JP7389408B2 - fluid mixing device - Google Patents

fluid mixing device Download PDF

Info

Publication number
JP7389408B2
JP7389408B2 JP2020048616A JP2020048616A JP7389408B2 JP 7389408 B2 JP7389408 B2 JP 7389408B2 JP 2020048616 A JP2020048616 A JP 2020048616A JP 2020048616 A JP2020048616 A JP 2020048616A JP 7389408 B2 JP7389408 B2 JP 7389408B2
Authority
JP
Japan
Prior art keywords
pipe
flow
fluid
mixing device
flow pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020048616A
Other languages
Japanese (ja)
Other versions
JP2021146273A (en
Inventor
治貴 浦部
竜太 淺香
以昌 山口
繁則 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2020048616A priority Critical patent/JP7389408B2/en
Publication of JP2021146273A publication Critical patent/JP2021146273A/en
Application granted granted Critical
Publication of JP7389408B2 publication Critical patent/JP7389408B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Accessories For Mixers (AREA)

Description

本発明は、主流管を流れるガス状の流体に液状の流体を添加して混合を行う流体混合装置に関する。 The present invention relates to a fluid mixing device that adds and mixes a liquid fluid to a gaseous fluid flowing through a main stream pipe.

液化天然ガス(以下、「LNG」という)を気化して都市ガスとして供給する際、熱量調整を行っている。近年はシェールガスなどメタン成分の多いLNGの輸入が増加しており、都市ガス用に増熱する場合が多い。熱量調整はLNGを気化させた天然ガス(以下、「NG」という)に熱量調整用の熱調剤(例えば、LPG)を混合することにより行う。 When liquefied natural gas (hereinafter referred to as "LNG") is vaporized and supplied as city gas, the amount of heat is adjusted. In recent years, imports of LNG with a high methane content, such as shale gas, have increased, and the heat is often increased for use as city gas. The amount of heat is adjusted by mixing natural gas (hereinafter referred to as "NG") obtained by vaporizing LNG with a heat agent for adjusting the amount of heat (for example, LPG).

このようにNGに熱調剤を混合する場合、NGの流量が都市ガス需要量に応じて変動するため、NG流量が変動しても一定の熱量調整ができるようにする必要がある。
このような工夫をしたものとして、例えば特許文献1に開示された「流体混合装置」がある。
特許文献1に開示のものは、「主流管を流れる第1流体に、主流管の途中で第2流体を供給することによって両流体を混合する流体混合装置であって、前記主流管から分岐して設けられ、流路断面が前記主流管よりも小さい小径部を有すると共に出口側を前記主流路における前記分岐流路の分岐位置よりも下流側に接続された分岐管と、該分岐管の前記小径部又はその近傍に設けられて前記第2流体を供給する第2流体供給口と、前記主流管における前記分岐管の分岐部よりも下流側かつ前記分岐管の出口部より上流側に設けられて前記主流管を流れる流量を調整する流量調整弁とを備えたことを特徴とする流体混合装置。」である(特許文献1の請求項4参照)。
When mixing heat preparation with NG in this way, the flow rate of NG varies depending on the demand for city gas, so it is necessary to be able to adjust the amount of heat at a constant level even if the NG flow rate varies.
As an example of such a device, there is a "fluid mixing device" disclosed in Patent Document 1.
What is disclosed in Patent Document 1 is "a fluid mixing device that mixes a first fluid flowing through a main stream pipe by supplying a second fluid midway through the main stream pipe, and which includes a first fluid flowing through the main stream pipe that is branched from the main stream pipe. a branch pipe provided with a small diameter portion whose flow passage cross section is smaller than that of the main flow pipe, and whose outlet side is connected to the downstream side of the branch position of the branch flow channel in the main flow channel; a second fluid supply port provided at or near the small diameter portion to supply the second fluid; and a second fluid supply port provided downstream from the branch portion of the branch pipe in the main flow pipe and upstream from the outlet portion of the branch pipe. and a flow rate adjustment valve that adjusts the flow rate flowing through the main flow pipe.'' (see claim 4 of Patent Document 1).

そして、上記の特許文献1の流体混合装置においては、「主流路よりも流路断面が小さい小径部を有する分岐流路を前記主流路から分岐して設け、該分岐流路の出口側を主流管に配置し、該分岐流路における前記小径部又はその近傍に前記第2流体の供給部を設け、前記主流路の流量を調整することにより前記分岐流路の前記小径部を流れる前記第1流体の流速を、前記第1流体と前記第2流体の混合に必要な流速に保つようにしたので、広い流量範囲に対して高い混合効果を確実に得ることが可能となる。」としている(特許文献1の[0020]参照)。 In the fluid mixing device of Patent Document 1, "a branch channel having a small diameter portion with a cross section smaller than that of the main channel is provided branching from the main channel, and the outlet side of the branch channel is connected to the main channel. A supply section for the second fluid is provided at or near the small diameter section of the branch channel, and the first fluid flows through the small diameter section of the branch channel by adjusting the flow rate of the main channel. Since the flow rate of the fluid is maintained at the flow rate necessary for mixing the first fluid and the second fluid, it is possible to reliably obtain a high mixing effect over a wide flow rate range.'' (See [0020] of Patent Document 1).

特開2011-56400号公報Japanese Patent Application Publication No. 2011-56400

特許文献1の流体混合装置においては、分岐流路を主流路より分岐させ、主流路の外側から再び導入しているため、分岐流路を設けるための分岐管が必要となりその分だけ装置サイズが大きくなり、実プラントでの設置エリアが増大してしまうという問題がある。
また、分岐流路を形成する分岐管を主流路の外側で引き回しており、圧力損失が増大し、その分だけNG輸送動力コストが増加してしまうという問題もある。
In the fluid mixing device of Patent Document 1, the branch flow path is branched from the main flow path and reintroduced from the outside of the main flow path, so a branch pipe is required to provide the branch flow path, which increases the device size accordingly. This poses a problem in that the installation area in an actual plant increases.
Further, since the branch pipes forming the branch flow paths are routed outside the main flow path, there is a problem in that pressure loss increases and the cost of NG transportation power increases accordingly.

本発明はかかる課題を解決するためになされたものであり、圧力損失を抑制できると共に装置サイズを大きくすることなく、主流管を流れるガス状の流体の流量変動があっても、高い混合効果を得られる流体混合装置を提供することを目的としている。 The present invention has been made to solve these problems, and it is possible to suppress pressure loss and maintain a high mixing effect without increasing the size of the device, even if there is a fluctuation in the flow rate of the gaseous fluid flowing through the main pipe. The present invention aims to provide a fluid mixing device that can be obtained.

(1)本発明に係る流体混合装置は、主流管を流れるガス状の第1流体に、前記主流管の途中で液状の第2流体を供給することによって両流体を混合する流体混合装置であって、
前記主流管内に配設された前記主流管よりも小径の副流管と、該副流管に前記第2流体を供給する第2流体供給管と、前記主流管の主流路の流路断面積を調整することで前記副流管に流入する前記第1流体の流量を調整する流路断面積調整弁を備えたことを特徴とするものである。
(1) The fluid mixing device according to the present invention is a fluid mixing device that mixes a gaseous first fluid flowing through a main stream pipe by supplying a liquid second fluid to the gaseous first fluid flowing through the main stream pipe. hand,
A sub-flow pipe disposed within the main-stream pipe and having a smaller diameter than the main-stream pipe, a second fluid supply pipe that supplies the second fluid to the sub-flow pipe, and a flow passage cross-sectional area of the main flow passage of the main-stream pipe. The present invention is characterized by comprising a flow passage cross-sectional area adjustment valve that adjusts the flow rate of the first fluid flowing into the secondary flow pipe by adjusting the flow rate of the first fluid flowing into the subflow pipe.

(2)また、上記(1)に記載のものにおいて、前記主流路にベンチュリ管を設け、前記副流管の出口側を前記ベンチュリ管ののど部またはその上流側に配置したことを特徴とするものである。 (2) Furthermore, in the item described in (1) above, a venturi pipe is provided in the main flow channel, and the outlet side of the side flow pipe is disposed at the throat of the venturi pipe or its upstream side. It is something.

(3)また、上記(1)又は(2)に記載のものにおいて、前記流路断面積調整弁を操作するアクチュエータと、前記流路断面積調整弁よりも上流側及び/又は下流側を流れる流体の圧力を検知する検知装置と、該検知装置の検知信号に基づいて前記アクチュエータを制御する制御部を備えたことを特徴とするものである。 (3) Furthermore, in the item described in (1) or (2) above, an actuator for operating the flow path cross-sectional area adjustment valve, and a flow path upstream and/or downstream of the flow path cross-sectional area adjustment valve. The present invention is characterized by comprising a detection device that detects fluid pressure, and a control section that controls the actuator based on a detection signal from the detection device.

(4)また、上記(1)又は(2)に記載のものにおいて、前記流路断面積調整弁を操作するアクチュエータと、前記副流管を流れる流体の流量又は流速を検知する検知装置と、該検知装置の検知信号に基づいて前記アクチュエータを制御する制御部を備えたことを特徴とするものである。 (4) Furthermore, in the item described in (1) or (2) above, an actuator that operates the flow path cross-sectional area adjustment valve, and a detection device that detects the flow rate or flow velocity of the fluid flowing through the side flow pipe; The present invention is characterized by comprising a control section that controls the actuator based on a detection signal from the detection device.

(5)また、上記(1)又は(2)に記載のものにおいて、前記流路断面積調整弁を操作するアクチュエータと、前記流路断面積調整弁よりも上流側を流れる流体の流量を検知する第1流量検知装置と、前記副流管と前記主流管の隙間の主流路を流れる流体の流量を検知する第2流量検知装置と、前記第1流量検知装置及び前記第2流量検知装置の検知信号に基づいて前記アクチュエータを制御する制御部を備えたことを特徴とするものである。 (5) Furthermore, in the device described in (1) or (2) above, an actuator that operates the flow path cross-sectional area adjustment valve and a flow rate of the fluid flowing upstream of the flow path cross-sectional area adjustment valve are detected. a second flow rate detection device that detects the flow rate of fluid flowing through the main flow path in the gap between the side flow pipe and the main flow pipe; and the first flow rate detection device and the second flow rate detection device. The present invention is characterized by comprising a control section that controls the actuator based on a detection signal.

(6)また、上記(1)乃至(5)のいずれかに記載のものにおいて、前記流路断面積調整弁は、主流路を閉止可能に構成されていることを特徴とするものである。 (6) Furthermore, in the device described in any one of (1) to (5) above, the flow passage cross-sectional area adjusting valve is configured to be able to close the main flow passage.

(7)また、上記(1)乃至(6)のいずれかに記載のものにおいて、前記流路断面積調整弁は、主流路に交差方向に板状体を移動可能なシャッター弁であることを特徴とするものである。 (7) Furthermore, in the item described in any one of (1) to (6) above, the flow passage cross-sectional area adjustment valve is a shutter valve whose plate-shaped body is movable in a direction crossing the main flow passage. This is a characteristic feature.

(8)また、上記(1)乃至(6)のいずれかに記載のものにおいて、前記流路断面積調整弁は、主流路に直交する軸を中心に板状の弁体を回転するバタフライ弁であることを特徴とするものである。 (8) Also, in any one of (1) to (6) above, the flow passage cross-sectional area adjusting valve is a butterfly valve that rotates a plate-shaped valve body around an axis perpendicular to the main flow passage. It is characterized by:

(9)また、上記(8)に記載のものにおいて、前記バタフライ弁は、閉止状態で前記副流管の入口に相当する部位に開口を有することを特徴とするものである。 (9) Furthermore, in the apparatus described in (8) above, the butterfly valve is characterized in that in a closed state, the butterfly valve has an opening at a portion corresponding to the inlet of the side flow pipe.

(10)また、上記(9)に記載のものにおいて、前記副流管の入口は、前記主流管の管壁近傍に配置されていることを特徴とするものである。 (10) Furthermore, in the apparatus described in (9) above, the inlet of the side flow pipe is arranged near the wall of the main flow pipe.

(11)また、上記(9)に記載のものにおいて、前記副流管の入口は、前記主流路の中央部に配置され、前記副流管の入口近傍の管壁には、前記バタフライ弁を閉止した際に、該バタフライ弁と前記副流管の管壁との隙間を閉止するバッフル板が設けられていることを特徴とするものである。 (11) Also, in the item described in (9) above, the inlet of the side flow pipe is arranged in the center of the main flow path, and the butterfly valve is provided on the pipe wall near the inlet of the side flow pipe. The present invention is characterized in that a baffle plate is provided that closes a gap between the butterfly valve and the wall of the side flow pipe when the butterfly valve is closed.

(12)また、上記(8)に記載のものにおいて、前記バタフライ弁は、前記副流管を挟む2枚の板状の弁体によって構成されていることを特徴とするものである。 (12) Furthermore, in the apparatus described in (8) above, the butterfly valve is constituted by two plate-shaped valve bodies sandwiching the side flow pipe.

(13)また、上記(12)に記載のものにおいて、前記副流管の入口は扁平状に拡径する拡径部を有し、該拡径部の上流端の側面が前記主流管の管壁に当接しており、前記バタフライ弁の2枚の弁体は前記拡径部を挟むように設けられていることを特徴とするものである。 (13) Furthermore, in the item described in (12) above, the inlet of the secondary flow pipe has a diameter-enlarging portion that expands in diameter in a flat shape, and the side surface of the upstream end of the diameter-enlarging portion is connected to the main flow pipe. The butterfly valve is in contact with a wall, and the two valve bodies of the butterfly valve are provided so as to sandwich the enlarged diameter portion.

本発明においては、主流管内に配設された前記主流管よりも小径の副流管と、該副流管に液状の第2流体を供給する第2流体供給管と、前記主流管の主流路の流路断面積を調整することで前記副流管に流入するガス状の第1流体の流量を調整する流路断面積調整弁を備えたことにより、主流管を流れるガス状の流体の流量変動があっても高い混合効果を得られると共に、従来例のように、分岐管を設ける必要がなく省スペースであり、かつ、分岐管のように、主流路の外側で引き回す必要がなく、分岐管のような大きな圧力損失も発生せず、ガス輸送動力コストの増加を抑制できる。 In the present invention, there is provided a secondary flow pipe disposed within the main flow pipe and having a smaller diameter than the main flow pipe, a second fluid supply pipe supplying a liquid second fluid to the secondary flow pipe, and a main flow channel of the main flow pipe. The flow rate of the gaseous fluid flowing through the main flow pipe is increased by providing a flow passage cross-sectional area adjustment valve that adjusts the flow rate of the gaseous first fluid flowing into the secondary flow pipe by adjusting the flow passage cross-sectional area of the main flow pipe. A high mixing effect can be obtained even when there are fluctuations, and there is no need to install a branch pipe as in conventional examples, saving space. There is no large pressure loss as with pipes, and increases in gas transportation power costs can be suppressed.

実施の形態1に係る流体混合装置の平断面図である。1 is a plan cross-sectional view of the fluid mixing device according to Embodiment 1. FIG. 図1に示した流体混合装置の一部を拡大して示す斜視図(a)、及びシャッター弁の説明図(b)である。FIG. 2 is an enlarged perspective view (a) of a part of the fluid mixing device shown in FIG. 1 and an explanatory view (b) of a shutter valve. 図1に示したシャッター弁の動作説明図である。2 is an explanatory diagram of the operation of the shutter valve shown in FIG. 1. FIG. 図1に示した流体混合装置の他の態様の説明図である(その1)。FIG. 2 is an explanatory diagram of another aspect of the fluid mixing device shown in FIG. 1 (Part 1). 図1に示した流体混合装置の他の態様の説明図である(その2)。FIG. 2 is an explanatory diagram of another aspect of the fluid mixing device shown in FIG. 1 (Part 2). 図1に示した流体混合装置の他の態様の説明図である(その3)。FIG. 3 is an explanatory diagram of another aspect of the fluid mixing device shown in FIG. 1 (No. 3). 図1に示した流体混合装置の他の態様の説明図である(その4)。FIG. 4 is an explanatory diagram of another aspect of the fluid mixing device shown in FIG. 1 (No. 4). 図1に示した流体混合装置の他の態様の説明図である(その5)。FIG. 5 is an explanatory diagram of another aspect of the fluid mixing device shown in FIG. 1 (No. 5). 実施の形態2に係る流体混合装置の平断面図である。FIG. 3 is a plan cross-sectional view of a fluid mixing device according to a second embodiment. 図9に示した流体混合装置の動作説明図である。10 is an explanatory diagram of the operation of the fluid mixing device shown in FIG. 9. FIG. 実施の形態2に係る流体混合装置の他の態様の平断面図である(その1)。FIG. 7 is a plan cross-sectional view of another aspect of the fluid mixing device according to the second embodiment (part 1). 図11に示した流体混合装置の要部の説明図である。12 is an explanatory diagram of main parts of the fluid mixing device shown in FIG. 11. FIG. 図11に示した流体混合装置の動作説明図である。12 is an explanatory diagram of the operation of the fluid mixing device shown in FIG. 11. FIG. 実施の形態2に係る流体混合装置の他の態様の平断面図である(その2)。FIG. 7 is a plan cross-sectional view of another aspect of the fluid mixing device according to the second embodiment (part 2). 図14に示した流体混合装置の要部の説明図である。15 is an explanatory diagram of main parts of the fluid mixing device shown in FIG. 14. FIG. 図14に示した流体混合装置の動作説明図である。15 is an explanatory diagram of the operation of the fluid mixing device shown in FIG. 14. FIG. 実施の形態2に係る流体混合装置の他の態様の平断面図である(その3)。FIG. 7 is a plan cross-sectional view of another aspect of the fluid mixing device according to the second embodiment (Part 3). 図17の一部を拡大して示す斜視図である。FIG. 18 is an enlarged perspective view of a part of FIG. 17; 図17に示した流体混合装置の動作説明図である。18 is an explanatory diagram of the operation of the fluid mixing device shown in FIG. 17. FIG.

[実施の形態1]
本発明の一実施の形態に係る流体混合装置1は、図1に示すように、主流管3を流れるガス状の第1流体に、主流管3の途中で液状の第2流体(添加剤)を供給することによって両流体を混合するものであって、主流管3内に配設された主流管3よりも小径の副流管5と、副流管5に第2流体を供給する第2流体供給管7と、主流管3の主流路8、8aの流路断面積を調整することで副流管5に流入する第1流体の流量を調整する流路断面積調整弁としてのシャッター弁9を備えたものである。
本実施の形態1においては、主流管3にベンチュリ管11を設置してベンチュリ型混合装置として構成したものである。
なお、本実施の形態に係る流体混合装置1は、例えば、第1流体としてLNGを気化したNGに、第2流体としてLPGを添加することにより増熱して都市ガスを製造する際に用いられるものである。
以下、各構成を詳細に説明する。
[Embodiment 1]
As shown in FIG. 1, a fluid mixing device 1 according to an embodiment of the present invention adds a liquid second fluid (additive) to a gaseous first fluid flowing through a main stream pipe 3. A secondary flow pipe 5 having a diameter smaller than that of the main flow pipe 3 disposed inside the main flow pipe 3 and a second flow pipe 5 that supplies a second fluid to the secondary flow pipe 5 are used to mix both fluids by supplying a second fluid to the main flow pipe 3. A shutter valve as a flow passage cross-sectional area adjustment valve that adjusts the flow rate of the first fluid flowing into the sub-flow pipe 5 by adjusting the flow passage cross-sectional area of the fluid supply pipe 7 and the main flow passages 8, 8a of the main flow pipe 3. 9.
In the first embodiment, a Venturi tube 11 is installed in the main flow pipe 3 to form a Venturi type mixing device.
Note that the fluid mixing device 1 according to the present embodiment is used, for example, when producing city gas by adding LPG as a second fluid to NG obtained by vaporizing LNG as a first fluid to increase the heat. It is.
Each configuration will be explained in detail below.

<主流管>
主流管3は、ガス状の第1流体(例えばNG)が流れる管である。主流管3の形状は特に限定されるものではなく、本実施の形態では、図2、図3に示すように軸方向直交断面が矩形状であるが、軸方向直交断面が円形であってもよい。
本発明の主流路は、主流管3によって形成される流路であり、副流管5が配置されている部位では、主流管3と副流管5によって挟まれた流路が主流路となる。そのため、本実施の形態では、主流管3と副流管5によって挟まれた主流路を隙間主流路8aと表記し、それ以外の主流路を主流路8と表記している。
<Main pipe>
The main flow pipe 3 is a pipe through which a gaseous first fluid (for example, NG) flows. The shape of the main flow pipe 3 is not particularly limited, and in this embodiment, the cross section perpendicular to the axial direction is rectangular as shown in FIGS. 2 and 3, but the cross section perpendicular to the axial direction may be circular. good.
The main flow path of the present invention is a flow path formed by the main flow pipe 3, and in the region where the side flow pipe 5 is arranged, the flow path sandwiched between the main flow pipe 3 and the side flow pipe 5 becomes the main flow path. . Therefore, in this embodiment, the main flow path sandwiched between the main flow pipe 3 and the side flow pipe 5 is referred to as a gap main flow path 8a, and the other main flow paths are referred to as a main flow path 8.

<副流管>
副流管5は、主流管3内に配設され、主流管3よりも小径の管である。
副流管5は、図示しないステー等によって主流管3内に配設されるが、図1に示すように、主流管と平行となるように配置されるのが好ましい。
副流管5は主流管3よりも小径で、その流路断面積は主流管3よりも小さいため、主流路8を流れるNG流量が一定の場合、隙間主流路8aを流れるNG流量を相対的に減少させて副流管5を流れるNG流量を増加させることで、副流管5を流れるNGの流速が主流路8の流速よりも速くなる。このため、副流管5に第2流体供給管7を介して供給される液状の第2流体(例えば、LPG)の微粒化が促進される。
<Side flow pipe>
The side flow pipe 5 is disposed within the main flow pipe 3 and has a smaller diameter than the main flow pipe 3.
The side flow pipe 5 is disposed within the main flow pipe 3 by a stay or the like (not shown), but is preferably arranged parallel to the main flow pipe as shown in FIG. 1.
The secondary flow pipe 5 has a smaller diameter than the main flow pipe 3, and its cross-sectional area is smaller than that of the main flow pipe 3. Therefore, when the flow rate of NG flowing through the main flow channel 8 is constant, the flow rate of NG flowing through the gap main flow channel 8a is relatively By decreasing the flow rate of NG flowing through the side flow pipe 5 to increase the flow rate of NG flowing through the side flow pipe 5, the flow rate of NG flowing through the side flow pipe 5 becomes faster than the flow speed of the main flow path 8. Therefore, atomization of the liquid second fluid (for example, LPG) supplied to the side flow pipe 5 via the second fluid supply pipe 7 is promoted.

<第2流体供給管>
第2流体供給管7は、副流管5に第2流体を供給する管である。第2流体供給管7から供給される液状の第2流体は、副流管5を流れる第1流体のガス流れによって微粒化されて第1流体と混合される。
第2流体供給管7における第2流体の出口部7aは、図1に示すように、副流管5の管壁に設けられ、副流管5の管軸と第2流体供給管7の出口部7aの管軸が直交するようになっている。
もっとも、第2流体供給管7の出口部7aの形状は、図1に示すものに限られず、先端部分を屈曲して副流管5の管軸と平行にしてもよい。
<Second fluid supply pipe>
The second fluid supply pipe 7 is a pipe that supplies the second fluid to the side flow pipe 5. The liquid second fluid supplied from the second fluid supply pipe 7 is atomized by the gas flow of the first fluid flowing through the side flow pipe 5 and mixed with the first fluid.
As shown in FIG. 1, the second fluid outlet part 7a of the second fluid supply pipe 7 is provided on the pipe wall of the side flow pipe 5, and is connected to the pipe axis of the side flow pipe 5 and the outlet of the second fluid supply pipe 7. The tube axes of the portion 7a are orthogonal to each other.
However, the shape of the outlet portion 7a of the second fluid supply tube 7 is not limited to that shown in FIG. 1, and the tip portion may be bent to be parallel to the tube axis of the side flow tube 5.

<シャッター弁>
シャッター弁9は、本発明の流路断面積調整弁の一態様であり、主流管3の隙間主流路8aの流路断面積を調整することで副流管5に流入する第1流体の流量を調整する弁である。
シャッター弁9は、図1、図2、図3に示すように、副流管5の周壁に沿う円弧状の凹部13aを有する2枚の板状体13を有し、この2枚の板状体13が副流管5を挟んで図中上下に移動可能に構成されている。
シャッター弁9を全閉した状態では、図1、図2に示すように、隙間主流路8aが全閉状態となり、副流管5の上流側から流れてくる第1流体は全てが副流管5を通過することになる。
<Shutter valve>
The shutter valve 9 is one aspect of the flow passage cross-sectional area adjustment valve of the present invention, and adjusts the flow passage cross-sectional area of the gap main flow passage 8a of the main flow pipe 3 to adjust the flow rate of the first fluid flowing into the subflow pipe 5. This is a valve that adjusts the
As shown in FIG. 1, FIG. 2, and FIG. The body 13 is configured to be movable up and down in the figure with the side flow pipe 5 in between.
When the shutter valve 9 is fully closed, as shown in FIGS. 1 and 2, the main gap passage 8a is completely closed, and all of the first fluid flowing from the upstream side of the secondary flow pipe 5 flows into the secondary flow pipe. It will pass through 5.

他方、シャッター弁9を全開した状態では、図3に示すように、隙間主流路8aが全開状態となり、副流管5の上流側から流れてくる第1流体は、副流管5の外側の隙間主流路8aと、副流管5の内側の両方を通過することになる。
そして、シャッター弁9の開度を調整することで、隙間主流路8aを通過する第1流体の流量を調整することで、副流管5を通過する第1流体の流量を調整できる。すなわち、第1流体の総流量が同じであれば、シャッター弁9の開度を小さくすれば副流管5を流れる第1流体の流量が相対的に増加し、逆にシャッター弁9の開度を大きくすれば副流管5を流れる第1流体の流量が相対的に減少する。
On the other hand, when the shutter valve 9 is fully opened, the main gap passage 8a is fully opened, as shown in FIG. It passes through both the gap main channel 8a and the inside of the side flow pipe 5.
Then, by adjusting the opening degree of the shutter valve 9, the flow rate of the first fluid passing through the gap main channel 8a can be adjusted, thereby adjusting the flow rate of the first fluid passing through the subflow pipe 5. That is, if the total flow rate of the first fluid is the same, reducing the opening degree of the shutter valve 9 will relatively increase the flow rate of the first fluid flowing through the side flow pipe 5, and conversely, the opening degree of the shutter valve 9 will decrease. If is increased, the flow rate of the first fluid flowing through the side flow pipe 5 will be relatively reduced.

逆に言えば、第1流体の流量が変化する場合に、シャッター弁9の開度を調整することで、副流管5を流れる第1流体の流量を一定にすることができる。すなわち、第1流体の総流量が減少すると、シャッター弁9の開度を小さくして副流管5を流れる第1流体の流量を相対的に増加させることで副流管5を流れる第1流体の流量を総流量の変化前と同じ流量にすることができ、また、第1流体の総流量が増加すると、シャッター弁9の開度を大きくして副流管5を流れる第1流体の流量を相対的に減少させることで副流管5を流れる第1流体の流量を総流量の変化前と同じ流量にすることができる。 Conversely, when the flow rate of the first fluid changes, by adjusting the opening degree of the shutter valve 9, the flow rate of the first fluid flowing through the side flow pipe 5 can be made constant. That is, when the total flow rate of the first fluid decreases, the opening degree of the shutter valve 9 is reduced to relatively increase the flow rate of the first fluid flowing through the side flow pipe 5. When the total flow rate of the first fluid increases, the opening degree of the shutter valve 9 is increased to increase the flow rate of the first fluid flowing through the secondary flow pipe 5. By relatively decreasing , the flow rate of the first fluid flowing through the side flow pipe 5 can be made the same as before the change in the total flow rate.

このようにしているのは、特許文献1でも開示されているように、副流管5を通過する第1流体の流量を一定にして副流管5を流れる第1流体の流速を一定にすることで、第1流体の流量変化があった場合にも副流管5に供給される液状の第2流体の微粒化を確実に行えるようにするためである。 The reason why this is done is to keep the flow rate of the first fluid passing through the side flow pipe 5 constant to keep the flow rate of the first fluid flowing through the side flow pipe 5 constant, as disclosed in Patent Document 1. This is to ensure that the liquid second fluid supplied to the side flow pipe 5 can be atomized even if there is a change in the flow rate of the first fluid.

シャッター弁9の操作は手動でもよいが、図4に示すように、シャッター弁9の上流側と下流側の両方に設けられてシャッター弁9の一次圧および二次圧を検知する圧力検知装置15、シャッター弁9を操作するアクチュエータ17、圧力検知装置15の検知信号を入力してアクチュエータ17を制御する制御部19を設けて、自動制御するようにしてもよい。
この場合、圧力検知装置15によって検知される一次圧と二次圧の差圧が予め定めた所定値になるように、シャッター弁9の開度を調整する。
The shutter valve 9 may be operated manually, but as shown in FIG. , an actuator 17 that operates the shutter valve 9, and a control section 19 that inputs a detection signal from the pressure detection device 15 to control the actuator 17, so that automatic control may be performed.
In this case, the opening degree of the shutter valve 9 is adjusted so that the differential pressure between the primary pressure and the secondary pressure detected by the pressure detection device 15 becomes a predetermined value.

<動作説明>
上記のように構成された本実施の形態の動作について、シャッター弁9を自動制御する場合を例に挙げて説明する。なお、第1流体がNG、第2流体がLPG、混合流体が都市ガスとする。
NG流量は都市ガスの需要量によって変動するが、NG流量が多い場合には、シャッター弁9は図3に示すように開いた状態になっている。
<Operation explanation>
The operation of the present embodiment configured as described above will be explained using an example in which the shutter valve 9 is automatically controlled. Note that the first fluid is NG, the second fluid is LPG, and the mixed fluid is city gas.
The NG flow rate varies depending on the demand for city gas, but when the NG flow rate is large, the shutter valve 9 is in an open state as shown in FIG. 3.

上流側から供給されるNGは、副流管5を通過する際に副流管5の内側及び副流管5の外側の隙間主流路8aを流れる。副流管5には第2流体供給管7からLPGが供給されており、副流管5を流れるNGのガス流れによってLPGの微粒化・混合が行われ、ベンチュリ管11ののど部11aに流入する。
他方、隙間主流路8aを流れるNGものど部11aに流入し、のど部11aにおいて、LPGの混合が促進される。
The NG supplied from the upstream side flows through the gap main channel 8a inside the side flow pipe 5 and outside the side flow pipe 5 when passing through the side flow pipe 5. LPG is supplied to the side flow pipe 5 from the second fluid supply pipe 7, and the LPG is atomized and mixed by the NG gas flow flowing through the side flow pipe 5, and then flows into the throat 11a of the Venturi pipe 11. do.
On the other hand, NG flowing through the gap main channel 8a also flows into the throat portion 11a, and mixing of LPG is promoted in the throat portion 11a.

NGの流量は都市ガスの需要量に応じて成り行きで増減する。例えば、都市ガス需要量が減少し、主流路8を流れるNGの流量が減少すると、副流管5を流れるNG流量が所定値よりも減少し、副流管5内の流速が低下するためLPGの微粒化・混合が不十分になることが懸念される。
この場合、主流路8を流れるNGの圧力損失が小さくなり、圧力検知装置15で検知される一次圧と二次圧の差圧が低下する。そこで、圧力検知装置15で検知される一次圧と二次圧の差圧が所定値Aよりも低くなったら、シャッター弁9を閉止方向に動かし、隙間主流路8a流路断面積を小さくすることによって副流管5を流れるNG流量が所定値を維持するようにする。
副流管5を流れるNG流量を所定値以上に維持することで、副流管5における流速が維持されLPGの微粒化・混合効果を確保することができる。
The flow rate of NG increases or decreases depending on the demand for city gas. For example, when the demand for city gas decreases and the flow rate of NG flowing through the main channel 8 decreases, the flow rate of NG flowing through the side flow pipe 5 decreases below a predetermined value, and the flow velocity within the side flow pipe 5 decreases, so that LPG There is a concern that the atomization and mixing of the particles may become insufficient.
In this case, the pressure loss of the NG flowing through the main channel 8 is reduced, and the differential pressure between the primary pressure and the secondary pressure detected by the pressure detection device 15 is reduced. Therefore, when the pressure difference between the primary pressure and the secondary pressure detected by the pressure detection device 15 becomes lower than a predetermined value A, the shutter valve 9 is moved in the closing direction to reduce the flow passage cross-sectional area of the gap main flow passage 8a. The flow rate of NG flowing through the side flow pipe 5 is maintained at a predetermined value.
By maintaining the flow rate of NG flowing through the side flow pipe 5 at a predetermined value or higher, the flow velocity in the side flow pipe 5 is maintained, and the LPG atomization/mixing effect can be ensured.

逆に、都市ガス需要量が増加し、主流路8を流れるNGの流量が増加し、副流管5を流れるNG流量が所定量よりも増加すると圧力損失が大きくなり、圧力検知装置15で検知される一次圧と二次圧の差圧が上昇する。
そこで、圧力検知装置15で検知される一次圧と二次圧の差圧が所定値Bよりも高くなったら、シャッター弁9の開度を大きくして隙間主流路8aを流れる量を増やし、副流管5を流れるNG流量を減少させる。ここで、所定値B≧所定値Aの関係にある。
主流管3を流れるNGの圧力検知装置15で検知される一次圧と二次圧の差圧を所定値A以上B以下にすることで、副流管5における流速が所定の範囲に維持されLPGの微粒化・混合を十分にすることができる。
Conversely, when the demand for city gas increases, the flow rate of NG flowing through the main flow path 8 increases, and the flow rate of NG flowing through the side flow pipe 5 increases more than a predetermined amount, the pressure loss increases, which is detected by the pressure detection device 15. The differential pressure between the primary and secondary pressures increases.
Therefore, when the pressure difference between the primary pressure and the secondary pressure detected by the pressure detection device 15 becomes higher than the predetermined value B, the opening degree of the shutter valve 9 is increased to increase the amount flowing through the gap main flow path 8a, and the secondary pressure is increased. The NG flow rate flowing through the flow tube 5 is reduced. Here, there is a relationship of predetermined value B≧predetermined value A.
By setting the differential pressure between the primary pressure and the secondary pressure detected by the pressure detection device 15 of NG flowing through the main flow pipe 3 to a predetermined value A or more and below B, the flow velocity in the side flow pipe 5 is maintained within a predetermined range. can be sufficiently atomized and mixed.

以上のように、本実施の形態によれば、主流路8を流れる流量が大きく変化してもLPGが供給される副流管5のNG流速を所定の流速に維持することができ、LPGの微粒化・混合効果が得られる。
しかも、副流管5が主流管3の内部に配設されているので、従来例のように、分岐管を設ける必要がなく省スペースであると共に、分岐管のように、主流管3の外側で引き回す必要がなく、分岐管のような大きな圧力損失も発生せず、流体輸送動力コストの増加を抑制できる。
As described above, according to the present embodiment, even if the flow rate flowing through the main channel 8 changes greatly, the NG flow rate in the side flow pipe 5 to which LPG is supplied can be maintained at a predetermined flow rate, and the LPG flow rate can be maintained at a predetermined flow rate. Atomization and mixing effects can be obtained.
Moreover, since the side flow pipe 5 is arranged inside the main flow pipe 3, unlike the conventional example, there is no need to provide a branch pipe, which saves space. There is no need to route the pipe around the pipe, and there is no large pressure loss that occurs with branch pipes, and an increase in fluid transport power costs can be suppressed.

なお、シャッター弁9の自動制御の場合には、系が一次圧一定の場合、図5に示すように、シャッター弁9の下流側に圧力検知装置15を設け、シャッター弁9の下流側の二次圧を検知し、この圧力に基づいてアクチュエータ17を制御するようにしてもよい。この場合、主流路8を流れるNGの流量が減少すると圧力損失が低下し、圧力検知装置15で検知される二次圧が上昇するから、シャッター弁9を閉止方向に動かし、隙間主流路8a流路断面積を小さくすることによって副流管5を流れるNG流量が所定値を維持するようにする。逆に、主流路8を流れるNGの流量が増加すると圧力損失が大きくなり、圧力検知装置15で検知される二次圧が低下するから、シャッター弁9の開度を大きくして隙間主流路8aを流れる量を増やし、副流管5を流れるNG流量を減少させる。
さらには、系が二次圧一定の場合、図6に示すように、圧力検知装置15をシャッター弁9の上流側に設け、シャッター弁9の上流側の一次圧を検知し、この圧力に基づいてアクチュエータ17を制御するようにしてもよい。この場合、主流路8を流れるNGの流量が減少すると圧力損失が低下し、圧力検知装置15で検知される一次圧が低下するから、シャッター弁9を閉止方向に動かし、隙間主流路8a流路断面積を小さくすることによって副流管5を流れるNG流量が所定値を維持するようにする。逆に、主流路8を流れるNGの流量が増加すると圧力損失が大きくなり、圧力検知装置15で検知される一次圧が上昇するから、シャッター弁9の開度を大きくして隙間主流路8aを流れる量を増やし、副流管5を流れるNG流量を減少させる。
In the case of automatic control of the shutter valve 9, if the primary pressure of the system is constant, a pressure detection device 15 is provided downstream of the shutter valve 9, as shown in FIG. The next pressure may be detected and the actuator 17 may be controlled based on this pressure. In this case, when the flow rate of NG flowing through the main flow path 8 decreases, the pressure loss decreases and the secondary pressure detected by the pressure detection device 15 increases. By reducing the cross-sectional area of the passage, the flow rate of NG flowing through the side flow pipe 5 is maintained at a predetermined value. Conversely, when the flow rate of NG flowing through the main flow path 8 increases, the pressure loss increases and the secondary pressure detected by the pressure detection device 15 decreases. The amount of NG flowing through the side flow pipe 5 is increased, and the flow rate of NG flowing through the side flow pipe 5 is decreased.
Furthermore, when the secondary pressure of the system is constant, as shown in FIG. Alternatively, the actuator 17 may be controlled by the actuator 17. In this case, when the flow rate of NG flowing through the main flow path 8 decreases, the pressure loss decreases and the primary pressure detected by the pressure detection device 15 decreases, so the shutter valve 9 is moved in the closing direction and the gap main flow path 8a is By reducing the cross-sectional area, the flow rate of NG flowing through the side flow pipe 5 is maintained at a predetermined value. Conversely, when the flow rate of NG flowing through the main flow path 8 increases, the pressure loss increases and the primary pressure detected by the pressure detection device 15 increases. The amount of NG flowing through the side flow pipe 5 is increased, and the flow rate of NG flowing through the side flow pipe 5 is decreased.

また、圧力検知装置15に代えて、流量を検知する流量検知装置16を設けて、流量検知装置16の検知信号に基づいてアクチュエータ17を操作するようにしてもよい。この場合には、副流管5を流れる流体の流量を検知するように流量検知装置16を設け(図7参照)、流量を一定値に保つようにアクチュエータ17を操作する。 Further, instead of the pressure detection device 15, a flow rate detection device 16 for detecting the flow rate may be provided, and the actuator 17 may be operated based on a detection signal from the flow rate detection device 16. In this case, a flow rate detection device 16 is provided to detect the flow rate of the fluid flowing through the side flow pipe 5 (see FIG. 7), and the actuator 17 is operated to maintain the flow rate at a constant value.

また、流量を検知する流量検知装置16に代えて、流速を検知する流速検知装置を設けてもよく、この場合、流速検知装置は、図7に示す流量検知装置16と同じ位置に設け、この流速検知装置の検知信号に基づいて、流速を一定値に保つようにアクチュエータ17を操作すればよい。 Furthermore, instead of the flow rate detection device 16 that detects the flow rate, a flow rate detection device that detects the flow velocity may be provided. In this case, the flow rate detection device is provided at the same position as the flow rate detection device 16 shown in FIG. The actuator 17 may be operated to maintain the flow velocity at a constant value based on the detection signal of the flow velocity detection device.

さらには、図8に示すように、流量検知装置16をシャッター弁9の上流側の主流路8と下流側の隙間主流路8aの両方に設けて、これら2つの流量検知装置16(本発明の第1流量検知装置、第2流量検知装置)の検知信号に基づいて、一次側と二次側の流量差が一定になるようにアクチュエータ17を制御するようにしてもよい。 Furthermore, as shown in FIG. 8, the flow rate detection device 16 is provided in both the main flow path 8 on the upstream side of the shutter valve 9 and the gap main flow path 8a on the downstream side, and these two flow rate detection devices 16 (in accordance with the present invention) are provided. The actuator 17 may be controlled based on detection signals from the first flow rate detection device and the second flow rate detection device so that the difference in flow rate between the primary side and the secondary side becomes constant.

[実施の形態2]
実施の形態1においては、流路断面積調整弁としてシャッター弁9を挙げたが、本発明の流路断面積調整弁はこれに限られず、主流路8に直交する軸を中心に回転するバタフライ弁であってもよい。
流路断面積調整弁としてバタフライ弁を用いた流体混合装置20について、図9、図10に基づいて説明する。図9(a)は、流体混合装置20の平断面図であり、図9(b)はバタフライ弁を示している。なお、図9、図10において、図1と同一部分には同一の符号が付してある。
[Embodiment 2]
In the first embodiment, the shutter valve 9 is used as the flow passage cross-sectional area adjustment valve, but the flow passage cross-sectional area adjustment valve of the present invention is not limited to this. It may also be a valve.
A fluid mixing device 20 using a butterfly valve as a flow path cross-sectional area adjustment valve will be described based on FIGS. 9 and 10. FIG. FIG. 9(a) is a plan cross-sectional view of the fluid mixing device 20, and FIG. 9(b) shows the butterfly valve. Note that in FIGS. 9 and 10, the same parts as in FIG. 1 are given the same reference numerals.

本実施の形態のバタフライ弁21は、円形板からなる弁体23と、弁体23を回転させる回転軸25と、回転軸25を操作する操作部27とを有し、弁体23における周縁側に偏った位置に円形の開口部23aが設けられている。
開口部23aは、弁体23で隙間主流路8aを閉止した際に、第1流体が副流管5に向かって通過する通路を形成するものである。
副流管5の上流側の端部は、図9、図10に示すように、主流管3の管壁側に屈曲しており、その上流端が弁体23の開口部23aに位置するようになっている。副流管5の上流側の端部を主流管3の管壁側に屈曲させているのは、弁体23を回動するときに弁体23が副流管5に干渉するのを避けるためである。
The butterfly valve 21 of the present embodiment includes a valve body 23 made of a circular plate, a rotation shaft 25 for rotating the valve body 23, and an operation part 27 for operating the rotation shaft 25. A circular opening 23a is provided at a position biased to .
The opening 23a forms a passage through which the first fluid passes toward the side flow pipe 5 when the gap main passage 8a is closed by the valve body 23.
As shown in FIGS. 9 and 10, the upstream end of the side flow pipe 5 is bent toward the wall of the main flow pipe 3, and the upstream end is positioned at the opening 23a of the valve body 23. It has become. The upstream end of the side flow pipe 5 is bent toward the pipe wall side of the main flow pipe 3 in order to prevent the valve body 23 from interfering with the side flow pipe 5 when rotating the valve body 23. It is.

上記のように構成されたバタフライ弁21においては、閉止状態では、図9に示すように、隙間主流路8aが弁体23で閉じられて、弁体23の開口部23aが副流管5と連通している。この状態では、第1流体は全て副流管5を流れることになる。
操作部27を操作して、図9の矢印で示す方向に回転軸25を回転することで、図10に示すように、弁体23と主流管3の管壁との間に隙間が形成される。この状態では、第1流体は隙間主流路8aと副流管5の両方を流れることができる。
In the butterfly valve 21 configured as described above, in the closed state, as shown in FIG. It's communicating. In this state, all the first fluid flows through the side flow pipe 5.
By operating the operation part 27 and rotating the rotating shaft 25 in the direction shown by the arrow in FIG. 9, a gap is formed between the valve body 23 and the pipe wall of the main pipe 3, as shown in FIG. Ru. In this state, the first fluid can flow through both the gap main channel 8a and the side flow pipe 5.

図9、図10に示す例では、副流管5の上流側の端部を主流管3の管壁側に屈曲させて弁体23との干渉を避けるようにしているが、同様の目的を達成するために、図11~図13に示すように、副流管5を直管として、弁体23に設ける開口部23aを楕円形にしてもよい。
この場合、バタフライ弁21を全閉にした状態でも、図12の斜線で示す部分には隙間29が形成され、全ての第1流体が副流管5を通過するようにすることはできない。しかし、副流管5を直管とすることができ、構造が簡単である。
In the example shown in FIGS. 9 and 10, the upstream end of the side flow pipe 5 is bent toward the pipe wall side of the main flow pipe 3 to avoid interference with the valve body 23. To achieve this, as shown in FIGS. 11 to 13, the side flow pipe 5 may be a straight pipe, and the opening 23a provided in the valve body 23 may be formed into an elliptical shape.
In this case, even when the butterfly valve 21 is fully closed, a gap 29 is formed in the shaded area in FIG. 12, and it is not possible for all the first fluid to pass through the side flow pipe 5. However, the side flow pipe 5 can be a straight pipe, and the structure is simple.

もっとも、バタフライ弁21を閉じた状態で図12に示すような隙間29が形成されるのを防止するために、図14~図16に示すように、副流管5の上流端部に隙間29を覆うバッフル板31を設けるようにしてもよい。このようにすれば、図15に示すように、バタフライ弁21を閉じた状態で隙間29が形成されず、全ての第1流体を副流管5に流すことができる。 However, in order to prevent the formation of a gap 29 as shown in FIG. 12 when the butterfly valve 21 is closed, a gap 29 is formed at the upstream end of the side flow pipe 5 as shown in FIGS. 14 to 16. A baffle plate 31 may be provided to cover the. In this way, as shown in FIG. 15, no gap 29 is formed when the butterfly valve 21 is closed, and all the first fluid can flow into the side flow pipe 5.

本発明に係るバタフライ弁21の他の態様として、図17~図19に示すように、弁体を、副流管5を挟む2枚の板状の弁体33によって構成してもよい。
この場合、副流管5の上流端の入口は扁平状に拡径する拡径部35を有し(図18参照)、拡径部35の上流端の側面が主流管3の管壁に当接しており、バタフライ弁21の2枚の弁体33は拡径部35の上下を挟むように設けられている。
このような構造であれば、バタフライ弁21を全閉にした際に全ての第1流体を副流管5に流すことができる。
As another embodiment of the butterfly valve 21 according to the present invention, as shown in FIGS. 17 to 19, the valve body may be constituted by two plate-shaped valve bodies 33 sandwiching the side flow pipe 5.
In this case, the inlet at the upstream end of the side flow pipe 5 has an enlarged diameter part 35 that expands in diameter in a flat shape (see FIG. 18), and the side surface of the upstream end of the enlarged diameter part 35 comes into contact with the pipe wall of the main flow pipe 3. The two valve bodies 33 of the butterfly valve 21 are provided so as to sandwich the enlarged diameter portion 35 from above to above.
With such a structure, all the first fluid can flow into the side flow pipe 5 when the butterfly valve 21 is fully closed.

バタフライ弁21の操作は手動でもよいが、シャッター弁9の操作(図4~図8参照)と同様に、圧力検知装置、流量検知装置、流速検知装置、アクチュエータ、制御部を設けて自動制御するようにしてもよいことはいうまでもない。 The butterfly valve 21 may be operated manually, but similarly to the operation of the shutter valve 9 (see FIGS. 4 to 8), it can be automatically controlled by providing a pressure detection device, a flow rate detection device, a flow velocity detection device, an actuator, and a control section. It goes without saying that you can do it this way.

なお、上記の実施の形態で示した流路断面積調整弁(シャッター弁9、バタフライ弁21)は、主流路のうちの隙間主流路8aの流路断面積を調整する態様のものであり、そのため、シャッター弁9は隙間主流路8aに配置され、バタフライ弁21は副流管5の上流端に接するように配置されていた。
しかしながら、本発明の流路断面積調整弁は、例えば副流管の上流端の近傍であれば、副流管の上流端よりもさらに上流側の主流路8で前記上流端との間に隙間を空けた状態で配置してもよい。この場合でも、流路断面積調整弁を配置した位置で主流路8の流路断面積を調整することで、副流管5に流入する第1流体の流量を調整できる。
同様の理由で、本発明の流路断面積調整弁は、副流管の下流端に接するように配置したものや、副流管の下流端の近傍に配置したものであってもよい。
Note that the flow passage cross-sectional area adjustment valves (shutter valve 9, butterfly valve 21) shown in the above embodiments are those that adjust the flow passage cross-sectional area of the gap main flow passage 8a among the main flow passages. Therefore, the shutter valve 9 was arranged in the main gap passage 8a, and the butterfly valve 21 was arranged so as to be in contact with the upstream end of the side flow pipe 5.
However, in the flow passage cross-sectional area adjusting valve of the present invention, for example, in the vicinity of the upstream end of the secondary flow pipe, there is a gap between the main flow passage 8 and the upstream end further upstream than the upstream end of the secondary flow pipe. It may be placed with the space left open. Even in this case, the flow rate of the first fluid flowing into the sub-flow pipe 5 can be adjusted by adjusting the flow-path cross-sectional area of the main flow path 8 at the position where the flow-path cross-sectional area adjustment valve is arranged.
For the same reason, the flow passage cross-sectional area adjusting valve of the present invention may be arranged so as to be in contact with the downstream end of the auxiliary flow pipe, or may be arranged near the downstream end of the auxiliary flow pipe.

1 流体混合装置(実施の形態1)
3 主流管
5 副流管
7 第2流体供給管
7a 出口部
8 主流路
8a 隙間主流路
9 シャッター弁
11 ベンチュリ管
11a のど部
13 板状体
13a 凹部
15 圧力検知装置
16 流量検知装置
17 アクチュエータ
19 制御部
20 流体混合装置(実施の形態2)
21 バタフライ弁
23 弁体
23a 開口部
25 回転軸
27 操作部
29 隙間
31 バッフル板
33 弁体
35 拡径部
1 Fluid mixing device (Embodiment 1)
3 Main flow pipe 5 Side flow pipe 7 Second fluid supply pipe 7a Outlet part 8 Main flow path 8a Gap main flow flow 9 Shutter valve 11 Venturi pipe 11a Throat 13 Plate body 13a Recess 15 Pressure detection device 16 Flow rate detection device 17 Actuator 19 Control Part 20 Fluid mixing device (Embodiment 2)
21 Butterfly valve 23 Valve body 23a Opening part 25 Rotating shaft 27 Operating part 29 Gap 31 Baffle plate 33 Valve body 35 Expanded diameter part

Claims (13)

主流管を流れるガス状の第1流体に、前記主流管の途中で液状の第2流体を供給することによって両流体を混合する流体混合装置であって、
前記主流管内に配設された前記主流管よりも小径の副流管と、該副流管に前記第2流体を供給する第2流体供給管と、前記主流管と前記副流管によって挟まれた隙間主流路の流路断面積を調整することで前記副流管に流入する前記第1流体の流量を調整する流路断面積調整弁を備えたことを特徴とする流体混合装置。
A fluid mixing device that mixes a gaseous first fluid flowing through a mainstream pipe by supplying a liquid second fluid midway through the mainstream pipe, comprising:
a secondary flow pipe disposed within the main flow pipe and having a smaller diameter than the main flow pipe; a second fluid supply pipe that supplies the second fluid to the secondary flow pipe; A fluid mixing device comprising: a flow passage cross-sectional area adjustment valve that adjusts the flow rate of the first fluid flowing into the secondary flow pipe by adjusting the flow passage cross-sectional area of the main flow passage.
前記主流にベンチュリ管を設け、前記副流管の出口側を前記ベンチュリ管ののど部またはその上流側に配置したことを特徴とする請求項1記載の流体混合装置。 2. The fluid mixing device according to claim 1, wherein the main flow pipe is provided with a Venturi pipe, and the outlet side of the side flow pipe is arranged at a throat of the Venturi pipe or an upstream side thereof. 前記流路断面積調整弁を操作するアクチュエータと、前記流路断面積調整弁よりも上流側及び/又は下流側を流れる流体の圧力を検知する検知装置と、該検知装置の検知信号に基づいて前記アクチュエータを制御する制御部を備えたことを特徴とする請求項1又は2に記載の流体混合装置。 an actuator that operates the flow path cross-sectional area adjustment valve; a detection device that detects the pressure of fluid flowing upstream and/or downstream of the flow path cross-sectional area adjustment valve; and based on a detection signal of the detection device. The fluid mixing device according to claim 1 or 2, further comprising a control section that controls the actuator. 前記流路断面積調整弁を操作するアクチュエータと、前記副流管を流れる流体の流量又は流速を検知する検知装置と、該検知装置の検知信号に基づいて前記アクチュエータを制御する制御部を備えたことを特徴とする請求項1又は2に記載の流体混合装置。 An actuator that operates the flow path cross-sectional area adjustment valve, a detection device that detects the flow rate or flow velocity of the fluid flowing through the side flow pipe, and a control unit that controls the actuator based on a detection signal from the detection device. The fluid mixing device according to claim 1 or 2, characterized in that: 前記流路断面積調整弁を操作するアクチュエータと、前記流路断面積調整弁よりも上流側を流れる流体の流量を検知する第1流量検知装置と、前記隙間主流路を流れる流体の流量を検知する第2流量検知装置と、前記第1流量検知装置及び前記第2流量検知装置の検知信号に基づいて前記アクチュエータを制御する制御部を備えたことを特徴とする請求項1又は2に記載の流体混合装置。 an actuator that operates the flow path cross-sectional area adjustment valve; a first flow rate detection device that detects the flow rate of fluid flowing upstream of the flow path cross-sectional area adjustment valve; and a first flow rate detection device that detects the flow rate of the fluid flowing through the gap main flow path. 3. The actuator according to claim 1, further comprising: a second flow rate detection device, and a control unit that controls the actuator based on detection signals from the first flow rate detection device and the second flow rate detection device. Fluid mixing device. 前記流路断面積調整弁は、前記隙間主流路を閉止可能に構成されていることを特徴とする請求項1乃至5のいずれか一項に記載の流体混合装置。 The fluid mixing device according to any one of claims 1 to 5, wherein the flow path cross-sectional area adjustment valve is configured to be able to close the gap main flow path. 前記流路断面積調整弁は、主流路に交差方向に板状体を移動可能なシャッター弁であることを特徴とする請求項1乃至6のいずれか一項に記載の流体混合装置。 7. The fluid mixing device according to claim 1, wherein the flow passage cross-sectional area adjusting valve is a shutter valve whose plate-shaped body is movable in a direction crossing the main flow passage. 前記流路断面積調整弁は、前記隙間主流路に直交する軸を中心に板状の弁体を回転するバタフライ弁であることを特徴とする請求項1乃至6のいずれか一項に記載の流体混合装置。 7. The flow path cross-sectional area adjusting valve is a butterfly valve that rotates a plate-shaped valve body around an axis perpendicular to the gap main flow path, according to any one of claims 1 to 6. Fluid mixing device. 前記バタフライ弁は、閉止状態で前記副流管の入口に相当する部位に開口を有することを特徴とする請求項8記載の流体混合装置。 9. The fluid mixing device according to claim 8, wherein the butterfly valve has an opening at a portion corresponding to an inlet of the side flow pipe in a closed state. 前記副流管の上流側の端部は前記主流管の管壁側に屈曲していることを特徴とする請求項9記載の流体混合装置。 10. The fluid mixing device according to claim 9, wherein an upstream end of the secondary flow pipe is bent toward a wall of the main flow pipe. 前記副流管の入口は、前記主流管の中央部に配置され、前記副流管の入口近傍の管壁には、前記バタフライ弁を閉止した際に、該バタフライ弁と前記副流管の管壁との隙間を閉止するバッフル板が設けられていることを特徴とする請求項9に記載の流体混合装置。 The inlet of the secondary flow pipe is disposed at the center of the main flow pipe, and the butterfly valve and the pipe of the secondary flow pipe are disposed on the pipe wall near the inlet of the secondary flow pipe when the butterfly valve is closed. The fluid mixing device according to claim 9, further comprising a baffle plate for closing a gap with the wall. 前記バタフライ弁は、前記副流管を挟む2枚の板状の弁体によって構成されていることを特徴とする請求項8に記載の流体混合装置。 9. The fluid mixing device according to claim 8, wherein the butterfly valve is constituted by two plate-shaped valve bodies sandwiching the side flow pipe. 前記副流管の入口は扁平状に拡径する拡径部を有し、該拡径部の上流端の側面が前記主流管の管壁に当接しており、前記バタフライ弁の2枚の弁体は前記拡径部を挟むように設けられていることを特徴とする請求項12記載の流体混合装置。 The inlet of the secondary flow pipe has an enlarged diameter part that expands in diameter in a flat shape, and the side surface of the upstream end of the enlarged diameter part is in contact with the pipe wall of the main flow pipe, and the two valves of the butterfly valve 13. The fluid mixing device according to claim 12, wherein the body is provided so as to sandwich the enlarged diameter portion.
JP2020048616A 2020-03-19 2020-03-19 fluid mixing device Active JP7389408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020048616A JP7389408B2 (en) 2020-03-19 2020-03-19 fluid mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020048616A JP7389408B2 (en) 2020-03-19 2020-03-19 fluid mixing device

Publications (2)

Publication Number Publication Date
JP2021146273A JP2021146273A (en) 2021-09-27
JP7389408B2 true JP7389408B2 (en) 2023-11-30

Family

ID=77850231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020048616A Active JP7389408B2 (en) 2020-03-19 2020-03-19 fluid mixing device

Country Status (1)

Country Link
JP (1) JP7389408B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007033A (en) 1998-06-17 2000-01-11 Fuji Seal Inc Container having spout
JP2010158621A (en) 2009-01-08 2010-07-22 Jfe Engineering Corp Method of mixing fluid using venturi tube and venturi type mixer
JP2011056400A (en) 2009-09-10 2011-03-24 Jfe Engineering Corp Method and device for mixing fluid
JP2012030200A (en) 2010-08-03 2012-02-16 Jfe Engineering Corp Fluid atomization nozzle and fluid atomizing device
JP2012206071A (en) 2011-03-30 2012-10-25 Jfe Engineering Corp Fluid atomization nozzle, fluid atomization nozzle device, and fluid atomization device
JP2013208555A (en) 2012-03-30 2013-10-10 Kurita Water Ind Ltd Ozone dissolving device
JP2016030000A (en) 2014-07-28 2016-03-07 株式会社クローバージャパン Carbonated spring generation device
JP2020037052A (en) 2018-08-31 2020-03-12 太平洋マテリアル株式会社 Device and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179266U (en) * 1983-05-17 1984-11-30 愛三工業株式会社 fuel supply device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007033A (en) 1998-06-17 2000-01-11 Fuji Seal Inc Container having spout
JP2010158621A (en) 2009-01-08 2010-07-22 Jfe Engineering Corp Method of mixing fluid using venturi tube and venturi type mixer
JP2011056400A (en) 2009-09-10 2011-03-24 Jfe Engineering Corp Method and device for mixing fluid
JP2012030200A (en) 2010-08-03 2012-02-16 Jfe Engineering Corp Fluid atomization nozzle and fluid atomizing device
JP2012206071A (en) 2011-03-30 2012-10-25 Jfe Engineering Corp Fluid atomization nozzle, fluid atomization nozzle device, and fluid atomization device
JP2013208555A (en) 2012-03-30 2013-10-10 Kurita Water Ind Ltd Ozone dissolving device
JP2016030000A (en) 2014-07-28 2016-03-07 株式会社クローバージャパン Carbonated spring generation device
JP2020037052A (en) 2018-08-31 2020-03-12 太平洋マテリアル株式会社 Device and method

Also Published As

Publication number Publication date
JP2021146273A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
JP5212301B2 (en) Fluid mixing method using venturi tube, venturi type mixing device
US8366070B2 (en) Fluid control valve
US20130167812A1 (en) Exhaust gas recirculation valve
JP6058672B2 (en) Fluid mixing delivery system
CN204267856U (en) For the device that regulator heat transmits
JP5370027B2 (en) Fluid mixing method and fluid mixing apparatus
JP2009503334A (en) Sequential control valve
CN110180220B (en) Gas-liquid two-phase flow distribution control device and method
JP2009299591A (en) Egr control device for internal combustion engine
JP2007170279A (en) Intake device of internal combustion engine
JP5509981B2 (en) Fluid mixing method and fluid mixing apparatus
JP7389408B2 (en) fluid mixing device
JP5589485B2 (en) Fluid mixing method and fluid mixing apparatus
US7264224B1 (en) Valve with offset venturi
JPS586057B2 (en) Sonic flow vaporizer with fuel distribution device
JP2009114918A (en) Internal combustion engine intake air passage structure
JP5438884B2 (en) City gas production equipment
CN108431394B (en) Control device for an internal combustion engine
KR20140104599A (en) Dual Path Globe Valve
JP5609913B2 (en) Venturi type mixing device
JP3701065B2 (en) Heterogeneous fluid mixing device
JP7257827B2 (en) Calorie control device
JP2007032752A (en) Constant flow valve
RU2353843C1 (en) Regulator
JP2015081591A (en) Mixed combustion system and fuel gas mixing unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231031

R150 Certificate of patent or registration of utility model

Ref document number: 7389408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150