JP3953970B2 - Filter medium for water treatment mainly composed of manganese dioxide and method for producing the same - Google Patents

Filter medium for water treatment mainly composed of manganese dioxide and method for producing the same Download PDF

Info

Publication number
JP3953970B2
JP3953970B2 JP2003079608A JP2003079608A JP3953970B2 JP 3953970 B2 JP3953970 B2 JP 3953970B2 JP 2003079608 A JP2003079608 A JP 2003079608A JP 2003079608 A JP2003079608 A JP 2003079608A JP 3953970 B2 JP3953970 B2 JP 3953970B2
Authority
JP
Japan
Prior art keywords
manganese dioxide
filter medium
core material
water
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003079608A
Other languages
Japanese (ja)
Other versions
JP2004283735A (en
Inventor
菊池與志雄
細谷卓也
住田修平
安達裕
Original Assignee
株式会社トーケミ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トーケミ filed Critical 株式会社トーケミ
Priority to JP2003079608A priority Critical patent/JP3953970B2/en
Publication of JP2004283735A publication Critical patent/JP2004283735A/en
Application granted granted Critical
Publication of JP3953970B2 publication Critical patent/JP3953970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【産業上の利用分野】
地下水に着色した該地下水の含有成分である、例えば、フミン質の色を除去するために二酸化マンガンがろ材として用いられているが、本発明は、該二酸化マンガンを主材とする水処理用ろ材およびその製造方法に関するものである。
【0002】
【従来の技術】
二酸化マンガン粉末を2価のマンガンイオンまたはこれに加えてマグネシウムイオンを含む硫酸などの酸性溶液中に水温80〜100℃で浸漬させて得る方法(特許文献1)や水処理用ろ過材をマンガン塩混合液に浸漬し、塩素系酸化剤を添加して水和二酸化マンガンを析出し、該水和二酸化マンガンを前記粒状水処理用ろ過材の表面に被着する方法(特許文献2)がある。
【0003】
【特許文献1】
特公平2−22719号公報
【特許文献2】
特開2002―35576号公報
【0004】
【発明が解決しようとする課題】
前記従来の方法は、水に着色した色を除去するろ材として実用に耐え得るに充分なものを製造できるが、該ろ材を得るにはいずれも数日から1週間と長い製造時間が要求される欠点がある。
【0005】
本発明は、水中のマンガンイオンは勿論、色の除去に優れた、二酸化マンガンを主材とする水処理用ろ材を得、また比較的短時間で得ることを目的として創案したものである。
【0006】
【課題を解決するための手段】
β型二酸化マンガンとγ型二酸化マンガンの混合割合が1:1〜1:3で成るマンガン粉末を粒子状の芯材に被着した構成とし、製法的には容器に収容した、耐熱性素材より成る粒子状の芯材を被装状態下にした二酸化マンガン混合液を加熱して、混合液中より水分を除去して二酸化マンガン粉末を前記芯材に被着させることを基本的手段とする。
【0007】
ここで粒子状の芯材とは、砂、アンスラサイト、ガーネット、ゼオライト或いはシャモット等の加熱(焼成)温度に耐えることのできる粒子体(粒形が0.3〜1.5mm)をいうが、製法時や製品の適用時の取扱操作上の利便性(実用性)を無視すれば、理論的には粒径は自由に選択すれば良い。
【0008】
芯材を被装した状態下とは、二酸化マンガン混合液で粒子状の芯材を被った状態をいい、従って、二酸化マンガン混合液中に芯材をいわゆる浸漬状態においても良く、或いは芯材に二酸化マンガン混合液を散布し、該散布液によって芯材表面を被った状態であっても良いが、前者の場合、加熱によっての二酸化マンガン混合液中の水の除去に長時間を要するから、二酸化マンガン混合液中に芯材を投下するような前者より後者の方法を用いたほうが、早期の水の除去を期待できる。
【0009】
芯材量に対して、二酸化マンガン混合液の水分量が多いと二酸化マンガンが芯材全体に行き渡るが水分の乾燥時間が長くなる。また二酸化マンガン粉末は非水溶性であるため、水分量が少なくなると二酸化マンガンの混合液の粘性が増し、製造工程にて二酸化マンガン混合液のハンドリングが悪くなり、かつ全体に散布することが難しい。そのため適切な液量は、核となる芯材1000lあたり、マンガン濃度30〜50%の混合液を100l以上混合する。
【0010】
二酸化マンガンは表面の結晶構造で種類が分けられているが、β型およびγ型二酸化マンガンの混合物を水に混合させて二酸化マンガン濃度として30〜50%の混合液を用いると良い。
【0011】
なお、二酸化マンガン混合液中の水が除去(消失)した後の加熱操作の継続によって二酸化マンガン粉末が芯材に付着する理由は理論的に不明で、二酸化マンガンや芯材の熔解と考えるのが妥当なように思われるが、加熱温度が二酸化マンガンや芯材の熔解温度よりも低温であることを考えると、それは論拠を欠くように思われる。
【0012】
いずれにしても加熱温度次第(加熱温度の調節)でα型、β型、γ型或いはδ型いずれの二酸化マンガン粉末を素材として用いても良いが、γ型二酸化マンガン粉末は、加熱によって核となる耐熱性素材より成る粒子に付着しやすい反面、着色水中の色を除去する性能に劣る。ところがβ型二酸化マンガン粉末は色を除去する性能に最も優れているが付着性能が劣る。そのため、これら両者を混合して用いることにより製造時間の短縮という所期の目的を尚一層図れ、マンガンイオンの除去は勿論、色除去を充分に機能する製品を得ることができる。
【0013】
また、加熱手段としてはガスバーナーを用いる等自由に選択すれば良いが、マイクロ波(周波数2.45GHz)や赤外線による加熱手段を用いると混合液中の水を短時間で飛散させることができる。
【0014】
【実施形態】
第1工程
最大容量500lの回転式焼成釜(ポットミキサー)に芯材(ゼオライト粒子)300lを収容し、水70lに対してγ型二酸化マンガン粉末34kg、β型二酸化マンガン粉末15kgを撹拌機を用いて混合して得た混合液を散布する。
【0015】
混合液は芯材全体に行き渡らせる為に混合液の散布と撹拌(焼成釜の回転)を繰り返し、90秒間の散布と30秒間の撹拌を繰り返し(5〜6回となる)、12分間行った。
【0016】
第2工程
芯材を収容した焼成釜内に混合液を投入後、混合液が芯材全体に確実に行き渡るように焼成釜を10分間回転させ、撹拌操作を行った。
【0017】
第3工程
焼成釜をバーナーで釜内の材料を2〜3時間加熱して乾燥する。乾燥操作開始当初は焼成釜16rpmの速度で回転させ、水蒸気の発生(混合液によって)回転数を1rpmでの1分間の回転による撹拌操作と3分間中断の操作を繰り返し、2〜3時間乾燥操作を行った。
【0018】
第4工程
焼成釜内(ろ材)からの水蒸気の発生がないことを視認した後、回転数1rpmで20秒間の回転による撹拌操作と3分間の回転中断とを繰り返し、ろ材温度200℃の状態で2〜3時間の焼成操作を行った後、自然冷却して製品とした。
【0019】
芯材の量と混合水の散布量の関係をほぼ同様に行った他実施形態と共に下記に示す。表記の通り、各実施形態の混合液は水道水にβ型二酸化マンガン粉末とγ型二酸化マンガン粉末を混合したものである。
【0020】
【表1】

Figure 0003953970
【0021】
第二乃至第四実施形態の場合は、第一実施形態の場合と較べ、芯材および混合液(の散布量)の量が嵩むため乾燥時間や焼成時間がその分余計に必要とすることは勿論である。
【0022】
因みに、芯材に対する二酸化マンガン粉末の付着量を増やすには、芯材に二酸化マンガン粉末を付着したいわば一次製品としてのろ材(このままでもろ材として適用できる)を上記各実施形態でいう芯材に代えて焼成釜内に収容して前記と同様の工程を繰り返すことによって二次製品としてのろ材或いはさらなる繰り返し操作による三次製品としてのや四次製品としてのろ材を得ることができる。
【0023】
芯材に対する二酸化マンガン粉末の付着を層厚にすると、ろ過操作で行われる逆洗その他の操作によって二酸化マンガンが磨耗や欠落してもろ材としての寿命を延ばせるという利点がある。
【0024】
通水検査
第一実施形態によって得た製品(ろ材)の通水検査結果を下記に示す。
【0025】
製品の性能を確認するために、フミン酸試薬を用いて色度が35度になるように調整した人口フミン色度を原水として用いて通水試験を行った。通水検査条件を下表に示す。
【0026】
【表2】
Figure 0003953970
【0027】
通水流量をろ材量容積の倍数に換算して横軸にとり、処理水の色度を縦軸にプロットした結果を下図に示す。
【0028】
【表3】
Figure 0003953970
【0029】
実際の地下水の色度は最大でも20度であるため、飲料水水質基準である5度まで処理するためには15度相当の色度を除去する必要がある。なお地下水中にはフミン質以外にもさまざまな物質が含まれているが、通水試験で用いるフミン質試薬による人工色度は、地下水のように他の物質が含まれていないため、地下水よりも除去が容易である。そこで地下水のフミン質色度15度に相当する人工色度には30%の安全率を考慮し、20度とする。
【0030】
本条件にて製造したろ材は通水倍量100(L/L−ろ材)の時点で処理水質が11度に安定している。人口フミン色度の除去率は、原水が35度であったため24度であり、目標とする20度以上の色度除去性能を有すると判断する。
【0031】
A.混合比率の相違による性能確認
芯材と成るゼオライト粒子1lあたりに合計160gの二酸化マンガン粉末を使用する。使用する二酸化マンガン粉末はβ型とγ型の2種類とし、それぞれの混合比率(重量比)を変化させた試作品(上記実施形態とほぼ同様の操作で得た)にて性能の評価を行う。なお二酸化マンガン粉末の添着力をあらわす指標として洗浄濁度、色度(水に着色した色)除去能力をあらわす指標として人口フミン質色度の除去率を前記通水試験と同様にして測定する。
【0032】
【表4】
Figure 0003953970
【0033】
この試験結果から、最適なβ型二酸化マンガン粉末とγ型二酸化マンガン粉末の混合比率は1:2であり、1:1〜1:3の割合の範囲で効果が有効であるといえる。
【0034】
B.加熱手段の相違による性能確認
二酸化マンガンを主材とする水処理用ろ材の製造過程において、二酸化マンガン粉末を芯材に点着させるための加熱方法の違いによるろ材のフミン質色度の除去性能の特性を確認した。
【0035】
製造方法
(1)バーナーによる製造方法
▲1▼小型ドラム(容積3L)にγ型二酸化マンガン粉末113gと、β型二酸化マンガン粉末50gを水道水200mlに混合液を散布した粒径0.35mmの芯材1L(ゼオライト)を収容する。
【0036】
▲2▼小型ドラムの回転数を約2rpmとして、芯材乃至マンガン(ろ材)から水蒸気が発生するまでバーナーで加温する。(約1時間)
▲3▼ろ材から水蒸気が発生した後は、小型ドラムの回転数を約0.3rpmに調整し、ろ材の温度が180〜200℃になるまで加温して(約3〜4時間)製品(ろ材)とする。
【0037】
(2)電気炉による製造方法
▲1▼加熱温度が200℃以上になる電気(赤外線)炉に、回転ドラム(容積3L)を取り付け、該回転ドラムにγ型二酸化マンガン粉末113gと、β型二酸化マンガン粉末50gを水道水200mlに混合液を散布した粒径0.35mmの芯材(ゼオライト)を収容する。
【0038】
▲2▼電気炉の温度を105℃に調整し、ドラムの回転数を約2rpmとしてろ材の水分が蒸発するまで加温する。(約1時間)
▲3▼水分蒸発後、電気炉の加熱温度を200℃、ドラムの回転数を0.3rpmに調整し、ろ材の温度が180〜200℃になるまで加温して(約2〜3時間)製品(ろ材)とする。
【0039】
(3)マイクロ波による製造方法
▲1▼マイクロ波焼成機(2KW)に回転ドラム(容積3L)を取り付け、該回転ドラムにγ型二酸化マンガン粉末113gと、β型二酸化マンガン粉末50gを水道水200mlに混合液を散布した粒径0.35mmの芯材(ゼオライト)を収容する。
【0040】
▲2▼マイクロ波焼成機の加熱を開始し、ドラムの回転数を約2rpmとしてろ材の温度が180〜200℃になるまで加温して(約9分)製品とする。
【0041】
通水試験
(1)通水条件
【0042】
【表5】
Figure 0003953970
【0043】
(2)試験結果
通水試験による試験結果を下図に示す。バーナーで製造したろ材は11度、赤外線(電気炉)では10度、マイクロ波では9度に安定した。原水が35度であるため除去量では、バーナーで製造したろ材で24度、赤外線では25度、マイクロ波による製造では26度の色を除去しており、いずれも20度以上の色を除去している。
【0044】
【表6】
Figure 0003953970
【0045】
上記3種類の製造方法のなかで性能が優れているのは、マイクロ波、赤外線(電気炉)、バーナーによる加熱方法の順番であった。
【0046】
(3)考察
各焼成方法によって製造したろ材の比表面積をBET比表面積測定によって測定した結果を下表に示す。
【0047】
【表7】
Figure 0003953970
【0048】
焼成方法の違いにより、ろ材の比表面積が異なる理由としては次のことが考えられる。
【0049】
バーナーによる焼成は、外部的な熱量の放射によるものであるため、芯材に被覆した二酸化マンガンの外側から内側に向かって加熱され、乾燥も外側から内側の順に行われる。加熱された水分はろ材外部へ蒸散するため、ろ材内側からの水分の蒸散は先に外側で乾燥して固まった二酸化マンガンを破ることとなり、被膜させた二酸化マンガンを剥離させる原因となる。しかしながらマイクロ波は水の分子を振動させて発熱させるため、外側と内側を同時に発熱・蒸散することができ外側の二酸化マンガンの剥離を抑えることができ、結果として二酸化マンガンの被膜を保持させることができる。二酸化マンガンは粉体であるため、添着量が多いことは比表面積が大きくなることにつながり、水との接触面が大きくなるため、水中の色の除去性能が向上していることと考える。
【0050】
電気炉による加熱はバーナーによる加熱よりも色除去性能が優れていた。電気炉の加熱方式は赤外線を中心とする方法であるが、赤外線はマイクロ波に近い光の波長を持つため、マイクロ波に近い効果が得られているためであると考える。
【0051】
【発明の効果】
本発明は前記の通りの構成であるから、マンガンイオンは勿論、着色水からの色の除去に優れたろ材を提供することができ、当初より塊として存在する芯材に二酸化マンガンを付着させてろ材を得るものであるから、短時間で該二酸化マンガンを主材とするろ材を得ることができ、しかも、比較的安価な素材を芯材として適用することにより素材的にも安価な製品を得ることができる。[0001]
[Industrial application fields]
For example, manganese dioxide is used as a filter medium in order to remove the color of humic substances, which is a component of the groundwater colored in the groundwater, but the present invention is a filter medium for water treatment using the manganese dioxide as a main material. And a manufacturing method thereof.
[0002]
[Prior art]
Manganese salt obtained by immersing manganese dioxide powder in an acidic solution such as divalent manganese ions or sulfuric acid containing magnesium ions in addition to magnesium ions at a water temperature of 80 to 100 ° C. (Patent Document 1) or a filter medium for water treatment There is a method (Patent Document 2) in which a hydrated manganese dioxide is precipitated by immersing in a mixed solution, adding a chlorine-based oxidizing agent, and depositing the hydrated manganese dioxide on the surface of the particulate water treatment filter medium.
[0003]
[Patent Document 1]
Japanese Patent Publication No. 22-22719 [Patent Document 2]
Japanese Patent Laid-Open No. 2002-35576
[Problems to be solved by the invention]
The conventional methods can produce a filter medium that can withstand practical use as a filter medium that removes the color colored in water. However, in order to obtain the filter medium, a long production time of several days to one week is required. There are drawbacks.
[0005]
The present invention has been devised for the purpose of obtaining a filter medium for water treatment mainly composed of manganese dioxide, which is excellent in removing not only manganese ions in water, but also in a relatively short time.
[0006]
[Means for Solving the Problems]
A composition in which the mixing ratio of β-type manganese dioxide and γ-type manganese dioxide is 1: 1 to 1: 3 is applied to a particulate core material. The basic means is to heat the manganese dioxide mixed solution in which the particulate core material is put in a state of being covered, remove water from the mixed solution, and deposit the manganese dioxide powder on the core material.
[0007]
Here, the particulate core material refers to a particle body (particle shape is 0.3 to 1.5 mm) that can withstand the heating (firing) temperature of sand, anthracite, garnet, zeolite, or chamotte. If the convenience (practicality) in handling operations at the time of manufacturing or product application is ignored, the particle size can be selected freely in theory.
[0008]
Under the condition of covering the core material means a state in which the core material is covered with a manganese dioxide mixed solution, and therefore the core material may be in a so-called immersed state in the manganese dioxide mixed solution, The manganese dioxide mixed solution may be sprayed and the core material surface may be covered with the sprayed solution, but in the former case, it takes a long time to remove the water in the manganese dioxide mixed solution by heating. Early removal of water can be expected by using the latter method rather than the former method of dropping the core material into the manganese mixed solution.
[0009]
If the amount of water in the manganese dioxide mixed solution is large relative to the amount of the core material, manganese dioxide spreads over the entire core material, but the moisture drying time becomes longer. Further, since the manganese dioxide powder is insoluble in water, the viscosity of the mixed liquid of manganese dioxide increases when the water content is reduced, the handling of the mixed liquid of manganese dioxide is deteriorated in the manufacturing process, and it is difficult to spray the whole. For this reason, an appropriate amount of liquid is 100 l or more of a mixed liquid having a manganese concentration of 30 to 50% per 1000 l of the core material serving as a core.
[0010]
Manganese dioxide is classified according to the crystal structure of the surface. A mixture of β-type and γ-type manganese dioxide is mixed with water, and a mixed solution having a manganese dioxide concentration of 30 to 50% is preferably used.
[0011]
The reason why manganese dioxide powder adheres to the core material by continuing the heating operation after the water in the manganese dioxide mixture is removed (disappears) is theoretically unknown, and it can be considered as melting of manganese dioxide and core material. While this seems reasonable, it seems to be lacking in argument, given that the heating temperature is lower than the melting temperature of manganese dioxide and core material.
[0012]
In any case, α-type, β-type, γ-type or δ-type manganese dioxide powder may be used as a material depending on the heating temperature (adjustment of heating temperature). Although it tends to adhere to particles made of a heat-resistant material, it is inferior in the ability to remove the color from the colored water. However, β-type manganese dioxide powder is most excellent in the performance of removing the color, but the adhesion performance is inferior. Therefore, by mixing these two, the intended purpose of shortening the production time can be further achieved, and a product that sufficiently functions to remove color as well as manganese ions can be obtained.
[0013]
The heating means may be freely selected by using a gas burner or the like, but if a heating means using microwaves (frequency 2.45 GHz) or infrared rays is used, water in the mixed solution can be scattered in a short time.
[0014]
Embodiment
First step: 300 l of core material (zeolite particles) is placed in a rotary calciner (pot mixer) with a maximum capacity of 500 l, and 34 kg of γ-type manganese dioxide powder and 15 kg of β-type manganese dioxide powder are mixed with 70 l of water using a stirrer. Spread the mixture obtained by mixing.
[0015]
In order to spread the mixed liquid over the entire core material, spraying and stirring (rotation of the baking pot) of the mixed liquid were repeated, spraying for 90 seconds and stirring for 30 seconds were repeated (5 to 6 times), and performed for 12 minutes. .
[0016]
Second Step After the mixed solution was put into the baking pot containing the core material, the baking pot was rotated for 10 minutes to perform the stirring operation so that the mixed solution spread over the entire core material.
[0017]
3rd process The baking pot is heated with a burner for 2 to 3 hours to dry the pot. At the beginning of the drying operation, rotate at a speed of 16 rpm in the baking pot, repeat the agitation operation by rotating for 1 minute at 1 rpm with the generation of water vapor (depending on the liquid mixture) and the operation of interruption for 3 minutes, and dry operation for 2 to 3 hours Went.
[0018]
Step 4 After visually confirming that no steam is generated from the inside of the firing kettle (filter medium), the stirring operation by rotation for 20 seconds at a rotation speed of 1 rpm and the rotation interruption for 3 minutes are repeated, and the filter medium temperature is 200 ° C. After performing a baking operation for 2 to 3 hours, the product was naturally cooled to obtain a product.
[0019]
The relationship between the amount of the core material and the amount of the mixed water sprayed is shown below together with other embodiments in which the relationship is substantially the same. As indicated, the mixed liquid of each embodiment is a mixture of tap water and β-type manganese dioxide powder and γ-type manganese dioxide powder.
[0020]
[Table 1]
Figure 0003953970
[0021]
In the case of 2nd thru | or 4th embodiment, compared with the case of 1st embodiment, since the quantity of a core material and a liquid mixture (spreading amount) increases, it is that the drying time and baking time are needed for that extra part. Of course.
[0022]
Incidentally, in order to increase the amount of manganese dioxide powder attached to the core material, the filter medium as a primary product in which the manganese dioxide powder adheres to the core material (which can be applied as it is as it is) is replaced with the core material described in the above embodiments. Then, it is accommodated in a calcining pot and the same process as described above is repeated, so that a filter medium as a secondary product or a filter product as a tertiary product or a quaternary product by further repeated operations can be obtained.
[0023]
When the manganese dioxide powder adheres to the core material with a layer thickness, there is an advantage that the life of the filter medium can be extended even if manganese dioxide is worn or lost by backwashing or other operations performed in the filtration operation.
[0024]
The water flow inspection result of the product (filter material) obtained by the water flow inspection first embodiment is shown below.
[0025]
In order to confirm the performance of the product, a water flow test was conducted using artificial humin chromaticity adjusted to 35 degrees using a humic acid reagent as raw water. The following table shows the water flow inspection conditions.
[0026]
[Table 2]
Figure 0003953970
[0027]
The graph below shows the result of plotting the water flow rate into a multiple of the filter medium volume and taking the horizontal axis and plotting the chromaticity of the treated water on the vertical axis.
[0028]
[Table 3]
Figure 0003953970
[0029]
Since the actual chromaticity of groundwater is 20 degrees at the maximum, it is necessary to remove the chromaticity equivalent to 15 degrees in order to process up to 5 degrees which is the drinking water quality standard. Although groundwater contains various substances in addition to humic substances, the artificial chromaticity of the humic reagent used in the water flow test does not contain other substances like groundwater. Is easy to remove. Therefore, the artificial chromaticity corresponding to the humic chromaticity of 15 degrees of groundwater is set to 20 degrees in consideration of a safety factor of 30%.
[0030]
The filter medium produced under these conditions has a treated water quality of 11 degrees when the water flow rate is 100 (L / L-filter medium). The removal rate of the artificial humic chromaticity is 24 degrees because the raw water was 35 degrees, and it is determined that it has a target chromaticity removing performance of 20 degrees or more.
[0031]
A. A total of 160 g of manganese dioxide powder is used per 1 liter of zeolite particles as a core material for confirming performance due to the difference in mixing ratio. Manganese dioxide powder to be used has two types, β-type and γ-type, and the performance is evaluated by a prototype (obtained by almost the same operation as the above embodiment) in which the mixing ratio (weight ratio) is changed. . In addition, the removal rate of artificial humic chromaticity is measured in the same manner as in the water flow test as an index representing the ability to remove washing turbidity and chromaticity (color colored in water) as an index representing the adhesion of manganese dioxide powder.
[0032]
[Table 4]
Figure 0003953970
[0033]
From this test result, it can be said that the optimum mixing ratio of β-type manganese dioxide powder and γ-type manganese dioxide powder is 1: 2, and the effect is effective in the range of 1: 1 to 1: 3.
[0034]
B. Confirmation of performance due to differences in heating means In the process of manufacturing a water treatment filter medium mainly composed of manganese dioxide, the removal performance of humic chromaticity of the filter medium due to the difference in heating method for spotting manganese dioxide powder on the core material The characteristics were confirmed.
[0035]
Manufacturing method (1) Manufacturing method using a burner (1) Core having a particle size of 0.35 mm obtained by spraying a mixture of 113 g of γ-type manganese dioxide powder and 50 g of β-type manganese dioxide powder on 200 ml of tap water on a small drum (volume 3 L) The material 1L (zeolite) is accommodated.
[0036]
(2) The rotational speed of the small drum is set to about 2 rpm, and heating is performed with a burner until water vapor is generated from the core material or manganese (filter material). (About 1 hour)
(3) After water vapor is generated from the filter medium, adjust the rotation speed of the small drum to about 0.3 rpm and heat the filter medium until the temperature of the filter medium reaches 180 to 200 ° C. (about 3 to 4 hours). Filter media).
[0037]
(2) Manufacturing method using an electric furnace (1) A rotating drum (volume 3 L) is attached to an electric (infrared) furnace where the heating temperature is 200 ° C. or higher, and 113 g of γ-type manganese dioxide powder and β-type dioxide dioxide are attached to the rotating drum. A core material (zeolite) having a particle diameter of 0.35 mm in which 50 g of manganese powder is dispersed in 200 ml of tap water is accommodated.
[0038]
{Circle around (2)} The temperature of the electric furnace is adjusted to 105 ° C., the drum rotation speed is set to about 2 rpm, and heating is performed until the moisture of the filter medium evaporates. (About 1 hour)
(3) After moisture evaporation, the heating temperature of the electric furnace is adjusted to 200 ° C., the drum rotation speed is adjusted to 0.3 rpm, and the temperature of the filter medium is increased to 180 to 200 ° C. (about 2 to 3 hours). A product (filter material).
[0039]
(3) Manufacturing method by microwave (1) A rotating drum (volume: 3 L) is attached to a microwave baking machine (2 KW), and 113 g of γ-type manganese dioxide powder and 50 g of β-type manganese dioxide powder are placed in 200 ml of tap water. A core material (zeolite) having a particle size of 0.35 mm, in which the mixed solution is dispersed, is accommodated.
[0040]
(2) Heating of the microwave baking machine is started, the drum rotation speed is set to about 2 rpm, and the temperature of the filter medium is heated to 180 to 200 ° C. (about 9 minutes) to obtain a product.
[0041]
Water flow test (1) Water flow conditions [0042]
[Table 5]
Figure 0003953970
[0043]
(2) Test results The test results of the water flow test are shown in the figure below. The filter medium produced with the burner was stable at 11 degrees, infrared (electric furnace) at 10 degrees, and microwave at 9 degrees. Since the raw water is 35 degrees, the removal amount is 24 degrees for the filter medium produced by the burner, 25 degrees for the infrared ray, and 26 degrees for the microwave production, both of which remove the color of 20 degrees or more. ing.
[0044]
[Table 6]
Figure 0003953970
[0045]
Among the three types of manufacturing methods, the performance was superior in the order of microwave, infrared (electric furnace), and heating method using a burner.
[0046]
(3) Discussion The results of measuring the specific surface area of the filter medium produced by each firing method by BET specific surface area measurement are shown in the table below.
[0047]
[Table 7]
Figure 0003953970
[0048]
The following can be considered as the reason why the specific surface area of the filter medium differs depending on the firing method.
[0049]
Since the firing by the burner is due to external radiation of heat, the manganese dioxide coated on the core is heated from the outside to the inside, and drying is also performed in the order from the outside to the inside. Since the heated moisture evaporates to the outside of the filter medium, the evaporation of moisture from the inside of the filter medium breaks the manganese dioxide that has been dried and solidified on the outside first, causing peeling of the coated manganese dioxide. However, since microwaves generate heat by vibrating water molecules, heat and transpiration can be generated simultaneously on the outside and inside, and peeling of the outside manganese dioxide can be suppressed, and as a result, the manganese dioxide film can be retained. it can. Since manganese dioxide is a powder, a large amount of adhesion leads to an increase in specific surface area, and a contact surface with water increases, which is considered to improve the color removal performance in water.
[0050]
Heating with an electric furnace had better color removal performance than heating with a burner. Although the heating method of the electric furnace is a method centered on infrared rays, the infrared rays have a light wavelength close to that of the microwaves, so that it is considered that an effect close to that of the microwaves is obtained.
[0051]
【The invention's effect】
Since the present invention is configured as described above, it is possible to provide a filter medium excellent in removal of color from colored water as well as manganese ions, and by attaching manganese dioxide to the core material present as a lump from the beginning. Since a filter medium is obtained, a filter medium mainly composed of manganese dioxide can be obtained in a short time, and a relatively inexpensive material can be obtained as a core material to obtain an inexpensive product. be able to.

Claims (2)

β型二酸化マンガンとγ型二酸化マンガンの混合割合が1:1〜1:3で成るマンガン粉末を粒子状の芯材に被着した、二酸化マンガンを主材とする水処理用ろ材。  A water treatment filter medium comprising manganese dioxide as a main material, in which a manganese powder having a mixing ratio of β-type manganese dioxide and γ-type manganese dioxide of 1: 1 to 1: 3 is attached to a particulate core material. 耐熱性素材より成る粒子状の芯材を被装状態下にした二酸化マンガン混合液をマイクロ波又は赤外線を用いて加熱して、混合液中より水分を除去して二酸化マンガンを前記芯材に被着させることを特徴とする、二酸化マンガンを主材とする水処理用ろ材の製造方法。  A manganese dioxide mixed solution in which a particulate core material made of a heat-resistant material is covered is heated using microwaves or infrared rays, moisture is removed from the mixed solution, and manganese dioxide is coated on the core material. A method for producing a filter medium for water treatment comprising manganese dioxide as a main material, characterized in that it is attached.
JP2003079608A 2003-03-24 2003-03-24 Filter medium for water treatment mainly composed of manganese dioxide and method for producing the same Expired - Lifetime JP3953970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003079608A JP3953970B2 (en) 2003-03-24 2003-03-24 Filter medium for water treatment mainly composed of manganese dioxide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003079608A JP3953970B2 (en) 2003-03-24 2003-03-24 Filter medium for water treatment mainly composed of manganese dioxide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004283735A JP2004283735A (en) 2004-10-14
JP3953970B2 true JP3953970B2 (en) 2007-08-08

Family

ID=33293674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003079608A Expired - Lifetime JP3953970B2 (en) 2003-03-24 2003-03-24 Filter medium for water treatment mainly composed of manganese dioxide and method for producing the same

Country Status (1)

Country Link
JP (1) JP3953970B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109556A1 (en) * 2009-03-24 2010-09-30 株式会社アサカ理研 Water treatment method and water treatment system

Also Published As

Publication number Publication date
JP2004283735A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP2830262B2 (en) Method for forming hydroxyapatite film
JP4500234B2 (en) High purity metaphosphate and method for producing the same
CN110436508B (en) Preparation method and application of flaky nano copper oxide
CN104649705B (en) A kind of zeolite molecular sieve composite rectorite water purification pottery and preparation method thereof
CN109731574A (en) A kind of preparation method of catalyst complex carrier, the catalyst based on the carrier and catalyst
CN108529662A (en) A kind of method of modifying of nanometer Zinc oxide powder material
CN107262066A (en) Preparation method for the perlite adsorbent of heavy-metal ion removal
JP3953970B2 (en) Filter medium for water treatment mainly composed of manganese dioxide and method for producing the same
JP4473288B2 (en) Sol-gel alumina abrasive and Vitreous bonded abrasive products
RU2429907C1 (en) Natural glauconite granules, composition and method of preparing composition for producing granules
US2502130A (en) Preparation of magnesium ferrite pigment
JPH03174471A (en) Manufacture of inorganic oxide pigment
JP2528462B2 (en) Method for producing sodium hexatitanate fine particle powder
KR100278140B1 (en) Method for producing granular strontium carbonate using strontium-containing binder
CN109414136A (en) Use the heating cooker and its manufacturing method of ceramic heating element
CN103551080B (en) Method for plating titanium nitride on surface of cubic boron nitride particle
SU881070A1 (en) Ceramic material
US239393A (en) Enameling bricks
JPS605525B2 (en) Method for forming oxide film on silicon powder for welding agent
JP2004142954A (en) Surface porous calcium carbonate granular particle, manufacturing method therefor, and slurry consisting of the same
CN110946881A (en) Pill for treating lung cancer and application thereof
JP4446379B2 (en) Method for producing powdered fired product
CN112295883A (en) Surface treatment process for five-color zinc battery shell
JPH053413B2 (en)
KR20010056812A (en) Bamboo Salt Coated With Gold And Silver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070425

R150 Certificate of patent or registration of utility model

Ref document number: 3953970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term