JP2011200808A - Method and apparatus for mixing fluid - Google Patents

Method and apparatus for mixing fluid Download PDF

Info

Publication number
JP2011200808A
JP2011200808A JP2010071245A JP2010071245A JP2011200808A JP 2011200808 A JP2011200808 A JP 2011200808A JP 2010071245 A JP2010071245 A JP 2010071245A JP 2010071245 A JP2010071245 A JP 2010071245A JP 2011200808 A JP2011200808 A JP 2011200808A
Authority
JP
Japan
Prior art keywords
flow rate
pipe
fluid
flow
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010071245A
Other languages
Japanese (ja)
Other versions
JP5589485B2 (en
Inventor
Kanetoshi Hayashi
謙年 林
Isho Yamaguchi
以昌 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2010071245A priority Critical patent/JP5589485B2/en
Publication of JP2011200808A publication Critical patent/JP2011200808A/en
Application granted granted Critical
Publication of JP5589485B2 publication Critical patent/JP5589485B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for mixing fluids, which can be applied to combustible or corrosive fluids, and an apparatus for mixing the fluids, the structure of which is simplified.SOLUTION: In a venturi type apparatus 1 for mixing the fluids, a venturi tube 5 is arranged on a main pipeline 3, and a liquid second fluid is supplied to a gaseous first fluid which is supplied from the upstream side of the venturi tube 5 at the throat part 9 of the venturi tube 5 or the upstream side thereof, and then both the fluids are mixed with each other. The venturi apparatus 1 for mixing the fluids includes: a branched tube 7 which is branched from the main pipeline 3, and in which the cross section of a flow passage has a small diameter part smaller than the diameter of the main pipeline 3, and the outlet side of which is connected to the throat part 9 of the venturi tube or the upstream side thereof; a porous body 12 which is arranged in the small diameter part of the branched tube 7 or in the vicinity thereof and used for supplying the second fluid; and a flow rate control valve 15 which is arranged on the main pipeline 3 on the downstream side of the branched part of the branched tube 7 and is used for controlling the flow rate of the fluid flowing in the main pipeline 3.

Description

本発明は、主流管を流れる流体に別の流体を添加して混合を行う流体混合方法及び装置に関する。   The present invention relates to a fluid mixing method and apparatus for performing mixing by adding another fluid to a fluid flowing through a mainstream pipe.

液化天然ガス(以下、「LNG」という)を気化して都市ガスとして供給する際、熱量調整を行っている。近年はメタン成分の多いLNGの輸入が増加しており、都市ガス用に増熱する場合が多い。熱量調整は天然ガスに液化石油ガス(以下、「LPG」という)等の熱量調整剤を混合することにより行う。
このような熱量調整方法として、例えば特開昭63−265994号公報(特許文献1)には、気化した天然ガスをベンチュリ型の液・ガスミキサーに供給し、ベンチュリ管で発生する高速流れおよび低圧を利用して、ベンチュリ管に液体の状態で供給される熱量調整剤を微粒化・蒸発・混合させる技術が開示されている。
When liquefied natural gas (hereinafter referred to as “LNG”) is vaporized and supplied as city gas, the amount of heat is adjusted. In recent years, the import of LNG rich in methane components has increased, and in many cases the heat is increased for city gas. The calorific value is adjusted by mixing natural gas with a calorific value adjusting agent such as liquefied petroleum gas (hereinafter referred to as “LPG”).
As such a calorific value adjusting method, for example, Japanese Patent Laid-Open No. 63-265994 (Patent Document 1) supplies vaporized natural gas to a venturi-type liquid / gas mixer, and generates a high-speed flow and low pressure generated in a venturi pipe. A technique for atomizing, evaporating, and mixing a calorific value adjusting agent supplied in a liquid state to a venturi tube is disclosed.

また、都市ガスの増熱装置ではないが、内燃機関の燃料気化器に関する特開昭53−131328号公報(特許文献2)には、ベンチュリ管内に流路方向に移動可能な絞り部材を設ける技術が開示されている。   Japanese Patent Laid-Open No. 53-131328 (Patent Document 2) relating to a fuel vaporizer for an internal combustion engine, although not a city gas heat increasing device, discloses a technique for providing a throttle member that can move in the flow path direction in a venturi pipe. Is disclosed.

さらに、特開平8−75621号公報(特許文献3)には、定流量サンプリング装置に関し、ガスの流路となる管内に紡錘型のコアを固定し、コアの外側に配置されたスロート部をパルスモータによって流路方向に移動させることによって流路断面積を変化させる技術が開示されている。   Further, JP-A-8-75621 (Patent Document 3) relates to a constant flow rate sampling device, in which a spindle-shaped core is fixed in a tube serving as a gas flow path, and a throat portion disposed outside the core is pulsed. A technique for changing a cross-sectional area of a flow path by moving it in the flow path direction by a motor is disclosed.

また、実開昭56−41210号公報(特許文献4)、特開平4−248414号公報(特許文献5)には、流量測定制御装置に関し、ベンチュリ管のど部に円形の断面積が流路方向に沿って変化する面を有する可動体を配置し、この可動体を流路内に配置したモータによって駆動する技術が開示されている。   Japanese Utility Model Laid-Open No. 56-41210 (Patent Document 4) and Japanese Patent Application Laid-Open No. 4-248414 (Patent Document 5) relate to a flow rate measurement control device, and a circular cross-sectional area is provided in the flow direction in the throat portion of the Venturi tube. A technique is disclosed in which a movable body having a surface that changes along the line is disposed, and the movable body is driven by a motor disposed in a flow path.

特開昭63−265994号公報JP 63-265994 A 特開昭53−131328号公報JP-A-53-131328 特開平8−75621号公報JP-A-8-75621 実開昭56−41210号公報Japanese Utility Model Publication No. 56-41210 特開平4−248414号公報JP-A-4-248414

天然ガスの流量は都市ガス需要量に応じて変動する。一方、ベンチュリ管は流量が変化するとその流速および低圧発生効果が低下するため、特許文献1に開示されたもののように、ベンチュリ管のど部の断面積が一定のものでは都市ガス需要量の変化が大きい場合には対応できないという問題がある。そのため、特許文献1の技術を用いる場合には、流量範囲に応じて大きさの異なるベンチュリ管を用意する必要があり、装置の複雑化等の問題がある。   The flow rate of natural gas varies according to the city gas demand. On the other hand, when the flow rate of the Venturi pipe changes, the flow velocity and the effect of generating low pressure are reduced. Therefore, if the cross-sectional area of the venturi pipe throat is constant, such as that disclosed in Patent Document 1, the change in the amount of city gas demand will change. There is a problem that if it is large, it cannot be handled. Therefore, when using the technique of Patent Document 1, it is necessary to prepare venturi pipes having different sizes according to the flow rate range, and there is a problem such as complication of the apparatus.

この点、特許文献2に記載の技術においては、絞り部材の軸方向位置を変化させることによってベンチュリ管を通過する空気流量に変動があっても、対応できるようにしている。
しかしながら、特許文献2においては、絞り部材を軸方向に移動させるための駆動方法が開示されていない。また、仮に駆動源が流路外にあるとすると、駆動軸が流路外へ貫通することになり、頻繁に可動する面をシールすることになるため、流体が可燃性であったり危険物であったりする場合には漏洩の問題が生ずる。
In this regard, in the technique described in Patent Document 2, even if the flow rate of the air passing through the venturi pipe varies, the axial position of the throttle member is changed so as to cope with it.
However, Patent Document 2 does not disclose a driving method for moving the aperture member in the axial direction. Also, if the drive source is outside the flow path, the drive shaft will penetrate outside the flow path, and the frequently moving surface will be sealed, so the fluid is flammable or dangerous. If so, there will be a leakage problem.

また、特許文献3においても、紡錘型のコアの外側に配置したスロート部を流路方向に移動させるようにしているので、ガス流量の変動には対応可能であるが、駆動部が流路外に設置されているため、特許文献2の場合と同様、駆動機構が流路内外を貫通し、かつ可動する面(摺動面)でのシール性の問題が生ずる。
また、特許文献4、5においても同様に、ガス流量の変動には対応可能であるものの、駆動源としてのモータをガス流路内に配設しているため、構造が複雑になる上に、駆動エネルギーを必要とし、さらに、モータ部への流体の流入を考慮すると、可燃性や腐食性を有している流体への適用が難しいという問題がある。
さらに、特許文献5に開示されたものにおいては、圧力・温度に基づいて「流量」を制御しているが、流体の混合の観点で重要となるのは、流量の変動に合わせてベンチュリ管のど部の流速を制御することであり、特許文献5のものではこのような制御をすることはできない。
Also in Patent Document 3, since the throat portion disposed outside the spindle core is moved in the direction of the flow path, it is possible to cope with fluctuations in the gas flow rate, but the drive section is outside the flow path. As in the case of Patent Document 2, the drive mechanism penetrates the inside and outside of the flow path, and there is a problem of sealing performance on the movable surface (sliding surface).
Similarly, in Patent Documents 4 and 5, although it is possible to cope with fluctuations in the gas flow rate, a motor as a drive source is disposed in the gas flow path, so that the structure becomes complicated. Considering the inflow of fluid into the motor unit that requires driving energy, there is a problem that it is difficult to apply to fluids that are flammable or corrosive.
Furthermore, in the one disclosed in Patent Document 5, the “flow rate” is controlled based on the pressure and temperature. However, what is important from the viewpoint of mixing the fluid is the throat of the venturi tube in accordance with the fluctuation of the flow rate. This is to control the flow velocity of the part, and such control is not possible with the one of Patent Document 5.

本発明は係る課題を解決するためになされたものであり、構造が簡単で、可燃性や腐食性を有する流体に対しても適用可能な流体混合方法及び装置を提供することを目的としている。   The present invention has been made to solve the above-described problems, and has an object to provide a fluid mixing method and apparatus that have a simple structure and can be applied to a flammable or corrosive fluid.

(1)本発明に係る流体混合方法は、主流路を流れるガス状の第1流体に、主流路の途中で液状の第2流体を供給することによって両流体を混合する流体の混合方法であって、
前記主流路よりも流路断面が小さい小径部を有する分岐流路を前記主流路から分岐して設け、該分岐流路の出口側を前記主流路における前記分岐流路の分岐位置よりも下流側に配置し、該分岐流路における前記小径部又はその近傍に多孔質体からなる前記第2流体の供給部を設け、前記分岐流路の分岐位置と出口位置との間における前記主流路の流量を調整することにより前記分岐流路の前記小径部を流れる前記第1流体の流速を、前記多孔質体から滲み出した前記第2流体が前記第1流体により微粒化されて混合されるのに必要な流速に保つようにしたことを特徴とするものである。
(1) The fluid mixing method according to the present invention is a fluid mixing method in which both fluids are mixed by supplying a liquid second fluid in the middle of the main flow path to the gaseous first fluid flowing in the main flow path. And
A branch channel having a small-diameter portion whose channel cross-section is smaller than that of the main channel is branched from the main channel, and the outlet side of the branch channel is downstream of the branch position of the branch channel in the main channel And the second fluid supply portion made of a porous body is provided at or near the small-diameter portion of the branch channel, and the flow rate of the main channel between the branch position and the outlet position of the branch channel The flow rate of the first fluid flowing through the small-diameter portion of the branch flow channel is adjusted so that the second fluid oozing out from the porous body is atomized and mixed by the first fluid. It is characterized by maintaining the required flow rate.

(2)また、上記(1)に記載のものにおいて、前記多孔質体を、前記分岐流路の出口の内側と外側に跨るように配置したことを特徴とするものである。 (2) Further, in the above (1), the porous body is arranged so as to straddle the inside and the outside of the outlet of the branch flow path.

(3)また、上記(1)又は(2)に記載のものにおいて、前記主流路にベンチュリ管を設け、前記分岐流路の出口側を前記ベンチュリ管のど部またはその上流側に配置したことを特徴とするものである。 (3) Further, in the above-described (1) or (2), a venturi pipe is provided in the main flow path, and an outlet side of the branch flow path is arranged at a throat portion of the venturi pipe or upstream thereof. It is a feature.

(4)本発明に係る流体混合装置は、主流管を流れるガス状の第1流体に、主流管の途中で液状の第2流体を供給することによって両流体を混合する流体混合装置であって、
前記主流管から分岐して設けられ、流路断面が前記主流管よりも小さい小径部を有すると共に出口側を前記主流管における前記分岐位置よりも下流側に接続された分岐管と、該分岐管の前記小径部又はその近傍に設けられて前記第2流体を供給する多孔質体からなる第2流体供給部と、前記主流管における前記分岐管の分岐部よりも下流側かつ前記分岐管の出口部より上流側に設けられて前記主流管を流れる流量を調整する流量調整弁とを備えたことを特徴とするものである。
(4) A fluid mixing apparatus according to the present invention is a fluid mixing apparatus that mixes both fluids by supplying a liquid second fluid in the middle of the main flow pipe to the gaseous first fluid flowing through the main flow pipe. ,
A branch pipe provided by branching from the main flow pipe, having a small-diameter portion whose flow path cross section is smaller than that of the main flow pipe, and having an outlet side connected downstream of the branch position in the main flow pipe; and the branch pipe A second fluid supply part made of a porous body that is provided at or near the small diameter part and supplies the second fluid, and a downstream side of the branch part of the branch pipe in the main flow pipe and an outlet of the branch pipe And a flow rate adjusting valve provided on the upstream side of the unit for adjusting the flow rate flowing through the main flow pipe.

(5)また、上記(4)に記載のものにおいて、前記多孔質体からなる第2流体供給部を、前記分岐流路の出口の内側と外側に跨るように配置したことを特徴とするものである。 (5) Further, in the above (4), the second fluid supply section made of the porous body is arranged so as to straddle the inside and the outside of the outlet of the branch channel. It is.

(6)また、上記(4)又は(5)に記載のものにおいて、前記主流路にベンチュリ管を設け、前記第2流体供給部を前記ベンチュリ管のど部またはその上流側に配置したことを特徴とするものである。 (6) Further, in the above (4) or (5), a venturi pipe is provided in the main flow path, and the second fluid supply section is arranged at the throat of the venturi pipe or upstream thereof. It is what.

(7)また、上記(4)乃至(6)のいずれかに記載のものにおいて、前記分岐管の小径部の流路断面積を、前記第1流体の最低流量として想定される量が流れたときに、前記小径部の流速が前記多孔質体から滲み出した前記第2流体が前記第1流体により微粒化されて混合されるのに必要な流速を保つことができる大きさに設定したことを特徴とするものである。 (7) Further, in any of the above (4) to (6), the flow passage cross-sectional area of the small diameter portion of the branch pipe has flowed in an amount assumed as the minimum flow rate of the first fluid. Sometimes, the flow velocity of the small diameter portion is set to a size that can maintain the flow velocity necessary for the second fluid that has oozed out of the porous body to be atomized and mixed by the first fluid. It is characterized by.

(8)また、上記(7)に記載のものにおいて、前記分岐管を流れる第1流体の流量及び/又は圧力を検知する検知手段を設け、該検知手段の検知信号に基づいて前記流量調整弁の開度を調整し、前記第1流体の流量が変動した場合でも、前記分岐管には常時、前記第1流体を前記最低流量流し、前記最低流量を超える流量分を前記主流管に流すようにしたことを特徴とするものである。 (8) Further, in the above (7), a detecting means for detecting the flow rate and / or pressure of the first fluid flowing through the branch pipe is provided, and the flow rate adjusting valve is based on a detection signal of the detecting means. Even when the flow rate of the first fluid fluctuates, the first fluid is always allowed to flow through the minimum flow rate through the branch pipe, and a flow rate exceeding the minimum flow rate is allowed to flow through the main flow pipe. It is characterized by that.

(9)また、上記(4)乃至(8)のいずれかに記載のものにおいて、前記主流管から分岐して設けられると共に出口側を前記主流管の軸線に対して軸心をずらした交差方向に接続された第2分岐管を備えたことを特徴とするものである。 (9) Further, in any of the above (4) to (8), the crossing direction is provided so as to be branched from the main flow pipe, and the outlet side is shifted from the axis of the main flow pipe. And a second branch pipe connected to the pipe.

(10)また、上記(7)に記載のものにおいて、前記分岐管を流れる第1流体の流量及び/又は圧力を検知する第1検知手段と、前記主流管から分岐して設けられると共に出口側を前記主流管の軸線に対して軸心をずらした交差方向に接続された第2分岐管と、該第2分岐管を流れる第1流体の流量及び/又は圧力を検知する第2検知手段と、前記第2分岐管の流量を調整する第2流量調整弁とを備え、前記第2検知手段の検知信号に基づいて前記主流管に設けられた流量調整弁を調整すると共に、前記第1検知手段の検知信号に基づいて前記第2流量調整弁を調整し、
前記第1流体の流量が変動した場合でも、前記分岐管には常時、前記第1流体を前記最低流量流し、前記最低流量を超える流量分を前記第2分岐管に流し、さらに前記第2分岐管の流量が所定流量を超えときにその超えた流量分を前記主流管に流すようにしたことを特徴とするものである。
(10) Further, in the above (7), the first detection means for detecting the flow rate and / or pressure of the first fluid flowing through the branch pipe, and the outlet side is provided by branching from the main flow pipe A second branch pipe connected in an intersecting direction shifted from the axis of the main flow pipe, and a second detection means for detecting the flow rate and / or pressure of the first fluid flowing through the second branch pipe. A second flow rate adjusting valve for adjusting the flow rate of the second branch pipe, and adjusting a flow rate adjusting valve provided in the main flow pipe based on a detection signal of the second detection means, and the first detection Adjusting the second flow rate adjustment valve based on the detection signal of the means,
Even when the flow rate of the first fluid fluctuates, the first fluid is always allowed to flow through the branch pipe, the flow exceeding the minimum flow is allowed to flow through the second branch pipe, and the second branch is further passed. When the flow rate of the pipe exceeds a predetermined flow rate, the excess flow rate is caused to flow through the main flow pipe.

本発明においては、主流路よりも流路断面が小さい小径部を有する分岐流路を前記主流路から分岐して設け、該分岐流路の出口側を主流路に配置し、該分岐流路における前記小径部又はその近傍に液状の第2流体を供給する多孔質体からなる供給部を設け、前記主流路の流量を調整することにより前記分岐流路の前記小径部を流れる前記第1流体の流速を、前記多孔質体から滲み出した前記第2流体が前記第1流体により微粒化されて混合されるのに必要な流速に保つようにしたので、広い流量範囲に対して高い混合効果を確実に得ることが可能となる。また、可動体などの可動部が不要であり、それ故可動部を駆動するための駆動部も不要になり、構造を簡易なものにすることができ、可燃性や腐食性を有する流体に対しても適用可能である。   In the present invention, a branch channel having a small-diameter portion whose channel cross section is smaller than that of the main channel is provided by branching from the main channel, and an outlet side of the branch channel is disposed in the main channel. A supply portion made of a porous body that supplies a liquid second fluid is provided at or near the small diameter portion, and the flow rate of the main flow path is adjusted to adjust the flow rate of the first fluid flowing through the small diameter portion of the branch flow path. Since the flow rate is maintained at a flow rate necessary for the second fluid that has oozed out of the porous body to be atomized and mixed by the first fluid, a high mixing effect is achieved over a wide flow rate range. It becomes possible to obtain reliably. In addition, there is no need for moving parts such as a movable body, and therefore no driving part for driving the moving parts is required, and the structure can be simplified, and it can be used for flammable and corrosive fluids. Is applicable.

本発明の実施の形態1に係るベンチュリ型流体混合装置を模式的に示した説明図である。It is explanatory drawing which showed typically the venturi type fluid mixing apparatus which concerns on Embodiment 1 of this invention. 図1の一部を拡大して示す図である。It is a figure which expands and shows a part of FIG. 本発明一実施の形態における多孔質体の配置に関する他の態様の説明図である。It is explanatory drawing of the other aspect regarding arrangement | positioning of the porous body in one embodiment of this invention. 本発明の他の実施の形態の説明図である。It is explanatory drawing of other embodiment of this invention. 本発明の他の実施の形態の説明図である。It is explanatory drawing of other embodiment of this invention.

[実施の形態1]
本実施の形態に係る流体混合装置は、LNGを気化した天然ガスにLPGを添加することにより増熱して都市ガスを製造する際に用いられるものである。また、本実施の形態1においては、主流管にベンチュリ管を設置してベンチュリ型混合装置として構成したものである。
[Embodiment 1]
The fluid mixing apparatus according to the present embodiment is used when producing city gas by increasing the temperature by adding LPG to natural gas obtained by vaporizing LNG. In the first embodiment, a venturi pipe is installed in the mainstream pipe to constitute a venturi type mixing device.

本実施の形態に係るベンチュリ型混合装置1の基本構成は、図1に示すように、天然ガスが通流する主流管3に設けられたベンチュリ管5と、主流管3よりも出口流路断面が小径の分岐管7を主流管3から分岐して設け、分岐管7の出口側をベンチュリ管のど部9またはその上流側に接続し、該分岐管7の出口部の管内にLPGを供給するLPG供給管11を挿入し、LPG供給管11の先端に多孔質体12を取り付けている。
また、本実施の形態のベンチュリ型混合装置1においては、分岐管7に、分岐管7を流れる天然ガスの流量を検知する流量検知器13を設けると共に主流管3におけるベンチュリ管5と分岐管が分岐する分岐部の間に流量調整弁15を設け、流量検知器13の検知信号に基づいて流量調整弁15の開度を調整するようにしている。
以下、各構成を詳細に説明する。
As shown in FIG. 1, the basic configuration of the venturi-type mixing apparatus 1 according to the present embodiment is a venturi pipe 5 provided in a main flow pipe 3 through which natural gas flows, and an outlet flow channel cross section than the main flow pipe 3. Is provided with a branch pipe 7 having a small diameter branched from the main flow pipe 3, the outlet side of the branch pipe 7 is connected to the venturi throat portion 9 or the upstream side thereof, and LPG is supplied into the outlet portion of the branch pipe 7. The LPG supply pipe 11 is inserted, and the porous body 12 is attached to the tip of the LPG supply pipe 11.
Further, in the venturi type mixing apparatus 1 of the present embodiment, the branch pipe 7 is provided with a flow rate detector 13 for detecting the flow rate of natural gas flowing through the branch pipe 7, and the venturi pipe 5 and the branch pipe in the main flow pipe 3 are provided. A flow rate adjusting valve 15 is provided between the branching portions, and the opening degree of the flow rate adjusting valve 15 is adjusted based on the detection signal of the flow rate detector 13.
Hereinafter, each configuration will be described in detail.

<LPG供給管>
LPG供給管11はベンチュリ管5内にLPGを供給するためのものであり、LPG供給場所となるその多孔質体12は、図1に示すように、分岐管7の出口管内に配置されている。LPG供給管11の先端に取り付けた多孔質体12を分岐管7の出口管内に配置することで、分岐管7を流れる流速が増した天然ガスにより多孔質体12から滲み出したLPGが微粒化されながら供給することができ、微粒化および混合が効果的に行われる。
つまり、LPG供給管11から供給されるLPGは、多孔質体12から滲み出して多孔質体12の周面を流れる天然ガス流れによって微粒化され、天然ガスと混合される。
多孔質体12の例としては、例えば有底の円筒形に形成された焼結フィルタ(高分子、金属、セラミック)などを挙げることができる。
多孔質体12の先端側の端面は完全に封止して、LPGが先端端面から滲み出さないようにすることで、LPGを多孔質体12の周面からのみ滲み出し量を多くでき、これによって分岐管7を流れる天然ガスによる混合及び微粒化をより効果的に行うことができる。
<LPG supply pipe>
The LPG supply pipe 11 is for supplying LPG into the venturi pipe 5, and the porous body 12 serving as the LPG supply place is arranged in the outlet pipe of the branch pipe 7 as shown in FIG. . By disposing the porous body 12 attached to the tip of the LPG supply pipe 11 in the outlet pipe of the branch pipe 7, the LPG oozed out of the porous body 12 by the natural gas having an increased flow velocity through the branch pipe 7 is atomized. Can be supplied while being atomized and mixed effectively.
That is, the LPG supplied from the LPG supply pipe 11 is atomized by the natural gas flow that oozes out from the porous body 12 and flows on the peripheral surface of the porous body 12, and is mixed with the natural gas.
Examples of the porous body 12 include, for example, a sintered filter (polymer, metal, ceramic) formed in a bottomed cylindrical shape.
The end face on the front end side of the porous body 12 is completely sealed so that LPG does not exude from the end end face, so that the amount of exudation of LPG only from the peripheral surface of the porous body 12 can be increased. Therefore, mixing and atomization with natural gas flowing through the branch pipe 7 can be performed more effectively.

多孔質体12の位置は、分岐管7の中心である軸線上に配設しても構わないし、軸線からずらした位置でもよい。
また、LPG供給管11からの供給方向も任意で良い。たとえば分岐管7と同軸方向であっても良いし、直交方向であっても良いし、またそれら以外の方向であっても構わない。
The position of the porous body 12 may be disposed on the axis that is the center of the branch pipe 7, or may be shifted from the axis.
Further, the supply direction from the LPG supply pipe 11 may be arbitrary. For example, it may be coaxial with the branch pipe 7, may be orthogonal, or may be in other directions.

なお、上記の例ではLPG供給管11の多孔質体12を分岐管7の出口管内に配置したが、図3に示すように、多孔質体12の先端側の一部を分岐管7の出口から突出させて、多孔質体12が分岐管7の出口の内側と外側に跨るように配置してもよい。このような配置にすることで、多孔質体12から滲み出すLPGを、分岐管7を流れる天然ガスとベンチュリ管5内を流れる天然ガスの両方に接するようにできる。これによって、分岐管7とベンチュリ管5を流れる天然ガスの流速変化によりいずれを流れる流速が速くなった場合でも、早くなった流速の天然ガスを混合・微粒化に利用できる。   In the above example, the porous body 12 of the LPG supply pipe 11 is arranged in the outlet pipe of the branch pipe 7, but as shown in FIG. The porous body 12 may be disposed so as to straddle the inner side and the outer side of the outlet of the branch pipe 7. With this arrangement, the LPG that oozes from the porous body 12 can come into contact with both the natural gas flowing through the branch pipe 7 and the natural gas flowing through the venturi pipe 5. As a result, even when the flow velocity of the natural gas flowing through the branch pipe 7 and the venturi pipe 5 increases due to the change in the flow velocity of the natural gas, the natural gas with the increased flow velocity can be used for mixing and atomization.

<分岐管>
分岐管7は、主流管3におけるベンチュリ管5の上流側から分岐して、その出口側がベンチュリ管のど部9もしくはベンチュリ管のど部9よりも上流側に接続されている。
分岐管7の流路断面積は主流管3よりも小径となる部分を有しており、分岐管7の前記小径部分を流れる天然ガスの流速が主流管3を流れる天然ガスの流速よりも速くなるように設定されている。前記小径部分は分岐管7の出口に配設するのが一般的である。
分岐管7出口に配設された小径部における天然ガスの流速を高速にすることで、ここに多孔質体12から供給されるLPGの微粒化が促進される。なお、本実施の形態においては、図1〜図3に示すように、分岐管7の先端を縮径させており、分岐管7から供給されて多孔質体12の周面を通過する天然ガスの流速がより速くなるようにしている。
分岐管7の出口部において多孔質体12から供給されたLPGは、分岐管7を流れる天然ガスと混合され、さらにベンチュリ管5内で主流管から供給される天然ガスと合流し、ベンチュリ管のど部9を通過するときにさらに混合が促進される。
<Branch pipe>
The branch pipe 7 branches from the upstream side of the venturi pipe 5 in the main flow pipe 3, and the outlet side thereof is connected to the upstream side of the venturi pipe throat portion 9 or the venturi pipe throat portion 9.
The flow passage cross-sectional area of the branch pipe 7 has a portion having a smaller diameter than the main flow pipe 3, and the flow rate of the natural gas flowing through the small diameter portion of the branch pipe 7 is faster than the flow rate of the natural gas flowing through the main flow pipe 3. It is set to be. The small diameter portion is generally disposed at the outlet of the branch pipe 7.
By increasing the flow rate of the natural gas at the small diameter portion disposed at the outlet of the branch pipe 7, the atomization of LPG supplied from the porous body 12 is promoted. In the present embodiment, as shown in FIG. 1 to FIG. 3, the tip of the branch pipe 7 has a reduced diameter, and is supplied from the branch pipe 7 and passes through the peripheral surface of the porous body 12. So that the flow rate is faster.
The LPG supplied from the porous body 12 at the outlet of the branch pipe 7 is mixed with the natural gas flowing through the branch pipe 7, and further merged with the natural gas supplied from the mainstream pipe in the venturi pipe 5, so that the throat of the venturi pipe Mixing is further promoted when passing through section 9.

分岐管7の出口側の配置は任意でよい。一番望ましいのは図1に示すように、ベンチュリ管5と同軸方向に配置するものであるが、特に限定されるものではない。   Arrangement | positioning by the side of the exit of the branch pipe 7 may be arbitrary. As shown in FIG. 1, it is most desirable to arrange it in the same direction as the venturi tube 5, but it is not particularly limited.

LPGの微粒化・混合性能に大きく影響するのは分岐管7における多孔質体12が設けられた部位での流速である。天然ガスを主流管3よりも流路断面積が小さい分岐管7に流すことによって流速を増し、該流速を増した天然ガスによってLPGの微粒化・混合が行われるからである。
分岐管7における多孔質体12が設けられた部位の管径は、都市ガスの最低流量運転のときにも、分岐管7を流れる天然ガスの流速が、LPGの微粒化・混合に必要な流速を保つことができるような径にしておく。
例えば、都市ガス流量の変動範囲が30万Nm3/h〜6千Nm3/hの場合を想定すると、都市ガス流量が最低流量である6千Nm3/hのときには、天然ガスを分岐管7から全量流し、このときの分岐管7における多孔質体12が設けられた部位(分岐管7における小径部)の天然ガス流速がLPGの微粒化・混合に必要な流速を保つような管径とする。(このとき分岐管7を流れる天然ガス流量は、天然ガス流量として想定される最低流量となる。)
その上で、想定される最低流量分を常に分岐管7に流すようにすれば、制御が簡単で安定したLPGの微粒化・混合が実現できる。以下の説明において、分岐管におけるLPGの微粒化・混合に必要な流速を与える最小流量を所定値Aという場合がある。
It is the flow velocity at the site where the porous body 12 is provided in the branch pipe 7 that greatly affects the atomization / mixing performance of LPG. This is because the flow rate is increased by flowing the natural gas through the branch pipe 7 having a smaller channel cross-sectional area than the main flow pipe 3, and the LPG is atomized and mixed by the natural gas having the increased flow speed.
The diameter of the portion of the branch pipe 7 where the porous body 12 is provided is such that the flow rate of natural gas flowing through the branch pipe 7 is the flow rate required for atomization / mixing of LPG even when the city gas is operated at the lowest flow rate. The diameter should be such that it can be maintained.
For example, assuming that the fluctuation range of the city gas flow is 300,000 Nm 3 / h to 6,000 Nm 3 / h, when the city gas flow rate is 6,000 Nm 3 / h, which is the lowest flow rate, natural gas is branched. The pipe diameter is such that the natural gas flow rate at the portion where the porous body 12 is provided in the branch pipe 7 at this time (small diameter portion in the branch pipe 7) maintains the flow speed necessary for atomization and mixing of LPG. And (At this time, the flow rate of natural gas flowing through the branch pipe 7 is the lowest flow rate assumed as the flow rate of natural gas.)
In addition, if the assumed minimum flow rate is always passed through the branch pipe 7, the LPG atomization / mixing can be realized with easy and stable control. In the following description, the minimum flow rate that provides a flow rate necessary for atomization / mixing of LPG in the branch pipe may be referred to as a predetermined value A.

微粒化・混合に必要とされる流速は、実施ケースにより異なるが、概ね20m/s以上の範囲である。したがって、想定される都市ガスの最低流量の場合に分岐管における多孔質体12が設けられた部位で前記流速が確保でき、かつ圧損が高くなり過ぎないような管路となるように分岐管7を設定すればよい。   The flow rate required for atomization / mixing varies depending on the implementation case, but is generally in the range of 20 m / s or more. Therefore, the branch pipe 7 is configured so that the flow rate can be secured at the portion of the branch pipe where the porous body 12 is provided in the case of the assumed minimum flow rate of the city gas and the pressure loss is not excessively high. Should be set.

例えば、分岐管7の管径は入り口側から出口側まで同じであってもよいが、多孔質体12が設けられた部位の流路断面を主流管3の流路断面より小さい小径部として、その他の部位は小径部よりも管径を大きくしてもよい。小径部以外の管径をこれより大きくしておくことで、分岐管7における圧損が大きくなりすぎることを回避することができる。
なおベンチュリ管のど部9の径は、設計最大流量時の圧力損失が、その適用システムにとって過大とならないように設計しておく。
For example, the pipe diameter of the branch pipe 7 may be the same from the inlet side to the outlet side, but the cross-section of the portion where the porous body 12 is provided as a smaller-diameter portion smaller than the cross-section of the main flow pipe 3, Other portions may have a larger tube diameter than the small diameter portion. By making the pipe diameters other than the small diameter part larger than this, it is possible to avoid the pressure loss in the branch pipe 7 from becoming too large.
The diameter of the venturi tube throat portion 9 is designed so that the pressure loss at the maximum design flow rate does not become excessive for the application system.

<流量検知器>
流量検知器13は、分岐管7に設けられて分岐管7を流れる天然ガスの流量を検知するものである。
なお、流量検知器13に代えて差圧検知器を設け、分岐管7における圧力損失を検知することで、あらかじめ把握しておいた分岐管7における流量と圧力損失の関係から、分岐管7内を流れる天然ガスの流量を検知するようにしてもよい。
<Flow detector>
The flow rate detector 13 is provided in the branch pipe 7 and detects the flow rate of natural gas flowing through the branch pipe 7.
It should be noted that a differential pressure detector is provided in place of the flow rate detector 13, and the pressure loss in the branch pipe 7 is detected. You may make it detect the flow volume of the natural gas which flows through.

<流量調整弁>
流量調整弁15は、主流管3におけるベンチュリ管5と分岐管7の分岐部との間に設けられて、流量検知器13の検知信号に基づいて主流管3を流れる天然ガス流量を調整し、これによって分岐管7を流れる天然ガス流量が予め定めた所定流量になるようにする。
<Flow control valve>
The flow rate adjustment valve 15 is provided between the venturi pipe 5 and the branch part of the branch pipe 7 in the main flow pipe 3, and adjusts the flow rate of natural gas flowing through the main flow pipe 3 based on the detection signal of the flow rate detector 13. As a result, the flow rate of natural gas flowing through the branch pipe 7 is set to a predetermined flow rate.

<動作説明>
次に上記のように構成された本実施の形態に係るベンチュリ型流体混合装置の動作を説明する。
上流側から供給される天然ガスは、分岐部を通過する際に分岐管7にも流れ、分岐管7の出口側において多孔質体12から供給されるLPGの微粒化・混合が行われ、ベンチュリ管のど部9に流入する。他方、主流管3を流れる天然ガスもベンチュリ管のど部9に流入する。したがって、ベンチュリ管のど部9には、分岐管7を経由してLPGが添加された天然ガスと、主流管3からの天然ガスが流入し、ベンチュリ管のど部9を通過の際、さらにLPGの混合が促進される。
<Description of operation>
Next, the operation of the venturi type fluid mixing apparatus according to the present embodiment configured as described above will be described.
The natural gas supplied from the upstream side also flows to the branch pipe 7 when passing through the branch portion, and the LPG supplied from the porous body 12 is atomized and mixed on the outlet side of the branch pipe 7, and the venturi It flows into the tube throat 9. On the other hand, natural gas flowing through the main flow pipe 3 also flows into the venturi pipe throat 9. Therefore, the natural gas to which LPG has been added via the branch pipe 7 and the natural gas from the mainstream pipe 3 flow into the venturi throat section 9 and pass through the venturi throat section 9 to further increase the LPG. Mixing is promoted.

都市ガスの流量はその需要量に応じて成り行きで増減する。例えば、都市ガス需要量が減少し、流路を流れる流体の流量が減少すると、分岐管7及び主流管3を流れるトータルの天然ガスの流量が減少する。分岐管7を流れる天然ガス流量が所定値Aよりも減少すると分岐管7での流速が減少し、LPGの微粒化・混合が不十分になることが懸念される。
そこで、流量検知器13で検知される流量が所定値Aよりも減少したら、流量調整弁15の開度を小さくすることによって分岐管7を流れる天然ガス流量が所定値Aを維持するようにする。
分岐管7を流れる天然ガス流量を所定値A以上に維持することで、分岐管7における流速が維持されLPGの微粒化・混合効果を確保することができる。
The flow rate of city gas increases or decreases depending on the demand. For example, when the city gas demand decreases and the flow rate of the fluid flowing through the flow path decreases, the total flow rate of the natural gas flowing through the branch pipe 7 and the main flow pipe 3 decreases. If the flow rate of natural gas flowing through the branch pipe 7 decreases below the predetermined value A, the flow velocity in the branch pipe 7 decreases, and there is a concern that LPG atomization / mixing becomes insufficient.
Therefore, when the flow rate detected by the flow rate detector 13 decreases below the predetermined value A, the flow rate of the natural gas flowing through the branch pipe 7 is maintained at the predetermined value A by reducing the opening of the flow rate adjustment valve 15. .
By maintaining the flow rate of natural gas flowing through the branch pipe 7 at a predetermined value A or higher, the flow rate in the branch pipe 7 is maintained, and the effect of atomization / mixing of LPG can be ensured.

逆に、都市ガス需要量が増加し、流路を流れる流体の流量が増加すると、分岐管7及び主流管3を流れる天然ガスの流量が増加する。分岐管7を流れる天然ガス流量が所定量よりも増加すると圧力損失が大きくなる。
そこで、流量検知器13で検知される流量が所定値Bよりも増加したら、流量調整弁15の開度を大きくして主流管3を流れる量を増やし、分岐管7を流れる天然ガス流量が所定値Bになるようにする。ここで、所定値B≧所定値Aの関係にある。
分岐管7を流れる天然ガス流量を所定値A以上B以下にすることで、分岐管7における流速が所定の範囲に維持されLPGの微粒化・混合を十分にすることができると共に圧損の過大な増大を防止することができる。
Conversely, when the demand for city gas increases and the flow rate of the fluid flowing through the flow path increases, the flow rate of natural gas flowing through the branch pipe 7 and the main flow pipe 3 increases. When the flow rate of the natural gas flowing through the branch pipe 7 increases beyond a predetermined amount, the pressure loss increases.
Therefore, when the flow rate detected by the flow rate detector 13 increases from the predetermined value B, the opening degree of the flow rate adjustment valve 15 is increased to increase the amount flowing through the main flow pipe 3, and the flow rate of natural gas flowing through the branch pipe 7 is predetermined. The value B is set. Here, there is a relationship of the predetermined value B ≧ the predetermined value A.
By setting the flow rate of the natural gas flowing through the branch pipe 7 to a predetermined value A or more and B or less, the flow velocity in the branch pipe 7 is maintained within a predetermined range, and LPG can be sufficiently atomized and mixed, and the pressure loss is excessive. An increase can be prevented.

例えば、最も単純な制御方法としては、所定値A=所定値B=[都市ガス最低流量時の天然ガス流量(天然ガス最低流量)]とする場合である。
前述した例と同様、都市ガス流量の変動範囲が30万Nm3/h〜6千Nm3/hの場合を想定すると、都市ガス流量が最低流量である6千Nm3/hのときには、天然ガスを分岐管7から全量、すなわち所定値A(=所定値B)の流量を流す。
都市ガス流量が6千Nm3/hより大きくなった場合には、分岐管7に設置された流量検出器13で計測される流量が所定値Aを保つように流量調整弁15の開度を大きくしていき、天然ガス流量増加分を主流管3から流入させるようにする。すなわち、都市ガス流量が変動しても、分岐管7には常に所定値Aの天然ガス流量が流通するようにする。こうすることにより、分岐管7からは常に微粒化・混合に必要な流量が供給されるようになる。また主流管3からの速度成分は、ベンチュリ管のど部9における流速をさらに増大させる方向に寄与する。
なお上記において、所定値Aは[都市ガス最低流量時の天然ガス流量(天然ガス最低流量)]であるが、簡易的には[都市ガス最低流量]としてもよい。
For example, the simplest control method is a case where the predetermined value A = predetermined value B = [natural gas flow rate at the lowest city gas flow rate (natural gas minimum flow rate)].
As in the previous example, assuming that the fluctuation range of the city gas flow rate is 300,000 Nm 3 / h to 6,000 Nm 3 / h, when the city gas flow rate is 6,000 Nm 3 / h, which is the lowest flow rate, A total amount of gas is flowed from the branch pipe 7, that is, a flow rate of a predetermined value A (= predetermined value B).
When the city gas flow rate exceeds 6,000 Nm 3 / h, the opening of the flow rate adjustment valve 15 is set so that the flow rate measured by the flow rate detector 13 installed in the branch pipe 7 maintains a predetermined value A. The natural gas flow rate increase is increased from the main flow pipe 3 by increasing the flow rate. That is, even if the city gas flow rate fluctuates, the natural gas flow rate of the predetermined value A always flows through the branch pipe 7. By doing so, a flow rate necessary for atomization / mixing is always supplied from the branch pipe 7. Further, the velocity component from the main flow tube 3 contributes to the direction of further increasing the flow velocity in the venturi tube throat 9.
In the above description, the predetermined value A is [natural gas flow rate at the minimum city gas flow rate (natural gas minimum flow rate)], but may be simply [minimum city gas flow rate].

以上のように、本実施の形態によれば、流路を流れる流量が大きく変化してもLPGの供給部となる多孔質体12が配設されている位置における分岐管7の天然ガス流速を所定の流速に維持することができ、LPGの微粒化・混合効果が得られると共に過度に圧力損失が大きくなりすぎないようにすることができる。
また、本実施の形態においては、従来例のようにベンチュリ管のど部9の流路断面積を可動体によって変化させるような構造でなく、構造が単純であり、流路外との摺動部がなく摺動面などに対するシールが不要となり、また別途動力が不要である。
しかも、不純物の混入もなく、可燃性、腐食性、危険性を有する流体への適用が可能になる。
またさらに、外部に駆動源を設ける必要がないので、例えば駆動軸を流路に挿入する必要もない。
As described above, according to the present embodiment, the natural gas flow rate of the branch pipe 7 at the position where the porous body 12 serving as the LPG supply unit is disposed even if the flow rate flowing through the flow path changes greatly. The flow rate can be maintained at a predetermined level, and the effect of atomization / mixing of LPG can be obtained and the pressure loss can be prevented from becoming excessively large.
Further, in the present embodiment, the structure is simple, not the structure in which the flow passage cross-sectional area of the venturi tube throat portion 9 is changed by the movable body as in the conventional example, and the sliding portion outside the flow passage. There is no need to seal the sliding surface, and no additional power is required.
Moreover, it can be applied to fluids that are flammable, corrosive, and dangerous without contamination.
Furthermore, since it is not necessary to provide a drive source outside, it is not necessary to insert a drive shaft into the flow path, for example.

[実施の形態2]
図4は本発明の実施の形態2に係るベンチュリ型流体混合装置17を模式的に示す説明図である。図4において、図1と同一部分には同一の符号を付してある。
本実施の形態のベンチュリ型流体混合装置17は、分岐管7を途中で2つに分岐して、分岐管7a、7bとし、分岐管7aの出口部には実施の形態と同様に多孔質体12を配設し、分岐管7bの出口側端部を、ベンチュリ管流路断面の外周部接線方向、あるいはベンチュリ管5の軸線に対して軸心をずらした交差方向に接続したものである。
分岐管7aには流量検知器13が配設され、また、分岐管7bには流量検知器23および流量調整弁25が配設されている。
[Embodiment 2]
FIG. 4 is an explanatory view schematically showing a venturi type fluid mixing apparatus 17 according to Embodiment 2 of the present invention. 4, the same parts as those in FIG. 1 are denoted by the same reference numerals.
The venturi-type fluid mixing device 17 of this embodiment branches the branch pipe 7 into two on the way to form branch pipes 7a and 7b, and a porous body at the outlet of the branch pipe 7a as in the embodiment. 12 and the outlet side end portion of the branch pipe 7b is connected in the tangential direction of the outer peripheral portion of the Venturi pipe flow path cross section or in the intersecting direction in which the axis is shifted with respect to the axis line of the Venturi pipe 5.
A flow rate detector 13 is disposed in the branch pipe 7a, and a flow rate detector 23 and a flow rate adjustment valve 25 are disposed in the branch tube 7b.

上記のように、分岐管7をさらに分岐してその一つの分岐管7bをベンチュリ管流路断面の外周部接線方向、あるいはベンチュリ管5の軸線に対して軸心をずらした交差方向に接続することにより、分岐管7bから供給される天然ガスによってベンチュリ管5内に旋回流が発生する。これによって、ベンチュリ管のど部9を流れる流速が増し、既に添加されているLPGの混合が促進される。   As described above, the branch pipe 7 is further branched and one of the branch pipes 7b is connected in the tangential direction of the outer peripheral portion of the venturi pipe flow path cross section or in the intersecting direction in which the axis is shifted from the axis of the venturi pipe 5. Thus, a swirling flow is generated in the venturi pipe 5 by the natural gas supplied from the branch pipe 7b. This increases the flow rate through the venturi throat 9 and promotes mixing of the LPG already added.

上記のように構成された本実施の形態における流量制御方法を以下に説明する。
前述した例と同様、都市ガス流量の変動範囲が30万Nm3/h〜6千Nm3/hの場合を想定すると、都市ガス流量が最低流量である6千Nm3/hのときには、天然ガスを分岐管7aから全量、すなわち所定値Aの流量を流す。この時、流量調整弁15、流量調整弁25は全閉となっている。
都市ガス流量が6千Nm3/hより大きくなった場合には、分岐管7aに設置された流量検出器13で計測される流量が所定値Aを保つように流量調整弁25の開度を大きくしていき、天然ガス流量増加分を分岐管7bから流入させるようにする。すなわち、都市ガス流量が変動しても、分岐管7aには常に所定値Aの天然ガス流量が流通するようにする。こうすることにより、分岐管7aからは常に微粒化・混合に必要な流量が供給されるようになる。また分岐管7bからの速度成分は、ベンチュリ管5内に旋回流を発生させ、ベンチュリ管のど部9における流速をさらに増大させる方向に寄与する。
さらに都市ガス流量が増大し、分岐管7bに設置された流量検出器23で計測される流量が所定値Cに達した時は、流量検出器23で計測される流量が所定値Cを保つように流量調整弁15の開度を大きくしていき、天然ガス流量増加分を主流管3から流入させるようにする。
The flow rate control method in the present embodiment configured as described above will be described below.
As in the previous example, assuming that the fluctuation range of the city gas flow rate is 300,000 Nm 3 / h to 6,000 Nm 3 / h, when the city gas flow rate is 6,000 Nm 3 / h, which is the lowest flow rate, A total amount of gas is flowed from the branch pipe 7a, that is, a flow rate of a predetermined value A. At this time, the flow rate adjustment valve 15 and the flow rate adjustment valve 25 are fully closed.
When the city gas flow rate is greater than 6,000 Nm 3 / h, the opening of the flow rate adjustment valve 25 is adjusted so that the flow rate measured by the flow rate detector 13 installed in the branch pipe 7a maintains a predetermined value A. The natural gas flow rate increase is made to flow from the branch pipe 7b. That is, even if the city gas flow rate fluctuates, the natural gas flow rate of the predetermined value A always flows through the branch pipe 7a. By doing so, a flow rate necessary for atomization / mixing is always supplied from the branch pipe 7a. Further, the velocity component from the branch pipe 7b generates a swirling flow in the venturi pipe 5 and contributes to the direction of further increasing the flow velocity in the throat portion 9 of the venturi pipe.
When the city gas flow rate further increases and the flow rate measured by the flow rate detector 23 installed in the branch pipe 7b reaches a predetermined value C, the flow rate measured by the flow rate detector 23 is kept at the predetermined value C. Then, the opening of the flow rate adjusting valve 15 is increased so that an increase in the natural gas flow rate flows from the main flow pipe 3.

ここで、前記所定値Cは、分岐管7bを流通させる天然ガス流量の最大値であり、分岐管7bの圧力損失が過大とならない範囲に設定する。例えば所定値Cの天然ガス流量が分岐管7bを流れた時の圧力損失が、分岐管7aに所定値Aの天然ガス流量が流れた際の分岐管7aにおける圧力損失と同等以下となるようにする。   Here, the predetermined value C is a maximum value of the flow rate of natural gas flowing through the branch pipe 7b, and is set in a range where the pressure loss of the branch pipe 7b does not become excessive. For example, the pressure loss when the natural gas flow rate of the predetermined value C flows through the branch pipe 7b is equal to or less than the pressure loss in the branch pipe 7a when the natural gas flow rate of the predetermined value A flows through the branch pipe 7a. To do.

以上のように、本実施の形態によれば、流路を流れる流量が大きく変化しても、LPGの微粒化・混合効果が得られると共に過度に圧力損失が大きくなりすぎないようにすることができる。すなわち、LPGの供給部となる多孔質体12が配設されている位置における分岐管7aの天然ガス流速を所定の流速に維持することができ、また分岐管7bからの旋回流で混合を促進させることができ、さらに主流管3からの速度成分は、ベンチュリ管のど部9における流速を増大させる方向に寄与する。   As described above, according to the present embodiment, even when the flow rate flowing through the flow path is greatly changed, the effect of atomizing / mixing LPG can be obtained and the pressure loss is not excessively increased. it can. That is, the natural gas flow rate of the branch pipe 7a at the position where the porous body 12 serving as the LPG supply portion is disposed can be maintained at a predetermined flow rate, and mixing is promoted by the swirling flow from the branch pipe 7b. Further, the velocity component from the main flow tube 3 contributes to the direction of increasing the flow velocity in the venturi tube throat 9.

なお、図4に示す例では、分岐管7をさらに分岐して旋回流を発生させる分岐管7bとしたが、分岐管7とは別に旋回流を発生させるための分岐管を主流管3から直接分岐させるようにしてもよい。分岐管7bを主流管3から直接分岐させる位置は、流量調整弁15の上流側、下流側どちらであっても構わない。
また、図4に示す例では、旋回流を発生させる分岐管7bは一本であるが、これを複数本、例えば2本、3本以上にしてベンチュリ管軸方向に並べて接続するようにしてもよい。
またさらに、旋回流を発生させる分岐管を複数本にした場合において、ベンチュリ管周方向に複数接続してもよい。
In the example shown in FIG. 4, the branch pipe 7 is further branched into the branch pipe 7 b that generates the swirling flow. However, a branch pipe for generating the swirling flow is provided directly from the main flow pipe 3 separately from the branch pipe 7. You may make it branch. The position where the branch pipe 7b is branched directly from the main flow pipe 3 may be either upstream or downstream of the flow rate adjustment valve 15.
Further, in the example shown in FIG. 4, the number of the branch pipes 7b that generate the swirling flow is one, but a plurality of, for example, two, three or more, may be arranged and connected in the axial direction of the venturi pipe. Good.
Furthermore, when a plurality of branch pipes for generating a swirl flow are provided, a plurality of branch pipes may be connected in the venturi pipe circumferential direction.

[実施の形態3]
図5は本発明の実施の形態3に係るベンチュリ型流体混合装置19を模式的に示す説明図である。図5において、図1と同一部分には同一の符号を付してある。
本実施の形態のベンチュリ型流体混合装置19は、実施の形態1で示した構成に加えて、流量調整弁15とベンチュリ管5との間から分岐する分岐管7cを設け、分岐管7cの端部をベンチュリ管のど部9の下流側に接続したものである。
接続の態様は実施の形態2と同様に旋回流が生ずるように、例えば流路断面の外周部接線方向、あるいはベンチュリ管5の軸線に対して軸心をずらした交差方向とする。
[Embodiment 3]
FIG. 5 is an explanatory view schematically showing a venturi type fluid mixing apparatus 19 according to Embodiment 3 of the present invention. In FIG. 5, the same parts as those in FIG.
The venturi type fluid mixing device 19 of the present embodiment is provided with a branch pipe 7c that branches from between the flow regulating valve 15 and the venturi pipe 5 in addition to the configuration shown in the first embodiment, and the end of the branch pipe 7c. The portion is connected to the downstream side of the venturi throat portion 9.
As in the second embodiment, the connection mode is, for example, the tangential direction of the outer peripheral portion of the cross section of the flow path or the crossing direction in which the axis is shifted with respect to the axis of the venturi tube 5.

ベンチュリ管のど部9の下流側にも天然ガスの旋回流を発生させることでLPGの混合をより効果的に行うことができる。   LPG can be mixed more effectively by generating a swirling flow of natural gas at the downstream side of the throat 9 of the venturi pipe.

なお、上記の実施の形態においては、主流管3にベンチュリ管5を設けた例を示したが、本発明はこれに限られるものではなく、ベンチュリ管5を設けなくても分岐管7を流れる天然ガス流れによってLPGが微粒化され、天然ガスと混合される。もっとも、ベンチュリ管5を設けることで、上述したように、ベンチュリ管のど部9での微粒化・混合がより促進されるという効果を奏する。   In the above-described embodiment, an example in which the venturi pipe 5 is provided in the main flow pipe 3 is shown. However, the present invention is not limited to this, and the branch pipe 7 flows without the venturi pipe 5 being provided. LPG is atomized by the natural gas stream and mixed with natural gas. However, by providing the venturi tube 5, as described above, there is an effect that atomization / mixing in the throat portion 9 of the venturi tube is further promoted.

主流路を流れる第1流体に、主流路の途中で第2流体を供給することによって両流体を混合する用途に適用できる。   The present invention can be applied to the use of mixing both fluids by supplying the second fluid to the first fluid flowing through the main channel in the middle of the main channel.

1、17、19 ベンチュリ型混合装置
3 主流管
5 ベンチュリ管
7 分岐管
7a、7b、7c 分岐管
9 ベンチュリ管のど部
11 LPG供給管
12 多孔質体
13、23 流量検出器
15、25 流量調整弁
DESCRIPTION OF SYMBOLS 1, 17, 19 Venturi type mixing device 3 Main flow pipe 5 Venturi pipe 7 Branch pipe 7a, 7b, 7c Branch pipe 9 Venturi pipe throat part 11 LPG supply pipe 12 Porous body 13, 23 Flow rate detector 15, 25 Flow rate adjustment valve

Claims (10)

主流路を流れるガス状の第1流体に、主流路の途中で液状の第2流体を供給することによって両流体を混合する流体の混合方法であって、
前記主流路よりも流路断面が小さい小径部を有する分岐流路を前記主流路から分岐して設け、該分岐流路の出口側を前記主流路における前記分岐流路の分岐位置よりも下流側に配置し、該分岐流路における前記小径部又はその近傍に多孔質体からなる前記第2流体の供給部を設け、前記分岐流路の分岐位置と出口位置との間における前記主流路の流量を調整することにより前記分岐流路の前記小径部を流れる前記第1流体の流速を、前記多孔質体から滲み出した前記第2流体が前記第1流体により微粒化されて混合されるのに必要な流速に保つようにしたことを特徴とする流体混合方法。
A fluid mixing method of mixing both fluids by supplying a liquid second fluid in the middle of the main flow path to the gaseous first fluid flowing through the main flow path,
A branch channel having a small-diameter portion whose channel cross-section is smaller than that of the main channel is branched from the main channel, and the outlet side of the branch channel is downstream of the branch position of the branch channel in the main channel And the second fluid supply portion made of a porous body is provided at or near the small-diameter portion of the branch channel, and the flow rate of the main channel between the branch position and the outlet position of the branch channel The flow rate of the first fluid flowing through the small-diameter portion of the branch flow channel is adjusted so that the second fluid oozing out from the porous body is atomized and mixed by the first fluid. A fluid mixing method characterized by maintaining a necessary flow rate.
前記多孔質体を、前記分岐流路の出口の内側と外側に跨るように配置したことを特徴とする請求項1記載の流体混合方法。   The fluid mixing method according to claim 1, wherein the porous body is disposed so as to straddle the inside and the outside of the outlet of the branch channel. 前記主流路にベンチュリ管を設け、前記分岐流路の出口側を前記ベンチュリ管のど部またはその上流側に配置したことを特徴とする請求項1又は2に記載の流体混合方法。   The fluid mixing method according to claim 1 or 2, wherein a venturi pipe is provided in the main flow path, and an outlet side of the branch flow path is arranged at a throat portion of the venturi pipe or upstream thereof. 主流管を流れるガス状の第1流体に、主流管の途中で液状の第2流体を供給することによって両流体を混合する流体混合装置であって、
前記主流管から分岐して設けられ、流路断面が前記主流管よりも小さい小径部を有すると共に出口側を前記主流管における前記分岐位置よりも下流側に接続された分岐管と、該分岐管の前記小径部又はその近傍に設けられて前記第2流体を供給する多孔質体からなる第2流体供給部と、前記主流管における前記分岐管の分岐部よりも下流側かつ前記分岐管の出口部より上流側に設けられて前記主流管を流れる流量を調整する流量調整弁とを備えたことを特徴とする流体混合装置。
A fluid mixing device that mixes both fluids by supplying a liquid second fluid in the middle of the main flow pipe to the gaseous first fluid flowing through the main flow pipe,
A branch pipe provided by branching from the main flow pipe, having a small-diameter portion whose flow path cross section is smaller than that of the main flow pipe, and having an outlet side connected downstream of the branch position in the main flow pipe; and the branch pipe A second fluid supply part made of a porous body that is provided at or near the small diameter part and supplies the second fluid, and a downstream side of the branch part of the branch pipe in the main flow pipe and an outlet of the branch pipe A fluid mixing apparatus comprising: a flow rate adjusting valve provided on the upstream side of the unit for adjusting a flow rate flowing through the main flow pipe.
前記多孔質体からなる第2流体供給部を、前記分岐流路の出口の内側と外側に跨るように配置したことを特徴とする請求項4記載の流体混合装置。   The fluid mixing apparatus according to claim 4, wherein the second fluid supply unit made of the porous body is arranged so as to straddle the inside and the outside of the outlet of the branch channel. 前記主流路にベンチュリ管を設け、前記第2流体供給部を前記ベンチュリ管のど部またはその上流側に配置したことを特徴とする請求項4又は5に記載の流体の混合装置。   The fluid mixing apparatus according to claim 4 or 5, wherein a venturi pipe is provided in the main flow path, and the second fluid supply section is disposed at a throat section of the venturi pipe or upstream thereof. 前記分岐管の小径部の流路断面積を、前記第1流体の最低流量として想定される量が流れたときに、前記小径部の流速が前記多孔質体から滲み出した前記第2流体が前記第1流体により微粒化されて混合されるのに必要な流速を保つことができる大きさに設定したことを特徴とする請求項4乃至6のいずれか一項に記載の流体の混合装置。   When the flow rate cross-sectional area of the small-diameter portion of the branch pipe flows in an amount assumed as the minimum flow rate of the first fluid, the second fluid that has flowed out of the porous body has a flow velocity of the small-diameter portion. The fluid mixing device according to any one of claims 4 to 6, wherein the fluid mixing device is set to a size capable of maintaining a flow rate necessary for being atomized and mixed by the first fluid. 前記分岐管を流れる第1流体の流量及び/又は圧力を検知する検知手段を設け、該検知手段の検知信号に基づいて前記流量調整弁の開度を調整し、前記第1流体の流量が変動した場合でも、前記分岐管には常時、前記第1流体を前記最低流量流し、前記最低流量を超える流量分を前記主流管に流すようにしたことを特徴とする請求項7記載の流体混合装置。   Detection means for detecting the flow rate and / or pressure of the first fluid flowing through the branch pipe is provided, and the opening of the flow rate adjustment valve is adjusted based on the detection signal of the detection means, so that the flow rate of the first fluid varies. 8. The fluid mixing apparatus according to claim 7, wherein the first fluid is always allowed to flow through the branch pipe to the minimum flow rate, and a flow rate exceeding the minimum flow rate is caused to flow through the main flow pipe. . 前記主流管から分岐して設けられると共に出口側を前記主流管の軸線に対して軸心をずらした交差方向に接続された第2分岐管を備えたことを特徴とする請求項4乃至8のいずれか一項に記載の流体混合装置。   9. A second branch pipe provided by branching from the main flow pipe and having an outlet side connected in an intersecting direction with an axial center shifted from the axis of the main flow pipe. The fluid mixing apparatus according to any one of the above. 前記分岐管を流れる第1流体の流量及び/又は圧力を検知する第1検知手段と、前記主流管から分岐して設けられると共に出口側を前記主流管の軸線に対して軸心をずらした交差方向に接続された第2分岐管と、該第2分岐管を流れる第1流体の流量及び/又は圧力を検知する第2検知手段と、前記第2分岐管の流量を調整する第2流量調整弁とを備え、前記第2検知手段の検知信号に基づいて前記主流管に設けられた流量調整弁を調整すると共に、前記第1検知手段の検知信号に基づいて前記第2流量調整弁を調整し、
前記第1流体の流量が変動した場合でも、前記分岐管には常時、前記第1流体を前記最低流量流し、前記最低流量を超える流量分を前記第2分岐管に流し、さらに前記第2分岐管の流量が所定流量を超えときにその超えた流量分を前記主流管に流すようにしたことを特徴とする請求項7記載の流体混合装置。
A first detecting means for detecting the flow rate and / or pressure of the first fluid flowing through the branch pipe; and an intersection provided by branching from the main flow pipe and having an outlet side shifted from the axis of the main flow pipe A second branch pipe connected in the direction, second detection means for detecting the flow rate and / or pressure of the first fluid flowing through the second branch pipe, and a second flow rate adjustment for adjusting the flow rate of the second branch pipe A flow rate adjusting valve provided in the main flow pipe based on a detection signal of the second detection means, and adjusting the second flow rate adjustment valve based on the detection signal of the first detection means And
Even when the flow rate of the first fluid fluctuates, the first fluid is always allowed to flow through the branch pipe, the flow exceeding the minimum flow is allowed to flow through the second branch pipe, and the second branch is further passed. 8. The fluid mixing apparatus according to claim 7, wherein when the flow rate of the pipe exceeds a predetermined flow rate, the excess flow rate is caused to flow through the main flow pipe.
JP2010071245A 2010-03-26 2010-03-26 Fluid mixing method and fluid mixing apparatus Active JP5589485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010071245A JP5589485B2 (en) 2010-03-26 2010-03-26 Fluid mixing method and fluid mixing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010071245A JP5589485B2 (en) 2010-03-26 2010-03-26 Fluid mixing method and fluid mixing apparatus

Publications (2)

Publication Number Publication Date
JP2011200808A true JP2011200808A (en) 2011-10-13
JP5589485B2 JP5589485B2 (en) 2014-09-17

Family

ID=44878113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010071245A Active JP5589485B2 (en) 2010-03-26 2010-03-26 Fluid mixing method and fluid mixing apparatus

Country Status (1)

Country Link
JP (1) JP5589485B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142296A (en) * 2013-01-25 2014-08-07 Nippon Steel & Sumikin Technology Co Ltd Ultrasonic flaw detection device
CN109499413A (en) * 2019-01-14 2019-03-22 西安交通大学 A kind of adjustable venturi mixing arrangement in throat's injection hole site
CN111471499A (en) * 2020-04-14 2020-07-31 北京石油化工学院 Tubular parallel flow type gas-liquid contact absorber
JP2020147700A (en) * 2019-03-14 2020-09-17 大阪瓦斯株式会社 Calorific value adjustment apparatus
JP2021030112A (en) * 2019-08-19 2021-03-01 敏夫 宮下 Gas-liquid mixer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10408026B2 (en) 2013-08-23 2019-09-10 Chevron U.S.A. Inc. System, apparatus, and method for well deliquification

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130735U (en) * 1979-03-09 1980-09-16
JPS56113333A (en) * 1980-02-14 1981-09-07 Daido Steel Co Ltd Fluid mixer
JPS6078628A (en) * 1983-10-03 1985-05-04 Sasakura Eng Co Ltd Liquid mixing method and apparatus
JP2004136257A (en) * 2002-08-23 2004-05-13 Hokkaido Olympia Kk Gas mixing system
JP2007021454A (en) * 2005-07-21 2007-02-01 Ngk Insulators Ltd Functional water making apparatus and functional water making method using it
JP2008246277A (en) * 2007-03-29 2008-10-16 Okayamaken Sangyo Shinko Zaidan Particulate fluid producing apparatus
JP2009000687A (en) * 2008-10-07 2009-01-08 Regal Joint Co Ltd Fluid mixing device
JP2010029841A (en) * 2008-07-03 2010-02-12 Hiroshima Kasei Ltd Method for producing hydrogenated water

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130735U (en) * 1979-03-09 1980-09-16
JPS56113333A (en) * 1980-02-14 1981-09-07 Daido Steel Co Ltd Fluid mixer
JPS6078628A (en) * 1983-10-03 1985-05-04 Sasakura Eng Co Ltd Liquid mixing method and apparatus
JP2004136257A (en) * 2002-08-23 2004-05-13 Hokkaido Olympia Kk Gas mixing system
JP2007021454A (en) * 2005-07-21 2007-02-01 Ngk Insulators Ltd Functional water making apparatus and functional water making method using it
JP2008246277A (en) * 2007-03-29 2008-10-16 Okayamaken Sangyo Shinko Zaidan Particulate fluid producing apparatus
JP2010029841A (en) * 2008-07-03 2010-02-12 Hiroshima Kasei Ltd Method for producing hydrogenated water
JP2009000687A (en) * 2008-10-07 2009-01-08 Regal Joint Co Ltd Fluid mixing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142296A (en) * 2013-01-25 2014-08-07 Nippon Steel & Sumikin Technology Co Ltd Ultrasonic flaw detection device
CN109499413A (en) * 2019-01-14 2019-03-22 西安交通大学 A kind of adjustable venturi mixing arrangement in throat's injection hole site
CN109499413B (en) * 2019-01-14 2024-02-02 西安交通大学 Venturi mixing device with adjustable throat injection hole position
JP2020147700A (en) * 2019-03-14 2020-09-17 大阪瓦斯株式会社 Calorific value adjustment apparatus
JP7257827B2 (en) 2019-03-14 2023-04-14 大阪瓦斯株式会社 Calorie control device
JP2021030112A (en) * 2019-08-19 2021-03-01 敏夫 宮下 Gas-liquid mixer
JP7350564B2 (en) 2019-08-19 2023-09-26 敏夫 宮下 Gas-liquid mixing device
CN111471499A (en) * 2020-04-14 2020-07-31 北京石油化工学院 Tubular parallel flow type gas-liquid contact absorber

Also Published As

Publication number Publication date
JP5589485B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5212301B2 (en) Fluid mixing method using venturi tube, venturi type mixing device
JP5370027B2 (en) Fluid mixing method and fluid mixing apparatus
JP5589485B2 (en) Fluid mixing method and fluid mixing apparatus
AU2014290408C1 (en) Apparatus and methods for mixing reformable fuels and an oxygen-containing gas and/or steam
JP5509981B2 (en) Fluid mixing method and fluid mixing apparatus
KR101426051B1 (en) Burner combustion method
JP4997645B2 (en) Combustor with air flow distribution control mechanism by fluid element
JP6042061B2 (en) Spray nozzle, fluid atomizer using the spray nozzle
JP5912393B2 (en) Spray nozzle and method of mixing gas and liquid
JP5540973B2 (en) Fluid atomization nozzle, fluid atomization device
JP5071392B2 (en) Fluid mixing method using Venturi tube
RU2605166C2 (en) Universal mixing head swirl atomizer for gas burner
JP5609913B2 (en) Venturi type mixing device
BR102016001176A2 (en) jet pump system, air supply and aircraft method
US9212819B2 (en) Swirled fuel injection
JP6168965B2 (en) Mixed combustion system and fuel gas mixing unit
JP2006329438A (en) Emulsion fuel manufacturing device
JP7389408B2 (en) fluid mixing device
WO2013099916A1 (en) Flow velocity distribution equalizing apparatus
JP2016023820A (en) Air ratio adjustment system
CN113855982B (en) Anesthesia evaporation device
JP2008309355A (en) Pulverized coal burner
CN113167624A (en) Module for measuring fuel flow and burner comprising such a module
JP2020063885A (en) Gas fuel supply device and combustion apparatus
KR20230158011A (en) Mixing device for gas heaters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5589485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350