JP2010029841A - Method for producing hydrogenated water - Google Patents

Method for producing hydrogenated water Download PDF

Info

Publication number
JP2010029841A
JP2010029841A JP2009116002A JP2009116002A JP2010029841A JP 2010029841 A JP2010029841 A JP 2010029841A JP 2009116002 A JP2009116002 A JP 2009116002A JP 2009116002 A JP2009116002 A JP 2009116002A JP 2010029841 A JP2010029841 A JP 2010029841A
Authority
JP
Japan
Prior art keywords
hydrogen gas
water
flow rate
hydrogenated
hydrogenated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009116002A
Other languages
Japanese (ja)
Other versions
JP4547543B2 (en
Inventor
Daigo Matsuoka
大悟 松岡
Toshinori Harada
利典 原田
Takahiro Hayama
隆弘 早間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Kasei Ltd
Original Assignee
Hiroshima Kasei Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Kasei Ltd filed Critical Hiroshima Kasei Ltd
Priority to JP2009116002A priority Critical patent/JP4547543B2/en
Publication of JP2010029841A publication Critical patent/JP2010029841A/en
Application granted granted Critical
Publication of JP4547543B2 publication Critical patent/JP4547543B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily producing hydrogenated water of a desired oxidation-reduction potential using a hydrogenated water producing apparatus having enhanced operability by adopting a downsized configuration of the apparatus. <P>SOLUTION: The method for producing the hydrogenated water uses the hydrogenated water producing apparatus 1 comprising a hydrogenated water producing section 5 which continuously produces the hydrogenated water including minute hydrogen bubbles by first generating a mixed fluid of raw water and hydrogen gas via an ejector effect and next making the mixed fluid flow through a porous element. The hydrogenated water producing section 5 is supplied with raw water for the hydrogenated water supplied from a raw water supply source out of the apparatus 1 and hydrogen gas generated by one or more hydrogen gas generators 2 generating the hydrogen gas via electrolysis of raw water for the hydrogen gas. Comparing the flow volume of the hydrogen gas and that of the raw water, the flow volume of the hydrogen gas is regulated to the prescribed value according to the raw water whose flow volume is regulated to the prescribed value in advance so that the oxidation-reduction potential of the hydrogenated water produced in the hydrogenated water producing section 5 is within a prescribed range. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、加水素水の製造方法の技術に関し、より詳細には、エジェクタ効果により原料水に水素ガスを混合させた混合流体を生成し、該混合流体を多孔質要素に通過させることで水素ガスの微細気泡を含有する加水素水を連続して製造する加水素水製造部を具備してなる加水素水の製造装置を用いた加水素水の製造方法に関する。   The present invention relates to a technique of a method for producing hydrogenated water, and more specifically, generates a mixed fluid in which hydrogen gas is mixed with raw water by an ejector effect, and passes the mixed fluid through a porous element to generate hydrogen. The present invention relates to a method for producing hydrogenated water using a hydrogenated water production apparatus comprising a hydrogenated water production unit that continuously produces hydrogenated water containing fine gas bubbles.

近年、水の改質方法として原料水(水)に水素ガスを混入させて加水素水を得る方法が公知となっている。このようにして得られる加水素水は、pHが9.0以下と中性に近いながらも、例えば−100mV以下という非常に低い酸化還元電位を有しており、還元性の水としてその活用方法が各種方面で注目されている。   In recent years, a method for obtaining hydrogenated water by mixing hydrogen gas into raw water (water) is known as a method for reforming water. The hydrogenated water thus obtained has a very low oxidation-reduction potential of, for example, −100 mV or less, although the pH is close to 9.0 or less, and its utilization method as reducing water. Is attracting attention in various fields.

ところで、ヒトの生体内反応の酸化還元反応は、通常−100mV〜−400mVの範囲であり、体液の酸化還元電位が高くなると活性酸素が滞留し易いと言われている。また、近年では、ガン・糖尿病・動脈硬化症、胃炎、アトピー性皮膚炎、脳機能障害などの多くの疾患や老化の原因に、かかる活性酸素の影響が示唆されているところでもある。このように、日常生活において、どのような水を摂取あるいは接触するかによって健康や美容に重大な影響が及んでくるのである。   By the way, the oxidation-reduction reaction of the human in vivo reaction is usually in the range of −100 mV to −400 mV, and it is said that active oxygen tends to stay when the oxidation-reduction potential of the body fluid increases. In recent years, the influence of active oxygen has been suggested on many diseases such as cancer, diabetes, arteriosclerosis, gastritis, atopic dermatitis, brain dysfunction, and the cause of aging. Thus, in daily life, what kind of water is ingested or contacted has a significant effect on health and beauty.

通常、我が国の水道水(13.0℃)は、酸化還元電位は+400〜+800mV、pHが7.0〜7.5、溶存酸素量が約10.0ppmの範囲であり、溶存酸素量が多く、さらに酸化還元電位がプラスなので酸化力はあっても還元力がない。そのため、かかる水道水を摂取等することで、ヒトの生体内の酸化還元反応とバランスがとれず、生体に対して活性酸素が生成され易い状態になる。一方、加水素水は、酸化還元電位が低いことから、かかる加水素水を摂取等することで、反ってその還元性により上述した活性酸素が消去される効果が期待される。   Usually, tap water in Japan (13.0 ° C) has a redox potential of +400 to +800 mV, a pH of 7.0 to 7.5, and a dissolved oxygen content of about 10.0 ppm, with a large amount of dissolved oxygen. Furthermore, since the redox potential is positive, there is no reducing power even though there is oxidizing power. Therefore, ingestion of such tap water or the like is not balanced with the oxidation-reduction reaction in the human living body, and the active oxygen is easily generated in the living body. On the other hand, since hydrogenated water has a low oxidation-reduction potential, by taking such hydrogenated water, the effect of eliminating the above-described active oxygen due to its reducibility is expected.

確かに、水の酸化還元電位だけに注目すると、地下水など自然から取れる天然水の中には、酸化還元電位が水道水よりも低く、酸化還元電位がマイナスのものも見受けられる。しかし、かかる酸化還元電位は取水場所によって変化したり、酸化還元電位が経時変化してしまったりすることもあり、かかる水の安定供給が困難であった。   Certainly, focusing only on the redox potential of water, some natural waters such as groundwater that have natural redox potential are lower than tap water and have negative redox potential. However, the oxidation-reduction potential may vary depending on the place of water intake, or the oxidation-reduction potential may change over time, making it difficult to stably supply such water.

以上のような観点から、これまでにも酸化還元電位の低い還元性の水を安定供給するための方法が提案されているところであり、原料水に水素ガスを供給することで原料水の酸化還元電位を低電位に維持した還元性の水(加水素水)を製造する製造装置の構成が提案されている(例えば、特許文献1〜4参照)。   From the above viewpoint, a method for stably supplying reducing water having a low oxidation-reduction potential has been proposed so far. By supplying hydrogen gas to the raw water, the raw water is oxidized and reduced. The structure of the manufacturing apparatus which manufactures the reducing water (hydrogenated water) which maintained the electric potential in the low electric potential is proposed (for example, refer patent documents 1-4).

特に、特許文献3には、原料水に水素ガスをエジェクタにより混合させて、加水素水を連続して製造する加水素水の製造装置が開示されている。
また、特許文献4には、酸化還元電位が−600mV〜−400mVに安定的に調整された加水素水を得るために、製造された加水素水の酸化還元電位を測定しながら、かかる値が予め定めた酸化還元電位(−600mV〜−400mV)となるように、原料水に水素ガスを混合して加水素水を製造する加水素水製造部としての水素給気モジュールへの原料水及び水素ガスの供給量(流量)を制御するコントローラを備えた加水素水の製造装置の構成が開示されている。
In particular, Patent Document 3 discloses a hydrogenated water production apparatus that continuously produces hydrogenated water by mixing raw material water with hydrogen gas using an ejector.
Patent Document 4 discloses such a value while measuring the oxidation-reduction potential of the produced hydrogenated water in order to obtain the hydrogenated water whose oxidation-reduction potential is stably adjusted to -600 mV to -400 mV. Raw material water and hydrogen to a hydrogen supply module as a hydrogenated water production unit for producing hydrogenated water by mixing hydrogen gas with raw material water so as to have a predetermined oxidation-reduction potential (-600 mV to -400 mV) The structure of the manufacturing apparatus of the hydrogenated water provided with the controller which controls the supply amount (flow rate) of gas is disclosed.

しかしながら、上述した特許文献1〜4に開示される従来の加水素水の製造装置では、水素ガスの供給源として主に水素ガスボンベと接続されるため、装置構成が大型化してしまうとともに、水素ガスボンベの安全性や交換の際の取扱性などが悪かった。そのため、従来の加水素水の製造装置では、一般の施設や家庭に簡易に導入することができず、広範な普及が困難な状態であった。   However, in the conventional hydrogenated water production apparatus disclosed in Patent Documents 1 to 4 described above, the apparatus configuration is increased in size and the hydrogen gas cylinder is mainly connected to a hydrogen gas cylinder as a hydrogen gas supply source. The safety of the product and the handleability during replacement were poor. Therefore, the conventional hydrogenated water production apparatus cannot be easily introduced into general facilities and homes, and it has been difficult to widely spread.

普及型の加水素水の製造装置とするには、従来のような水素ガスボンベに換わって、取扱性に優れた水素ガスの供給源を備えた装置構成とすることが好ましい。水素ガスの供給源としては、具体的には、水素ガス用の原料水を電気分解して水素ガスを発生させる水素ガス発生装置の構成が公知であるが、加水素水の製造装置において、水素ガスボンベに換わってこのような水素ガス発生装置を設けた場合には、水素ガスを所定の圧力及び流量に調整して供給する必要があり、加水素水の酸化還元電位の調整を容易に調整することができないという課題があった。   In order to obtain a popular hydrogenated water production apparatus, it is preferable to replace the conventional hydrogen gas cylinder with an apparatus configuration including a hydrogen gas supply source with excellent handleability. As a supply source of hydrogen gas, specifically, a configuration of a hydrogen gas generator that generates hydrogen gas by electrolyzing raw water for hydrogen gas is known. When such a hydrogen gas generator is provided in place of the gas cylinder, it is necessary to supply the hydrogen gas with a predetermined pressure and flow rate, and the adjustment of the redox potential of the hydrogenated water can be easily adjusted. There was a problem that it was not possible.

原料水と水素ガスの流量制御という観点では、上述した特許文献4に開示される加水素水の製造方法では、確かに、水素給気モジュールへの原料水と水素ガスの流量を制御することで、所定の酸化還元電位に調整された加水素水を製造することができるが、水素ガスの供給源については水素ガスボンベ以外に言及されておらず、また、上述したような水素ガス発生装置を具備した構成の特有の問題は依然として解消されていない。   From the viewpoint of controlling the flow rates of raw water and hydrogen gas, the method for producing hydrogenated water disclosed in Patent Document 4 described above certainly controls the flow rates of raw water and hydrogen gas to the hydrogen supply module. Hydrogenated water adjusted to a predetermined oxidation-reduction potential can be produced, but the hydrogen gas supply source is not mentioned other than the hydrogen gas cylinder, and the hydrogen gas generator as described above is provided. The specific problems of the configuration still remain.

特に、上述した特許文献3に開示されるように、原料水に水素ガスをエジェクタにより混合させて加水素水を連続して製造する加水素水製造部を具備する加水素水の製造装置を用いた製造方法において、エジェクタ効果を発揮させつつ、かつ、混合流体を多孔質要素に通過させるには、原料水を所定流量で加水素水製造部に供給する必要がある一方で、かかる加水素水製造部にて所定範囲の酸化還元電位(特に、−400mV〜−680mV)の加水素水を連続して製造するためには、加水素水製造部に供給する原料水(の流量)に対する水素ガスの流量が特に重要となってくる。   In particular, as disclosed in Patent Document 3 described above, a hydrogenated water production apparatus including a hydrogenated water production unit that continuously produces hydrogenated water by mixing hydrogen gas into raw water using an ejector is used. In the conventional manufacturing method, in order to allow the mixed fluid to pass through the porous element while exhibiting the ejector effect, it is necessary to supply raw water at a predetermined flow rate to the hydrogenated water production unit. In order to continuously produce hydrogenated water having a predetermined range of oxidation-reduction potential (especially -400 mV to -680 mV) in the production department, hydrogen gas relative to the raw water (flow rate) supplied to the hydrogenated water production department The flow rate is particularly important.

しかしながら、上述した引用文献4に開示される発明は、所定の酸化還元電位を有する水素水を製造するものであって、脱気水(原料水)の流量を計測する流量計、及び水素給気モジュールに供給する水素ガス量を制御する水素量制御弁を有するものであるが、製造される水素水の酸化還元電位の測定値に応じて水素量制御弁を制御するものであって、かかる水素ガス量を流量計により計測される脱気水の流量に応じて制御するものではなく、つまり、閉密容器に供給する水素ガスの流量を液状媒体(原料水)の流量に応じて調整するものではない。   However, the invention disclosed in the cited document 4 described above is for producing hydrogen water having a predetermined oxidation-reduction potential, a flow meter for measuring the flow rate of deaerated water (raw water), and hydrogen supply The hydrogen amount control valve for controlling the amount of hydrogen gas supplied to the module is used to control the hydrogen amount control valve according to the measured value of the oxidation-reduction potential of the hydrogen water to be produced. The amount of gas is not controlled according to the flow rate of deaerated water measured by a flow meter, that is, the flow rate of hydrogen gas supplied to the closed vessel is adjusted according to the flow rate of the liquid medium (raw water) is not.

特開2005−13833号公報JP 2005-13833 A 特許第4000568号公報Japanese Patent No. 4000568 特許第3984279号公報Japanese Patent No. 3984279 特開2005−218885号公報JP 2005-218885 A

そこで、本発明においては、加水素水の製造方法に関し、前記従来の課題を解決するもので、装置構成を小型化して取扱性を向上させた加水素水の製造装置を用いて、目的とする酸化還元電位の加水素水を容易に製造する方法を提供することを目的とする。   Therefore, the present invention relates to a method for producing hydrogenated water, which solves the above-described conventional problems, and aims to use a device for producing hydrogenated water having a reduced apparatus configuration and improved handling. An object of the present invention is to provide a method for easily producing hydrogenated water having a redox potential.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.

すなわち、請求項1においては、エジェクタ効果により原料水に水素ガスを混合させた混合流体を生成し、該混合流体を多孔質要素に通過させることで水素ガスの微細気泡を含有する加水素水を連続して製造する加水素水製造部を具備してなる加水素水の製造装置を用いた加水素水の製造方法であって、前記加水素水製造部に、水素ガス用の原料水を電気分解して水素ガスを発生させる一又は複数の水素ガス発生部で発生された水素ガスと、機外の原料水供給源から供給される加水素水用の原料水とを供給し、水素ガスの流量と原料水の流量とを対比して、前記加水素水製造部にて製造される加水素水が所定範囲の酸化還元電位となるように、予め所定流量に調整された原料水に対して水素ガスを所定流量に調整するものである。   That is, in claim 1, hydrogen gas containing fine bubbles of hydrogen gas is generated by generating a mixed fluid in which hydrogen gas is mixed with raw water by the ejector effect, and passing the mixed fluid through the porous element. A method for producing hydrogenated water using an apparatus for producing hydrogenated water comprising a hydrogenated water producing unit that continuously produces hydrogenated water, wherein raw water for hydrogen gas is electrically supplied to the hydrogenated water producing unit. Hydrogen gas generated in one or a plurality of hydrogen gas generators that decompose to generate hydrogen gas and raw water for hydrogenated water supplied from a raw water supply source outside the machine are supplied, By comparing the flow rate with the raw material water flow rate, the hydrogenated water produced in the hydrogenated water production unit has a predetermined range of redox potential so that the hydrogenated water produced in the hydrogenated water production unit has a predetermined flow rate. The hydrogen gas is adjusted to a predetermined flow rate.

請求項2においては、前記加水素水の製造装置には、前記加水素水製造部に供給される水素ガスの流量を検出する水素ガス用流量検出センサと、前記加水素水製造部に供給される水素ガスの流量を調整する流量調整弁と、前記加水素水製造部に供給される原料水の流量を検出する原料水用流量検出センサとが設けられ、前記水素ガス用流量検出センサにより検出された水素ガスの流量と前記原料水用流量検出センサにより検出された原料水の流量とを対比して、前記加水素水製造部にて製造される加水素水が所定範囲の酸化還元電位となるように、予め所定流量に調整された原料水に対して前記流量調整弁を制御して水素ガスを所定流量に調整するものである。   According to a second aspect of the present invention, the hydrogenated water production apparatus is supplied to a hydrogen gas flow rate detection sensor for detecting a flow rate of hydrogen gas supplied to the hydrogenated water production unit, and to the hydrogenated water production unit. A flow rate adjusting valve that adjusts the flow rate of hydrogen gas and a flow rate detection sensor for raw material water that detects the flow rate of the raw material water supplied to the hydrogenated water production unit are detected by the hydrogen gas flow rate detection sensor. The hydrogenated water produced by the hydrogenated water production unit has a redox potential within a predetermined range by comparing the flow rate of the hydrogen gas and the flow rate of the raw material water detected by the raw material water flow rate detection sensor. As described above, the hydrogen gas is adjusted to a predetermined flow rate by controlling the flow rate adjusting valve with respect to the raw material water that has been adjusted to a predetermined flow rate in advance.

請求項3においては、前記水素ガス発生部で発生された水素ガスは、予め設定された所定値となるように圧力及び流量を調整した後に、原料水の流量に基づいて微調整して前記加水素水製造部に供給するものである。   According to a third aspect of the present invention, the hydrogen gas generated in the hydrogen gas generator is adjusted to a predetermined value set in advance, and then finely adjusted based on the flow rate of the raw material water. It is supplied to the hydrogen water production department.

請求項4においては、前記水素ガス発生部は、陽子交換膜型の電解セルを有するものである。   According to a fourth aspect of the present invention, the hydrogen gas generator has a proton exchange membrane type electrolytic cell.

請求項5においては、前記水素ガス発生部は、水素ガス用の原料水が貯溜される原料水タンクが循環路を介して接続されるものである。   According to a fifth aspect of the present invention, the hydrogen gas generation unit is connected to a raw water tank in which raw water for hydrogen gas is stored via a circulation path.

本発明の効果としては、原料水を電気分解して水素ガスを発生させる水素ガス発生部が設けられるため、従来の水素ガスボンベを用いた装置構成と比べて装置構成を小型化することができ、また、その取扱性を向上できる。特に、エジェクタ効果を利用した加水素水製造部に供給する水素ガスの流量を、原料水の流量に基づいて調整することで、目的とする酸化還元電位の加水素水を容易に製造することができる。   As an effect of the present invention, since a hydrogen gas generation unit that electrolyzes raw water to generate hydrogen gas is provided, the device configuration can be reduced in size compared to a device configuration using a conventional hydrogen gas cylinder, Moreover, the handleability can be improved. In particular, by adjusting the flow rate of the hydrogen gas supplied to the hydrogenated water production unit utilizing the ejector effect based on the flow rate of the raw material water, it is possible to easily produce the hydrogenated water having the target oxidation-reduction potential. it can.

本発明の一実施例に係る加水素水の製造装置の全体的な構成を示した概略的な系統図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic systematic diagram which showed the whole structure of the manufacturing apparatus of the hydrogenated water which concerns on one Example of this invention. 水素ガス発生部のセル本体の構成を示した断面図。Sectional drawing which showed the structure of the cell main body of a hydrogen gas generation part. 加水素水製造部の管体の構成を示した断面図。Sectional drawing which showed the structure of the pipe body of a hydrogenated water manufacturing part.

なお、以下の実施例では、加水素水の製造装置1において、加水素水製造部5に対して原料水及び水素ガスが供給される側を上流側、製造された加水素水が排出される側を下流側とする(図1における矢印を参照)。   In the following embodiments, in the hydrogenated water production apparatus 1, the hydrogenated water produced is discharged with the raw water and hydrogen gas supplied to the hydrogenated water production unit 5 upstream. The side is the downstream side (see the arrow in FIG. 1).

まず、本実施例の加水素水の製造装置1の構成について、以下に詳述する。
図1に示すように、本実施例の加水素水の製造装置1は、所定の酸化還元電位(特に、−400mV〜−680mV)の加水素水を連続して製造する装置であって、具体的には、水素ガス用の原料水を電気分解して水素ガスを発生させる一又は複数の水素ガス発生部2と、水素ガス発生部2からの水素ガスを加水素水製造部5に供給する水素ガス供給路3と、機外の原料水供給源(水道蛇口)と接続され、加水素水用の原料水を加水素水製造部5に供給する原料水供給路4と、原料水に水素ガスを混合させて加水素水を連続して製造する加水素水製造部5等とで構成されている。
First, the configuration of the hydrogenated water production apparatus 1 of the present embodiment will be described in detail below.
As shown in FIG. 1, the hydrogenated water production apparatus 1 according to the present embodiment is an apparatus that continuously produces hydrogenated water having a predetermined oxidation-reduction potential (in particular, −400 mV to −680 mV). Specifically, one or a plurality of hydrogen gas generation units 2 that electrolyze the raw water for hydrogen gas to generate hydrogen gas, and the hydrogen gas from the hydrogen gas generation unit 2 is supplied to the hydrogenated water production unit 5. A hydrogen gas supply path 3 is connected to a raw material water supply source (a tap faucet) outside the apparatus, and a raw water supply path 4 for supplying raw water for hydrogenated water to the hydrogenated water production unit 5 and hydrogen for the raw water It is comprised with the hydrogenated water manufacturing part 5 etc. which mix gas and manufacture hydrogenated water continuously.

本実施例の加水素水の製造装置1では、水素ガス発生部2からの水素ガスが水素ガス供給路3を介して加水素水製造部5に供給されるとともに、原料水が原料水供給路4を介して加水素水製造部5に供給され、加水素水製造部5(の管体50等)にて原料水に水素ガスが混合されることで、所定の加水素水が製造される。   In the hydrogenated water production apparatus 1 of the present embodiment, the hydrogen gas from the hydrogen gas generation unit 2 is supplied to the hydrogenated water production unit 5 through the hydrogen gas supply path 3 and the raw water is supplied to the raw water supply path. 4 is supplied to the hydrogenated water production unit 5, and hydrogen gas is mixed with the raw water in the hydrogenated water production unit 5 (the pipe body 50 or the like), whereby predetermined hydrogenated water is produced. .

なお、本実施例の「加水素水」とは、水素を大量に含み、酸化還元電位が−400mV〜−680mVであって、略中性(pHが7より僅かに高く)に維持されたものをいう。特に、本実施例の加水素水は、後述する加水素水製造部5によって、ミリバブル、マイクロバブル、およびマイクロナノバブルまで広範な直径の水素ガスの微細気泡が大量に含まれている。   “Hydrogenated water” in this example contains a large amount of hydrogen, has an oxidation-reduction potential of −400 mV to −680 mV, and is maintained approximately neutral (pH is slightly higher than 7). Say. In particular, the hydrogenated water of the present embodiment contains a large amount of fine bubbles of hydrogen gas having a wide range of diameters, such as millibubbles, microbubbles, and micronanobubbles, by the hydrogenated water production unit 5 described later.

図1及び図2に示すように、水素ガス発生部2は、後述する加水素水製造部5への水素供給源として構成されており、本実施例では、公知の固体高分子型の電解槽が構成されている。具体的には、水素ガス発生部2に構成される電解槽は、セル本体20に、陽電極を有する陽極部21と、陰電極を有する陰極部22と、陽極部21と陰極部22とを分離する固定電解質膜23等とが設けられている。また、セル本体20には、水素ガス用の原料水が供給される原料水入口20aと、水素ガス供給路3に接続されて発生した水素ガスが排出される水素ガス出口20bと、原料水を排出する原料水出口20cとで形成されている。   As shown in FIGS. 1 and 2, the hydrogen gas generation unit 2 is configured as a hydrogen supply source to a hydrogenated water production unit 5 to be described later, and in this embodiment, a known solid polymer electrolytic cell is used. Is configured. Specifically, the electrolytic cell configured in the hydrogen gas generation unit 2 includes a cell body 20 having an anode part 21 having a positive electrode, a cathode part 22 having a negative electrode, an anode part 21 and a cathode part 22. A fixed electrolyte membrane 23 and the like to be separated are provided. The cell body 20 is supplied with a raw water inlet 20a to which raw water for hydrogen gas is supplied, a hydrogen gas outlet 20b to which hydrogen gas generated by being connected to the hydrogen gas supply passage 3 is discharged, and raw water. It is formed by the raw material water outlet 20c to be discharged.

固体電解質膜23としては、例えば、ポリフルオロカーボンなどの高分子主鎖にスルホン基やカルボン酸基などの側鎖が置換された導電性物質が用いられる。この固体電解質膜23は、両面に白金が付着され、かかる白金膜の表面に陽極部21及び陰極部22が一体的に取り付けられた電極膜複合体として構成されている。このように、水素ガス発生部2には、固体電解質膜23等が電極膜複合体として構成された陽子交換膜型の電解セルが形成されており、アルカリ等の薬液(電解液)を用いないために安全でメンテナンス容易に構成されている。   As the solid electrolyte membrane 23, for example, a conductive substance in which a polymer main chain such as polyfluorocarbon is substituted with a side chain such as a sulfone group or a carboxylic acid group is used. The solid electrolyte membrane 23 is configured as an electrode membrane composite in which platinum is attached to both surfaces and the anode portion 21 and the cathode portion 22 are integrally attached to the surface of the platinum membrane. As described above, the hydrogen gas generation unit 2 is formed with a proton exchange membrane type electrolytic cell in which the solid electrolyte membrane 23 and the like are configured as an electrode membrane composite, and does not use a chemical solution (electrolytic solution) such as alkali. Therefore, it is configured to be safe and easy to maintain.

水素ガス発生部2における水素ガス発生のメカニズムについて概説すると、まず、セル本体20に原料水が供給され、陽極部21及び陰極部22間に所定の電圧が印加されることで、陽極部21上で水分子が電子を電極へ放出して酸素分子と水素イオンが生成する。この反応は陽極部21と固体電解質膜23の界面で起こるため、生成した酸素はめっきされた陽極部21の微小隙間を通って陽極部21の外側へ放出される。一方、生成された水素イオンは、固体電解質膜23内を通過して陰極部22の表面へと移動し、陰極部22にて水素イオンへの電子の受渡しが起こることで、水素ガスが生成するのである。   An outline of the mechanism of hydrogen gas generation in the hydrogen gas generation unit 2 is as follows. First, raw material water is supplied to the cell main body 20 and a predetermined voltage is applied between the anode unit 21 and the cathode unit 22. Thus, water molecules emit electrons to the electrode, generating oxygen molecules and hydrogen ions. Since this reaction occurs at the interface between the anode portion 21 and the solid electrolyte membrane 23, the generated oxygen is released to the outside of the anode portion 21 through a minute gap in the plated anode portion 21. On the other hand, the generated hydrogen ions pass through the solid electrolyte membrane 23 and move to the surface of the cathode portion 22, and transfer of electrons to the hydrogen ions occurs at the cathode portion 22, thereby generating hydrogen gas. It is.

陰極部22にて発生された水素ガスは、水素ガス出口20bを介して水素ガス供給路3の下流側へ向けて排出される。また、セル本体20に供給された原料水は、副生成物である酸素ガスとともに原料水出口20cを介してセル本体20の外に排出され、後述する循環路25(の排出路25b)を介して気液分離された後に原料水タンク24に還流される。   The hydrogen gas generated at the cathode portion 22 is discharged toward the downstream side of the hydrogen gas supply path 3 through the hydrogen gas outlet 20b. The raw water supplied to the cell main body 20 is discharged out of the cell main body 20 through the raw water outlet 20c together with oxygen gas as a by-product, and through a circulation path 25 (discharge path 25b) described later. After being separated from the gas and liquid, it is returned to the raw material water tank 24.

図1に示したように、本実施例の水素ガス発生部2は、水素ガス用の原料水が貯溜される原料水タンク24と接続されており、この原料水タンク24とセル本体20との間で、原料水タンク24からの原料水がセル本体20へと供給され、かつ、セル本体20からの原料水が原料水タンク24へと戻される循環路25が構成されている。   As shown in FIG. 1, the hydrogen gas generation unit 2 of this embodiment is connected to a raw water tank 24 in which raw water for hydrogen gas is stored, and the raw water tank 24 and the cell body 20 are connected to each other. In the meantime, a circulation path 25 is configured in which the raw water from the raw water tank 24 is supplied to the cell main body 20 and the raw water from the cell main body 20 is returned to the raw water tank 24.

原料水タンク24は、加水素水の製造装置1の装置本体に対して交換可能に構成されており、原料水として主にイオン交換水などの純水が貯溜される。また、原料水タンク24には、ポンプ装置24aが接続されており、このポンプ装置24aにより原料水タンク24内の水素ガス用の原料水が循環路25の供給路25a内を圧送され、水素ガス発生部2のセル本体20に供給される。   The raw water tank 24 is configured to be replaceable with respect to the apparatus main body of the hydrogenated water production apparatus 1, and pure water such as ion exchange water is mainly stored as raw water. Further, a pump device 24a is connected to the raw water tank 24, and the raw water for the hydrogen gas in the raw water tank 24 is pumped through the supply passage 25a of the circulation passage 25 by this pump device 24a. It is supplied to the cell body 20 of the generator 2.

循環路25は、水素ガス発生部2のセル本体20の原料水入口20aと原料水タンク24と接続する供給路25aと、セル本体20の原料水出口20cと原料水タンク24と接続する排出路25bとで構成されている。原料水タンク24の原料水は、供給路25aを介してセル本体20の原料水入口20aに向けて供給されるとともに、一方でセル本体20からの酸素ガスや水素ガス等を含む原料水が排出路25bを介して原料水タンク24に向けて排出される。   The circulation path 25 includes a supply path 25 a that connects the raw material water inlet 20 a of the cell body 20 of the hydrogen gas generator 2 and the raw water tank 24, and a discharge path that connects the raw water outlet 20 c of the cell body 20 and the raw water tank 24. 25b. The raw water in the raw water tank 24 is supplied to the raw water inlet 20a of the cell body 20 through the supply path 25a, while the raw water containing oxygen gas, hydrogen gas, etc. from the cell body 20 is discharged. It is discharged toward the raw material water tank 24 through the passage 25b.

循環路25には、供給路25aの中途部に逆止弁25cが配設され、逆止弁25cの下流側にドレンバルブ26が配設されている。原料水タンク24から水素ガス発生部2に必要量以上の原料水が供給された場合には、かかるドレンバルブ26を介して原料水が機外に排出される。また、排出路25bの中途部に気液分離器25dが配設されており、セル本体20より排出される原料水は、気液分離器25dにて気体分(酸素ガス等)と分離された後に原料水タンク24に戻される。   In the circulation path 25, a check valve 25c is disposed in the middle of the supply path 25a, and a drain valve 26 is disposed downstream of the check valve 25c. When raw water more than a necessary amount is supplied from the raw water tank 24 to the hydrogen gas generator 2, the raw water is discharged out of the apparatus through the drain valve 26. Further, a gas-liquid separator 25d is disposed in the middle of the discharge path 25b, and the raw water discharged from the cell body 20 is separated from a gas component (oxygen gas or the like) by the gas-liquid separator 25d. Later, it is returned to the raw water tank 24.

また、水素ガス発生部2には、セル本体20に接続された圧力調整路27が接続されており、圧力調整路27に設けられたリリーフバルブ27aにより、セル本体20内の圧力が所定の値以上とならないように調整されている。すなわち、セル本体20内の圧力が所定の値以上となると、リリーフバルブ27aが開放されて、圧力調整路27を介してセル本体20内の気体(水素ガス等)が機外(大気中)へと放出される。   The hydrogen gas generator 2 is connected to a pressure adjustment path 27 connected to the cell body 20, and the pressure inside the cell body 20 is set to a predetermined value by a relief valve 27 a provided in the pressure adjustment path 27. It is adjusted so that it does not become more. That is, when the pressure in the cell main body 20 becomes a predetermined value or more, the relief valve 27a is opened, and the gas (hydrogen gas or the like) in the cell main body 20 goes out of the apparatus (in the atmosphere) via the pressure adjustment path 27. And released.

なお、本実施例の加水素水の製造装置1には、後述するように一又は複数の水素ガス発生部2が設けられることから、上述したセル本体20、原料水タンク24、及び循環路25等も対応する水素ガス発生部2の個数に応じて同数ずつ設けられる   In addition, since the hydrogenated water production apparatus 1 of the present embodiment includes one or a plurality of hydrogen gas generation units 2 as will be described later, the cell main body 20, the raw water tank 24, and the circulation path 25 described above. Are also provided in the same number according to the number of corresponding hydrogen gas generation units 2.

図1に示したように、水素ガス供給路3は、水素ガス発生部2からの水素ガスを加水素水製造部5に供給する経路として構成されており、本実施例では、水素ガス発生部2と加水素水製造部5との中途で分岐される合流部30と、上流端が水素ガス発生部2に接続されるとともに下流端が合流部30に接続される複数の上流側供給路31と、上流端が合流部30に接続されるとともに下流端が加水素水製造部5に接続される下流側供給路32等とで構成されている。   As shown in FIG. 1, the hydrogen gas supply path 3 is configured as a path for supplying the hydrogen gas from the hydrogen gas generation section 2 to the hydrogenated water production section 5. In this embodiment, the hydrogen gas generation section 2 and the hydrogenated water production unit 5, and a plurality of upstream supply paths 31 having an upstream end connected to the hydrogen gas generation unit 2 and a downstream end connected to the junction 30. And a downstream supply path 32 having an upstream end connected to the junction 30 and a downstream end connected to the hydrogenated water production unit 5.

特に、本実施例の加水素水の製造装置1では、水素ガス発生部2及び上流側供給路31等からなる複数(本実施例では4つ)の水素ガスの供給ユニット10・10・・・が構成されている。すなわち、加水素水の製造装置1では、合流部30に複数の上流側供給路31が接続可能とされていることから、各供給ユニット10が上流側供給路31を介して合流部30に接続されることで、各供給ユニット10(の水素ガス発生部2)からの水素ガスが合流部30にて合流されるように構成されている。   In particular, in the hydrogenated water production apparatus 1 of the present embodiment, a plurality (four in this embodiment) of hydrogen gas supply units 10, 10... Each including the hydrogen gas generation section 2 and the upstream supply path 31. Is configured. That is, in the hydrogenated water production apparatus 1, since a plurality of upstream supply paths 31 can be connected to the merge section 30, each supply unit 10 is connected to the merge section 30 via the upstream supply path 31. Thus, the hydrogen gas from each supply unit 10 (the hydrogen gas generation unit 2 thereof) is configured to be merged at the merge unit 30.

なお、以下の実施例では、合流部30に接続された一の上流側供給路31について説明するが、他の上流側供給路31の構成についても同様である。   In the following embodiment, one upstream supply path 31 connected to the merge unit 30 will be described, but the configuration of the other upstream supply paths 31 is the same.

合流部30は、公知の合流バルブや接続バルブなどを用いて構成され、合流部30に対して複数(4つ)の上流側供給路31、及び一の下流側供給路32が接続されている。また、合流部30には、リリーフバルブ30aが接続されており、合流部30内を圧送される水素ガスの圧力が所定の値以上となると、リリーフバルブ30aが開放されて、合流部30内の水素ガスが機外(大気中)へと放出される。   The merging unit 30 is configured using a known merging valve, connection valve, or the like, and a plurality (four) of upstream supply paths 31 and one downstream supply path 32 are connected to the merging section 30. . In addition, a relief valve 30a is connected to the merging portion 30, and when the pressure of the hydrogen gas pumped through the merging portion 30 exceeds a predetermined value, the relief valve 30a is opened, Hydrogen gas is released out of the aircraft (in the atmosphere).

上流側供給路31は、上流端が(水素ガス発生部2の)セル本体20の水素ガス出口20bに接続され、下流端が合流部30に接続される。本実施例の上流側供給路31には、上流側(水素ガス発生部2に近い側)から順に、水素ガス精製器33、第一の圧力調整部34、絞り弁35、逆止弁36等がそれぞれ配設されている。   The upstream supply path 31 has an upstream end connected to the hydrogen gas outlet 20 b of the cell body 20 (of the hydrogen gas generation unit 2) and a downstream end connected to the junction 30. In the upstream supply path 31 of the present embodiment, the hydrogen gas purifier 33, the first pressure adjustment unit 34, the throttle valve 35, the check valve 36, and the like are sequentially arranged from the upstream side (side closer to the hydrogen gas generation unit 2). Are arranged respectively.

水素ガス精製器33は、水素ガス発生部2により生成された水素ガスの純度を高めるべく、水素ガス中の水分等の不純物を濾過・乾燥して精製するための装置である。本実施例の水素ガス精製器33としては、乾燥剤としてのシリカゲル等が管状に充填されたものが用いられる他、好ましくは、パラジウム薄膜(水素分離膜)を用いた精製器が用いられる。また、この水素ガス精製器33は、加水素水の製造装置1の装置本体に対して交換可能に配設されている。ただし、パラジウム薄膜の水素ガス精製器33が用いられる場合には、乾燥剤を用いた場合と比べて交換・メンテナンス頻度が少なくて済むため取扱性がよい。   The hydrogen gas purifier 33 is an apparatus for filtering and drying impurities such as moisture in the hydrogen gas in order to increase the purity of the hydrogen gas generated by the hydrogen gas generator 2. As the hydrogen gas purifier 33 of the present embodiment, a purifier using a palladium thin film (hydrogen separation membrane) is preferably used in addition to a tube filled with silica gel or the like as a desiccant. Further, the hydrogen gas purifier 33 is disposed so as to be replaceable with respect to the apparatus main body of the hydrogenated water production apparatus 1. However, when the hydrogen gas purifier 33 made of a palladium thin film is used, handling is good because the frequency of replacement / maintenance is less than when a desiccant is used.

水素ガス精製器33に用いられるパラジウム薄膜としては、耐熱性の多孔質体に無電解メッキ法により薄膜形成させたものや、パラジウムまたはパラジウムを主成分とするパラジウム合金を圧延して薄膜形成させたもの等が用いられる。このようにパラジウム薄膜を用いて水素ガス精製器33を構成することで、水素ガス精製器33をコンパクトに構成することができるとともに、パラジウム薄膜の水素ガス透過能力により水素ガスの精製精度を飛躍的に向上させて、高純度ガス(純度99.99999%以上)とすることができる。   As the palladium thin film used in the hydrogen gas purifier 33, a thin film is formed by rolling a heat-resistant porous material by electroless plating or by rolling palladium or a palladium alloy containing palladium as a main component. A thing etc. are used. By configuring the hydrogen gas purifier 33 using the palladium thin film in this way, the hydrogen gas purifier 33 can be configured in a compact manner, and the hydrogen gas refining accuracy is dramatically improved by the hydrogen gas permeation ability of the palladium thin film. To a high-purity gas (purity 99.99999% or more).

第一の圧力調整部34は、水素ガス発生部2から送出された水素ガスの圧力を個別に予め設定された所定値となるように調整するものであり、具体的には、上流側供給路31中の水素ガスの圧力を電気信号に変換する圧力変換器34aと、圧力変換器34aからの電気信号を出力表示する圧力計34bと、上流側供給路31の下流側に圧送される水素ガス圧力を調整する電磁弁34c等とで構成されている。   The first pressure adjusting unit 34 adjusts the pressure of the hydrogen gas delivered from the hydrogen gas generating unit 2 so that the pressure is individually set to a predetermined value, specifically, the upstream supply path A pressure converter 34a for converting the pressure of the hydrogen gas in 31 into an electric signal, a pressure gauge 34b for outputting and displaying an electric signal from the pressure converter 34a, and a hydrogen gas pumped downstream of the upstream supply path 31 It consists of a solenoid valve 34c and the like for adjusting the pressure.

第一の圧力調整部34では、圧力変換器34a及び圧力計34bにより上流側供給路31中を圧送される水素ガスの圧力が測定され、測定された圧力に基づいて電磁弁34cが開閉制御されることで、水素ガス発生部2から送出された水素ガスの圧力が予め設定された所定値となるように調整される。そのため、上流側供給路31において、第一の圧力調整部34により、下流側に向けて圧送される水素ガスの圧力が所定値となるように調整される。換言すると、水素ガス供給路3においては、水素ガス発生部2から送出された水素ガスは、第一の圧力調整部34により圧力が所定値に調整された後に、下流側(合流部30)へと圧送されるのである。   In the first pressure adjusting unit 34, the pressure of the hydrogen gas pumped through the upstream supply path 31 is measured by the pressure converter 34a and the pressure gauge 34b, and the electromagnetic valve 34c is controlled to open and close based on the measured pressure. Thus, the pressure of the hydrogen gas sent out from the hydrogen gas generation unit 2 is adjusted to be a predetermined value set in advance. Therefore, in the upstream supply path 31, the pressure of the hydrogen gas pumped toward the downstream side is adjusted by the first pressure adjusting unit 34 to a predetermined value. In other words, in the hydrogen gas supply path 3, the hydrogen gas delivered from the hydrogen gas generation unit 2 is adjusted to a predetermined value by the first pressure adjustment unit 34, and then to the downstream side (merging unit 30). It is pumped.

第一の圧力調整部34で調整される水素ガスの圧力の所定値は、例えば、水素ガス発生部2にて発生される水素ガス量や、合流部30に供給される水素ガス量や、目的とする溶存水素量の加水素水を製造するための製造条件等などに応じて適宜設定される。   The predetermined value of the pressure of the hydrogen gas adjusted by the first pressure adjusting unit 34 is, for example, the amount of hydrogen gas generated by the hydrogen gas generating unit 2, the amount of hydrogen gas supplied to the merging unit 30, It sets suitably according to the manufacturing conditions etc. for manufacturing hydrogenated water of the amount of dissolved hydrogen.

絞り弁35は、上流側供給路31において合流部30に到達される水素ガスの流量を調整する流量調整弁として構成され、合流部30と第一の圧力調整部34との間に配設されている。すなわち、この絞り弁35により、水素ガス発生部2から送出されて合流部30に到達される水素ガスの流量が微調整される。また、逆止弁36は、上流側供給路31において最下流側に位置に配設されており、合流部30から上流側供給路31内に大気が流入するのが防止される。   The throttle valve 35 is configured as a flow rate adjustment valve that adjusts the flow rate of the hydrogen gas that reaches the merging unit 30 in the upstream supply path 31, and is disposed between the merging unit 30 and the first pressure adjusting unit 34. ing. In other words, the throttle valve 35 finely adjusts the flow rate of the hydrogen gas that is sent from the hydrogen gas generator 2 and reaches the junction 30. Further, the check valve 36 is disposed at the most downstream side in the upstream supply path 31, and air is prevented from flowing into the upstream supply path 31 from the junction 30.

このように、本実施例の水素ガス供給路3では、上流側供給路31に水素ガス精製器33、第一の圧力調整部34、絞り弁35、及び逆止弁36がそれぞれ配設された水素ガスの供給ユニット10が構成されており、供給ユニット10が上流側供給路31を介して合流部30に接続されることで、上流側供給路31の上流端に接続された水素ガス発生部2より送出された水素ガスが、上流側供給路31の第一の圧力調整部34及び絞り弁35により圧力及び流量が調整された後に合流部30へと圧送される。そのため、水素ガス発生部2で発生された水素ガスの圧力及び流量を調整した後に合流部30へと圧送させることで、合流後に加水素水製造部5へ供給される水素ガスの圧力及び流量を容易に微調整することができる。   Thus, in the hydrogen gas supply path 3 of the present embodiment, the upstream side supply path 31 is provided with the hydrogen gas purifier 33, the first pressure adjustment unit 34, the throttle valve 35, and the check valve 36, respectively. A hydrogen gas supply unit 10 is configured, and the supply unit 10 is connected to the merging section 30 via the upstream supply path 31, so that the hydrogen gas generation section connected to the upstream end of the upstream supply path 31. 2 is pumped to the junction 30 after the pressure and flow rate are adjusted by the first pressure adjusting section 34 and the throttle valve 35 of the upstream supply path 31. Therefore, the pressure and flow rate of the hydrogen gas supplied to the hydrogenated water production unit 5 after merging are adjusted by adjusting the pressure and flow rate of the hydrogen gas generated in the hydrogen gas generating unit 2 and then pumping it to the merging unit 30. It can be easily fine-tuned.

一方、下流側供給路32は、上流端が合流部30に接続されるとともに、下流端が後述する(加水素水製造部5の)管体50の水素ガス供給口50bに接続される。本実施例の下流側供給路32には、上流側(合流部30に近い側)から順に、第二の圧力調整部37、流量調整部38、逆止弁39等がそれぞれ配設されている。   On the other hand, the downstream supply path 32 has an upstream end connected to the merging unit 30 and a downstream end connected to a hydrogen gas supply port 50b of the pipe body 50 (of the hydrogenated water production unit 5) described later. In the downstream supply path 32 of the present embodiment, a second pressure adjustment unit 37, a flow rate adjustment unit 38, a check valve 39, and the like are arranged in order from the upstream side (side closer to the merging unit 30). .

第二の圧力調整部37としては、合流部30から加水素水製造部5に供給される水素ガスの圧力を予め設定された所定値となるように調整するレギュレータ37aが配設されている。レギュレータ37aとしては、一次側圧力(下流側供給路32の上流側の圧力)及び二次側圧力(下流側供給路32の下流側の圧力)をバランスさせて二次側圧力を調整するダイヤフラム型やピストン型の汎用レギュレータなどが用いられる。このレギュレータ37aにより、上流側供給路31を介して合流部30に供給された水素ガス発生部2からの水素ガスは、圧力が予め設定された所定値となるように調整されて、加水素水製造部5に供給される。   As the second pressure adjusting unit 37, a regulator 37 a that adjusts the pressure of the hydrogen gas supplied from the merging unit 30 to the hydrogenated water producing unit 5 to be a predetermined value set in advance is disposed. The regulator 37a is a diaphragm type that adjusts the secondary pressure by balancing the primary pressure (upstream pressure of the downstream supply path 32) and the secondary pressure (downstream pressure of the downstream supply path 32). Or a piston-type general-purpose regulator. The regulator 37a adjusts the hydrogen gas from the hydrogen gas generation unit 2 supplied to the merging unit 30 via the upstream supply path 31 so that the pressure becomes a predetermined value set in advance. It is supplied to the manufacturing unit 5.

なお、第二の圧力調整部37で調整される水素ガスの圧力の所定値は、例えば、水素ガス発生部2にて発生される水素ガス量や、合流部30から供給される水素ガス量や、目的とする溶存水素量の加水素水を製造するための製造条件等などに応じて適宜設定される。   The predetermined value of the pressure of the hydrogen gas adjusted by the second pressure adjusting unit 37 is, for example, the amount of hydrogen gas generated by the hydrogen gas generating unit 2, the amount of hydrogen gas supplied from the merging unit 30, It is set as appropriate according to the production conditions for producing the hydrogenated water having the target dissolved hydrogen content.

流量調整部38は、加水素水製造部5に供給される水素ガスの流量を、後述する原料水供給路4から供給される原料水の流量に基づいて調整するものであって、具体的には、下流側供給路32中の水素ガスの流量を検出するする水素ガス用流量検出センサとしてのガス流量計38aと、下流側供給路32の下流側に圧送される水素ガスの流量、すなわち加水素水製造部5に供給される水素ガスの流量を調整する流量調整弁としての電磁弁38b等とで構成されている。   The flow rate adjustment unit 38 adjusts the flow rate of the hydrogen gas supplied to the hydrogenated water production unit 5 based on the flow rate of the raw material water supplied from the raw material water supply path 4 to be described later. Includes a gas flow meter 38a as a hydrogen gas flow rate detection sensor for detecting the flow rate of hydrogen gas in the downstream supply path 32, and the flow rate of hydrogen gas fed to the downstream side of the downstream supply path 32, that is, the addition It is comprised with the solenoid valve 38b etc. as a flow volume adjustment valve which adjusts the flow volume of the hydrogen gas supplied to the hydrogen water manufacturing part 5. FIG.

電磁弁38bは電磁弁式の流量調整弁として構成されており、流量調整部38では、この電磁弁38bが開閉制御されることで、加水素水製造部5に供給される水素ガスの流量が原料水供給路4から供給される原料水の流量に基づいて調整される。具体的には、電磁弁38bは、ガス流量計38aにより検出された水素ガスの流量と、後述する原料水供給路4に設けられたフロースイッチ40により検出された原料水の流量が対比されて、加水素水製造部5に供給される水素ガスの流量が調整される。このように、上流側供給路31を介して合流部30に供給された水素ガス発生部2からの水素ガスは、電磁弁38bにより流量が調整された後に加水素水製造部5に供給される。   The solenoid valve 38b is configured as a solenoid valve type flow rate adjustment valve. In the flow rate adjustment unit 38, the flow rate of hydrogen gas supplied to the hydrogenated water production unit 5 is controlled by opening and closing the solenoid valve 38b. It adjusts based on the flow volume of the raw material water supplied from the raw material water supply path 4. Specifically, the solenoid valve 38b compares the flow rate of hydrogen gas detected by the gas flow meter 38a with the flow rate of raw material water detected by a flow switch 40 provided in the raw material water supply path 4 described later. The flow rate of the hydrogen gas supplied to the hydrogenated water production unit 5 is adjusted. Thus, the hydrogen gas from the hydrogen gas generation unit 2 supplied to the merge unit 30 via the upstream supply path 31 is supplied to the hydrogenated water production unit 5 after the flow rate is adjusted by the electromagnetic valve 38b. .

逆止弁39は、下流側供給路32の最下流側であって加水素水製造部5との接続端部に配設されており、この逆止弁39により加水素水製造部5の管体50から水素ガスが下流側供給路32内に逆流するのが防止される。   The check valve 39 is disposed on the most downstream side of the downstream supply path 32 and at the connection end with the hydrogenated water production unit 5. Hydrogen gas from the body 50 is prevented from flowing back into the downstream supply path 32.

図1に示したように、原料水供給路4は、上流端が機外の原料水供給源としての水道蛇口(図略)と連結ホース等を介して接続されるとともに、下流端が加水素水製造部5に接続されており、水道蛇口から圧送された加水素水用の原料水が原料水供給路4を介して加水素水製造部5に供給される。原料水供給路4には、加水素水製造部5に供給される原料水の流量を検出する原料水用流量検出センサとしてのフロースイッチ40が配設されている。   As shown in FIG. 1, the raw material water supply path 4 has an upstream end connected to a water tap (not shown) as a raw material water supply source outside the machine via a connecting hose and the like, and a downstream end to hydrogenation. The raw water for hydrogenated water, which is connected to the water production unit 5 and pumped from the water tap, is supplied to the hydrogenated water production unit 5 through the raw water supply channel 4. In the raw water supply path 4, a flow switch 40 is disposed as a raw water flow detection sensor that detects the flow of raw water supplied to the hydrogenated water production unit 5.

フロースイッチ40では、原料水供給路4から加水素水製造部5へと送出される原料水の流量が検出される。本実施例では、原料水供給路4が原料水供給源として水道蛇口と接続されるため、原料水供給路4を圧送される原料水の流量は水道蛇口の出力に依存される。そして、上述したように、このフロースイッチ40により検出された原料水の流量に基づいて、加水素水製造部5に供給される水素ガスの流量が流量調整部38(の電磁弁38b)により調整されるのである。   In the flow switch 40, the flow rate of the raw material water sent from the raw material water supply path 4 to the hydrogenated water production unit 5 is detected. In the present embodiment, since the raw water supply path 4 is connected to the water tap as a raw water supply source, the flow rate of the raw water fed through the raw water supply path 4 depends on the output of the water tap. As described above, the flow rate of the hydrogen gas supplied to the hydrogenated water production unit 5 is adjusted by the flow rate adjustment unit 38 (the electromagnetic valve 38b) based on the flow rate of the raw water detected by the flow switch 40. It is done.

なお、原料水供給路4には、その他に、水道水に含まれる遊離残留塩素や鉛等を取り除くための浄水カートリッジ(図略)が配設されている。浄水カートリッジとしては、公知の構成を採用することができるが、例えば、活性炭を包含するカーボンフィルタや、ミネラルセラミックスや、天然鉱石を包含するミネラルフィルタなどが所定形状に配設されたものが用いられる。   In addition, the raw water supply channel 4 is provided with a water purification cartridge (not shown) for removing free residual chlorine, lead and the like contained in tap water. As the water purification cartridge, a known configuration can be adopted. For example, a cartridge in which carbon filters including activated carbon, mineral ceramics, mineral filters including natural ore, and the like are arranged in a predetermined shape is used. .

図1及び図3に示すように、加水素水製造部5は、原料水に水素ガスを混合させるためのエジェクタ構造が採用されており、ダブルチューブ状構造の管体50に水素ガス供給路3及び原料水供給路4が接続され、管体50に原料水と水素ガスが供給されることで、原料水と水素ガスとが気液混合されて、所定の加水素水が製造される。具体的には、管体50には、原料水供給路4と水密結合された原料水供給口50aと、水素ガス供給路3と水密結合され、原料水に対してほぼ直角に水素ガスを噴射する水素ガス供給口50bと、製造された加水素水が管体50外に排出されて後述する排出路54に送られる加水素水排出口50c等とが形成されている。また、管体50内には、原料水供給口50aの先端に形成された先細りノズル51と、両端から中央に向かって縮径された拡散室52と、拡散室52に配設された多孔質要素53等とが設けられている。   As shown in FIGS. 1 and 3, the hydrogenated water production unit 5 employs an ejector structure for mixing the raw material water with hydrogen gas, and the hydrogen gas supply path 3 is connected to the tube 50 having a double tube structure. The raw material water supply path 4 is connected, and the raw water and the hydrogen gas are supplied to the pipe body 50, whereby the raw water and the hydrogen gas are gas-liquid mixed to produce predetermined hydrogenated water. Specifically, the raw material water supply port 50a that is watertightly connected to the raw material water supply path 4 and the hydrogen gas supply path 3 are watertightly connected to the pipe body 50, and hydrogen gas is injected at a substantially right angle to the raw material water. The hydrogen gas supply port 50b to be manufactured, and the hydrogenated water discharge port 50c and the like in which the produced hydrogenated water is discharged out of the pipe body 50 and sent to the discharge path 54 described later are formed. Further, in the pipe body 50, a tapered nozzle 51 formed at the tip of the raw material water supply port 50a, a diffusion chamber 52 having a diameter reduced from both ends toward the center, and a porous material disposed in the diffusion chamber 52. Elements 53 and the like are provided.

拡散室52は、両端から中央に向かって縮径構造(絞り構造)となるように構成され、かかる絞り部で負圧が形成される。このような絞り構造とすることで、水素ガス供給路3から管体50に供給された水素ガスと、原料水供給路4から管体50に供給された原料水の混合流体の吸引効果を増強させることができる。また、拡散室52の下流部の先端に加水素水排出口50cが形成されている。   The diffusion chamber 52 is configured to have a reduced diameter structure (a throttle structure) from both ends toward the center, and a negative pressure is formed at the throttle portion. With such a throttle structure, the suction effect of the mixed fluid of hydrogen gas supplied from the hydrogen gas supply path 3 to the pipe body 50 and raw water supplied from the raw water supply path 4 to the pipe body 50 is enhanced. Can be made. Further, a hydrogenated water discharge port 50 c is formed at the tip of the downstream portion of the diffusion chamber 52.

多孔質要素53は、所定の孔径を有するフィルタ構造に形成され、具体的には、直径が120μm〜2μmの範囲の孔を有し、厚さが5〜20mm(好ましくは5〜10mm)のものが用いられる。多孔質要素53の材料は特段に限定されず、例えば、砲金、ブロンズ、ニッケル、ステンレススティール、セラミックスなどの焼結体や、金網等が用いられる。ただし、加水素水を飲用に供する場合には、ステンレススティールの焼結体が好ましい。   The porous element 53 is formed in a filter structure having a predetermined pore diameter. Specifically, the porous element 53 has pores having a diameter in the range of 120 μm to 2 μm and a thickness of 5 to 20 mm (preferably 5 to 10 mm). Is used. The material of the porous element 53 is not particularly limited, and for example, a sintered body such as gun metal, bronze, nickel, stainless steel, ceramics, a wire net, or the like is used. However, when hydrogenated water is used for drinking, a sintered body of stainless steel is preferable.

多孔質要素53は、拡散室52に充填され、拡散室52に導入される水素ガスと原料水から成る混合流体が多孔質要素53を介して噴射されることで、多孔質要素53に形成されている孔の直径と略同じ直径の気泡が形成される。この多孔質要素53は、主に水圧や水量の条件によって適宜選択される。例えば、焼結体のTylerメッシュを用いて、直径が10μm以下の微細気泡を形成させる場合には、好ましくは120メッシュ以上のものが選択される。Tylerメッシュが大きくなるほど、高濃度の溶存水素量を得ることがきるが、一方で、水圧水量の圧損が大きくなって製造効率が低下する。   The porous element 53 is formed in the porous element 53 by filling the diffusion chamber 52 and injecting a mixed fluid composed of hydrogen gas and raw water introduced into the diffusion chamber 52 through the porous element 53. Bubbles having a diameter substantially the same as the diameter of the open holes are formed. The porous element 53 is appropriately selected mainly depending on conditions of water pressure and water amount. For example, when fine bubbles having a diameter of 10 μm or less are formed using a sintered Tyler mesh, those having a diameter of 120 mesh or more are preferably selected. The larger the Tyler mesh, the higher the concentration of dissolved hydrogen can be obtained. On the other hand, the pressure loss of the hydraulic water amount increases and the production efficiency decreases.

本実施例の加水素水製造部5では、まず、エジェクタ効果を利用して拡散室52にて原料水に対して水素ガスが混合され、原料水に水素ガスが溶解された加水素水(混合流体)が形成される。そして、加水素水が多孔質要素53に通過されることで、加水素水に微細な気泡が含有される。この加水素水に含有される気泡には、原料水に溶解した空気の気泡の他に、水素ガスの気泡が含有されている。すなわち、加水素水製造部5により製造される加水素水は、水素ガスを気泡状態で原料水に混合させるのではなく、一度原料水と水素との加水素水を形成し、その後に多孔質要素53に通過させることで水素ガスの気泡が含有されるものである。   In the hydrogenated water production unit 5 of the present embodiment, first, hydrogen gas is mixed with the raw water in the diffusion chamber 52 using the ejector effect, and the hydrogen water (mixed) is dissolved in the raw water. Fluid) is formed. The hydrogenated water is passed through the porous element 53, so that fine bubbles are contained in the hydrogenated water. The bubbles contained in the hydrogenated water contain hydrogen gas bubbles in addition to air bubbles dissolved in the raw water. That is, the hydrogenated water produced by the hydrogenated water production unit 5 does not mix the hydrogen gas with the raw material water in the form of bubbles, but once forms the hydrogenated water of the raw material water and hydrogen, and then the porous water By passing through the element 53, bubbles of hydrogen gas are contained.

このように、加水素水製造部5を構成することで、原料水と水素との混合流体(加水素水)を多孔質要素53に通過させて、水素ガスの微細気泡を含有した加水素水を容易に製造することができる。このようにして製造される加水素水には、微細気泡として、直径が120μm以下のミリバブルからマイクロバブル、およびマイクロナノバブルまで広範な直径の水素ガスの気泡が含まれており、均一性と分散性に優れ、液体中への吸収効率が高められる。   In this way, by configuring the hydrogenated water production unit 5, hydrogenated water containing fine bubbles of hydrogen gas is allowed to pass through the porous element 53 through a mixed fluid of raw water and hydrogen (hydrogenated water). Can be easily manufactured. The hydrogenated water produced in this way contains bubbles of hydrogen gas with a wide range of diameters, from microbubbles with a diameter of 120 μm or less to microbubbles and micronanobubbles, as fine bubbles. Excellent absorption efficiency in the liquid.

加水素水製造部5には、管体50の加水素水排出口50cに加水素水を機外に排出するための排出路54が接続されている。排出路54には、製造された加水素水を一時的に貯溜する反応槽55と、下流側端部に機外に取り出す手動バルブ56が設けられている。また、排出路54は中途部にて分岐され、別途手動バルブ57が設けられており、この手動バルブ57にて管体50及び排出路54(反応槽55)内の加水素水が強制的に機外に排出(ドレン)される。   A discharge path 54 for discharging the hydrogenated water to the outside of the machine is connected to the hydrogenated water production unit 5 at the hydrogenated water discharge port 50 c of the pipe body 50. The discharge path 54 is provided with a reaction tank 55 for temporarily storing the produced hydrogenated water and a manual valve 56 for taking it out of the apparatus at the downstream end. Further, the discharge path 54 is branched in the middle, and a separate manual valve 57 is provided. The manual valve 57 forces the hydrogenated water in the tube 50 and the discharge path 54 (reaction tank 55) to be forced. It is discharged (drained) outside the machine.

ここで、加水素水製造部5に供給される水素ガスの圧力及び流量の調整方法について、以下に概説する。
本実施例の加水素水の製造装置1では、上述したポンプ装置24a、第一の圧力調整部34(圧力計34b及び電磁弁34c)、流量調整部38(ガス流量計38a及び電磁弁38b)等は、図示せぬ制御装置に接続されており、かかる制御装置によって加水素水製造部5に供給される水素ガスの圧力及び流量が調整される。
Here, the method for adjusting the pressure and flow rate of the hydrogen gas supplied to the hydrogenated water production unit 5 will be outlined below.
In the hydrogenated water production apparatus 1 of the present embodiment, the pump device 24a, the first pressure adjustment unit 34 (the pressure gauge 34b and the electromagnetic valve 34c), and the flow rate adjustment unit 38 (the gas flow meter 38a and the electromagnetic valve 38b) described above. Are connected to a control device (not shown), and the pressure and flow rate of the hydrogen gas supplied to the hydrogenated water production unit 5 are adjusted by the control device.

すなわち、水素ガス発生部2で発生された水素ガスは、まず供給ユニット10(上流側供給路31)にて予め設定された所定値となるように圧力及び流量が調整される。そして、合流部30にて各供給ユニット10から供給された水素ガスが合流された後は、下流側供給路32にて第二の圧力調節部37にて圧力が微調整されるとともに、流量調整部38にてフロースイッチ40にて検出された原料水の流量に基づいて流量が微調整されるのである。   That is, the pressure and flow rate of the hydrogen gas generated in the hydrogen gas generation unit 2 is first adjusted so as to have a predetermined value set in advance in the supply unit 10 (upstream supply path 31). After the hydrogen gas supplied from each supply unit 10 is merged in the merge unit 30, the pressure is finely adjusted in the second pressure adjusting unit 37 in the downstream supply path 32, and the flow rate is adjusted. The flow rate is finely adjusted based on the flow rate of the raw material water detected by the flow switch 40 in the part 38.

具体的には、本実施例の加水素水の製造装置1では、加水素水製造部5にて所定の酸化還元電位(−400mV〜−680mV)の加水素水を製造するには、加水素水製造部5に供給される水素ガスは、水圧0.1〜0.5MPa及び供給量5〜20リットル/分となるように調整された原料水に対して、好ましくは、圧力0.2〜0.8MPa及び供給流量0.1〜10リットル/分となるように調整される。   Specifically, in the hydrogenated water production apparatus 1 of the present embodiment, the hydrogenated water production unit 5 produces hydrogenated water having a predetermined oxidation-reduction potential (−400 mV to −680 mV). Hydrogen gas supplied to the water production unit 5 is preferably 0.2 to 0.5 MPa with respect to the raw water adjusted to have a water pressure of 0.1 to 0.5 MPa and a supply amount of 5 to 20 liters / minute. The pressure is adjusted to 0.8 MPa and the supply flow rate is 0.1 to 10 liters / minute.

次に、本実施例の加水素水の製造装置1を用いた加水素水の製造例について、以下に詳述する。   Next, an example of hydrogenated water production using the hydrogenated water production apparatus 1 of the present embodiment will be described in detail below.

なお、以下の全ての製造例では、酸化還元電位測定は東亜ディーケーケー社製ポータブルORP計RM−20Pを、pH測定は東亜ディーケーケー社製ポータブルpH計HM−20Pを、及び溶存水素量測定は東亜ディーケーケー社製DHD−1型溶存水素計をそれぞれ用いて測定した。   In all of the following production examples, the redox potential measurement was performed with a portable ORP meter RM-20P manufactured by Toa DK, the pH was measured with a portable pH meter HM-20P manufactured by Toa DK, and the dissolved hydrogen content was measured with Toa DK. Measurement was performed using a DHD-1 type dissolved hydrogen meter manufactured by KK.

製造例1では、上述した加水素水の製造装置1を用いて溶存水素量0.7ppm以上の加水素水を製造するために、活性炭フィルターを介して脱塩素処理された広島県福山市水道局の水道水(水温15.3℃、溶存水素量0.01ppm)を流量7リットル/分、水圧0.2MPaに調整し、かかる原料水に対して水素ガスを流量0.4リットル/分、ガス圧0.5MPaに調整した状態で、加水素水製造部5にそれぞれ供給した。その結果、溶存水素量0.775ppm、酸化還元電位−610mV、pHが7.3の加水素水を連続して得た。   In Production Example 1, Fukuyama City Waterworks Bureau, Fukuyama City, Hiroshima, which was dechlorinated through an activated carbon filter to produce hydrogenated water having a dissolved hydrogen content of 0.7 ppm or more using the hydrogenated water producing apparatus 1 described above. Tap water (water temperature 15.3 ° C., dissolved hydrogen amount 0.01 ppm) was adjusted to a flow rate of 7 liters / minute and a water pressure of 0.2 MPa, and hydrogen gas was supplied to the raw water at a flow rate of 0.4 liters / minute, gas. The pressure was adjusted to 0.5 MPa and supplied to the hydrogenated water production unit 5. As a result, hydrogenated water having a dissolved hydrogen content of 0.775 ppm, an oxidation-reduction potential of -610 mV, and a pH of 7.3 was continuously obtained.

製造例2では、上述した加水素水の製造装置1を用いて、溶存水素量1.2ppm以上の加水素水を製造するために、活性炭フィルターを介して脱塩素処理された広島県福山市水道局の水道水(水温15.3℃、溶存水素量0.01ppm)を供給した。加水素水の製造装置1では、原料水を流量7リットル/分、水圧0.2MPaに調整し、かかる原料水に対して水素ガスを流量1.2リットル/分、ガス圧0.5MPaに調整した状態で、加水素水製造部5にそれぞれ供給した。その結果、溶存水素量1.25ppm、酸化還元電位−618mV、pHが7.35の加水素水を連続して得た。   In Production Example 2, the above-described hydrogenated water production apparatus 1 is used to produce hydrogenated water having a dissolved hydrogen content of 1.2 ppm or more, which was dechlorinated through an activated carbon filter in Fukuyama City, Hiroshima Prefecture. Station tap water (water temperature 15.3 ° C., dissolved hydrogen amount 0.01 ppm) was supplied. In the hydrogenated water production apparatus 1, the raw water is adjusted to a flow rate of 7 liters / minute and a water pressure of 0.2 MPa, and the hydrogen gas is adjusted to a flow rate of 1.2 liters / minute and the gas pressure to 0.5 MPa for the raw water. In this state, each was supplied to the hydrogenated water production unit 5. As a result, hydrogenated water having a dissolved hydrogen content of 1.25 ppm, an oxidation-reduction potential of -618 mV, and a pH of 7.35 was continuously obtained.

製造例3では、上述した加水素水の製造装置1を用いて、溶存水素量1.5ppm以上の加水素水を製造するために、活性炭フィルターを介して脱塩素処理された広島県福山市水道局の水道水(水温15.3℃、溶存水素量0.01ppm)を供給した。加水素水の製造装置1では、原料水を流量7リットル/分、水圧0.2MPaに調整し、かかる原料水に対して水素ガスを流量5.0リットル/分、ガス圧0.5MPaに調整した状態で、加水素水製造部5にそれぞれ供給した。その結果、溶存水素量1.835ppm、酸化還元電位−625mV、pHが7.45の加水素水を連続して得た。   In Production Example 3, the above-described hydrogenated water production apparatus 1 was used to produce hydrogenated water having a dissolved hydrogen content of 1.5 ppm or more, and was dechlorinated through an activated carbon filter in Fukuyama City, Hiroshima Prefecture. Station tap water (water temperature 15.3 ° C., dissolved hydrogen amount 0.01 ppm) was supplied. In the hydrogenated water production apparatus 1, the raw water is adjusted to a flow rate of 7 liter / min and a water pressure of 0.2 MPa, and the hydrogen gas is adjusted to a flow rate of 5.0 liter / min and a gas pressure of 0.5 MPa for the raw water. In this state, each was supplied to the hydrogenated water production unit 5. As a result, hydrogenated water having a dissolved hydrogen amount of 1.835 ppm, an oxidation-reduction potential of -625 mV, and a pH of 7.45 was continuously obtained.

以上のように、本実施例の加水素水の製造装置1は、原料水に水素ガスを混合させて加水素水を連続して製造する加水素水製造部5が設けられた加水素水の製造装置1において、水素ガス用の原料水を電気分解して水素ガスを発生させる一又は複数の水素ガス発生部2と、一又は複数の水素ガス発生部2からの水素ガスを加水素水製造部5に供給する水素ガス供給路3と、機外の原料水供給源と接続され、加水素水用の原料水を加水素水製造部5に供給する原料水供給路4とを具備してなり、水素ガス供給路3の下流側には、加水素水製造部5に供給される水素ガスの流量を、原料水供給路4から供給される原料水の流量に基づいて調整する流量調整部38が設けられるため、従来の構成と比べて、装置構成を小型化して取扱性を向上させることができる。   As described above, the hydrogenated water production apparatus 1 according to the present embodiment is provided with the hydrogenated water production unit 5 that continuously produces hydrogenated water by mixing the raw material water with hydrogen gas. In the production apparatus 1, one or a plurality of hydrogen gas generation units 2 that electrolyze raw water for hydrogen gas to generate hydrogen gas, and hydrogen gas from one or more hydrogen gas generation units 2 to produce hydrogenated water A hydrogen gas supply path 3 for supplying to the section 5 and a raw water supply path 4 for connecting raw water for hydrogenated water to the hydrogenated water producing section 5 connected to a raw water supply source outside the apparatus. The flow rate adjusting unit that adjusts the flow rate of the hydrogen gas supplied to the hydrogenated water production unit 5 on the downstream side of the hydrogen gas supply channel 3 based on the flow rate of the raw material water supplied from the raw water supply channel 4 Since 38 is provided, the device configuration is reduced in size and handling is improved compared to the conventional configuration. Door can be.

すなわち、本実施例の構成では、加水素水製造部5に対する水素ガスの供給源として水素ガス用の原料水を電気分解して水素ガスを発生させる一又は複数の水素ガス発生部2が設けられるため、所定の溶存水素量の加水素水を製造するために必要な水素ガスの供給を確保しつつ、従来のように水素ガスボンベを用いる場合と比べて、装置構成を小型化することができる。特に、高圧ガスの交換や取扱資格が不要となって、取扱性が向上されるとともに、安全性も高められる。また、水素ガス発生部2では、電気分解して水素ガスを発生させるため、高効率で電力消費量が小さく経済的である。   That is, in the configuration of the present embodiment, one or a plurality of hydrogen gas generation units 2 that generate hydrogen gas by electrolyzing raw water for hydrogen gas are provided as a hydrogen gas supply source for the hydrogenated water production unit 5. Therefore, the apparatus configuration can be reduced in size as compared with the conventional case using a hydrogen gas cylinder while ensuring the supply of hydrogen gas necessary for producing hydrogenated water having a predetermined amount of dissolved hydrogen. In particular, high-pressure gas replacement and handling qualifications are not required, improving handling and improving safety. Further, since the hydrogen gas generation unit 2 generates hydrogen gas by electrolysis, it is highly efficient and has low power consumption and is economical.

また、これまでの見地より、加水素水製造部5で製造される加水素水の溶存水素量は、原料水に対する水素ガスの流量を変更することで調整できることが明らかとなっていることから、本実施例では、エジェクタ効果により原料水に水素ガスを混合させた混合流体を生成し、該混合流体を多孔質要素に通過させることで水素ガスの微細気泡を含有する加水素水を連続して製造する加水素水製造部5を具備してなる加水素水の製造装置1を用いた加水素水の製造方法であって、加水素水製造部5に、水素ガス用の原料水を電気分解して水素ガスを発生させる一又は複数の水素ガス発生部2で発生された水素ガスと、機外の原料水供給源から供給される加水素水用の原料水とを供給し、水素ガスの流量と原料水の流量とを対比して、加水素水製造部5にて製造される加水素水が所定範囲の酸化還元電位となるように、予め所定流量に調整された原料水に対して水素ガスを所定流量に調整するものである。   In addition, from the viewpoint so far, it is clear that the amount of hydrogen dissolved in the hydrogenated water produced in the hydrogenated water production unit 5 can be adjusted by changing the flow rate of hydrogen gas relative to the raw water, In this embodiment, a mixed fluid in which hydrogen gas is mixed with raw material water is generated by the ejector effect, and hydrogenated water containing fine bubbles of hydrogen gas is continuously passed by passing the mixed fluid through a porous element. A method for producing hydrogenated water using an apparatus for producing hydrogenated water 1 comprising a hydrogenated water producing unit 5 to be produced, wherein the hydrogenated water producing unit 5 is electrolyzed with raw water for hydrogen gas. Then, hydrogen gas generated in one or a plurality of hydrogen gas generators 2 for generating hydrogen gas and raw water for hydrogenated water supplied from a raw water supply source outside the apparatus are supplied, Hydrogenated water production by comparing the flow rate with the flow rate of raw water 5 as pressurized hydrogen water produced is the redox potential of the predetermined range at and adjusts the hydrogen gas to a predetermined flow rate relative to the previously adjusted to a predetermined flow rate raw water.

特に、本実施例では、加水素水の製造装置1に、加水素水製造部5に供給される水素ガスの流量を検出するガス流量計38aと、加水素水製造部5に供給される水素ガスの流量を調整する電磁弁38bと、加水素水製造部5に供給される原料水の流量を検出するフロースイッチ40とを設け、ガス流量計38aにより検出された水素ガスの流量とフロースイッチ40により検出された原料水の流量とを対比して、加水素水製造部5にて製造される加水素水が所定範囲の酸化還元電位となるように、予め所定流量に調整された原料水に対して電磁弁38bを制御して水素ガスを所定流量に調整するものであり、このような製造方法によって、目的とする酸化還元電位の加水素水を容易に製造することができるのである。   In particular, in the present embodiment, the hydrogenated water production apparatus 1 includes a gas flow meter 38 a that detects the flow rate of hydrogen gas supplied to the hydrogenated water production unit 5, and hydrogen supplied to the hydrogenated water production unit 5. An electromagnetic valve 38b for adjusting the gas flow rate and a flow switch 40 for detecting the flow rate of the raw water supplied to the hydrogenated water production unit 5 are provided, and the hydrogen gas flow rate and flow switch detected by the gas flow meter 38a are provided. The raw water adjusted to a predetermined flow rate in advance so that the hydrogenated water produced by the hydrogenated water production unit 5 has a redox potential within a predetermined range in comparison with the flow rate of the raw water detected by 40. On the other hand, the solenoid valve 38b is controlled to adjust the hydrogen gas to a predetermined flow rate, and the hydrogenated water having the target oxidation-reduction potential can be easily manufactured by such a manufacturing method.

また、本実施例の流量調整部38は、加水素水製造部5に供給される水素ガスの流量を検出する流量検出センサとしてのガス流量計38aと、ガス流量計38aにより検出された水素ガスの流量と原料水供給路4から供給される原料水の流量とを対比して、加水素水製造部5に供給される水素ガスの流量を調整する流量調整弁としての電磁弁38bが設けられるため、流量調整部38を簡易に構成でき、原料水の流量を応答性よく微調整できる。   In addition, the flow rate adjustment unit 38 of the present embodiment includes a gas flow meter 38a as a flow rate detection sensor that detects the flow rate of the hydrogen gas supplied to the hydrogenated water production unit 5, and hydrogen gas detected by the gas flow meter 38a. The electromagnetic valve 38b is provided as a flow rate adjusting valve for adjusting the flow rate of the hydrogen gas supplied to the hydrogenated water production unit 5 by comparing the flow rate of the raw material water with the flow rate of the raw material water supplied from the raw material water supply path 4. Therefore, the flow rate adjustment unit 38 can be configured simply, and the flow rate of the raw material water can be finely adjusted with good responsiveness.

また、本実施例の水素ガス供給路3は、水素ガス発生部2と加水素水製造部5との中途で分岐される合流部30と、上流端が一の水素ガス発生部2に接続されるとともに下流端が合流部30に接続される1又は複数の上流側供給路31と、上流端が合流部30に接続されるとともに下流端が加水素水製造部5に接続され、流量調整部38が設けられる下流側供給路32とが設けられるため、合流部30に対して複数の上流側供給路31を接続することで複数の水素ガス発生部2からの水素ガスを合流させて、水素ガスの供給量を容易に増減でき、製造される加水素水の酸化還元電位の調整幅を拡大できる。   Further, the hydrogen gas supply path 3 of the present embodiment is connected to the merging section 30 branched in the middle of the hydrogen gas generating section 2 and the hydrogenated water producing section 5 and the hydrogen gas generating section 2 having an upstream end. And one or a plurality of upstream supply passages 31 whose downstream ends are connected to the merging portion 30, and whose upstream ends are connected to the merging portion 30 and whose downstream ends are connected to the hydrogenated water production unit 5, Since the downstream supply path 32 provided with the number 38 is provided, the plurality of upstream supply paths 31 are connected to the merging section 30 so that the hydrogen gas from the plurality of hydrogen gas generating sections 2 is merged. The amount of gas supply can be easily increased or decreased, and the adjustment range of the oxidation-reduction potential of the hydrogenated water produced can be expanded.

また、本実施例の水素ガス供給路3には、合流部30の上流側にて、水素ガス発生部2から送出された水素ガスの圧力を予め設定された所定値となるように調整する第一の圧力調整部34が設けられ、合流部30の下流側にて、加水素水製造部5に供給される水素ガスの圧力を予め設定された所定値となるように調整する第二の圧力調整部37が設けられるため、水素ガス発生部2で発生された水素ガスの圧力を調整した後に合流部30へと圧送させることで、合流後に加水素水製造部5へ供給される水素ガスの圧力を容易に微調整することができる。   Further, in the hydrogen gas supply path 3 of the present embodiment, the pressure of the hydrogen gas sent out from the hydrogen gas generation unit 2 is adjusted upstream of the merging unit 30 so as to be a predetermined value set in advance. A second pressure that is provided with one pressure adjustment unit 34 and adjusts the pressure of the hydrogen gas supplied to the hydrogenated water production unit 5 to a predetermined value that is set downstream of the merge unit 30. Since the adjusting unit 37 is provided, the pressure of the hydrogen gas generated in the hydrogen gas generating unit 2 is adjusted and then pumped to the merging unit 30, so that the hydrogen gas supplied to the hydrogenated water production unit 5 after merging is adjusted. The pressure can be easily fine-tuned.

なお、本実施例の加水素水の製造装置1としては、上述した構成等に限定されない。   In addition, as the manufacturing apparatus 1 of the hydrogenated water of a present Example, it is not limited to the structure etc. which were mentioned above.

すなわち、上述した実施例では、複数(4つ)の供給ユニット10が設けられた構成について説明したが、かかる供給ユニット10(水素ガス発生部2や下流側供給路32等を含む)の個数は特に限定されず、少なくとも一つ以上設けられればよい。例えば、合流部30に一の下流側供給路32が接続されて一の水素ガス発生部2が設けられる場合には、上述した実施例のように、合流部30でのリリーフバルブ30a、絞り弁35、逆止弁36及び第二の圧力調整部37等は、必ずしも設けられなくてもよい。   That is, in the above-described embodiment, the configuration in which a plurality of (four) supply units 10 are provided has been described. However, the number of supply units 10 (including the hydrogen gas generation unit 2, the downstream supply path 32, and the like) It does not specifically limit, At least 1 or more should just be provided. For example, in the case where one downstream supply path 32 is connected to the merging portion 30 and one hydrogen gas generating portion 2 is provided, the relief valve 30a and the throttle valve in the merging portion 30 as in the above-described embodiment. 35, the check valve 36, the second pressure adjustment unit 37, and the like are not necessarily provided.

圧力調整部34・37の構成としては、上述した構成に限定されないが、上述した実施例のように第二の圧力調整部37としては、第一の圧力調整部34の構成と比べて簡易に構成することができる。また、一の供給ユニット10が設けられる場合には、水素ガス供給路3に少なくとも位置の圧力調整部が設けられればよい。   The configuration of the pressure adjusting units 34 and 37 is not limited to the above-described configuration, but the second pressure adjusting unit 37 is simpler than the configuration of the first pressure adjusting unit 34 as in the above-described embodiment. Can be configured. When one supply unit 10 is provided, the hydrogen gas supply path 3 may be provided with at least a pressure adjusting unit at a position.

流量調整部38の構成としては、流量調整弁として、例えば、チェック弁付流量調整弁、パイロット操作流量調整弁、パイロット操作チェック弁付流量、及び一方向絞り弁などが用いられてもよい。また、流量検出センサと流量調整弁とがモジュール化されたものが用いられてもよい。   As the configuration of the flow rate adjustment unit 38, for example, a flow rate adjustment valve with a check valve, a pilot operation flow rate adjustment valve, a flow rate with a pilot operation check valve, and a one-way throttle valve may be used as the flow rate adjustment valve. Further, a module in which the flow rate detection sensor and the flow rate adjustment valve are modularized may be used.

原料水供給路4が接続される機外の原料水供給源としては、上述した実施例のように水道蛇口に限定されるものではなく、加水素水用の原料水が貯溜された貯溜タンクであってもよい。かかる場合には、原料水供給路4に原料水が供給される際に、圧力及び流量が所定値に調整される。   The raw water supply source outside the apparatus to which the raw water supply path 4 is connected is not limited to a water tap as in the above-described embodiment, but is a storage tank in which raw water for hydrogenated water is stored. There may be. In such a case, when the raw water is supplied to the raw water supply path 4, the pressure and flow rate are adjusted to predetermined values.

加水素水製造部5の構成においては、上述した実施例のように、管体50が単体で用いられるだけではなく、長手方向に沿って略直線上に複数配設されてもよい。かかる構成とすることで、隣接する管体50に供給される原料水と水素ガスとの混合流体(加水素水)に対してさらに水素ガスを混合させて、原料水に水素ガスを飽和状態にまで溶解させることができるとともに、下流側の管体50に供給されるにつれて徐々に混合流体(加水素水)に含有される気泡を微細化することができる。   In the configuration of the hydrogenated water production unit 5, not only the tube body 50 is used alone as in the above-described embodiment, but a plurality of pipe bodies 50 may be arranged on a substantially straight line along the longitudinal direction. By setting it as this structure, hydrogen gas is further mixed with the mixed fluid (hydrogenated water) of the raw material water and hydrogen gas supplied to the adjacent pipe 50, and hydrogen gas is saturated to raw material water. In addition, the bubbles contained in the mixed fluid (hydrogenated water) can be gradually refined as it is supplied to the pipe body 50 on the downstream side.

1 加水素水の製造装置
2 水素ガス発生部
3 水素ガス供給路
4 原料水供給路
5 加水素水製造部
38 流量調整部(流量調整手段)
DESCRIPTION OF SYMBOLS 1 Hydrogenated water production apparatus 2 Hydrogen gas generation part 3 Hydrogen gas supply path 4 Raw material water supply path 5 Hydrogenated water production part 38 Flow rate adjustment part (flow rate adjustment means)

Claims (5)

エジェクタ効果により原料水に水素ガスを混合させた混合流体を生成し、該混合流体を多孔質要素に通過させることで水素ガスの微細気泡を含有する加水素水を連続して製造する加水素水製造部を具備してなる加水素水の製造装置を用いた加水素水の製造方法であって、
前記加水素水製造部に、水素ガス用の原料水を電気分解して水素ガスを発生させる一又は複数の水素ガス発生部で発生された水素ガスと、機外の原料水供給源から供給される加水素水用の原料水とを供給し、
水素ガスの流量と原料水の流量とを対比して、前記加水素水製造部にて製造される加水素水が所定範囲の酸化還元電位となるように、予め所定流量に調整された原料水に対して水素ガスを所定流量に調整する、
ことを特徴とする加水素水の製造方法。
Hydrogenated water that continuously produces hydrogenated water containing fine bubbles of hydrogen gas by generating a mixed fluid in which hydrogen gas is mixed with raw water by the ejector effect and passing the mixed fluid through a porous element A method for producing hydrogenated water using a device for producing hydrogenated water comprising a production unit,
Hydrogen gas generated in one or a plurality of hydrogen gas generators that generate hydrogen gas by electrolyzing the raw water for hydrogen gas is supplied to the hydrogenated water production unit from a raw material water supply source outside the apparatus. Supply raw water for hydrogenated water,
The raw water adjusted to a predetermined flow rate in advance so that the hydrogenated water produced in the hydrogenated water production unit has a redox potential within a predetermined range by comparing the flow rate of hydrogen gas with the flow rate of raw water. The hydrogen gas is adjusted to a predetermined flow rate with respect to
The manufacturing method of the hydrogenated water characterized by the above-mentioned.
前記加水素水の製造装置には、
前記加水素水製造部に供給される水素ガスの流量を検出する水素ガス用流量検出センサと、
前記加水素水製造部に供給される水素ガスの流量を調整する流量調整弁と、
前記加水素水製造部に供給される原料水の流量を検出する原料水用流量検出センサとが設けられ、
前記水素ガス用流量検出センサにより検出された水素ガスの流量と前記原料水用流量検出センサにより検出された原料水の流量とを対比して、前記加水素水製造部にて製造される加水素水が所定範囲の酸化還元電位となるように、予め所定流量に調整された原料水に対して前記流量調整弁を制御して水素ガスを所定流量に調整する、
ことを特徴とする請求項1に記載の加水素水の製造方法。
In the hydrogenated water production apparatus,
A hydrogen gas flow rate detection sensor for detecting a flow rate of hydrogen gas supplied to the hydrogenated water production unit;
A flow rate adjusting valve for adjusting the flow rate of hydrogen gas supplied to the hydrogenated water production unit;
A flow rate detection sensor for raw water that detects the flow rate of raw water supplied to the hydrogenated water production unit;
Hydrogen gas produced by the hydrogenated water production unit by comparing the flow rate of hydrogen gas detected by the flow rate detection sensor for hydrogen gas with the flow rate of raw material water detected by the flow rate detection sensor for raw material water The hydrogen gas is adjusted to a predetermined flow rate by controlling the flow rate adjustment valve with respect to the raw material water that has been adjusted to a predetermined flow rate in advance so that the water has a redox potential within a predetermined range.
The method for producing hydrogenated water according to claim 1.
前記水素ガス発生部で発生された水素ガスは、予め設定された所定値となるように圧力及び流量を調整した後に、原料水の流量に基づいて微調整して前記加水素水製造部に供給することを特徴とする請求項1又は請求項2に記載の加水素水の製造方法。   After adjusting the pressure and flow rate so that the hydrogen gas generated in the hydrogen gas generation unit becomes a predetermined value set in advance, fine adjustment based on the flow rate of raw material water is supplied to the hydrogenated water production unit The method for producing hydrogenated water according to claim 1 or 2, wherein: 前記水素ガス発生部は、陽子交換膜型の電解セルを有することを特徴とする請求項1乃至請求項3のいずれか一項に記載の加水素水の製造方法。   The said hydrogen gas generation | occurrence | production part has a proton exchange membrane type electrolysis cell, The manufacturing method of the hydrogenated water as described in any one of Claim 1 thru | or 3 characterized by the above-mentioned. 前記水素ガス発生部は、水素ガス用の原料水が貯溜される原料水タンクが循環路を介して接続されることを特徴とする請求項1乃至請求項4のいずれか一項に記載の加水素水の製造方法。   The said hydrogen gas generation | occurrence | production part is connected to the raw material water tank in which the raw water for hydrogen gas is stored via a circulation path, The addition as described in any one of Claim 1 thru | or 4 characterized by the above-mentioned. A method for producing hydrogen water.
JP2009116002A 2008-07-03 2009-05-12 Method for producing hydrogenated water Active JP4547543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116002A JP4547543B2 (en) 2008-07-03 2009-05-12 Method for producing hydrogenated water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008175000 2008-07-03
JP2009116002A JP4547543B2 (en) 2008-07-03 2009-05-12 Method for producing hydrogenated water

Publications (2)

Publication Number Publication Date
JP2010029841A true JP2010029841A (en) 2010-02-12
JP4547543B2 JP4547543B2 (en) 2010-09-22

Family

ID=41734980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116002A Active JP4547543B2 (en) 2008-07-03 2009-05-12 Method for producing hydrogenated water

Country Status (1)

Country Link
JP (1) JP4547543B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200808A (en) * 2010-03-26 2011-10-13 Jfe Engineering Corp Method and apparatus for mixing fluid
JP2012086193A (en) * 2010-10-22 2012-05-10 Kankyo Giken Co Ltd Hydrogen dissolved water producing device
JP5095020B1 (en) * 2012-03-13 2012-12-12 エウレカ・ラボ株式会社 Gas dissolved water purifier
JP2012250176A (en) * 2011-06-03 2012-12-20 Kri Inc Nozzle for generating micro air bubbles
WO2013054433A1 (en) * 2011-10-14 2013-04-18 株式会社エスマック Hydrogen-oxygen gas generator
JP2013184072A (en) * 2012-03-05 2013-09-19 Ohnit Co Ltd Gas dissolving method, and gas dissolving apparatus
JP5691023B1 (en) * 2014-02-15 2015-04-01 株式会社勝電技研 Hydrogen water production equipment
JP2016022418A (en) * 2014-07-18 2016-02-08 株式会社アシレ Oxidation-reduction water production method, nozzle used in said method, and oxidation-reduction water production apparatus
KR20160003015U (en) 2015-02-24 2016-09-01 히로시마 카세이 가부시키 가이샤 Apparatus for manufacturing hydrogen water
JP6148759B1 (en) * 2016-05-11 2017-06-14 MiZ株式会社 Method for obtaining hydrogen concentration of hydrogen-containing liquid and hydrogen-containing liquid generator
WO2018020707A1 (en) * 2016-07-27 2018-02-01 シャープ株式会社 Hydrogen water generating device
JP2018028116A (en) * 2016-08-15 2018-02-22 デノラ・ペルメレック株式会社 Electrolytic apparatus
ES2748216R1 (en) * 2018-09-13 2020-03-18 Marquez De La Plata Ferrandiz Jose Manuel Hydrogenation system for running water

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029099A1 (en) 2013-08-26 2015-03-05 Minakawa Hiroaki Portable hydrogen water generating pot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07966A (en) * 1991-12-27 1995-01-06 Nobuo Sumida Liquid coexisting hydrogen ion or hydroxide ion with oxidizing-reducing material by electrolyzing pure water and its production
JP2003019426A (en) * 2001-05-01 2003-01-21 Joho Kagaku Kenkyusho:Kk Method and system for producing gas dissolving liquid medium
JP2006137961A (en) * 2004-10-14 2006-06-01 Honda Motor Co Ltd High pressure hydrogen production device
JP2007237161A (en) * 2006-02-09 2007-09-20 Hiroshima Kasei Ltd Method and device for producing hydrogen-incorporated water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07966A (en) * 1991-12-27 1995-01-06 Nobuo Sumida Liquid coexisting hydrogen ion or hydroxide ion with oxidizing-reducing material by electrolyzing pure water and its production
JP2003019426A (en) * 2001-05-01 2003-01-21 Joho Kagaku Kenkyusho:Kk Method and system for producing gas dissolving liquid medium
JP2006137961A (en) * 2004-10-14 2006-06-01 Honda Motor Co Ltd High pressure hydrogen production device
JP2007237161A (en) * 2006-02-09 2007-09-20 Hiroshima Kasei Ltd Method and device for producing hydrogen-incorporated water

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200808A (en) * 2010-03-26 2011-10-13 Jfe Engineering Corp Method and apparatus for mixing fluid
JP2012086193A (en) * 2010-10-22 2012-05-10 Kankyo Giken Co Ltd Hydrogen dissolved water producing device
JP2012250176A (en) * 2011-06-03 2012-12-20 Kri Inc Nozzle for generating micro air bubbles
WO2013054433A1 (en) * 2011-10-14 2013-04-18 株式会社エスマック Hydrogen-oxygen gas generator
JPWO2013054433A1 (en) * 2011-10-14 2015-03-30 好正 高部 Hydrogen-oxygen gas generator
JP2013184072A (en) * 2012-03-05 2013-09-19 Ohnit Co Ltd Gas dissolving method, and gas dissolving apparatus
JP5095020B1 (en) * 2012-03-13 2012-12-12 エウレカ・ラボ株式会社 Gas dissolved water purifier
JP2015150512A (en) * 2014-02-15 2015-08-24 株式会社勝電技研 Hydrogen water production apparatus
JP5691023B1 (en) * 2014-02-15 2015-04-01 株式会社勝電技研 Hydrogen water production equipment
JP2016022418A (en) * 2014-07-18 2016-02-08 株式会社アシレ Oxidation-reduction water production method, nozzle used in said method, and oxidation-reduction water production apparatus
KR20160003015U (en) 2015-02-24 2016-09-01 히로시마 카세이 가부시키 가이샤 Apparatus for manufacturing hydrogen water
JP6148759B1 (en) * 2016-05-11 2017-06-14 MiZ株式会社 Method for obtaining hydrogen concentration of hydrogen-containing liquid and hydrogen-containing liquid generator
JP2017203690A (en) * 2016-05-11 2017-11-16 MiZ株式会社 Method for obtaining hydrogen concentration of hydrogen-containing liquid and hydrogen-containing liquid production device
WO2018020707A1 (en) * 2016-07-27 2018-02-01 シャープ株式会社 Hydrogen water generating device
JPWO2018020707A1 (en) * 2016-07-27 2019-05-09 シャープ株式会社 Hydrogen water generator
JP2018028116A (en) * 2016-08-15 2018-02-22 デノラ・ペルメレック株式会社 Electrolytic apparatus
ES2748216R1 (en) * 2018-09-13 2020-03-18 Marquez De La Plata Ferrandiz Jose Manuel Hydrogenation system for running water

Also Published As

Publication number Publication date
JP4547543B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
JP4547543B2 (en) Method for producing hydrogenated water
US7691249B2 (en) Method and apparatus for making electrolyzed water
US8518225B2 (en) Apparatus and method for producing hydrogen-dissolved drinking water
JP3349710B2 (en) Electrolyzer and electrolyzed water generator
JP5640266B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
CN107849713B (en) The reduction method and electrolysis system of carbon dioxide are utilized for electrochemistry
KR20180015081A (en) Method for producing hydrogen water
JP6366360B2 (en) Method for producing electrolytic reduced water containing hydrogen molecules and apparatus for producing the same
JP2005186034A (en) Electrolytic hydrogen-containing water producing apparatus
KR20130024109A (en) Electrolytically ionized water generator
CN108633269A (en) Electrolytic water generating device, water treatment facilities, the manufacturing device of dialyzate preparation water and hydrogen-rich water feeder
KR101683533B1 (en) Manufacturing apparatus of Hydrogen water
KR101504259B1 (en) Production device for hydrogen water
JP4597263B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
JP2008168180A (en) Hydrogen-containing electrolytic water conditioner, bathtub facility, and method for producing hydrogen-containing electrolytic water
JP2007307502A (en) Method for generating electrolytic water and electrolytic water generator
KR20020072193A (en) Water electrolysis cell and electrolysis system using it
JP4200118B2 (en) Alkaline ion water conditioner
JP2007289838A (en) Electrolytic water generator
CN108602695B (en) Electrolyzed water generation device
JP6371489B1 (en) Hydrogen water production equipment
KR20120051132A (en) System of manufacturing an ozonic water
JPH06312189A (en) Electrolytic sterilized water making apparatus
WO2017135207A1 (en) Electrolyzed water generation device and production device for water for dialysate preparation and method for electrolyzed water generation that use same
JP6885776B2 (en) Electrolyzed water generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091208

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20091208

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4547543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250