JP2007237161A - Method and device for producing hydrogen-incorporated water - Google Patents

Method and device for producing hydrogen-incorporated water Download PDF

Info

Publication number
JP2007237161A
JP2007237161A JP2006317740A JP2006317740A JP2007237161A JP 2007237161 A JP2007237161 A JP 2007237161A JP 2006317740 A JP2006317740 A JP 2006317740A JP 2006317740 A JP2006317740 A JP 2006317740A JP 2007237161 A JP2007237161 A JP 2007237161A
Authority
JP
Japan
Prior art keywords
hydrogen
water
porous element
hydrogenated water
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006317740A
Other languages
Japanese (ja)
Other versions
JP3984279B2 (en
Inventor
Daigo Matsuoka
大悟 松岡
Maiko Takebe
茉衣子 武部
Takahiro Hayama
隆弘 早間
Toshinori Harada
利典 原田
Yuichi Takagaki
雄一 高垣
Kyuichi Matsui
久一 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Kasei Ltd
Original Assignee
Hiroshima Kasei Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Kasei Ltd filed Critical Hiroshima Kasei Ltd
Priority to JP2006317740A priority Critical patent/JP3984279B2/en
Publication of JP2007237161A publication Critical patent/JP2007237161A/en
Application granted granted Critical
Publication of JP3984279B2 publication Critical patent/JP3984279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide hydrogen-incorporated water whose pH is normal and oxidation-reduction potential is -400 mV to -680 mV, containing a large amount of minute hydrogen bubbles whose size is 2 μm to 120 μm. <P>SOLUTION: A device for producing the hydrogen-incorporated water comprises a closed tube with two openings at both ends and a diffusion chamber within the closed tube in a double tube construction, containing therein a porous stainless-steel element with its porosity of 200 mesh (0.074 mm) and thickness of 10 mm. The closed tube is supplied with running water whose oxidation-reduction potential is 357 mV, pH 7.25, temperature 13.2°C, pressure 0.2 MPa and flowing rate 15 L/minute to mix with hydrogen gas also supplied into the closed tube and adjusted to have pressure of 0.25 MPa and flowing rate of 0.5 L/minute, and thus the mixture passes the porous element to diffuse in the diffusion chamber, thereby obtaining the hydrogen-incorporated water with its oxidation-reduction potential of -615 mV, dissolved hydrogen of 1.31 ppm, flowing rate of 10 L/minute, and temperature of 13.3°C and containing a large amount of minute bubbles with the diameter of 200 mesh (0.074 mm). If necessary, two or more of these hydrogen-incorporated water producing devices are employed in series. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、加水素水の製造方法及び製造装置に関する。 The present invention relates to a method and an apparatus for producing hydrogenated water .

ヒトを含む哺乳動物(以下「生体」という)の体内には種々の酸化還元系が存在し、またその中の多くは相互に共役して生体内酸化還元反応に関与している。生体内酸化還元系の酸化還元電位は、反応の自由エネルギー変化および平衡定数と直接に関係しており、これらの反応の方向を予言するのに役立つものである。   There are various redox systems in mammals including humans (hereinafter referred to as “living bodies”), and many of them are conjugated to each other and involved in in vivo redox reactions. The redox potential of the in vivo redox system is directly related to the free energy change of the reaction and the equilibrium constant, and is useful for predicting the direction of these reactions.

哺乳動物の臓器、或いは生体内反応の酸化還元反応は電位が低く、通常−100mV〜−400mVの範囲であり、そのpHは3〜7の範囲である。体液の酸化還元電位が高くなると活性酸素が滞留し易く、器官に障害が出てくると云われている。とくに、腸内微生物が活発に活動して栄養成分を消化吸収する腸内は、嫌気性の還元雰囲気に維持されている必要がある。   The redox reaction of mammalian organs or in vivo reactions has a low potential, usually in the range of -100 mV to -400 mV, and the pH is in the range of 3-7. It is said that when the oxidation-reduction potential of the body fluid increases, active oxygen tends to stay and damage the organ. In particular, the intestines where the intestinal microorganisms actively act to digest and absorb nutrients must be maintained in an anaerobic reducing atmosphere.

たとえば、生体内における、「酢酸+CO+2H/α−ケトグルタル酸反応」の酸化還元電位は−673mV、「酢酸+CO/ピルビン酸反応」の酸化還元電位は−699mV、「酢酸+2H/アセトアルデヒド反応」の酸化還元電位は−581mV、フェレドキシンの酸化還元電位は−413mV、「キサンチン+H/ヒポキサンチン+HO」の酸化還元電位は−371mV、「尿酸+H/キサンチン+H2O」の酸化還元電位は−360mV、「アセト酢酸+2H/β−ヒドロキシ酪酸反応」の酸化還元電位は−346mV「シスチン+2H/2システイン反応」の酸化還元電位は−340mVである。 For example, the redox potential of “acetic acid + CO 2 + 2H + / α-ketoglutaric acid reaction” is −673 mV, the redox potential of “acetic acid + CO 2 / pyruvate reaction” is −699 mV, and “acetic acid + 2H + / acetaldehyde” in vivo. The redox potential of the “reaction” is −581 mV, the redox potential of ferredoxin is −413 mV, the redox potential of “xanthine + H + / hypoxanthine + H 2 O” is −371 mV, and the redox potential of “uric acid + H + / xanthine + H 2 O”. Is -360 mV, the redox potential of “acetoacetic acid + 2H + / β-hydroxybutyric acid reaction” is −346 mV, and the redox potential of “cystine + 2H + / 2 cysteine reaction” is −340 mV.

このように生体内における酵素、補酵素、代謝関連物質の反応は、酸化還元電位が低い環境下にある。また、酸化還元電位が低い水、または食品は、身体を酸化させる活性酸素や、1個又はそれ以上の不対電子を有する分子或いは原子、即ち、フリーラジカルを分離、消去する作用があって、SOD(スーパーオキシドジムスターゼ)という活性酸素消去酵素の反応を促進させると云われている。   Thus, the reactions of enzymes, coenzymes, and metabolism-related substances in the living body are in an environment where the redox potential is low. In addition, water or food having a low redox potential has an action of separating and eliminating active oxygen that oxidizes the body and molecules or atoms having one or more unpaired electrons, that is, free radicals, It is said to promote the reaction of an active oxygen scavenging enzyme called SOD (superoxide dismutase).

酸化還元反応を始めとする体内の代謝反応の場を提供しているのが、体液である。体液は生体のほぼ60%を占めている。体液は、水を中心として、電解質、タンパク質等を重要な構成要素としている。これが、酸化還元電位が低い水が生体内にとって有効な理由である。   Body fluids provide a place for metabolic reactions in the body, including redox reactions. Body fluids occupy almost 60% of the living body. Body fluids are composed mainly of water, and electrolytes, proteins, and the like as important components. This is the reason why water having a low redox potential is effective in vivo.

ところで、水道水の酸化還元電位は+400〜+800mV、pHが6.5〜8の範囲である。従って、水道水は、酸化還元電位が−100mV〜−400mVの範囲の生体臓器とバランスがとれないと考えられる。   By the way, the redox potential of tap water is +400 to +800 mV, and the pH is in the range of 6.5 to 8. Therefore, it is considered that tap water cannot be balanced with a living organ having a redox potential in the range of −100 mV to −400 mV.

現在、酸化体と還元体の混合状態にある水、たとえば水道水の酸化還元電位をマイナスにする方法として、たとえば電気分解法、高周波電流印加法等幾つか提案されている。然しながら、いずれも酸化還元電位の値とpHのバランスが、生体内酸化還元反応の観点から、理想的な方法ではなかった。   At present, several methods have been proposed for reducing the redox potential of water in a mixed state of an oxidant and a reductant, such as tap water, such as an electrolysis method and a high-frequency current application method. However, in any case, the balance between the value of the redox potential and the pH is not an ideal method from the viewpoint of the in vivo redox reaction.

生体反応の中には、酸化還元反応を伴う反応が多く、代謝反応等に極めて重要な役割を担っている。また、生体に限らず、酸化体と還元体を含んだ系(溶液)において、白金のようにそれ自体は酸化還元反応に関与しない不活性な電極を、その溶液に浸すと、電極間に電位差が現れる。この電位差が、酸化還元電位(Oxidation−Reduction Potential=ORP)で、単位はmVで表される。今、ある物質の酸化体の活量を[Ox]、還元体の活量を[Red]と表すと、両者の混合状態は、式(1)で表される。
[Ox]+ne→[Red] (1)
式(1)において、eは電子、nは移動する電子数である。
Many biological reactions involve oxidation-reduction reactions and play an extremely important role in metabolic reactions and the like. In addition, in a system (solution) containing an oxidant and a reductant, not limited to a living body, an inactive electrode that itself does not participate in the oxidation-reduction reaction, such as platinum, is immersed in the solution. Appears. This potential difference is an oxidation-reduction potential (Oxidation-Reduction Potential = ORP), and the unit is expressed in mV. Now, when the activity of an oxidant of a certain substance is represented as [Ox] and the activity of a reductant is represented as [Red], the mixed state of both is represented by the formula (1).
[Ox] + ne → [Red] (1)
In the formula (1), e is an electron, and n is the number of moving electrons.

式(1)で表した電極反応式の酸化還元電位(EmV)は、ネルンスト(Nernst)の式(2)で表される。
E=E+(RT/nF)ln[Ox]/[Red] (2)
式(2)において、Rは気体定数(8.31Jmol−1−1)、Tは絶対温度(K)、Fはファラデー定数(96406JV−1)である。Eは、[Ox]=[Red]の時の標準酸化還元電位である。
The oxidation-reduction potential (EmV) of the electrode reaction equation represented by the equation (1) is represented by the Nernst equation (2).
E = E 0 + (RT / nF) ln [Ox] / [Red] (2)
In formula (2), R is a gas constant (8.31 Jmol −1 K −1 ), T is an absolute temperature (K), and F is a Faraday constant (96406 JV −1 ). E 0 is a standard redox potential when [Ox] = [Red].

式(2)において、ln[Ox]/[Red]は、自然対数である。従って、分母、即ち[Red]を、分子、即ち[Ox]より、極端に大きくすればするほど、酸化還元電位Eのマイナス(−)値を大きくすることができることになる。即ち、理論的には、還元体[Red]の活量を、酸化体[Ox]の活量より大きくすればするほど、酸化還元電位をマイナス(−)値にすることができる。   In equation (2), ln [Ox] / [Red] is a natural logarithm. Therefore, the negative (−) value of the oxidation-reduction potential E can be increased as the denominator, that is, [Red] is made extremely larger than the numerator, that is, [Ox]. That is, theoretically, the greater the activity of the reductant [Red] than the activity of the oxidant [Ox], the more the redox potential can be made negative.

つまり、酸化体と還元体の混合状態にある原料水に水素を吹き込んで原料水の酸化還元電位をマイナス電位に低下させる方法においては、還元体[Red]の活量を、酸化体[Ox]の活量より大きくすることが重要となる。この場合、酸化体と還元体の混合状態にある原料水を、シリカ系石英斑岩に金属を担持させた還元触媒と接触させながら水素を吹き込むと、効率が良くなるので好ましい。   That is, in the method of reducing the oxidation-reduction potential of the raw material water to a negative potential by blowing hydrogen into the raw material water in a mixed state of the oxidant and the reductant, the activity of the reductant [Red] is changed to the oxidant [Ox]. It is important to make it larger than the activity of. In this case, it is preferable to blow hydrogen while bringing the raw material water in a mixed state of an oxidant and a reductant into contact with a reduction catalyst in which a metal is supported on silica-based quartz porphyry, because efficiency is improved.

本発明者らは、上述した理論的背景のもとに、これまでにも幾つかの水素水製造装置等を開発している(特許文献1)。   The present inventors have developed several hydrogen water production apparatuses and the like so far based on the above-described theoretical background (Patent Document 1).

特許文献1には、「反応槽と、反応槽に水密結合された原料水供給系パイプと、反応槽に水密結合された減圧系パイプと、反応槽に水密結合された水素供給系パイプと、反応槽に水密結合された生成水取出し系パイプから構成される水素水製造装置であって、(イ)反応槽が、透孔を有する仕切り板を介して少なくとも2個の上部チャンバと下部チャンバに分割されていて、仕切り板の上に還元触媒を載置したこと、(ロ)原料水供給系パイプが、原料水供給源に水密結合されていて、反応槽の上部チャンバ内に導入される先端に散水ノズルを具備していること、(ハ)減圧系パイプが、減圧装置に水密結合されていて、反応槽の上部チャンバ内に導入されていること、(ニ)水素供給系パイプが、水素供給装置に水密結合されていて、反応槽の下部チャンバの底部に水密結合されていること、(ホ)生成水取出し系パイプが、反応槽の下部チャンバの底部に水密結合されていることを特徴とする水素水製造装置。」が開示されている。   Patent Document 1 includes a “reaction tank, a raw material water supply system pipe that is watertightly coupled to the reaction tank, a decompression system pipe that is watertightly coupled to the reaction tank, a hydrogen supply system pipe that is watertightly coupled to the reaction tank, A hydrogen water production apparatus comprising a product water extraction system pipe that is watertightly coupled to a reaction vessel, wherein (a) the reaction vessel is connected to at least two upper chambers and lower chambers through a partition plate having through holes. (B) The raw material water supply system pipe is watertightly coupled to the raw material water supply source and introduced into the upper chamber of the reaction tank. (C) the decompression system pipe is watertightly coupled to the decompression device and is introduced into the upper chamber of the reaction vessel, and (d) the hydrogen supply system pipe is hydrogen. Watertightly coupled to the feeding device and react And (e) a generated water take-out system pipe is watertightly coupled to the bottom of the lower chamber of the reaction vessel. ing.

ところで、近年微細気泡の研究と、その用途開発が盛んに行われてきている。マイクロバブルは、直径が10〜数10μmの微細な気泡と定義されている。通常、水中で発生或いは形成される気泡の直径は数ミリ程度であるが、マイクロバブルはその1/100以下であるという特徴を活かした用途が開発されている。即ち、マイクロバブルは、液体中への吸収効率が高い、均一性と分散性に優れている、生体の生物活性を高める、超音波を当てると70℃程度までに発熱する等の特性を活かして、癌の診断や治療等に応用されている。具体的には、国立徳山工業高等専門学校土木建築学科大成博文教授の指導の下に、マイクロバブルによる酸素供給と殺菌作用により養殖カキの成長促進、夏カキの出荷、水質浄化等が報告されている。
特開2005−177724号
By the way, in recent years, research on fine bubbles and development of their uses have been actively conducted. Microbubbles are defined as fine bubbles having a diameter of 10 to several tens of micrometers. Usually, the diameter of bubbles generated or formed in water is about several millimeters, but applications utilizing the feature that microbubbles are 1/100 or less have been developed. In other words, microbubbles make use of properties such as high absorption efficiency in liquids, excellent uniformity and dispersibility, enhancing biological activity of living organisms, and generating heat up to about 70 ° C when exposed to ultrasonic waves. It is applied to cancer diagnosis and treatment. Specifically, under the guidance of Prof. Hirofumi Taisei, Department of Civil Engineering, National Tokuyama National College of Technology, the growth of cultured oysters, the shipment of summer oysters, the purification of water quality, etc. were reported by oxygen supply and sterilization by microbubbles. Yes.
JP-A-2005-177724

そこで、本発明においては加水素水の製造方法及び製造装置に関し、前記従来の課題を解決するもので、前記特許文献1に開示した水素水に大量の微細気泡を含有させることにより、かかる加水素水の産業上の用途を拡大させるべく、大量の微細気泡を含有させた加水素水の製造方法及び製造装置を提供することを目的とするものである。 Accordingly, the present invention relates to a method and an apparatus for producing hydrogenated water, which solves the above-described conventional problems. By adding a large amount of fine bubbles to the hydrogen water disclosed in Patent Document 1, such hydrogenated water is contained. An object of the present invention is to provide a method and apparatus for producing hydrogenated water containing a large amount of fine bubbles in order to expand the industrial use of water .

本発明の加水素水は、水素を大量に含み、酸化還元電位を−400mV以下に、pHを7より僅かに高く維持し、水素ガスをミリバブル、マイクロバブル、およびマイクロナノバブルまで広範な直径の微細気泡として大量に含んでいるものである。 The hydrogenated water of the present invention contains a large amount of hydrogen, maintains an oxidation-reduction potential of −400 mV or less, a pH slightly higher than 7, and hydrogen gas in a wide range of diameters from millibubbles, microbubbles, and micronanobubbles. It is contained in large quantities as bubbles.

ここで、微細気泡に関して、発生期のバブルの直径がミリ単位のものをミリバブル、10〜数10マイクロメートルの範囲のものをマイクロバブル、数100ナノメートル〜10マイクロメートルの範囲のものをマイクロナノバブル、数100ナノメートル以下のものをナノバブルと分類することがある。本発明でも、この分類を一部採用した。すなわち、本発明の加水素水は、発生期において、直径が0.12mm以下のミリバブルからマイクロバブル、およびマイクロナノバブルまで広範な直径の水素ガスの気泡を含んでいることを特徴とする Here, regarding the fine bubbles, those in which the diameter of the bubble in the nascent stage is in millimeters are millibubbles, those in the range of 10 to several tens of micrometers are microbubbles, and those in the range of several hundreds of nanometers to 10 micrometers are micronanobubbles In some cases, those of several hundred nanometers or less are classified as nanobubbles. In the present invention, this classification is partially adopted. That is, the hydrogenated water of the present invention is characterized in that it contains bubbles of hydrogen gas having a wide range of diameters from millibubbles having a diameter of 0.12 mm or less to microbubbles and micronanobubbles in the generation period .

本発明者らは、課題を解決するための手段を策定するに当たって、(1)原料水に所定の量の水素ガスを確実に吹き込むこと、(2)原料水に含有する水素ガスを所定の直径を有する微細気泡とすること、(3)バッチ式ではなく、連続式で加水素水を製造すること、(4)広い設置場所を必要とせず、必要に応じてシャワーのように可動性があり、簡便に取り扱うことができること、を検討した。 In developing the means for solving the problems, the inventors of the present invention (1) surely blow a predetermined amount of hydrogen gas into the raw water, and (2) the hydrogen gas contained in the raw water with a predetermined diameter. (3) Production of hydrogenated water in a continuous system, not a batch system, (4) A large installation space is not required, and it is mobile as a shower if necessary. We examined that it can be handled easily.

その結果、本発明の加水素水の製造装置の基本的な構成を、両端開口状に形成された管体と、前記管体の一方の端部に形成され、原料水を高圧で供給する原料水供給系と、前記管体に水密結合され、前記原料水供給系から供給された原料水に対して、ほぼ直角に水素を供給する水素供給系と、前記管体内において前記水素供給系の下流に管体の長手方向に形成され、原料水供給系から管体に供給された原料水と、水素供給系から管体に供給された水素の混合流体を拡散させるための拡散室と、前記拡散室に充填され、所定の孔径を有し、供給された原料水と水素との混合流体を通過させるための多孔質要素と、前記管体の他方の端部に形成され、前記多孔質要素を通過した原料水と水素との混合流体を排出する排出口とを具備してなり、前記管体を、隣接する前記原料水供給系と排出口とを接続して、長手方向に沿って略直線状に複数配設し、一の管体の排出口から排出された原料水と水素との混合流体を、隣接する管体の原料水供給系から管体内に高圧で供給し、隣接する管体の拡散室で水素と混合させた後に、多孔質要素に通過させて拡散させることで、水素ガスの微細気泡を多量に含有する加水素水を連続して製造する構成とすることとした。 As a result, the basic structure of a manufacturing apparatus of pressurized hydrogen water of the present invention, both ends an opening shape which is formed in the tubular body, it is formed at one end of the tubular body, a raw material supplying raw water at a high pressure and water supply systems, are watertight coupled to the tube body, the raw material water supplied from the raw water supply system, and a hydrogen supply system for supplying hydrogen substantially right angle, downstream of the hydrogen supply system in the tube body to be formed on the tube in the longitudinal direction, and the raw water supply system raw water supplied to the tube from a diffusion chamber for diffusing the mixed fluid of hydrogen supplied to the tube body from the hydrogen supply system, the A porous element filled in the diffusion chamber, having a predetermined pore diameter, for allowing the supplied mixed fluid of raw water and hydrogen to pass therethrough, and formed at the other end of the tubular body, the porous element comprising an outlet for discharging the mixed fluid of raw water and hydrogen that has passed through the result, the front A plurality of pipes are connected to the raw water supply system and the discharge port adjacent to each other, and are arranged in a plurality of substantially straight lines along the longitudinal direction, and the raw water and hydrogen discharged from the discharge port of one pipe body The mixed fluid is supplied at a high pressure from the raw water supply system of the adjacent pipe body into the pipe body, mixed with hydrogen in the diffusion chamber of the adjacent pipe body, and then passed through the porous element to be diffused. The hydrogenated water containing a large amount of hydrogen gas fine bubbles was continuously produced .

本発明の加水素水の製造装置の主要部材は、断面が主として円形、或いは角形の管体である。管体の材料は、炭素綱、ステンレススティール等金属が好ましいが、その他負圧に耐える強度を有するガラス、プラスチック、セラミックス、ゴム、あるいはこれらを組合せたものでもよい。   The main member of the apparatus for producing hydrogenated water of the present invention is a tubular body whose cross section is mainly circular or rectangular. The tube material is preferably a metal such as carbon steel or stainless steel, but may also be glass, plastic, ceramics, rubber, or a combination thereof, which has strength to withstand negative pressure.

管体の一方の端部には水の噴射口となる開口部が形成されていて、原料水を高圧で供給する原料水供給系が水密結合されている。原料水供給系は、水圧が0.1〜0.5MPaの水供給施設、通常は水道水と連結し、その中間にポンプを連結する。原料水の供給量は8〜20リットル/分が好ましい。   An opening serving as a water injection port is formed at one end of the tube, and a raw water supply system for supplying raw water at a high pressure is watertightly coupled. The raw material water supply system is connected to a water supply facility having a water pressure of 0.1 to 0.5 MPa, usually tap water, and a pump is connected between them. The supply amount of raw water is preferably 8 to 20 liters / minute.

管体の一方の端部に形成された水の噴射口の管体内側は、ノズルとなっていて、高圧で噴射された水をさらに高圧で噴射するようになっている。通常は、原料水を非圧縮性の状態、即ち音速以下で噴射させるので、ノズルの形状は、流路面積がなめらかに適当に小さくなるような、いわゆる先細ノズルでよい。しかしながら、原料水を圧縮性の状態、即ち音速以上で噴射させる場合は、流速が音速に等しくなるまでは、先細ノズルでもよいが、音速を超えた噴流を受けるには、再度流路面積を大きくする必要があるので、末広ノズルが必要となり、先細ノズルと末広ノズルを組合せたものとなる。   The inside of the pipe body of the water injection port formed at one end of the pipe body is a nozzle, and the water jetted at a high pressure is jetted at a higher pressure. Normally, since the raw water is injected in an incompressible state, that is, below the speed of sound, the shape of the nozzle may be a so-called tapered nozzle whose flow area is smoothly reduced appropriately. However, when the raw material water is injected in a compressible state, that is, at a sound velocity or higher, a tapered nozzle may be used until the flow velocity becomes equal to the sound velocity. However, in order to receive a jet flow exceeding the sound velocity, the flow area is increased again. Therefore, a divergent nozzle is required, and a tapered nozzle and a divergent nozzle are combined.

管体には、原料水供給系から供給された原料水に対して、ほぼ直角に水素を供給する水素供給系を水密結合して設ける。水素供給系には、逆止弁を設けて、原料水供給系から供給された水が、水素供給系に逆流するのを防止することが好ましい。
水素供給系には水素ボンベ、ガス圧調整装置、配管等が組み込まれていて、圧力を調整した水素ガスを噴射するようになっている。
The pipe is provided with a hydrogen supply system for supplying hydrogen at a substantially right angle to the raw water supplied from the raw water supply system in a watertight manner. The hydrogen supply system is preferably provided with a check valve to prevent water supplied from the raw water supply system from flowing back to the hydrogen supply system.
The hydrogen supply system incorporates a hydrogen cylinder, a gas pressure adjusting device, piping, and the like, and injects hydrogen gas with adjusted pressure.

水素ガスの供給圧力は、0.2〜0.8MPaが好ましく、その供給量は0.1〜1リットル/分が好ましい。   The supply pressure of hydrogen gas is preferably 0.2 to 0.8 MPa, and the supply amount is preferably 0.1 to 1 liter / min.

管体内には、前記水素供給系の下流に、管体の長手方向に拡散室が、いわゆるダブルチューブの構造で形成されている。拡散室は、原料水供給系から管体に供給された原料水と、水素供給系から管体に供給された水素の混合流体を拡散させるためのものである。 In the tube, a diffusion chamber is formed downstream of the hydrogen supply system in the longitudinal direction of the tube in a so-called double tube structure. Diffusion chamber is for diffusing the raw water from the raw water supply system is supplied to the tube, a mixed fluid of hydrogen supplied to the tube body from the hydrogen supply system.

拡散室は、両端から中央に向かって縮径構造、即ち、絞り構造となっていて、絞り部で負圧が形成されるようになっている。拡散室が絞り構造になっていて、負圧が形成されるようになっているので、原料水供給系から管体に供給された原料水と、水素供給系から管体に供給された水素との混合流体の吸引効果が増強される。   The diffusion chamber has a reduced-diameter structure, that is, a throttle structure from both ends toward the center, and a negative pressure is formed at the throttle portion. Since the diffusion chamber has a throttle structure and a negative pressure is formed, the raw water supplied from the raw water supply system to the pipe, the hydrogen supplied from the hydrogen supply system to the pipe, The suction effect of the mixed fluid is enhanced.

拡散室には、所定の孔径を有する多孔質要素が充填されている。拡散室に配設される多孔質要素は、一種のフィルターである。拡散室に導入される原料水と水素から成る混合流体を、多孔質要素を介して噴射することにより、多孔に形成されている孔の直径と同じ直径の気泡として形成するためのものである。   The diffusion chamber is filled with a porous element having a predetermined pore size. The porous element disposed in the diffusion chamber is a kind of filter. A mixed fluid composed of raw water and hydrogen introduced into the diffusion chamber is jetted through a porous element to form bubbles having the same diameter as the pores formed in a porous shape.

多孔室要素は、直径が120μm〜2μmの範囲の孔を有するものならば、その材料は特段に限定されない。砲金、ブロンズ、ニッケル、ステンレススティール、セラミックスなどの焼結体、金網等が使用できる。耐磨耗性と、製造された加水素水を飲用に供する場合には、ステンレススティールの焼結体が好ましい。   The material of the porous chamber element is not particularly limited as long as it has pores having a diameter in the range of 120 μm to 2 μm. Gunmetal, bronze, nickel, stainless steel, sintered bodies such as ceramics, and wire mesh can be used. In the case where the wear resistance and the produced hydrogenated water are used for drinking, a sintered body of stainless steel is preferable.

多孔室要素の形状は、円盤、円筒、円筒底付き、口金付き等多種多様な形状があるが、管体に挿入するには円筒形が好ましい。   The shape of the perforated chamber element has various shapes such as a disk, a cylinder, a cylinder bottom, and a base, but a cylinder is preferable for insertion into a tube.

多孔室要素の厚さは、5〜20mm、好ましくは5〜10mmであるが、水圧、水量等の条件によって適宜選択される。   The thickness of the porous chamber element is 5 to 20 mm, preferably 5 to 10 mm, and is appropriately selected depending on conditions such as water pressure and water amount.

市場から入手できる焼結体のTylerメッシュは、20〜250メッシュ(0.833mm〜0.061mm)の範囲があるが、直径が10μm以下の微細気泡を形成させるためには、120メッシュ以上を選択する。Tylerメッシュが大きくなるほど(mmが小さくなるほど)、高濃度の溶存水素量を得ることがきるが、水圧水量の圧損が大きくなり、製造効率が低下する。従って、求める溶存水素量、水量により、適宜選択することが重要である。   Sintered Tyler meshes available from the market range from 20 to 250 meshes (0.833 mm to 0.061 mm), but to form fine bubbles with a diameter of 10 μm or less, select 120 mesh or more. To do. The larger the Tyler mesh (the smaller the mm), the higher the concentration of dissolved hydrogen can be obtained. However, the pressure loss of the hydraulic water amount increases and the production efficiency decreases. Therefore, it is important to select appropriately depending on the amount of dissolved hydrogen and water to be obtained.

本発明の加水素水の製造装置は、2基以上を連結して使用するものである。特に、水道水の場合、水量15リットル/分以上の水量で、1.3ppm以上の溶存水素量を確保するのには、2基以上を連結して使用することが必要である。 The apparatus for producing hydrogenated water of the present invention is used by connecting two or more units. In particular, in the case of tap water, in order to secure a dissolved hydrogen amount of 1.3 ppm or more at a water amount of 15 liters / minute or more, it is necessary to use two or more connected together.

以上のことから、課題を解決するための手段として、請求項1においては、ダブルチューブ構造の拡散室が設けられ、該拡散室に所定の孔径を有する多孔質要素が設けられた管体を、長手方向に沿って略直線状に複数配設し、一の管体に、原料水を高圧で供給し、前記管体に、水素を供給し、拡散室で原料水と水素とを混合して原料水と水素の混合流体を形成し、前記混合流体を、前記多孔質要素に通過させて拡散させ、隣接する管体に、前記多孔質要素を通過した原料水と水素との混合流体を高圧で供給し、隣接する管体の拡散室で水素と混合させた後に、多孔質要素に通過させて拡散させることで、水素ガスの微細気泡を多量に含有する加水素水を連続して製造するものである。 From the above, as means for solving the problem, in claim 1, a tube body in which a diffusion chamber having a double tube structure is provided, and a porous element having a predetermined pore diameter is provided in the diffusion chamber, A plurality of substantially linearly arranged along the longitudinal direction , supplying raw water to one tube at high pressure, supplying hydrogen to the tube , and mixing raw water and hydrogen in the diffusion chamber A mixed fluid of raw water and hydrogen is formed , the mixed fluid is allowed to pass through the porous element and diffused , and a mixed fluid of raw water and hydrogen that has passed through the porous element is placed in an adjacent tube. Supply hydrogen at high pressure, mix with hydrogen in the diffusion chamber of the adjacent tube, and then pass through the porous element and diffuse to continuously produce hydrogenated water containing a large amount of hydrogen gas fine bubbles To do .

請求項2においては、前記微細気泡が、直径が120μm〜2μmの範囲である。 In the present invention, the fine bubbles have a diameter in the range of 120 μm to 2 μm.

請求項3においては、前記多孔質要素の孔の直径が120μm〜2μmである。 In Claim 3, the diameter of the hole of the said porous element is 120 micrometers-2 micrometers.

請求項4においては、前記多孔質要素が、金属またはセラミックスの焼結体である。 According to a fourth aspect of the present invention, the porous element is a sintered body of metal or ceramics.

請求項5においては、両端開口状に形成された管体と、前記管体の一方の端部に形成され、原料水を高圧で供給する原料水供給系と、前記管体に水密結合され、前記原料水供給系から供給された原料水に対して、ほぼ直角に水素を供給する水素供給系と、前記管体内において前記水素供給系の下流に管体の長手方向に形成され、原料水供給系から管体に供給された原料水と、水素供給系から管体に供給された水素の混合流体を拡散させるための拡散室と、前記拡散室に充填され、所定の孔径を有し、供給された原料水と水素との混合流体を通過させるための多孔質要素と、前記管体の他方の端部に形成され、前記多孔質要素を通過した原料水と水素との混合流体を排出する排出口とを具備してなり、前記管体を、隣接する前記原料水供給系と排出口とを接続して、長手方向に沿って略直線状に複数配設し、一の管体の排出口から排出された原料水と水素との混合流体を、隣接する管体の原料水供給系から管体内に高圧で供給し、隣接する管体の拡散室で水素と混合させた後に、多孔質要素に通過させて拡散させることで、水素ガスの微細気泡を多量に含有する加水素水を連続して製造するものである。 In claim 5, the tubular body formed at both ends opening shape, formed at one end of the tubular body, and raw water supply system for supplying raw material water under high pressure, is watertight coupled to said tubular body, the raw material water supplied from the raw water supply system, is formed with a hydrogen supply system supplying hydrogen to substantially perpendicular, to the downstream tube in the longitudinal direction of the hydrogen supply system in the tube body, raw water supplied has a raw water supplied to the tube body from the system, the diffusion chamber for diffusing the mixed fluid of supplied hydrogen to the tube body from the hydrogen supply system, is filled in the diffusion chamber, a predetermined pore size, A porous element for allowing a mixed fluid of supplied raw water and hydrogen to pass through, and a mixed fluid of raw water and hydrogen formed at the other end of the tubular body and passing through the porous element are discharged. and and a discharge port becomes, the tube body, the adjacent raw water supply system for Connected to the discharge port, a plurality of substantially straight lines are arranged along the longitudinal direction, and the mixed fluid of the raw water and hydrogen discharged from the discharge port of one pipe is used as the raw water of the adjacent pipe. Hydrogen gas containing a large amount of fine hydrogen gas bubbles is supplied from the supply system into the pipe body at high pressure, mixed with hydrogen in the diffusion chamber of the adjacent pipe body, and then passed through the porous element for diffusion. Water is produced continuously .

請求項6においては、前記微細気泡が、直径が120μm〜2μmの範囲である。 In Claim 6, the said fine bubble is a range whose diameter is 120 micrometers-2 micrometers.

請求項7においては、前記多孔質要素の孔の直径が120μm〜2μmである。 In Claim 7, the diameter of the hole of the said porous element is 120 micrometers-2 micrometers.

請求項8においては、前記多孔質要素が、金属またはセラミックスの焼結体である。 In an eighth aspect of the present invention, the porous element is a sintered body of metal or ceramics.

請求項9においては、原料水の供給圧力が0.1〜0.5MPaである。 In Claim 9, the supply pressure of raw material water is 0.1-0.5 MPa.

請求項10においては、原料水の供給量が8〜20リットル/分である。 In Claim 10, the supply amount of raw material water is 8-20 liters / min.

請求項11においては、水素の供給圧力が0.2〜0.8MPaである。 In claim 11, the supply pressure of hydrogen is 0.2 to 0.8 MPa.

請求項12においては、水素の供給量が0.1〜1リットル/分である。 In Claim 12, supply_amount | feed_rate of hydrogen is 0.1-1 liter / min.

請求項1に記載した発明により、水素ガスを混合気泡として大量に含んだ加水素水を所定の容器に充填して飲用用として商取引の対象にすることができる。
また、水素ガスが混合気泡として大量に含んでいるので、生体中への吸収効率が高、均一性と分散性に優れているため、生体の生物活性を高める等の性能を利用して、水質の浄化、癌の診断や治療等への応用が期待される。
また、酸化還元電位を所定の範囲に維持し、pHを中性に維持し、水素ガスを微細気泡として含有する加水素水を連続して製造することができる。
According to the first aspect of the present invention, hydrogenated water containing a large amount of hydrogen gas as mixed bubbles can be filled in a predetermined container and used for drinking for commercial transactions.
Further, since the hydrogen gas contains a large amount as a mixed bubbles, absorption efficiency into the living body rather high and excellent uniformity and dispersibility, utilizing the performance such as increasing the biological activity of a living body, Application to purification of water, diagnosis and treatment of cancer is expected.
Further, it is possible to continuously produce hydrogenated water that maintains the oxidation-reduction potential within a predetermined range, maintains the pH neutral, and contains hydrogen gas as fine bubbles.

請求項2に記載した発明により、加水素水が、直径が120μm〜2μmの範囲の水素ガスの微細気泡を含有しているので、製造された加水素水を、水質の浄化、癌の診断や治療等に応用する可能性が開ける。 According to the invention described in claim 2 , since the hydrogenated water contains fine bubbles of hydrogen gas having a diameter in the range of 120 μm to 2 μm, the produced hydrogenated water can be purified of water, diagnosed with cancer, Open up the possibility of applying to treatment etc.

請求項4に記載した発明により、孔の直径が120μm〜2μmの多孔質要素を適宜選択することにより、微細気泡の直径を120μm〜2μmの範囲で調整することができる。 According to the invention described in claim 4 , the diameter of the fine bubbles can be adjusted in the range of 120 μm to 2 μm by appropriately selecting a porous element having a pore diameter of 120 μm to 2 μm.

請求項5に記載した発明により、多孔質要素を、金属またはセラミックスの焼結体とすることにより、耐久性と孔の信頼度が高い多孔質要素とすることができる。 According to the invention described in claim 5 , by making the porous element a sintered body of metal or ceramic, a porous element having high durability and high reliability of pores can be obtained.

請求項6に記載した発明により、水素ガスを混合気泡として大量に含んだ加水素水を所定の容器に充填して飲用用として商取引の対象にすることができる。
また、製造される水素ガスが混合気泡として大量に含んでいるので、生体中への吸収効率が高く、均一性と分散性に優れているため、生体の生物活性を高める等の性能を利用して、水質の浄化、癌の診断や治療等への応用が期待される。
また、酸化還元電位を所定の範囲に維持し、pHを中性に維持し、水素ガスを微細気泡として含有する加水素水を連続して製造することができる。
また、構造を小型化、簡便化することにより、用途を拡大することができる。
According to the invention described in claim 6, hydrogenated water containing a large amount of hydrogen gas as mixed bubbles can be filled in a predetermined container and used for drinking for commercial transactions.
In addition, since the produced hydrogen gas contains a large amount as mixed bubbles, the absorption efficiency into the living body is high, and the uniformity and dispersibility are excellent. Therefore, it is expected to be applied to water purification, cancer diagnosis and treatment.
Further, it is possible to continuously produce hydrogenated water that maintains the oxidation-reduction potential within a predetermined range, maintains the pH neutral, and contains hydrogen gas as fine bubbles.
In addition, applications can be expanded by downsizing and simplifying the structure.

請求項7に記載した発明により、加水素水が、直径が120μm〜2μmの範囲の水素ガスの微細気泡を含有しているので、製造された加水素水を、水質の浄化、癌の診断や治療等に応用する可能性が開ける。 According to the invention described in claim 7 , since the hydrogenated water contains fine bubbles of hydrogen gas having a diameter in the range of 120 μm to 2 μm, the produced hydrogenated water can be purified of water, diagnosed with cancer, Open up the possibility of applying to treatment etc.

請求項8に記載した発明により、孔の直径が120μm〜2μmの多孔質要素を適宜選択することにより、微細気泡の直径を120μm〜2μmの範囲で調整することができる。 According to the invention described in claim 8 , the diameter of the fine bubbles can be adjusted in the range of 120 μm to 2 μm by appropriately selecting a porous element having a pore diameter of 120 μm to 2 μm.

請求項9に記載した発明により、多孔質要素を、金属またはセラミックスの焼結体とすることにより、耐久性と孔の信頼度が高い多孔質要素とすることができる。 According to the ninth aspect of the present invention, a porous element having high durability and high reliability of pores can be obtained by making the porous element a sintered body of metal or ceramics.

請求項10に記載した発明により、通常の水道水(常水)を、原料水として使用できるので、使用範囲が拡大される。 According to the invention described in claim 10 , since normal tap water (normal water) can be used as raw water, the range of use is expanded.

請求項11に記載した発明により、原料水の供給量が8〜20リットル/分であるので、通常の水道水(常水)に対応できる。 According to the eleventh aspect of the present invention, since the supply amount of the raw material water is 8 to 20 liters / minute, it can correspond to normal tap water (normal water).

請求項12に記載した発明により、0.5〜1.6ppmの水素を含有させることができる。 According to the invention described in claim 12 , 0.5 to 1.6 ppm of hydrogen can be contained.

以下、発明を実施するための最良の形態を説明する。   The best mode for carrying out the invention will be described below.

図1は、実施例1で使用した装置の断面図である。図1において、1は、ステンレススティールの管体で製造した加水素水製造装置、2は、原料水供給口で、(図示していない)水道水供給口、ポンプ、配管等と水密結合されていて原料水供給系を形成している。3は、水素供給口で、(図示していない)水素ボンベ、ガス圧調整装置、配管等と水密結合されていて水素供給系を形成し、原料水に対してほぼ直角に水素を噴射するようになっている。原料水供給口2の先端には、先細ノズル4が接続されていて、原料水を高圧で噴射するようになっている。   1 is a cross-sectional view of the apparatus used in Example 1. FIG. In FIG. 1, reference numeral 1 denotes a hydrogenated water manufacturing apparatus manufactured with a stainless steel pipe body, and 2 a raw water supply port, which is watertightly coupled with a tap water supply port (not shown), a pump, piping, and the like. The raw water supply system is formed. Reference numeral 3 denotes a hydrogen supply port, which is watertightly coupled to a hydrogen cylinder (not shown), a gas pressure adjusting device, a pipe and the like to form a hydrogen supply system so that hydrogen is injected substantially at right angles to the raw water. It has become. A tapered nozzle 4 is connected to the tip of the raw water supply port 2 so that the raw water is injected at a high pressure.

5は、ダブルチューブ状構造で管体1内に形成された拡散室である。拡散室5は、両端から中央に向かって縮径構造、即ち、絞り構造となっていて、絞り部で負圧が形成されるようになっている。拡散室が絞り構造になっていて、その下流部の先端は、製造された加水素水を排出する排出口7となっている。   Reference numeral 5 denotes a diffusion chamber formed in the tube body 1 with a double tube structure. The diffusion chamber 5 has a reduced diameter structure, that is, a throttle structure from both ends toward the center, and a negative pressure is formed at the throttle portion. The diffusion chamber has a throttle structure, and the downstream end of the diffusion chamber serves as a discharge port 7 for discharging the produced hydrogenated water.

拡散室5の縮径部分には、多孔質要素6が充填されている。多孔質要素6は、厚さ10mm、孔径サイズ200メッシュ(0.074mm)のステンレススティールの焼結体である。 The reduced diameter portion of the diffusion chamber 5 is filled with a porous element 6. The porous element 6 is a sintered body of stainless steel having a thickness of 10 mm and a pore size of 200 mesh (0.074 mm).

広島県福山市水道局の水道水(酸化還元電位=357mV、pH=7.25、溶存水素量=3ppb、水温=13.2℃)を、水圧0.2MPa、水量15リットル/分で原料水供給口2から噴出させた。水素ガスを、ガス圧調整器でガス圧を0.25MPa、流量を0.5リットル/分に調整して、水素供給口3から噴出させ、原料水と水素の混合流体を形成し、多孔質要素6を介して、拡散室5内に拡散させ、水量10リットル/分、水温13.3℃、溶存水素量が1.31ppm、酸化還元電位が−615mV、pHが7.35で、200メッシュ(0.074mm)を中心とする微細気泡を大量に含有している加水素水を排出口7から連続して得た。   Tap water from the Fukuyama City Waterworks Bureau, Hiroshima Prefecture (redox potential = 357 mV, pH = 7.25, dissolved hydrogen amount = 3 ppb, water temperature = 13.2 ° C.), raw water at a water pressure of 0.2 MPa and a water volume of 15 liters / minute It was ejected from the supply port 2. Hydrogen gas is adjusted with a gas pressure regulator to a gas pressure of 0.25 MPa and a flow rate of 0.5 liter / min, and is ejected from the hydrogen supply port 3 to form a mixed fluid of raw material water and hydrogen. Diffusion into the diffusion chamber 5 through the element 6, water volume 10 liters / minute, water temperature 13.3 ° C., dissolved hydrogen volume 1.31 ppm, redox potential −615 mV, pH 7.35, 200 mesh Hydrogenated water containing a large amount of fine bubbles centering on (0.074 mm) was continuously obtained from the discharge port 7.

多孔質要素の厚さを5mmに変更した以外は、実施例1で使用した装置と同じ装置を使用した。
広島県福山市水道局の水道水(酸化還元電位=357mV、pH=7.25、溶存水素量=3ppb、水温=13.2℃)を、水圧0.2MPa、水量15リットル/分で原料水供給口2から噴出させた。水素ガスを、ガス圧調整器でガス圧を0.25MPa、流量を0.5リットル/分に調整して、水素供給口3から噴出させ、原料水と水素の混合流体を形成し、多孔質要素6を介して、拡散室5内に拡散させ、水量12リットル/分、水温13.3℃、溶存水素量が0.9ppm、酸化還元電位が−600mV、pHが7.30で、200メッシュ(0.074mm)を中心とする微細気泡を大量に含有している加水素水を排出口7から連続して得た。
The same apparatus as that used in Example 1 was used except that the thickness of the porous element was changed to 5 mm.
Tap water of Fukuyama City Waterworks Bureau, Hiroshima Prefecture (redox potential = 357 mV, pH = 7.25, dissolved hydrogen amount = 3 ppb, water temperature = 13.2 ° C.), raw water at a water pressure of 0.2 MPa and a water volume of 15 liters / minute It was ejected from the supply port 2. Hydrogen gas is adjusted with a gas pressure regulator to a gas pressure of 0.25 MPa and a flow rate of 0.5 liter / min, and is ejected from the hydrogen supply port 3 to form a mixed fluid of raw material water and hydrogen. It is diffused into the diffusion chamber 5 through the element 6, the amount of water is 12 liters / minute, the water temperature is 13.3 ° C., the amount of dissolved hydrogen is 0.9 ppm, the redox potential is −600 mV, the pH is 7.30, and 200 mesh. Hydrogenated water containing a large amount of fine bubbles centering on (0.074 mm) was continuously obtained from the discharge port 7.

多孔質要素の厚さを10mm、孔径を60メッシュ(0.246mm)に変更した以外は、実施例1で使用した装置と同じ装置を使用した。
広島県福山市水道局の水道水(酸化還元電位=357mV、pH=7.25、溶存水素量=3ppb、水温=13.2℃)を、水圧0.2MPa、水量15リットル/分で原料水供給口2から噴出させた。水素ガスを、ガス圧調整器でガス圧を0.25MPa、流量を0.5リットル/分に調整して、水素供給口3から噴出させ、原料水と水素の混合流体を形成し、多孔質要素6を介して、拡散室5内に拡散させ、水量12リットル/分、水温13.3℃、溶存水素量が0.92ppm、酸化還元電位が−600mV、pHが7.31で、60メッシュ(0.246mm)を中心とする微細気泡を大量に含有している加水素水を排出口7から連続して得た。
The same apparatus as that used in Example 1 was used except that the thickness of the porous element was changed to 10 mm and the pore diameter was changed to 60 mesh (0.246 mm).
Tap water of Fukuyama City Waterworks Bureau, Hiroshima Prefecture (redox potential = 357 mV, pH = 7.25, dissolved hydrogen amount = 3 ppb, water temperature = 13.2 ° C.), raw water at a water pressure of 0.2 MPa and a water volume of 15 liters / minute It was ejected from the supply port 2. Hydrogen gas is adjusted with a gas pressure regulator to a gas pressure of 0.25 MPa and a flow rate of 0.5 liter / min, and is ejected from the hydrogen supply port 3 to form a mixed fluid of raw material water and hydrogen. It is diffused into the diffusion chamber 5 through the element 6, the amount of water is 12 liters / minute, the water temperature is 13.3 ° C., the amount of dissolved hydrogen is 0.92 ppm, the redox potential is −600 mV, the pH is 7.31, and 60 mesh. Hydrogenated water containing a large amount of fine bubbles centered on (0.246 mm) was continuously obtained from the outlet 7.

多孔質要素の厚さを5mm、孔径を60メッシュ(0.246mm)に変更した以外は、実施例1で使用した装置と同じ装置を使用した。
広島県福山市水道局の水道水(酸化還元電位=357mV、pH=7.25、溶存水素量=3ppb、水温=13.2℃)を、水圧0.2MPa、水量15リットル/分で原料水供給口2から噴出させた。水素ガスを、ガス圧調整器でガス圧を0.25MPa、流量を0.5リットル/分に調整して、水素供給口3から噴出させ、原料水と水素の混合流体を形成し、多孔質要素6を介して、拡散室5内に拡散させ、水量14リットル/分、水温13.3℃、溶存水素量が0.75ppm、酸化還元電位が−600mV、pHが7.28で、60メッシュ(0.246mm)を中心とする微細気泡を大量に含有している加水素水を排出口7から連続して得た。
The same apparatus as that used in Example 1 was used except that the thickness of the porous element was changed to 5 mm and the pore diameter was changed to 60 mesh (0.246 mm).
Tap water of Fukuyama City Waterworks Bureau, Hiroshima Prefecture (redox potential = 357 mV, pH = 7.25, dissolved hydrogen amount = 3 ppb, water temperature = 13.2 ° C.), raw water at a water pressure of 0.2 MPa and a water volume of 15 liters / minute It was ejected from the supply port 2. Hydrogen gas is adjusted with a gas pressure regulator to a gas pressure of 0.25 MPa and a flow rate of 0.5 liter / min, and is ejected from the hydrogen supply port 3 to form a mixed fluid of raw material water and hydrogen. It diffuses in the diffusion chamber 5 through the element 6, the amount of water is 14 liters / minute, the water temperature is 13.3 ° C., the amount of dissolved hydrogen is 0.75 ppm, the oxidation-reduction potential is −600 mV, the pH is 7.28, and 60 mesh. Hydrogenated water containing a large amount of fine bubbles centered on (0.246 mm) was continuously obtained from the outlet 7.

図2は、実施例5で使用した装置の断面図である。実施例5で使用した装置は、厚さ10mmで、孔径が200メッシュ(0.074mm)の多孔質要素6を装着した実施例1の装置を2基連結した構造である。
具体的には、前記管体を、隣接する水素供給口3と排出口7とを接続して、長手方向に沿って略直線状に2基配設したものであって、一の排出口7から排出された原料水と水素との混合流体を、隣接する水素供給口3から管体内に高圧で供給して、隣接する管体の拡散室5で連続して水素と混合させるものである。
広島県福山市水道局の水道水(酸化還元電位=357mV、pH=7.25、溶存水素量=3ppb、水温=13.2℃)を、水圧0.2MPa、水量20リットル/分で、2個の原料水供給口2から噴出させた。水素ガスを、ガス圧調整器でガス圧を0.25MPa、流量を0.5リットル/分に調整して、2個の水素供給口3、3から噴出させ、原料水と水素の混合流体を形成し、2枚の多孔質要素6、6を介して、2個の拡散室5、5内に拡散させ、水量15リットル/分、水温13.3℃、溶存水素量が1.7ppm、酸化還元電位が−625mV、pHが7.31で、200メッシュ(0.074mm)を中心とする微細気泡を大量に含有している加水素水を排出口7から連続して得た。
FIG. 2 is a cross-sectional view of the apparatus used in Example 5. The apparatus used in Example 5 has a structure in which two apparatuses of Example 1 equipped with a porous element 6 having a thickness of 10 mm and a pore diameter of 200 mesh (0.074 mm) are connected.
Specifically, the pipe body is formed by connecting two adjacent hydrogen supply ports 3 and discharge ports 7 in a substantially straight line along the longitudinal direction. A mixed fluid of raw material water and hydrogen discharged from is supplied at high pressure from the adjacent hydrogen supply port 3 into the pipe body, and is continuously mixed with hydrogen in the diffusion chamber 5 of the adjacent pipe body.
Fukuyama City Waterworks, Hiroshima Prefecture tap water (redox potential = 357 mV, pH = 7.25, dissolved hydrogen amount = 3 ppb, water temperature = 13.2 ° C.) with a water pressure of 0.2 MPa and a water volume of 20 liters / min. Each raw material water supply port 2 was ejected. Hydrogen gas is jetted from the two hydrogen supply ports 3 and 3 by adjusting the gas pressure with a gas pressure regulator to 0.25 MPa and the flow rate to 0.5 liter / min, and the mixed fluid of raw water and hydrogen is supplied. Formed and diffused into the two diffusion chambers 5 and 5 through the two porous elements 6 and 6, the amount of water is 15 liters / minute, the water temperature is 13.3 ° C., the dissolved hydrogen amount is 1.7 ppm, and the oxidation Hydrogenated water having a reduction potential of −625 mV, a pH of 7.31, and containing a large amount of fine bubbles centered on 200 mesh (0.074 mm) was continuously obtained from the discharge port 7.

図3は、実施例6で使用した装置の断面図である。実施例6で使用した装置は、厚さ10mmで、孔径が60メッシュ(0.246mm)の多孔質要素6を装着した実施例3の装置を3基連結した構造である。
広島県福山市水道局の水道水(酸化還元電位=357mV、pH=7.25、溶存水素量=3ppb、水温=13.2℃)を、水圧0.2MPa、水量20リットル/分で、3個の原料水供給口2から噴出させた。水素ガスを、ガス圧調整器でガス圧を0.25MPa、流量を0.5リットル/分に調整して、3個の水素供給口3、3、3から噴出させ、原料水と水素の混合流体を形成し、3枚の多孔質要素6、6、6を介して、3個の拡散室5、5、5内に拡散させ、水量15リットル/分、溶存水素量が1.52ppm、酸化還元電位が−623mV、pHが7.31で60メッシュ(0.246mm)の微細気泡を大量に含有している加水素水を排出口7から連続して得た。
FIG. 3 is a cross-sectional view of the apparatus used in Example 6. The apparatus used in Example 6 has a structure in which three apparatuses of Example 3 equipped with a porous element 6 having a thickness of 10 mm and a pore diameter of 60 mesh (0.246 mm) are connected.
The tap water of the Fukuyama City Waterworks Bureau in Hiroshima Prefecture (redox potential = 357 mV, pH = 7.25, amount of dissolved hydrogen = 3 ppb, water temperature = 13.2 ° C.), water pressure of 0.2 MPa, water volume of 20 liters / minute, 3 Each raw material water supply port 2 was ejected. Hydrogen gas is jetted from the three hydrogen supply ports 3, 3 and 3 by adjusting the gas pressure to 0.25 MPa and the flow rate to 0.5 liter / min with a gas pressure regulator, and mixing of raw water and hydrogen A fluid is formed and diffused into the three diffusion chambers 5, 5, and 5 through the three porous elements 6, 6, and 6, the amount of water is 15 liters / minute, the amount of dissolved hydrogen is 1.52 ppm, and the oxidation Hydrogenated water having a reduction potential of −623 mV, a pH of 7.31, and containing a large amount of fine bubbles of 60 mesh (0.246 mm) was continuously obtained from the discharge port 7.

実施例1で使用したと同じ装置、同じ多孔質要素(厚さ10mm、孔径200メッシュ(0.074mm)を使用した。
広島県福山市水道局の水道水(酸化還元電位=357mV、pH=7.25、溶存水素量=3ppb)を給湯器で40℃の温水にした。この温水を、水圧0.2MPa、水量15リットル/分で、原料水供給口2から噴出させた。水素ガスを、ガス圧調整器でガス圧を0.25MPa、流量を0.5リットル/分に調整して、水素供給口3から噴出させ、温水と水素の混合流体を形成し、多孔質要素6を介して、拡散室5内に拡散させ、水量10リットル/分、水温40.0℃、溶存水素量が1.30ppm、酸化還元電位が−614mV、pHが7.36で、200メッシュ(0.074mm)を中心とする微細気泡を大量に含有している加水素温水を排出口7から連続して得た。
The same apparatus and the same porous element (thickness 10 mm, pore diameter 200 mesh (0.074 mm)) as used in Example 1 were used.
The tap water (oxidation reduction potential = 357 mV, pH = 7.25, dissolved hydrogen amount = 3 ppb) of the Fukuyama City Waterworks Bureau, Hiroshima Prefecture was heated to 40 ° C. with a water heater. This hot water was ejected from the raw water supply port 2 at a water pressure of 0.2 MPa and a water volume of 15 liters / minute. Hydrogen gas is adjusted with a gas pressure regulator to a gas pressure of 0.25 MPa and a flow rate of 0.5 liter / min, and is ejected from the hydrogen supply port 3 to form a mixed fluid of hot water and hydrogen. 6, diffused into the diffusion chamber 5, water volume 10 liters / minute, water temperature 40.0 ° C., dissolved hydrogen volume 1.30 ppm, redox potential −614 mV, pH 7.36, 200 mesh ( Hydrogenated hot water containing a large amount of fine bubbles centering on 0.074 mm) was continuously obtained from the discharge port 7.

本実施例の加水素水、およびその製造方法ならびに製造装置は、上述した実施例に限定されず、例えば、上述の実施例5および6においては、複数の加水素水製造装置を直列連結した構成について説明したが、複数の加水素水製造装置を並列連結して構成してもよい。   The hydrogenated water of this embodiment, its production method, and production apparatus are not limited to the above-described embodiments. For example, in the above-described Examples 5 and 6, a plurality of hydrogenated water production apparatuses are connected in series. However, a plurality of hydrogenated water production apparatuses may be connected in parallel.

本発明の実施例で使用する加水素水製造装置の断面図。Sectional drawing of the hydrogenated water manufacturing apparatus used in the Example of this invention. 本発明の別の実施例で使用する加水素水製造装置の断面図。Sectional drawing of the hydrogenated water manufacturing apparatus used in another Example of this invention. 本発明のさらに別の実施例で使用する加水素水製造装置の断面図。Sectional drawing of the hydrogenated water manufacturing apparatus used in another Example of this invention.

符号の説明Explanation of symbols

1 加水素水製造装置
2 原料水供給口
3 水素供給口
4 ノズル
5 拡散室
6 多孔質要素
7 加水素水排出口
DESCRIPTION OF SYMBOLS 1 Hydrogenated water production apparatus 2 Raw material water supply port 3 Hydrogen supply port 4 Nozzle 5 Diffusion chamber
6 Porous element 7 Hydrogenated water outlet

Claims (14)

酸化還元電位が−400mV〜−680mVで、pHが中性で、0.5〜1.6ppmの量の水素ガスを、直径が120μm〜2μmの範囲のミリバブル、マイクロバブル、およびマイクロナノバブルの混合気泡として大量に含んだ加水素水。   A mixed bubble of millibubbles, microbubbles, and micronano bubbles having a redox potential of -400 mV to -680 mV, a neutral pH, and an amount of 0.5 to 1.6 ppm of hydrogen gas, and a diameter of 120 μm to 2 μm. Hydrogenated water contained in large quantities. (イ)両端開口の密閉管体内に、拡散室をダブルチューブ構造で設けることと、
(ロ)拡散室に所定の孔径を有する多孔質要素を設けることと、
(ハ)密閉管体に、原料水を高圧で供給することと、
(ニ)密閉管体に、水素を供給し、原料水と混合して水と水素の混合流体を形成することと、
(ホ)前記混合流体を、前記多孔質要素を通過させて拡散室に拡散することと、
(ヘ)製造された加水素水を密閉管体から取り出すことを含む水素を微細気泡として大量に含んだ加水素水の製造方法。
(A) providing a diffusion chamber with a double tube structure in a sealed tube opening at both ends;
(B) providing a porous element having a predetermined pore size in the diffusion chamber;
(C) supplying raw water to the sealed pipe body at high pressure;
(D) supplying hydrogen to the sealed tube and mixing it with raw material water to form a mixed fluid of water and hydrogen;
(E) diffusing the mixed fluid through the porous element into the diffusion chamber;
(F) A method for producing hydrogenated water containing a large amount of hydrogen as fine bubbles, including taking out the produced hydrogenated water from the sealed tube.
微細気泡が、直径が120μm〜2μmの範囲のミリバブル、マイクロバブル、およびマイクロナノバブルの混合気泡である請求項2に記載した加水素水の製造方法。   The method for producing hydrogenated water according to claim 2, wherein the fine bubbles are mixed bubbles of millibubbles, microbubbles, and micronanobubbles having a diameter in the range of 120 μm to 2 μm. 前記多孔質要素の孔の直径が120μm〜2μmである請求項2または3に記載した加水素水の製造方法。   The method for producing hydrogenated water according to claim 2 or 3, wherein the pore diameter of the porous element is 120 µm to 2 µm. 前記多孔質要素が、金属またはセラミックスの焼結体である請求項2〜4のいずれか1項に記載した加水素水の製造方法。   The method for producing hydrogenated water according to any one of claims 2 to 4, wherein the porous element is a sintered body of metal or ceramics. (イ)管体と、
(ロ)管体の一方の端部に形成され、原料水を高圧で供給する原料水供給系と、
(ハ)管体に水密結合され、原料水供給系から供給された原料水に対して、ほぼ直角に水素を供給する水素供給系と、
(ニ)管体内において前記水素供給系の下流に管体の長手方向に形成され、原料水供給系から管体に供給された原料水と、水素供給系から管体に供給された水素の混合流体を拡散させるための拡散室と、
(ホ)拡散室に充填され、所定の孔径を有し、供給された水素を微細気泡として通過させるための多孔質要素と、
(ヘ)管体の他方の端部に形成され、製造された加水素水を排出する排出口とを備えている水素を微細気泡として大量に含んだ加水素水の製造装置。
(I) Tube and
(B) a raw material water supply system that is formed at one end of the tubular body and supplies raw water at a high pressure;
(C) a hydrogen supply system that is watertightly coupled to the tube and supplies hydrogen at substantially right angles to the raw water supplied from the raw water supply system;
(D) Mixing of raw water supplied to the pipe from the raw water supply system and hydrogen supplied to the pipe from the hydrogen supply system, formed in the pipe in the longitudinal direction downstream of the hydrogen supply system A diffusion chamber for diffusing the fluid;
(E) a porous element that fills the diffusion chamber, has a predetermined pore diameter, and allows the supplied hydrogen to pass as fine bubbles;
(F) A device for producing hydrogenated water containing a large amount of hydrogen as fine bubbles, which is provided at the other end of the tube and has a discharge port for discharging the produced hydrogenated water.
微細気泡が、直径が120μm〜2μmの範囲のミリバブル、マイクロバブル、およびマイクロナノバブルの混合気泡である請求項6に記載した加水素水の製造装置。   The apparatus for producing hydrogenated water according to claim 6, wherein the fine bubbles are mixed bubbles of millibubbles, microbubbles, and micronanobubbles having a diameter in a range of 120 μm to 2 μm. 前記多孔質要素の孔の直径が120μm〜2μmである請求項6または7に記載した加水素水の製造装置。   The diameter of the hole of the said porous element is 120 micrometers-2 micrometers, The manufacturing apparatus of the hydrogenated water of Claim 6 or 7. 前記多孔質要素が、金属またはセラミックスの焼結体である請求項6〜8のいずれか1項に記載した加水素水の製造装置。   The apparatus for producing hydrogenated water according to any one of claims 6 to 8, wherein the porous element is a sintered body of metal or ceramics. 原料水の供給圧力が0.1〜0.5MPaである請求項6〜9のいずれか1項に記載した加水素水の製造装置。   The apparatus for producing hydrogenated water according to any one of claims 6 to 9, wherein the supply pressure of the raw material water is 0.1 to 0.5 MPa. 原料水の供給量が8〜20リットル/分である請求項6〜10のいずれか1項に記載した加水素水の製造装置。   The apparatus for producing hydrogenated water according to any one of claims 6 to 10, wherein the supply amount of the raw water is 8 to 20 liters / minute. 水素の供給圧力が0.2〜0.8MPaである請求項6〜11のいずれか1項に記載した加水素水の製造装置。   The apparatus for producing hydrogenated water according to any one of claims 6 to 11, wherein a supply pressure of hydrogen is 0.2 to 0.8 MPa. 水素の供給量が0.1〜1リットル/分である請求項6〜12のいずれか1項に記載した加水素水の製造装置。   The apparatus for producing hydrogenated water according to any one of claims 6 to 12, wherein a supply amount of hydrogen is 0.1 to 1 liter / min. 請求項6〜13のいずれか1項に記載した装置を2基以上連結した加水素水の製造装置。   The manufacturing apparatus of the hydrogenated water which connected two or more apparatuses as described in any one of Claims 6-13.
JP2006317740A 2006-02-09 2006-11-24 Method and apparatus for producing hydrogenated water Active JP3984279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006317740A JP3984279B2 (en) 2006-02-09 2006-11-24 Method and apparatus for producing hydrogenated water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006064854 2006-02-09
JP2006317740A JP3984279B2 (en) 2006-02-09 2006-11-24 Method and apparatus for producing hydrogenated water

Publications (2)

Publication Number Publication Date
JP2007237161A true JP2007237161A (en) 2007-09-20
JP3984279B2 JP3984279B2 (en) 2007-10-03

Family

ID=38583223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006317740A Active JP3984279B2 (en) 2006-02-09 2006-11-24 Method and apparatus for producing hydrogenated water

Country Status (1)

Country Link
JP (1) JP3984279B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195882A (en) * 2008-02-25 2009-09-03 Nakata Coating Co Ltd Method for producing hydrogen reduction water
JP2009208051A (en) * 2008-03-06 2009-09-17 Shoei Butsuryu Kk Hydrogen water, and hydrogen water generator
JP2010005530A (en) * 2008-06-26 2010-01-14 Osamu Hirota Hydrogen-containing mineral water and its production method
JP2010029841A (en) * 2008-07-03 2010-02-12 Hiroshima Kasei Ltd Method for producing hydrogenated water
JP4563496B1 (en) * 2009-10-22 2010-10-13 株式会社H&S Microbubble generator
JP2011011178A (en) * 2009-07-06 2011-01-20 Spg Technology Co Ltd Method and apparatus for gas-liquid mixing dissolution
JP2014104441A (en) * 2012-11-29 2014-06-09 Idec Corp Fine bubble generating nozzle and fine bubble generating device
JP5865560B1 (en) * 2014-05-27 2016-02-17 株式会社光未来 Gas dissolving apparatus and gas dissolving method
JP2016135490A (en) * 2016-05-02 2016-07-28 株式会社堀場エステック Fluid mixing element
KR20160003015U (en) 2015-02-24 2016-09-01 히로시마 카세이 가부시키 가이샤 Apparatus for manufacturing hydrogen water
JP2017165706A (en) * 2016-03-11 2017-09-21 メロディアン株式会社 Hydrogen water for fatigue recovery with hydrogen as active component and fatigue recovery method
US9795936B2 (en) 2012-12-28 2017-10-24 Horiba Stec, Co., Ltd. Fluid mixing element
JP2017209611A (en) * 2016-05-24 2017-11-30 株式会社ダンレイ Gas-liquid mixer
WO2018020707A1 (en) * 2016-07-27 2018-02-01 シャープ株式会社 Hydrogen water generating device
WO2020004653A1 (en) * 2018-06-28 2020-01-02 日本特殊陶業株式会社 Fine bubble generation device and fine bubble generation method
JP2020040021A (en) * 2018-09-11 2020-03-19 株式会社キャタラー Fine bubble manufacturing device and fine bubble manufacturing method
JP2022017638A (en) * 2020-07-14 2022-01-26 株式会社塩 Gas-liquid mixture system, and production method of gas-liquid mixture fluid
KR102653272B1 (en) * 2023-12-29 2024-03-29 심영석 Cleaning apparatus of waste water

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106512764B (en) * 2016-04-07 2018-11-20 巫锦沧 Hydrogen water dispenser

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195882A (en) * 2008-02-25 2009-09-03 Nakata Coating Co Ltd Method for producing hydrogen reduction water
JP2009208051A (en) * 2008-03-06 2009-09-17 Shoei Butsuryu Kk Hydrogen water, and hydrogen water generator
JP2010005530A (en) * 2008-06-26 2010-01-14 Osamu Hirota Hydrogen-containing mineral water and its production method
JP2010029841A (en) * 2008-07-03 2010-02-12 Hiroshima Kasei Ltd Method for producing hydrogenated water
JP4547543B2 (en) * 2008-07-03 2010-09-22 広島化成株式会社 Method for producing hydrogenated water
JP2011011178A (en) * 2009-07-06 2011-01-20 Spg Technology Co Ltd Method and apparatus for gas-liquid mixing dissolution
JP4563496B1 (en) * 2009-10-22 2010-10-13 株式会社H&S Microbubble generator
JP2011088079A (en) * 2009-10-22 2011-05-06 H&S Co Ltd Apparatus for generating fine bubble
JP2014104441A (en) * 2012-11-29 2014-06-09 Idec Corp Fine bubble generating nozzle and fine bubble generating device
US9795936B2 (en) 2012-12-28 2017-10-24 Horiba Stec, Co., Ltd. Fluid mixing element
JP5865560B1 (en) * 2014-05-27 2016-02-17 株式会社光未来 Gas dissolving apparatus and gas dissolving method
US10369532B2 (en) 2014-05-27 2019-08-06 Hikarimirai Co., Ltd. Gas-dissolving device and gas-dissolving method
KR20160078495A (en) 2014-05-27 2016-07-04 가부시키가이샤 히카리 미라이 Gas-dissolving device and gas-dissolving method
KR20160003015U (en) 2015-02-24 2016-09-01 히로시마 카세이 가부시키 가이샤 Apparatus for manufacturing hydrogen water
JP2017165706A (en) * 2016-03-11 2017-09-21 メロディアン株式会社 Hydrogen water for fatigue recovery with hydrogen as active component and fatigue recovery method
JP2016135490A (en) * 2016-05-02 2016-07-28 株式会社堀場エステック Fluid mixing element
JP2017209611A (en) * 2016-05-24 2017-11-30 株式会社ダンレイ Gas-liquid mixer
CN109475826B (en) * 2016-07-27 2021-11-02 夏普株式会社 Hydrogen water generator
WO2018020707A1 (en) * 2016-07-27 2018-02-01 シャープ株式会社 Hydrogen water generating device
CN109475826A (en) * 2016-07-27 2019-03-15 夏普株式会社 Hydrogen water generating device
JPWO2018020707A1 (en) * 2016-07-27 2019-05-09 シャープ株式会社 Hydrogen water generator
WO2020004653A1 (en) * 2018-06-28 2020-01-02 日本特殊陶業株式会社 Fine bubble generation device and fine bubble generation method
JPWO2020004653A1 (en) * 2018-06-28 2021-05-13 日本特殊陶業株式会社 Fine bubble generator and fine bubble generation method
JP7464390B2 (en) 2018-06-28 2024-04-09 日本特殊陶業株式会社 Fine bubble generator and method for generating fine bubbles
WO2020054680A1 (en) * 2018-09-11 2020-03-19 株式会社キャタラー Fine bubble generation device and method for generating fine bubbles
JP2020040021A (en) * 2018-09-11 2020-03-19 株式会社キャタラー Fine bubble manufacturing device and fine bubble manufacturing method
JP7243972B2 (en) 2018-09-11 2023-03-22 株式会社キャタラー Fine bubble manufacturing device and fine bubble manufacturing method
US11890586B2 (en) 2018-09-11 2024-02-06 Cataler Corporation Fine bubble generation device and method for generating fine bubbles
JP2022017638A (en) * 2020-07-14 2022-01-26 株式会社塩 Gas-liquid mixture system, and production method of gas-liquid mixture fluid
KR102653272B1 (en) * 2023-12-29 2024-03-29 심영석 Cleaning apparatus of waste water

Also Published As

Publication number Publication date
JP3984279B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP3984279B2 (en) Method and apparatus for producing hydrogenated water
US8038127B2 (en) Method for manufacturing a hydrogen-added water and a device for the same
Yang et al. Microfluidic microbial fuel cells: from membrane to membrane free
AU2017230813B2 (en) Compositions containing nano-bubbles in a liquid carrier
CN208104016U (en) It can produce the bathing apparatus of hydrogen-rich ultramicro air bubble water
CN208234593U (en) Portable super dense hydrogen-rich microbubble drinking device
JP4547543B2 (en) Method for producing hydrogenated water
CN1320949C (en) Apparatus for producing carbonated water and method for producing carbonated water using the same
KR100980200B1 (en) An simultaneous and parallel manufacturing apparatus of water with oxygen and hydrogen using oxygen and hydrogen gas and manufacturing apparatus of water with hydrogen using hydrogen gas
JP2006198557A (en) Apparatus for producing water having oxidation-reduction potential
CN108585123A (en) A kind of filter type electric chemical reactor and water treatment facilities and method for treating water
CN104330455B (en) Utilize the method and apparatus of microorganism electrolysis cell technology on-line monitoring nitrate
CN105884011A (en) Membrane electric biological treatment device and method for high-concentration organic wastewater hard to degrade
CN106745726A (en) A kind of method of perchlorate in hydrogen-based matter biofilm reactor and its removal underground water
Dong et al. Effect of DO on simultaneous removal of carbon and nitrogen by a membrane aeration/filtration combined bioreactor
CN114671506A (en) Water purifying drinking machine with hydrogen production function
KR100803832B1 (en) Hydrogen-added water containing microbubbles, and method and apparatus for manufacturing the same
CN108094302A (en) Method for purifying water and system and earthy taste of fresh water fish minimizing technology
CN107540075B (en) Online continuous high-concentration hydrogen-rich water preparation device with replaceable hydrogen dissolving component
CN205740468U (en) The removable online low pressure hydrogen rich water preparation facilities of molten hydrogen assembly
JP2006101805A (en) Hollow fiber membrane type bioreactor and liquid treatment method using the same
Temesgen et al. Advancing aerobic digestion efficiency using ultrafine bubbles in wastewater treatment
CN205635243U (en) Vitamin C waste water advanced treatment unit
Rizzardi et al. Membrane bubble aeration unit: Experimental study of the performance in lab scale and full-scale systems
JP2007283280A (en) Production method of hydrogen-containing water

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3984279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250