP 2009005279W WO 2010109556 A1 WO2010109556 A1 WO 2010109556A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treated
water treatment
manganese
cod
Prior art date
Application number
PCT/JP2009/005279
Other languages
French (fr)
Japanese (ja)
Inventor
比留間敏和
木山龍均
Original Assignee
株式会社アサカ理研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アサカ理研 filed Critical 株式会社アサカ理研
Publication of WO2010109556A1 publication Critical patent/WO2010109556A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents

Abstract

Provided are a water treatment method and a water treatment system with which COD (Chemical Oxygen Demand) can be eliminated at a high elimination rate. It is possible to eliminate COD at a high elimination rate by means of a structure wherein a chlorine oxidizer is added to water that contains organic matter and that is to be treated by COD elimination; the water is then passed through a manganese filter material(62); and the organic matter is decomposed by catalytic oxidation. It is also possible to use a structure whereby after the decomposition by catalytic oxidation in this case, the water is passed through an adsorption device (7) containing active carbon (71). It is further possible to use a structure whereby a coagulant is added before the water is passed through the manganese filter material(62) and the suspended matter is removed by a filtration device (4).

Description

水処理方法及び水処理システムWater treatment method and water treatment system
 本発明は、水処理方法及び水処理システムに関し、特に、COD(Chemical Oxygen Demand)を除去する水処理方法及び水処理システムに関する。 The present invention relates to a water treatment method and a water treatment system, and more particularly to a water treatment method and a water treatment system for removing COD (Chemical Oxygen Demand).
 水質の指標として一般的に使用されるCODとは、水中の被酸化性物質量を酸化するのに必要な酸素量で示したものである。CODは、例えば工場等から排出される排水の基準値としても使用される。環境保護の観点から、CODの総量規制は年々厳しくなっている。 COD generally used as an indicator of water quality is the amount of oxygen required to oxidize the amount of oxidizable substances in water. COD is also used as a reference value for waste water discharged from, for example, factories. From the viewpoint of environmental protection, total COD regulations are becoming stricter year by year.
 CODを除去する従来の典型的な手法としては、例えば硫酸アルミニウム,PAC,塩化第2鉄,硫酸第2鉄,ポリ硫酸第2鉄などの凝集剤を添加し、濾過装置や沈降分離装置などで分離する凝集分離法がある。しかし、凝集分離方法は、CODの除去率が低く、近年におけるCOD総量規制に対応することは難しい。 As a conventional typical method for removing COD, for example, a flocculant such as aluminum sulfate, PAC, ferric chloride, ferric sulfate, polyferric sulfate or the like is added, and a filtration device or a sedimentation separation device is used. There is a coagulation separation method to separate. However, the coagulation separation method has a low COD removal rate, and it is difficult to meet the COD total amount regulations in recent years.
 CODを除去する他の方法としては、生物反応槽での生物学的除去法がある。しかし、この方法では溶解性の難分解性有機物の除去率が低いという問題がある。 As another method for removing COD, there is a biological removal method in a biological reaction tank. However, this method has a problem that the removal rate of soluble hardly decomposable organic substances is low.
 CODを除去するさらに他の方法としては、例えば、上記凝集分離や生物学的除去を行った後に、活性炭を用いて吸着除去する方法がある。しかしながら、活性炭は、有機物の種類(例えば極性が強い物質,分子構造が大きいものなど)によっては吸着され難い場合があり、除去率が充分とは言えない。 As still another method for removing COD, for example, there is a method of performing adsorption removal using activated carbon after performing the above-described aggregation separation and biological removal. However, activated carbon may be difficult to be adsorbed depending on the type of organic substance (for example, a substance having a strong polarity, a substance having a large molecular structure, etc.), and the removal rate is not sufficient.
 すなわち、従来の方法ではCODの除去率が充分でなく、近年におけるCODの排出規制に対応するのが困難な状況になりつつある。 That is, the COD removal rate is not sufficient with the conventional method, and it is becoming difficult to meet the recent COD emission regulations.
特開2003-053350号公報JP 2003-053350 A
 すなわち、本発明が解決しようとする課題には、前述したような問題が一例として挙げられる。従って、本発明の目的は、従来の課題を解決し、高い除去率でCODを除去することのできる水処理方法及び水処理システムを提供することにある。 That is, the problems to be solved by the present invention include the problems described above as an example. Accordingly, an object of the present invention is to provide a water treatment method and a water treatment system capable of solving the conventional problems and removing COD with a high removal rate.
 本発明にかかる水処理方法及び水処理システムは、本発明者らの鋭意研究の成果として、マンガン系濾過材を用いてCODを除去するという従来にはない新規な着想に基づいて具現化されたものである。マンガン系濾過材は、マンガンを不純物として含有する水からマンガンを除去するための濾過材として開発されたものである。しかしながら本発明者らは、従来技術の枠にとらわれることなく鋭意研究した結果、マンガン系濾過材を用いてCODを除去するという新規な水処理方法及び水処理システムを具現化するに至ったのである。 The water treatment method and the water treatment system according to the present invention have been realized based on a novel concept that has not been achieved in the past, in which COD is removed by using a manganese-based filter material, as a result of earnest research by the present inventors. Is. Manganese-based filter media have been developed as filter media for removing manganese from water containing manganese as an impurity. However, as a result of diligent research without being bound by the prior art, the present inventors have realized a novel water treatment method and water treatment system in which COD is removed using a manganese-based filter medium. .
 すなわち、本発明の水処理方法は、COD(Chemical Oxygen Demand)を除去する水処理方法において、有機物を含有する被処理水に塩素系酸化剤を添加し、マンガン系濾過材に通水して有機物を接触酸化分解することでCODを除去することを特徴とする。 That is, the water treatment method of the present invention is a water treatment method for removing COD (Chemical Oxygen Demand), adding a chlorine-based oxidizing agent to water to be treated containing organic matter, passing the water through a manganese-based filter medium, and organic matter. COD is removed by catalytic oxidative decomposition.
 前記塩素系酸化剤には、一般的な塩素系酸化剤を使用可能である。その中でも、CODの除去には二酸化塩素(ClO)が最も効果的である。 As the chlorine-based oxidizing agent, a general chlorine-based oxidizing agent can be used. Among them, chlorine dioxide (ClO 2 ) is most effective for removing COD.
 さらに、前記マンガン系濾過材としては、粒子状の基材に二酸化マンガン(MnO)の結晶を担持させた濾過材であって、下記に示す特性を有するものが好ましい。
Figure JPOXMLDOC01-appb-T000001
Further, the manganese-based filter medium is preferably a filter medium in which a manganese dioxide (MnO 2 ) crystal is supported on a particulate base material and has the following characteristics.
Figure JPOXMLDOC01-appb-T000001
 前記水処理方法は、例えばCOD規制値が低い場合(すなわち規制が厳しい場合)、前記接触酸化分解後の被処理水を活性炭に通水して有機物を吸着除去する工程をさらに有することができる。また、例えばSS濃度が高い場合、前記マンガン系濾過材に通水する前に被処理水に凝集剤を添加し、懸濁成分を分離除去する工程をさらに有することができる。 The water treatment method may further have a step of adsorbing and removing organic matter by passing the water to be treated after the catalytic oxidative decomposition through activated carbon, for example, when the COD regulation value is low (that is, when regulation is severe). Further, for example, when the SS concentration is high, a step of adding a flocculant to the water to be treated before passing through the manganese-based filter medium and separating and removing suspended components can be further included.
 また、本発明の水処理システムは、COD(Chemical Oxygen Demand)を除去する水処理システムであって、有機物を含有する被処理水に塩素系酸化剤を添加する手段と、前記塩素系酸化剤が添加された被処理水を通水するマンガン系濾過材を含む濾過装置と、を備えたことを特徴とする。 The water treatment system of the present invention is a water treatment system for removing COD (Chemical Oxygen Demand), wherein means for adding a chlorine-based oxidant to water to be treated containing organic matter, and the chlorine-based oxidant includes And a filtering device including a manganese-based filtering material that allows the added water to be treated to flow therethrough.
 前記水処理システムは、例えばCOD規制値が低い場合(すなわち規制が厳しい場合)、前記マンガン系濾過材に通水した後の被処理水を通水する活性炭を含む吸着装置をさらに備えることができる。また、例えばSS濃度が高い場合、前記マンガン系濾過材に通水する前に、被処理水に凝集剤を添加する手段と、前記凝集剤が添加された被処理水を通水する他の濾過装置と、をさらに備えることができる。 The water treatment system may further include an adsorption device including activated carbon that passes the water to be treated after passing through the manganese-based filter material when, for example, the COD regulation value is low (that is, when regulation is severe). . Further, for example, when the SS concentration is high, before passing through the manganese-based filter material, means for adding a flocculant to the water to be treated and other filtration for passing the water to be treated to which the flocculant is added And a device.
 本発明によれば、有機物を含有する被処理水に塩素系酸化剤を添加し、マンガン系濾過材に通水することにより、有機物を接触酸化分解してCODを除去することができる。さらに、接触酸化分解後に活性炭に通水することにより、接触酸化分解された有機成分を吸着してCODを確実に除去することが可能となる。さらには、マンガン系濾過材に通水する前に凝集分離法で懸濁物質を除去することにより、マンガン系濾過材の接触酸化力が低下するのを防止してCODを確実に除去することが可能となる。 According to the present invention, by adding a chlorinated oxidant to water to be treated containing an organic substance and passing it through a manganese-based filter medium, the organic substance can be catalytically oxidatively decomposed to remove COD. Furthermore, by passing water through activated carbon after catalytic oxidative decomposition, it is possible to adsorb the organic components subjected to catalytic oxidative decomposition and reliably remove COD. Further, by removing suspended substances by the coagulation separation method before passing the water through the manganese-based filter medium, the contact oxidizing power of the manganese-based filter medium can be prevented from being lowered and COD can be reliably removed. It becomes possible.
本発明の好ましい実施形態による水処理システムの主要構成を示す図である。It is a figure which shows the main structures of the water treatment system by preferable embodiment of this invention.
 以下、本発明の好ましい実施形態による水処理方法及び水処理システムについて、添付図面を参照しながら説明する。但し、以下に説明する実施形態によって本発明の技術的範囲は何ら限定解釈されることはない。 Hereinafter, a water treatment method and a water treatment system according to preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, the technical scope of the present invention is not construed as being limited by the embodiments described below.
 図1は、本発明の好ましい実施形態に従う水処理システム1の一例を示す。図1に示すように、本実施形態に従う水処理システム1は、被処理水である有機物含有水(原水)を貯留する原水タンク2と、被処理水に凝集剤を添加する手段3と、被処理水から懸濁物質を分離するための第1の濾過装置4と、被処理水に塩素系酸化剤を供給する手段5と、被処理水に含有される有機物を接触酸化分解するためのマンガン系濾過材を有する第2の濾過装置6と、被処理水に含有される有機物を吸着するための活性炭を有する吸着装置7を備えている。図中の符号21,22,23は、各装置間で被処理水を移送するためのポンプである。 FIG. 1 shows an example of a water treatment system 1 according to a preferred embodiment of the present invention. As shown in FIG. 1, a water treatment system 1 according to the present embodiment includes a raw water tank 2 that stores organic matter-containing water (raw water) that is water to be treated, means 3 for adding a flocculant to the water to be treated, First filtration device 4 for separating suspended substances from treated water, means 5 for supplying a chlorine-based oxidizing agent to treated water, and manganese for catalytic oxidative decomposition of organic substances contained in treated water A second filtering device 6 having a system filter medium and an adsorption device 7 having activated carbon for adsorbing organic substances contained in the water to be treated are provided. Reference numerals 21, 22, and 23 in the figure are pumps for transferring the water to be treated between the apparatuses.
 さらに、本実施形態に従う水処理システム1は、第2の濾過装置6で処理された後の被処理水を貯留するタンク8を備えている。タンク8に貯留される被処理水の一部は、第1及び第2の濾過装置4,6の濾過材を洗浄(いわゆる、逆洗)するための洗浄液として、通水を一時停止した第1及び第2の濾過装置4,6に供給され、洗浄後の排水は元原水として上流の設備に返送される構成である。洗浄排水の返送先は、原水タンク2であってもよい。 Furthermore, the water treatment system 1 according to the present embodiment includes a tank 8 for storing water to be treated after being treated by the second filtration device 6. A part of the water to be treated stored in the tank 8 is a first liquid that has temporarily stopped water flow as a cleaning liquid for cleaning (so-called backwashing) the filtering material of the first and second filtering devices 4 and 6 And the wastewater after washing | cleaning supplied to the 2nd filtration apparatuses 4 and 6 is a structure returned to an upstream installation as original raw water. The return destination of the washing wastewater may be the raw water tank 2.
 第1の濾過装置4は、凝集剤添加手段3によって凝集剤が添加された被処理水中の懸濁物質を濾過分離することを主たる役割とする。第1の濾過装置4は、好ましい一例として、アンスラサイト41、砂(濾過材)42、濾過砂利43の順に通水される濾過層を有する。通水方式は、重力式であってもよく、またはポンプ等による加圧式であってもよい。アンスラサイト41は、例えば有効径が1.2mmであって均等係数が1.4以下のものを使用することができる。砂(濾過材)42は、例えば有効径が0.6mmであって均等係数が1.4以下のものを使用することができる。但し、平均粒子径と均等係数が前述のものに限定されることはない。濾過砂利43は、アンスラサイト41及び砂(濾過材)42の支持層となるものであり、また、通水および逆洗を均等に行うための役割を有する。但し、濾過砂利43は、複数の通水孔あるいはスリットを有する支持部材などで代替することも可能である。 The first filtering device 4 has a main role of filtering and separating suspended substances in the water to be treated to which the flocculant is added by the flocculant adding means 3. As a preferred example, the first filtration device 4 has a filtration layer through which water flows in the order of anthracite 41, sand (filter material) 42, and filtration gravel 43. The water flow method may be a gravity method or a pressurization method using a pump or the like. As the anthracite 41, for example, an effective diameter of 1.2 mm and a uniformity coefficient of 1.4 or less can be used. As the sand (filter material) 42, for example, an effective diameter of 0.6 mm and a uniformity coefficient of 1.4 or less can be used. However, the average particle diameter and the uniformity coefficient are not limited to those described above. The filter gravel 43 serves as a support layer for the anthracite 41 and the sand (filter material) 42, and has a role for performing water flow and backwashing equally. However, the filtration gravel 43 can be replaced by a support member having a plurality of water holes or slits.
 第2の濾過装置6は、酸化剤添加手段5によって塩素系酸化剤が添加された被処理水中の有機物を接触酸化分解することを主たる役割とする。第2の濾過装置6は、好ましい一例として、アンスラサイト61、マンガン系濾過材62、濾過砂利63の順に通水される濾過層を有する。通水方式は、重力式であってもよく、またはポンプ等による加圧式であってもよい。アンスラサイト61は、例えば有効径が0.8mmであって均等係数が1.4以下のものを使用することができる。アンスラサイト61は、第1の濾過装置4で除去しきれなかった懸濁物質がマンガン系濾過材62に付着して接触酸化を阻害するのを防止するために設ける。また、濾過砂利63は、上述の濾過砂利43と同様の役割を有する。 The second filtering device 6 has a main role of catalytically oxidizing and decomposing organic matter in the water to be treated to which the chlorinated oxidant is added by the oxidant adding means 5. As a preferred example, the second filtration device 6 has a filtration layer through which water flows in the order of anthracite 61, manganese-based filter material 62, and filtration gravel 63. The water flow method may be a gravity method or a pressurization method using a pump or the like. As the anthracite 61, for example, an effective diameter of 0.8 mm and a uniformity coefficient of 1.4 or less can be used. The anthracite 61 is provided to prevent suspended substances that could not be removed by the first filtration device 4 from adhering to the manganese-based filter material 62 and inhibiting the contact oxidation. Moreover, the filtration gravel 63 has the same role as the filtration gravel 43 described above.
 すなわち、第2の濾過装置6の主たる役割である有機物の接触酸化分解は、マンガン系濾過材62の作用によるものである。マンガン系濾過材62は、好ましくは粒子状の基材に二酸化マンガン(MnO)の結晶を担持させた濾過材を使用することができ、さらに好ましくは下記の表に示す特性を有する濾過材である。その中でも好ましいのは、SiOが72.0%,Alが16.0%,MnOが3.0%,KOが3.0%,NaOが2.0%,その他(例えば不純物等)が4.0%である。
Figure JPOXMLDOC01-appb-T000002
That is, the catalytic oxidative decomposition of the organic substance, which is the main role of the second filtration device 6, is due to the action of the manganese-based filter material 62. The manganese-based filter medium 62 can be a filter medium in which a manganese dioxide (MnO 2 ) crystal is supported on a particulate base material, and more preferably a filter medium having the characteristics shown in the following table. is there. Among them, SiO 2 is preferably 72.0%, Al 2 O 3 is 16.0%, MnO 2 is 3.0%, K 2 O is 3.0%, Na 2 O is 2.0%, Others (for example, impurities) is 4.0%.
Figure JPOXMLDOC01-appb-T000002
 吸着装置7は、被処理水に含有される有機物を吸着することを主たる役割とする。吸着装置7は、例えば粒子状の活性炭で形成される活性炭層71を有する。活性炭は、一例としてセラケム株式会社製の活性炭(製品:ACW8-32♯)を使用することができる。但し、活性炭の種類や形状は限定されることはなく、公知の活性炭のいずれをも使用することが可能である。 The adsorption device 7 mainly serves to adsorb organic substances contained in the water to be treated. The adsorption device 7 has an activated carbon layer 71 formed of, for example, particulate activated carbon. As an example of the activated carbon, activated carbon (product: ACW8-32 #) manufactured by Serachem Co., Ltd. can be used. However, the type and shape of the activated carbon are not limited, and any known activated carbon can be used.
 凝集剤添加手段3及び酸化剤添加手段5は、それぞれの供給源(不図示)と連通する流路(例えば、配管等)31,51を被処理水の流路に接続して、凝集剤及び塩素系酸化剤を被処理水に添加するように構成されている。添加量の調節は、例えばバルブ等の流量調節手段32,52によって行うことができる。被処理水との混合性を向上させるためにラインミキサーや撹拌槽などの撹拌装置を設置するようにしてもよい。なお、図1に示す供給場所は一例であり、この位置に限定されることはない。凝集剤は、少なくとも第1の濾過装置4に供給前に添加すればよく、酸化剤は、少なくとも第2の濾過装置6に供給前に添加すればよい。さらに凝集剤の添加位置も1箇所に限られず、第2の濾過装置6のアンスラサイト61で効果的に残留濁質を除去するために、第1の濾過装置4と第2の濾過装置6との間で凝集剤を添加する凝集剤添加手段を新たに追加してもよい。 The flocculant addition means 3 and the oxidant addition means 5 connect flow paths (for example, pipes) 31 and 51 communicating with respective supply sources (not shown) to the flow path of the water to be treated. A chlorine-based oxidizing agent is configured to be added to the water to be treated. The addition amount can be adjusted by the flow rate adjusting means 32, 52 such as a valve. In order to improve the mixing property with the water to be treated, a stirring device such as a line mixer or a stirring tank may be installed. In addition, the supply place shown in FIG. 1 is an example, and is not limited to this position. The flocculant may be added at least before the supply to the first filtration device 4, and the oxidizing agent may be added at least before the supply to the second filtration device 6. Further, the addition position of the flocculant is not limited to one, and in order to effectively remove residual turbidity by the anthracite 61 of the second filtration device 6, the first filtration device 4 and the second filtration device 6 A flocculant addition means for adding a flocculant between the two may be newly added.
 凝集剤は、例えば、PAC(化学名;ポリ塩化アルミニム)、ポリ鉄(化学名;ポリ硫酸第二鉄)、硫酸バンド(化学名;硫酸アルミニウム)などの無機凝集剤、ポリアクリルアミド系の有機凝集剤を使用することができる。その中でも好ましいのは、PACである。凝集剤は、被処理水中の懸濁物質を凝集させることを主たる目的として添加する。そして、凝集された懸濁物質を濾過分離することによって、被処理水のTOC(Total Organic Carbon:全有機炭素)を下げると共に、懸濁物質がマンガン系濾過材62に付着して接触酸化を阻害するのを防止する。 Examples of the flocculant include inorganic flocculants such as PAC (chemical name: polyaluminum chloride), polyiron (chemical name: polyferric sulfate), sulfate band (chemical name: aluminum sulfate), and polyacrylamide organic flocculants. Agents can be used. Among them, PAC is preferable. The flocculant is added mainly for the purpose of aggregating suspended substances in the water to be treated. The aggregated suspended solids are filtered and separated to lower the TOC (Total Organic Carbon) of the water to be treated and the suspended solids adhere to the manganese-based filter medium 62 to inhibit contact oxidation. To prevent it.
 塩素系酸化剤は、例えば、二酸化塩素(ClO)、次亜塩素酸ナトリウム(NaClO)などの次亜塩素酸塩、または過マンガン酸カリウム(KMnO)を使用することができる。塩素系酸化剤は、マンガン系濾過材61を触媒として有機物を酸化分解させることを主たる目的として添加する。このようにマンガン系濾過材61を使用して有機物の酸化分解を行う酸化剤として、特に好ましいのは二酸化塩素(ClO)である。 As the chlorine-based oxidizing agent, for example, chlorine dioxide (ClO 2 ), hypochlorite such as sodium hypochlorite (NaClO), or potassium permanganate (KMnO 4 ) can be used. The chlorine-based oxidant is added mainly for the purpose of oxidatively decomposing organic substances using the manganese-based filter material 61 as a catalyst. Thus, chlorine dioxide (ClO 2 ) is particularly preferable as an oxidizing agent that performs oxidative decomposition of organic matter using the manganese-based filter material 61.
 続いて、図1に示す水処理システム1を用いてCOD除去を行う方法について説明する。本システムで処理される被処理水(原水)の種類及び水質は、特に制限されることはなく、一般排水、産業排水、下水、河川水、地下水、湖沼水など、種々の有機物含有水を対象とすることができる。限定されることはないが、後述する実施例で処理した原水は、色度が14.1、濁度が14.11、pHが7.65であった。なお、原水が酸性又はアルカリ性である場合には、前処理として適宜pH調整を行うことができる。 Next, a method for removing COD using the water treatment system 1 shown in FIG. 1 will be described. The type and quality of treated water (raw water) treated by this system is not particularly limited, and covers various organic matter-containing waters such as general wastewater, industrial wastewater, sewage, river water, groundwater, and lake water. It can be. Although not limited, the raw water treated in the examples described later had a chromaticity of 14.1, a turbidity of 14.11, and a pH of 7.65. In addition, when raw | natural water is acidic or alkaline, pH adjustment can be performed suitably as a pretreatment.
 本システムで処理される被処理水(原水)は、原水タンク2に一時的に貯留され、ポンプ21で第1の濾過装置4に向けて移送されると共に、凝集剤添加手段3によって凝集剤が添加される。凝集剤の添加量は、例えば5~30mg/lに設定する。凝集剤が添加された被処理水は、第1の濾過装置4に供給され、濾材を通過する際に懸濁物質が分離除去される。 The treated water (raw water) to be treated by this system is temporarily stored in the raw water tank 2 and transferred toward the first filtration device 4 by the pump 21, and the flocculant is added by the flocculant adding means 3. Added. The addition amount of the flocculant is set to 5 to 30 mg / l, for example. The water to be treated to which the flocculant is added is supplied to the first filtration device 4, and the suspended substances are separated and removed when passing through the filter medium.
 第1の濾過装置4で懸濁物質が分離された被処理水(分離液)は、酸化剤添加手段5によって塩素系酸化剤が添加される。酸化剤の添加量は、例えば二酸化塩素(ClO)の場合は1.25mg/lに設定し、次亜塩素酸ナトリウム(NaClO)の場合は5mg/lに設定する。酸化剤が添加された被処理水は、第2の濾過装置6に供給され、マンガン系濾過材61を通過する際に、マンガン系濾過材61を触媒にして有機物が二酸化塩素によって酸化分解される。 The water to be treated (separated liquid) from which the suspended substances have been separated by the first filtration device 4 is added with a chlorine-based oxidizing agent by the oxidizing agent adding means 5. The addition amount of the oxidizing agent is set to, for example, 1.25 mg / l for chlorine dioxide (ClO 2 ) and 5 mg / l for sodium hypochlorite (NaClO). The water to be treated to which the oxidizing agent is added is supplied to the second filtration device 6, and when passing through the manganese-based filter material 61, the organic matter is oxidized and decomposed by chlorine dioxide using the manganese-based filter material 61 as a catalyst. .
 第2の濾過装置6で有機物が酸化分解された被処理水は、タンク8に一時的に貯留され、ポンプ23によって吸着装置7に供給される。そして吸着装置7の活性炭層71を通過する際に有機物が活性炭に吸着される。このようにしてCODが除去された被処理水は、後述する実施例の結果から明らかなように放流するのに充分なCODとなっている。 The water to be treated, in which the organic matter is oxidized and decomposed by the second filtration device 6, is temporarily stored in the tank 8 and supplied to the adsorption device 7 by the pump 23. And when passing through the activated carbon layer 71 of the adsorption device 7, the organic matter is adsorbed on the activated carbon. The water to be treated from which COD has been removed in this way is sufficient COD to be discharged, as is apparent from the results of Examples described later.
 以上のように、本実施形態によれば、有機物を含有する被処理水に塩素系酸化剤を添加し、これをマンガン系濾過材62に通水することにより、有機物を接触酸化分解してCODを除去することができる。 As described above, according to this embodiment, a chlorine-based oxidant is added to water to be treated containing organic matter, and this is passed through the manganese-based filter material 62, whereby the organic matter is catalytically oxidized and decomposed to produce COD. Can be removed.
 さらに、本実施形態によれば、上記接触酸化分解後に被処理水を活性炭に通水することにより、接触酸化分解された有機成分を吸着してCODを確実に除去することが可能となる。既述したように、有機物の種類(例えば極性が強い物質,分子構造が大きいものなど)によっては吸着し難い場合があるが、接触酸化分解することによって有機物を活性炭に吸着されやすい分子にまで分解し、これにより活性炭によるCOD除去率を向上させることができるのである。 Furthermore, according to the present embodiment, by passing the water to be treated through activated carbon after the catalytic oxidative decomposition, it is possible to adsorb the organic components subjected to the catalytic oxidative decomposition and reliably remove COD. As already mentioned, it may be difficult to adsorb depending on the type of organic substance (for example, a substance with a strong polarity, a substance with a large molecular structure, etc.), but it decomposes into a molecule that is easily adsorbed by activated carbon by catalytic oxidative decomposition. As a result, the COD removal rate by the activated carbon can be improved.
 さらに、本実施形態によれば、マンガン系濾過材62に通水する前に、凝集分離法で懸濁物質を除去することにより、マンガン系濾過材62の接触酸化力が低下するのを防止してCODを確実に除去することが可能となる。 Furthermore, according to the present embodiment, before the water is passed through the manganese-based filter media 62, the suspended solids are removed by the coagulation separation method, thereby preventing the contact oxidizing power of the manganese-based filter media 62 from being reduced. Thus, COD can be reliably removed.
 以上、本発明を具体的な実施形態に則して詳細に説明したが、形式や細部についての種々の置換、変形、変更等が、特許請求の範囲の記載により規定されるような本発明の精神及び範囲から逸脱することなく行われることが可能であることは、当該技術分野における通常の知識を有する者には明らかである。従って、本発明の範囲は、前述の実施形態及び添付図面に限定されるものではなく、特許請求の範囲の記載及びこれと均等なものに基づいて定められるべきである。 Although the present invention has been described in detail with reference to specific embodiments, various substitutions, modifications, changes, etc. in form and detail are defined in the claims. It will be apparent to those skilled in the art that this can be done without departing from the spirit and scope. Therefore, the scope of the present invention should not be limited to the above-described embodiments and the accompanying drawings, but should be determined based on the description of the claims and equivalents thereof.
 以下、本発明の効果を確認するために行った実施例について説明する。但し、以下に説明する実施例によって、本発明の技術的範囲は何ら限定解釈されることはない。 Hereinafter, examples performed for confirming the effects of the present invention will be described. However, the technical scope of the present invention is not construed as being limited by the examples described below.
 (実施例1)
 本実施例は、図1に示されるフローに則して原水を処理した実施例1である。主要な試験条件を以下に示す。そして原水、第1の濾過処理後、接触酸化分離後、活性炭による吸着処理後の被処理水をそれぞれサンプリングし、色度,濁度,CODをそれぞれ測定した。測定結果を表3に示す。なお、色度,濁度,CODの測定方法には、硫酸酸性過マンガン酸カリウム法を採用した。
 ・第1の濾過;アンスラサイト(1.2-1.4)300mmH
        砂(0.6-1.4)300mmH
        濾過速度(LV)=10m/hr
 ・凝集剤  ;PACを30mg/l添加
 ・接触酸化 ;アンスラサイト(1.0-1.4)200mmH
        マンガン系濾過材(表3に示すもの)600mmH
        通水速度SV=10/h
        但し、接触酸化する前に凝集剤としてポリ鉄10mg/l
        を添加した。
 ・活性炭  ;活性炭800mmH
        通水速度SV=10/h
Example 1
In this embodiment, raw water is treated according to the flow shown in FIG. The main test conditions are shown below. The raw water, the first filtration treatment, the catalytic oxidation separation, and the water to be treated after the adsorption treatment with activated carbon were sampled, and the chromaticity, turbidity, and COD were measured. Table 3 shows the measurement results. In addition, the sulfuric acid acidic potassium permanganate method was employ | adopted as the measuring method of chromaticity, turbidity, and COD.
・ First filtration: Anthracite (1.2-1.4) 300mmH
Sand (0.6-1.4) 300mmH
Filtration speed (LV) = 10 m / hr
・ Flocculant: 30 mg / l of PAC added ・ Contact oxidation: Anthracite (1.0-1.4) 200 mmH
Manganese filter material (shown in Table 3) 600mmH
Water flow rate SV = 10 / h
However, polyiron 10mg / l as flocculant before contact oxidation
Was added.
・ Activated carbon: Activated carbon 800mmH
Water flow rate SV = 10 / h
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (実施例2)
 本実施例は、実施例1の二酸化塩素に代えて、酸化剤として次亜塩素酸を添加した実施例2である。酸化剤の種類を変えたことを除けば他の条件等は実施例1と同じである。各サンプリングの色度,濁度,CODの測定結果を表4に示す。
(Example 2)
This example is Example 2 in which hypochlorous acid was added as an oxidizing agent in place of the chlorine dioxide of Example 1. Other conditions are the same as in Example 1 except that the type of the oxidizing agent is changed. Table 4 shows the chromaticity, turbidity, and COD measurement results of each sampling.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (比較例1)
 本比較例は、接触酸化を行わなかったことを除けば実施例1と同様の比較例1である。すなわち、図1に示すフローで言えば、第2の濾過装置を省略して、第1の濾過処理した被処理水を活性炭に通水した比較例である。各サンプリングの色度,濁度,CODの測定結果を表5に示す。
(Comparative Example 1)
This comparative example is a comparative example 1 similar to the example 1 except that the catalytic oxidation was not performed. That is, the flow shown in FIG. 1 is a comparative example in which the second filtration device is omitted and the treated water subjected to the first filtration treatment is passed through activated carbon. Table 5 shows the chromaticity, turbidity, and COD measurement results of each sampling.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3~表5の結果から明らかなように、塩素系酸化剤を添加した被処理水をマンガン系濾過材に通水させることにより、CODを除去できることが確認された。そしてさらに、接触酸化を行った後の被処理水を活性炭に通水することにより、確実にCODを除去できることが確認された。酸化剤については、色度及び濁度に着目すればNaClOの方が効果的であるが、CODの除去についてはClOの方が効果的であることが確認された。ClOを用いた場合、活性炭通水後のCODが2.4mg/lにまで除去されている。すなわち、ClOの方が、活性炭に吸着され易いように有機物を分解できることが確認された。 As is apparent from the results of Tables 3 to 5, it was confirmed that COD can be removed by passing the water to be treated to which the chlorine-based oxidizing agent has been added through the manganese-based filter medium. Furthermore, it was confirmed that COD can be reliably removed by passing the water to be treated after catalytic oxidation through activated carbon. As for the oxidizing agent, it was confirmed that NaClO is more effective when paying attention to chromaticity and turbidity, but ClO 2 is more effective for removing COD. When ClO 2 is used, COD after passing the activated carbon is removed to 2.4 mg / l. That is, it was confirmed that ClO 2 can decompose organic substances so that it is more easily adsorbed by activated carbon.
 1  水処理システム
 3  凝集剤添加手段
 4  第1の濾過装置
 5  酸化剤添加手段
 6  第2の濾過装置
 62 マンガン系濾過材
 7  吸着装置
 71 活性炭層
DESCRIPTION OF SYMBOLS 1 Water treatment system 3 Flocculant addition means 4 1st filtration apparatus 5 Oxidizing agent addition means 6 2nd filtration apparatus 62 Manganese type filtering material 7 Adsorber 71 Activated carbon layer

Claims (8)

  1.  COD(Chemical Oxygen Demand)を除去する水処理方法において、
     有機物を含有する被処理水に塩素系酸化剤を添加し、マンガン系濾過材に通水して有機物を接触酸化分解することでCODを除去することを特徴とする水処理方法。
    In a water treatment method for removing COD (Chemical Oxygen Demand),
    A water treatment method comprising removing a COD by adding a chlorine-based oxidizing agent to water to be treated containing an organic substance, passing the water through a manganese-based filter medium, and catalytically oxidizing and decomposing the organic substance.
  2.  前記塩素系酸化剤は、二酸化塩素(ClO)であることを特徴とする請求項1に記載の水処理方法。 The water treatment method according to claim 1, wherein the chlorine-based oxidizing agent is chlorine dioxide (ClO 2 ).
  3.  前記マンガン系濾過材は、粒子状の基材に二酸化マンガン(MnO)の結晶を担持させた濾過材であり、下記に示す特性を有していることを特徴とする請求項1又は2に記載の水処理方法。
    Figure JPOXMLDOC01-appb-T000006
    3. The manganese-based filter medium is a filter medium in which a manganese dioxide (MnO 2 ) crystal is supported on a particulate base material, and has the following characteristics: The water treatment method as described.
    Figure JPOXMLDOC01-appb-T000006
  4.  前記接触酸化分解後の被処理水を活性炭に通水して有機物を吸着除去する工程をさらに有することを特徴とする請求項1~3のいずれか1項に記載の水処理方法。 The water treatment method according to any one of claims 1 to 3, further comprising a step of passing the water to be treated after the catalytic oxidative decomposition through activated carbon to adsorb and remove organic substances.
  5.  前記マンガン系濾過材に通水する前に被処理水に凝集剤を添加し、懸濁成分を分離除去する工程をさらに有することを特徴とする請求項1~4のいずれか1項に記載の水処理方法。 5. The method according to claim 1, further comprising a step of adding a flocculant to the water to be treated before passing through the manganese-based filter medium, and separating and removing suspended components. Water treatment method.
  6.  COD(Chemical Oxygen Demand)を除去する水処理システムであって、
     有機物を含有する被処理水に塩素系酸化剤を添加する手段と、
     前記塩素系酸化剤が添加された被処理水を通水するマンガン系濾過材を含む濾過装置と、
     を備えたことを特徴とする水処理システム。
    A water treatment system for removing COD (Chemical Oxygen Demand),
    Means for adding a chlorine-based oxidizing agent to water to be treated containing organic matter;
    A filtration device comprising a manganese-based filter material for passing water to be treated to which the chlorinated oxidant is added;
    A water treatment system comprising:
  7.  前記マンガン系濾過材に通水した後の被処理水を通水する活性炭を含む吸着装置をさらに備えたことを特徴とする請求項6に記載の水処理システム。 The water treatment system according to claim 6, further comprising an adsorption device including activated carbon that passes water to be treated after passing through the manganese-based filter material.
  8.  前記マンガン系濾過材に通水する前に、被処理水に凝集剤を添加する手段と、前記凝集剤が添加された被処理水を通水する他の濾過装置と、をさらに備えたことを特徴とする請求項6又は7に記載の水処理システム。 Before passing through the manganese-based filter material, further comprising means for adding a flocculant to the water to be treated, and another filtering device for passing the water to be treated to which the flocculant is added. The water treatment system according to claim 6 or 7, characterized in that
PCT/JP2009/005279 2009-03-24 2009-10-09 Water treatment method and water treatment system WO2010109556A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-072124 2009-03-24
JP2009072124 2009-03-24

Publications (1)

Publication Number Publication Date
WO2010109556A1 true WO2010109556A1 (en) 2010-09-30

Family

ID=42780266

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/005279 WO2010109556A1 (en) 2009-03-24 2009-10-09 Water treatment method and water treatment system
PCT/JP2010/002000 WO2010109838A1 (en) 2009-03-24 2010-03-19 Water treatment method and water treatment system

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002000 WO2010109838A1 (en) 2009-03-24 2010-03-19 Water treatment method and water treatment system

Country Status (6)

Country Link
JP (1) JP4786771B2 (en)
KR (1) KR101426925B1 (en)
CN (1) CN102361826B (en)
MY (1) MY155401A (en)
SG (1) SG174377A1 (en)
WO (2) WO2010109556A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014094335A (en) * 2012-11-08 2014-05-22 Mitsubishi Rayon Co Ltd Method and system for treating organic matter-containing water
CN105217769A (en) * 2014-06-10 2016-01-06 成都润兴消毒药业有限公司 Excrement colibacillus group, the sewage-treating agent reducing COD and preparation method can be killed
WO2016092620A1 (en) * 2014-12-08 2016-06-16 三菱重工業株式会社 Water treatment apparatus
JP2019034288A (en) * 2017-08-18 2019-03-07 株式会社テクノササヤ Water treatment apparatus
WO2022120432A1 (en) * 2020-12-10 2022-06-16 Infinite Water Technologies Pty Ltd Process for treating water
CN115353256A (en) * 2022-08-22 2022-11-18 山东华城工程技术有限公司 Water purification treatment process for micro-polluted surface water source water

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102512864A (en) * 2011-11-02 2012-06-27 北京万邦达环保技术股份有限公司 Filter and filtration system adopting the filter
JP2014039924A (en) * 2012-07-24 2014-03-06 Daikin Ind Ltd Method for treating aqueous solution containing phosphoric acid ions
CN105984933B (en) * 2016-06-24 2019-03-26 湖南大学 The CMC of antibiotics stabilizes nanometer MnO in a kind of oxidative degradation water body2Preparation and application
CN106116020A (en) * 2016-07-15 2016-11-16 嘉兴通惠环保科技有限公司 A kind of permeable membrane system water inlet pretreatment system and technique
KR101723399B1 (en) 2016-12-06 2017-04-05 (주)유나 Wastewater storage
CN110368900B (en) * 2019-08-20 2022-06-07 厦门理工学院 Bamboo charcoal modified material and preparation method and application thereof
CN110590015A (en) * 2019-09-17 2019-12-20 红河学院 Method for removing nitrite by using manganese dioxide
CN113230705A (en) * 2021-05-11 2021-08-10 李晟贤 Filter material backwashing method
CN113230704A (en) * 2021-05-11 2021-08-10 李晟贤 Method for enhancing filtering performance of filtering material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4964248A (en) * 1972-10-21 1974-06-21
JPS5684688A (en) * 1979-12-12 1981-07-10 Nojimagumi:Kk Terminal treatment of waste water
JPS59173192A (en) * 1983-03-18 1984-10-01 Matsushita Electric Ind Co Ltd Filter medium for water treatment and its production
JPH0199689A (en) * 1987-10-09 1989-04-18 Suido Kiko Kk Method for removing organic matter in water

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216866A (en) * 1975-07-31 1977-02-08 Nissan Chem Ind Ltd Method of lowering cod in drainage
JPS5376544A (en) * 1976-12-20 1978-07-07 Shigeru Obiyama Filter
JPS605215A (en) * 1983-06-22 1985-01-11 Mitsui Mining & Smelting Co Ltd Filter material for purifying water
JPS6084124A (en) * 1983-10-17 1985-05-13 Mitsui Mining & Smelting Co Ltd Filter material for purifying water
JPH02233196A (en) * 1989-03-08 1990-09-14 Tosoh Corp Material for decoloring and cleaning of water and its preparation
JPH0651189B2 (en) * 1990-09-21 1994-07-06 日本碍子株式会社 Method for treating wastewater containing persistent COD
JP2740623B2 (en) * 1993-09-03 1998-04-15 日本碍子株式会社 Advanced sewage treatment method
EP0686427B1 (en) 1993-12-28 2002-03-13 Nippon Shokubai Co., Ltd. Method of processing waste water using a catalyst
JPH08257574A (en) * 1995-03-27 1996-10-08 Ngk Insulators Ltd Method and apparatus for treating hardly decomposable cod-containing waste water
JPH09935A (en) * 1995-06-21 1997-01-07 Cataler Kogyo Kk Catalyst for treatment of water
JPH1099696A (en) * 1996-09-30 1998-04-21 Kobe Steel Ltd Catalytic form and its manufacture
JPH119965A (en) * 1997-06-20 1999-01-19 Matsushita Electric Ind Co Ltd Hollow body, pollutant removal device and removal method
JPH11156375A (en) * 1997-11-28 1999-06-15 Nkk Corp Method for treating water containing organic substance
JP2000153152A (en) * 1998-11-19 2000-06-06 Cataler Corp Catalyst for water treatment
JP2000271576A (en) * 1999-03-24 2000-10-03 Ngk Insulators Ltd Contact catalytic filter material and treatment of hardly decomposable cod-containing waste water using the same
JP2001149958A (en) * 1999-12-01 2001-06-05 Cataler Corp Water treating device
JP2002035578A (en) * 2000-07-27 2002-02-05 Nippon Rokasuna Kenkyusho:Kk Composite filter medium for removing chromaticity
JP4072039B2 (en) * 2002-10-11 2008-04-02 フジライト工業株式会社 Manufacturing method of iron removal and manganese removal filter media
JP3953970B2 (en) * 2003-03-24 2007-08-08 株式会社トーケミ Filter medium for water treatment mainly composed of manganese dioxide and method for producing the same
JP4407165B2 (en) * 2003-06-06 2010-02-03 サントリーホールディングス株式会社 Treatment method for water containing oxidizable substances
CN1919455A (en) * 2005-08-25 2007-02-28 中国科学院生态环境研究中心 Process for eliminating volatile organic pollutant by catalytic oxidation
JP5082034B2 (en) * 2005-10-25 2012-11-28 株式会社エルプラン Composite functional photocatalyst dispersion and porous composite functional photocatalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4964248A (en) * 1972-10-21 1974-06-21
JPS5684688A (en) * 1979-12-12 1981-07-10 Nojimagumi:Kk Terminal treatment of waste water
JPS59173192A (en) * 1983-03-18 1984-10-01 Matsushita Electric Ind Co Ltd Filter medium for water treatment and its production
JPH0199689A (en) * 1987-10-09 1989-04-18 Suido Kiko Kk Method for removing organic matter in water

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014094335A (en) * 2012-11-08 2014-05-22 Mitsubishi Rayon Co Ltd Method and system for treating organic matter-containing water
CN105217769A (en) * 2014-06-10 2016-01-06 成都润兴消毒药业有限公司 Excrement colibacillus group, the sewage-treating agent reducing COD and preparation method can be killed
WO2016092620A1 (en) * 2014-12-08 2016-06-16 三菱重工業株式会社 Water treatment apparatus
JPWO2016092620A1 (en) * 2014-12-08 2017-08-03 三菱重工業株式会社 Water treatment equipment
JP2019034288A (en) * 2017-08-18 2019-03-07 株式会社テクノササヤ Water treatment apparatus
WO2022120432A1 (en) * 2020-12-10 2022-06-16 Infinite Water Technologies Pty Ltd Process for treating water
GB2616218A (en) * 2020-12-10 2023-08-30 Infinite Water Tech Pty Ltd Process for treating water
CN115353256A (en) * 2022-08-22 2022-11-18 山东华城工程技术有限公司 Water purification treatment process for micro-polluted surface water source water
CN115353256B (en) * 2022-08-22 2024-04-16 山东华城工程技术有限公司 Water purification treatment process for micro-polluted surface water source water

Also Published As

Publication number Publication date
JPWO2010109838A1 (en) 2012-09-27
WO2010109838A1 (en) 2010-09-30
SG174377A1 (en) 2011-10-28
CN102361826B (en) 2013-09-11
MY155401A (en) 2015-10-15
KR20120002584A (en) 2012-01-06
KR101426925B1 (en) 2014-08-05
CN102361826A (en) 2012-02-22
JP4786771B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
WO2010109556A1 (en) Water treatment method and water treatment system
Acero et al. Micropollutants removal from retentates generated in ultrafiltration and nanofiltration treatments of municipal secondary effluents by means of coagulation, oxidation, and adsorption processes
KR100384668B1 (en) Water Treating Method
US6093328A (en) Method for removing toxic substances in water
JP4862361B2 (en) Waste water treatment apparatus and waste water treatment method
JP5909281B2 (en) Water treatment equipment
Chen et al. Evaluation of enhanced coagulation combined with densadeg-ultrafiltration process in treating secondary effluent: Organic micro-pollutants removal, genotoxicity reduction, and membrane fouling alleviation
JP6194887B2 (en) Fresh water production method
JP6359257B2 (en) Method and apparatus for treating manganese-containing water
Scaratti et al. 1, 4-Dioxane removal from water and membrane fouling elimination using CuO-coated ceramic membrane coupled with ozone
CN107848848B (en) Metal material flocculation promoting layer and water treatment device using same
JP6210063B2 (en) Fresh water generation method and fresh water generation apparatus
JP5210787B2 (en) Water treatment apparatus and water treatment method
JP6846656B2 (en) Water treatment equipment
JP4166881B2 (en) Wastewater treatment method and apparatus
Acar et al. Effects of fulvic acid and ferric hydroxide on removal of Fe2+ and Mn2+ by oxidation and aerated/submerged ultrafiltration membrane system
JP6865399B2 (en) Method for manufacturing iron-supported activated carbon for water treatment equipment
JP2001079561A (en) Method for cleaning river water
US20020113019A1 (en) Method for removing toxic substances in water
JP2019103955A (en) Water treatment system
Driehaus Technologies for arsenic removal from potable water
KR100590837B1 (en) Apparatus for removing nitrate
JP2018108549A (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP6251596B2 (en) Water treatment apparatus and water treatment method
JP2009214059A (en) Hardly decomposable substance-containing waste water treatment method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842172

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP