JP2012030200A - Fluid atomization nozzle and fluid atomizing device - Google Patents

Fluid atomization nozzle and fluid atomizing device Download PDF

Info

Publication number
JP2012030200A
JP2012030200A JP2010174134A JP2010174134A JP2012030200A JP 2012030200 A JP2012030200 A JP 2012030200A JP 2010174134 A JP2010174134 A JP 2010174134A JP 2010174134 A JP2010174134 A JP 2010174134A JP 2012030200 A JP2012030200 A JP 2012030200A
Authority
JP
Japan
Prior art keywords
gas
flow rate
flow
liquid
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010174134A
Other languages
Japanese (ja)
Other versions
JP5540973B2 (en
Inventor
Kanetoshi Hayashi
謙年 林
Isho Yamaguchi
以昌 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2010174134A priority Critical patent/JP5540973B2/en
Publication of JP2012030200A publication Critical patent/JP2012030200A/en
Application granted granted Critical
Publication of JP5540973B2 publication Critical patent/JP5540973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fluid atomization nozzle which achieves low pressure loss on the gas phase and increases a flow rate range in the liquid phase, and a fluid atomizing device using the fluid atomization nozzle.SOLUTION: The fluid atomization nozzle comprises: a sleeve 3 which receives a gas to be supplied from the base end side and discharges the gas toward a distal end; a hollow bushing 5 which is arranged concentrically with the sleeve 3, in the sleeve 3, and spaced from the inner wall of the sleeve 3; and a liquid supply pipe 7 which supplies liquid to the inner wall of the bushing 5. In addition, the base end side of the bushing 5 is arranged downstream of the base end of the sleeve 3, and the distal end of the bushing 5 is arranged in the same position as the distal end of the sleeve 3 or upstream of the distal end of the sleeve 3. Further, the liquid supply pipe 7 penetrates the side wall of the sleeve 3, and is connected with the side wall of the bushing 5. The liquid supplied by the liquid supply pipe 7 is atomized by the gas supplied to the sleeve 3 and the bushing 5 and then, is mixed into the gas.

Description

本発明は、液体を微粒化する流体微粒化ノズル及び該流体微粒化ノズルを用いた流体微粒化装置に関する。   The present invention relates to a fluid atomization nozzle for atomizing a liquid and a fluid atomization apparatus using the fluid atomization nozzle.

液体を微粒化する流体微粒化ノズルの例としては、特許文献1に記載されたプレフィルマー式エアブラスト微粒化ノズルがある。
特許文献1に記載されたプレフィルマー式エアブラスト微粒化ノズルは、「液体マニホールドを備えた円筒状の中心体の外側に複数の微粒化気流旋回羽根を周方向に配設した液体供給筒と、前記液体供給筒の外側に同軸に配設された1個以上の断面環状で内周面が液膜形成面を形成する筒状の液膜形成体で構成された液膜形成部と、前記液膜形成体の最外周に同軸に配設されたシュラウドとで構成され、前記液体マニホールドから延びる液体分配流路が前記微粒化気流旋回羽根の内部に配設され且つ前記微粒化気流旋回羽根の翼端において開口しており、前記液体マニホールドから前記液体分配流路に分流した液体が前記液体分配流路の開口から前記液膜形成体の液膜形成面上に流出して液膜を形成し、前記液膜が主として前記微粒化気流旋回羽根により旋回が与えられた気流の作用により微粒化されることから成る」ものである(特許文献1の請求項1参照)。
As an example of a fluid atomization nozzle for atomizing a liquid, there is a prefilmer type air blast atomization nozzle described in Patent Document 1.
The pre-filmer type air blast atomization nozzle described in Patent Document 1 is “a liquid supply cylinder in which a plurality of atomized air swirl blades are arranged in the circumferential direction outside a cylindrical central body having a liquid manifold, A liquid film forming section formed of a cylindrical liquid film forming body in which one or more cross-sections are arranged coaxially on the outside of the liquid supply cylinder and an inner peripheral surface forms a liquid film forming surface; A liquid distribution flow path extending from the liquid manifold and disposed inside the atomized airflow swirl vane, and a blade of the atomized airflow swirl vane. An opening is formed at the end, and the liquid branched from the liquid manifold to the liquid distribution channel flows out from the opening of the liquid distribution channel onto the liquid film forming surface of the liquid film forming body to form a liquid film, The liquid film is mainly the atomized airflow Is made of being atomized "by the action of turning is given stream by the blade (see claim 1 of Patent Document 1).

特開2005-106411号公報JP 2005-106411 A

特許文献1に記載されたプレフィルマー式エアブラスト微粒化ノズル(以下、単に「従来例」という)では、流路の中央に円筒状の中心体を配設し、該中心体の外側に複数の微粒化気流旋回羽根を周方向に配設している。そして、該微粒化気流旋回羽根により気流に旋回を与え、この旋回流れにより液膜形成体の液膜形成面上に形成された液膜を微粒化するというものである。   In the pre-filmer type air blast atomization nozzle described in Patent Document 1 (hereinafter simply referred to as “conventional example”), a cylindrical central body is disposed in the center of a flow path, and a plurality of outer bodies are disposed outside the central body. Atomizing airflow swirl vanes are arranged in the circumferential direction. Then, the air flow is swirled by the atomized air flow swirl blade, and the liquid film formed on the liquid film forming surface of the liquid film forming body is atomized by the swirl flow.

従来例では、気体流路の中心に中心体を配設し、さらに流路に旋回羽根を設置していることから、中心体や旋回羽根の表面には、高速で流れる気体が接することになり、流れに対して抵抗となる、すなわち圧力損失(以下、圧損)が大きくなる。圧力損失の大きな微粒化ノズルを機能させるためには、ノズルに供給する気体の圧力を高圧にし、ノズル入口側と出口側の間の差圧を大きくする必要がある。気体の圧力を高圧にするためには、そのための昇圧装置(圧縮機)が必要であり、その所要動力も大きい。そのため、コスト、スペース、動力面の制約から、従来例の微粒化ノズルの適用が困難となる場合があった。
例えば、液化天然ガスを気化して都市ガスとして供給する際に液化石油ガスで増熱する増熱装置がある。この増熱装置として、液体状態の液化石油ガスを気化した液化天然ガスに供給する方式がよく用いられる。この場合、液体として供給する液化石油ガスをできるだけ細かく微粒化することが望まれるが、他方、微粒化に要する圧損が大きいと、増熱装置出口での圧力が低下してしまい、都市ガスとして送り出す圧力が不足して送ガスに支障を来たす恐れがある。
In the conventional example, the central body is arranged at the center of the gas flow path, and the swirl vane is further installed in the flow path, so that the gas flowing at high speed comes into contact with the surface of the central body and the swirl blade. , Resistance to the flow, that is, pressure loss (hereinafter referred to as pressure loss) increases. In order to make the atomizing nozzle with a large pressure loss function, it is necessary to increase the pressure of the gas supplied to the nozzle and increase the differential pressure between the nozzle inlet side and the outlet side. In order to increase the pressure of the gas, a booster (compressor) for that purpose is required, and the required power is also large. Therefore, application of the conventional atomizing nozzle may be difficult due to cost, space, and power constraints.
For example, there is a heat increasing device that increases the temperature with liquefied petroleum gas when liquefied natural gas is vaporized and supplied as city gas. As this heat increasing device, a method of supplying liquid liquefied petroleum gas to vaporized liquefied natural gas is often used. In this case, it is desirable to atomize the liquefied petroleum gas supplied as a liquid as finely as possible. On the other hand, if the pressure loss required for atomization is large, the pressure at the outlet of the heat increasing device is reduced and sent out as city gas. Insufficient pressure may interfere with gas delivery.

また、従来例では、気体流路に配設した中心体内に液体流路を形成し、該流路から流路断面が小さい分岐流路を介して液膜形成体に液体を供給して液膜を形成する構造になっている。流路断面を小さくしているため、流路が異物によって閉塞する可能性がある。また、液膜を適正に形成可能な液体の流量範囲が狭い。つまり、液体の流量を多くしていくと液相側の圧損が非常に大きくなる。逆に液相流量が小さくなったときには液膜の形成が不十分となる。   Further, in the conventional example, a liquid flow path is formed in the central body disposed in the gas flow path, and the liquid is supplied from the flow path to the liquid film forming body through a branch flow path having a small flow section. It is the structure which forms. Since the cross section of the flow path is made small, there is a possibility that the flow path is blocked by foreign matter. Moreover, the flow range of the liquid which can form a liquid film appropriately is narrow. That is, when the flow rate of the liquid is increased, the pressure loss on the liquid phase side becomes very large. On the contrary, when the liquid phase flow rate becomes small, the formation of the liquid film becomes insufficient.

本発明はかかる従来例の有する課題を解決するためになされたものであり、気相側の圧力損失が小さく、かつ液相の流量範囲を大きくとれる流体微粒化ノズル及び該流体微粒化ノズルを用いた流体微粒化装置を提供することを目的としている。
The present invention has been made in order to solve the problems of the conventional example, and uses a fluid atomizing nozzle that has a small pressure loss on the gas phase side and can take a large liquid phase flow rate range, and the fluid atomizing nozzle. An object of the present invention is to provide a fluid atomizer.

(1)本発明の流体微粒化ノズルは、基端側から気体の供給を受け、先端側に気体を噴出する外筒と、該外筒内に該外筒と同軸方向でかつ外筒内壁と空間を介して配置されると共に内部が中空の内筒と、該内筒の内壁に液体を供給する液体供給管とを備え、前記内筒の基端側は前記外筒の基端よりも下流側に配置され、該内筒の先端は前記外筒の先端と同じ位置又は前記外筒の先端よりも上流側に配置されており、前記液体供給管は前記内筒の側壁に接続されてなり、前記液体供給管によって供給された液体が前記外筒及び前記内筒に供給された気体によって微粒化されて該気体に混合されることを特徴とするものである。 (1) The fluid atomization nozzle of the present invention includes an outer cylinder that receives gas supply from the base end side and ejects gas toward the distal end side, and an outer cylinder inner wall that is coaxial with the outer cylinder in the outer cylinder. An inner cylinder having a hollow interior and a liquid supply pipe for supplying a liquid to the inner wall of the inner cylinder, the proximal end side of the inner cylinder being downstream of the proximal end of the outer cylinder The tip of the inner cylinder is arranged at the same position as the tip of the outer cylinder or upstream of the tip of the outer cylinder, and the liquid supply pipe is connected to the side wall of the inner cylinder. The liquid supplied by the liquid supply pipe is atomized by the gas supplied to the outer cylinder and the inner cylinder and mixed with the gas.

(2)また、上記(1)に記載のものにおいて、前記外筒内周面と前記内筒外周面で形成される流路の先端側が、流路中心側に向かっていることを特徴とするものである。
(3)また、上記(1)又は(2)に記載のものにおいて、前記内筒の上流端がテーパ状の縮流形状となっていることを特徴とするものである。
(4)また、上記(1)乃至(3)のいずれかに記載のものにおいて、気体供給管が前記内筒の上流端に対向して同軸に配設され、その相対位置が可変になっていることを特徴とするものである。
(2) Further, in the above-described (1), the front end side of the flow path formed by the inner peripheral surface of the outer cylinder and the outer peripheral surface of the inner cylinder is directed to the center side of the flow path. Is.
(3) Further, in the above-described (1) or (2), the upstream end of the inner cylinder has a tapered contracted flow shape.
(4) Further, in any of the above (1) to (3), the gas supply pipe is disposed coaxially facing the upstream end of the inner cylinder, and its relative position is variable. It is characterized by being.

(5)本発明に係る流体微粒化装置は、上記(1)乃至(4)のいずれかに記載の流体微粒化ノズルを用いた流体微粒化装置であって、前記流体微粒化ノズルに供給される気体の流量を検出する流量検出装置と、該流量検出装置の検出値に基づいて前記流体微粒化ノズル内を流れる気体の流速を、気体が液体を巻き込んで環状噴霧流になるのに必要な流速になるように調整する流量調整弁とを備えたことを特徴とするものである。 (5) A fluid atomization apparatus according to the present invention is a fluid atomization apparatus using the fluid atomization nozzle according to any one of (1) to (4), and is supplied to the fluid atomization nozzle. The flow rate detection device for detecting the flow rate of the gas and the flow rate of the gas flowing in the fluid atomization nozzle based on the detection value of the flow rate detection device are necessary for the gas to entrain the liquid into an annular spray flow. A flow rate adjusting valve for adjusting the flow rate is provided.

本発明の流体微粒化ノズルは、基端側から気体の供給を受け、先端側に気体を噴出する外筒と、該外筒内に該外筒と同軸方向でかつ外筒内壁と空間を介して配置されると共に内部が中空の内筒と、該内筒の内壁に液体を供給する液体供給管とを備え、前記内筒の基端側は前記外筒の基端よりも下流側に配置され、該内筒の先端は前記外筒の先端と同じ位置又は前記外筒の先端よりも上流側に配置されており、前記液体供給管は前記外筒の側壁を貫通して前記内筒の側壁に接続されてなり、前記液体供給管によって供給された液体が前記外筒及び前記内筒に供給された気体によって微粒化されて該気体に混合されるので、広い液相流量範囲において、低い気相圧力で、液相・気相両方の圧損の増大を抑制しつつ良好な微粒化・混合性能を得ることができる。   The fluid atomization nozzle of the present invention includes an outer cylinder that receives gas supply from the base end side and ejects gas to the distal end side, and is coaxial with the outer cylinder in the outer cylinder and through the inner cylinder inner wall and the space. And a liquid supply pipe for supplying a liquid to the inner wall of the inner cylinder, the proximal end side of the inner cylinder being disposed downstream of the proximal end of the outer cylinder The tip of the inner cylinder is disposed at the same position as the tip of the outer cylinder or upstream of the tip of the outer cylinder, and the liquid supply pipe penetrates the side wall of the outer cylinder and Since the liquid supplied by the liquid supply pipe is atomized by the gas supplied to the outer cylinder and the inner cylinder and mixed with the gas, it is low in a wide liquid phase flow rate range. It is possible to obtain good atomization / mixing performance while suppressing an increase in pressure loss in both liquid phase and gas phase at the gas phase pressure. Can.

本発明の一実施の形態に係る流体微粒化ノズルの説明図である。It is explanatory drawing of the fluid atomization nozzle which concerns on one embodiment of this invention. 管内を流れる液相及び気相の流速と流動様式との関係を説明する説明図である。It is explanatory drawing explaining the relationship between the flow rate of the liquid phase and gas phase which flow in a pipe | tube, and a flow mode. 図1に示した流体微粒化ノズルにおけるノズル圧力損失と微粒化径の関係を説明するグラフである。It is a graph explaining the relationship between the nozzle pressure loss and the atomization diameter in the fluid atomization nozzle shown in FIG. 本発明の実施の形態2の説明図である。It is explanatory drawing of Embodiment 2 of this invention. 図4の一部を拡大して示す拡大図である。It is an enlarged view which expands and shows a part of FIG. 本発明の実施の形態3の説明図である。It is explanatory drawing of Embodiment 3 of this invention.

[実施の形態1]
本実施の形態に係る流体微粒化ノズル1は、基端側から気体の供給を受け、先端側に気体を噴出する外筒3と、外筒3内に外筒3と同軸方向でかつ外筒3内壁と空間を介して配置されると共に内部が中空の内筒5と、内筒5の内壁に液体を供給する液体供給管7とを備えており、液体供給管7によって供給された液体が外筒3の基端側から供給された気体によって微粒化されて該気体に混合されることを特徴とするものである。
以下、各構成を詳細に説明する。
[Embodiment 1]
The fluid atomization nozzle 1 according to the present embodiment includes an outer cylinder 3 that receives supply of gas from the base end side and ejects gas toward the distal end side, and an outer cylinder that is coaxial with the outer cylinder 3 in the outer cylinder 3. 3 An inner cylinder 5 which is disposed through an inner wall and a space and has a hollow inside, and a liquid supply pipe 7 which supplies a liquid to the inner wall of the inner cylinder 5 are provided, and the liquid supplied by the liquid supply pipe 7 is It is characterized by being atomized by the gas supplied from the base end side of the outer cylinder 3 and mixed with the gas.
Hereinafter, each configuration will be described in detail.

<外筒>
外筒3は基端側から気体の供給を受けて先端側で気体を噴出する。外筒3の先端側は外筒中心に向けて徐々に縮径しており、略円錐台のような形状になっている。
<Outer cylinder>
The outer cylinder 3 is supplied with gas from the proximal end side and ejects gas at the distal end side. The distal end side of the outer cylinder 3 is gradually reduced in diameter toward the center of the outer cylinder, and has a shape similar to a truncated cone.

<内筒>
内筒5は外筒3内に外筒3と同軸方向でかつ外筒3内壁と空間を介して配置されている。外筒3内壁と内筒5外壁との間に形成される空間は、リング状流路9を形成している。
また、内筒5の内部は中空になっており、中央流路11を形成している。中空流路には流路を遮るものは何らも配置されていない。
内筒5の基端側は、外周面側から内周面の下流側に向かって傾斜する傾斜面13が形成されており、これによって内筒5基端側の開口部の面積が内筒5内の中央流路断面積よりも広くなっている。内筒5基端側の開口部の面積とリング状流路断面積との比率によって、内筒5側へ導入される気体と外側流路へ導入される気体の流量が規定される。したがって、この比率を微粒化に適したものに予め設定しておくことが好ましい。
もっとも、外筒3の基端側から気体を供給する、外筒3と同軸に配設された気体供給管14の内筒5基端側に対する位置を可変として、気体供給管14と内筒5基端側の間の距離を調整することで、中央流路11とリング状流路9への気体の供給比率を設定するようにしてもよい。
<Inner cylinder>
The inner cylinder 5 is disposed in the outer cylinder 3 in the same direction as the outer cylinder 3 and through the inner wall of the outer cylinder 3 and a space. A space formed between the inner wall of the outer cylinder 3 and the outer wall of the inner cylinder 5 forms a ring-shaped flow path 9.
The inner cylinder 5 is hollow and forms a central flow path 11. Nothing that blocks the flow path is arranged in the hollow flow path.
On the proximal end side of the inner cylinder 5, an inclined surface 13 that is inclined from the outer peripheral surface side toward the downstream side of the inner peripheral surface is formed, whereby the area of the opening portion on the proximal end side of the inner cylinder 5 is the inner cylinder 5. It is wider than the central channel cross-sectional area. The flow rate of the gas introduced into the inner cylinder 5 and the gas introduced into the outer flow path is defined by the ratio between the area of the opening on the proximal end side of the inner cylinder 5 and the cross-sectional area of the ring-shaped flow path. Therefore, it is preferable to set this ratio in advance suitable for atomization.
However, the gas supply pipe 14 and the inner cylinder 5 are configured such that the position of the gas supply pipe 14 that is supplied coaxially with the outer cylinder 3 and supplies the gas from the base end side of the outer cylinder 3 with respect to the inner cylinder 5 base end side is variable. The gas supply ratio to the central flow path 11 and the ring-shaped flow path 9 may be set by adjusting the distance between the proximal ends.

内筒5の先端側の外周面は外筒3の先端側内周面と同様に中心に向けて徐々に縮径しており、略円錐台のような形状になっている。このように、内筒5及び外筒3の先端側が略円錐台のような形状になることで、リング状流路断面が小さくなり、リング状流路9を通過する気体の流速が増すようになっており、これによって液体の微粒化をさらに促進している。   The outer peripheral surface on the distal end side of the inner cylinder 5 is gradually reduced in diameter toward the center in the same manner as the inner peripheral surface on the distal end side of the outer cylinder 3, and has a shape like a substantially truncated cone. Thus, the tip side of the inner cylinder 5 and the outer cylinder 3 is shaped like a truncated cone, so that the cross-section of the ring-shaped channel is reduced and the flow velocity of the gas passing through the ring-shaped channel 9 is increased. This further promotes atomization of the liquid.

内筒5は外筒3内に固定されているが、その固定方法は特に問わず、例えばステー(図示なし)によって固定するようにすればよい。   The inner cylinder 5 is fixed in the outer cylinder 3, but the fixing method is not particularly limited, and may be fixed by, for example, a stay (not shown).

<液体供給管>
液体供給管7は、内筒5の内壁に液体を供給する。液体供給管7は、図1に示されるように、先端が内筒5の壁部に挿入されている。そして、内筒5の壁部には液体供給管7と連通する液体流路15が内筒5の内周面に連通するように設けられている。
従来例では、液体流路15を気体流路の中心に配設した中心体の中に形成していたため、中心体が抵抗となり圧損を大きくしていたが、本実施の形態では液体供給管7を上記のように配置しているので、液体供給管7が中央流路11を遮ることがなく、液体供給管7による圧損が生ずることもない。
本実施の形態では、図1に示すように、液体供給管7を出口側に向けて傾斜させて配置しており、このようにすることで、液体供給管7から供給される液体が中央流路11を流れる気体の流れの方向に向って流速を増すことになり、液体流量が増大した場合にも安定した流動状態が得られやすくなる。
なお、液体流路15の先端開口部から中央流路11の下流側端部までの距離は、中央流路11の直径の5倍以上に設定するのが好ましい。このように設定することで、中央流路11内で環状噴霧流が確実に形成されて、微粒化が促進される。
<Liquid supply pipe>
The liquid supply pipe 7 supplies liquid to the inner wall of the inner cylinder 5. As shown in FIG. 1, the liquid supply pipe 7 has a tip inserted into the wall portion of the inner cylinder 5. A liquid channel 15 communicating with the liquid supply pipe 7 is provided in the wall portion of the inner cylinder 5 so as to communicate with the inner peripheral surface of the inner cylinder 5.
In the conventional example, since the liquid flow path 15 is formed in the central body disposed at the center of the gas flow path, the central body becomes a resistance and the pressure loss is increased, but in this embodiment, the liquid supply pipe 7 Are arranged as described above, the liquid supply pipe 7 does not block the central flow path 11, and the pressure loss due to the liquid supply pipe 7 does not occur.
In the present embodiment, as shown in FIG. 1, the liquid supply pipe 7 is arranged to be inclined toward the outlet side, and in this way, the liquid supplied from the liquid supply pipe 7 flows into the central flow. The flow velocity increases in the direction of the gas flow through the passage 11, and a stable flow state is easily obtained even when the liquid flow rate is increased.
The distance from the opening at the front end of the liquid flow path 15 to the downstream end of the central flow path 11 is preferably set to 5 times or more the diameter of the central flow path 11. By setting in this way, an annular spray flow is reliably formed in the central flow path 11 and atomization is promoted.

上記のように構成された本実施の形態に係る流体微粒化ノズル1の作用について説明する。
気体は流体微粒化ノズル1の基端側から供給され、液体が液体供給管7から供給される。
基端側から供給された気体は、内筒5と外筒3で形成される二重管構造の中央流路11とリング状流路9を所定の分配比率で流れる。この分配比率は、前述したように、内筒5の基端側の開口面積と、内筒5外周面と外筒3内周面との間の断面積の比率によって規定される。
The operation of the fluid atomization nozzle 1 according to the present embodiment configured as described above will be described.
The gas is supplied from the base end side of the fluid atomization nozzle 1, and the liquid is supplied from the liquid supply pipe 7.
The gas supplied from the base end side flows through the central flow path 11 and the ring-shaped flow path 9 having a double pipe structure formed by the inner cylinder 5 and the outer cylinder 3 at a predetermined distribution ratio. As described above, this distribution ratio is defined by the opening area on the proximal end side of the inner cylinder 5 and the ratio of the cross-sectional area between the outer peripheral surface of the inner cylinder 5 and the inner peripheral surface of the outer cylinder 3.

液体供給管7から供給された液体は、内筒5の内面において気体流れに接し、その気体流れの流速によって様々な流動形態をとる。内筒5の中央流路11を流れる混合流動状態が環状流もしくは環状噴霧流となっている状態が最も微粒化が良好、すなわち微粒液滴径が小さくなる。
ここで、内管12で発生する環状噴霧流について説明する。
The liquid supplied from the liquid supply pipe 7 contacts the gas flow on the inner surface of the inner cylinder 5 and takes various flow forms depending on the flow velocity of the gas flow. When the mixed flow state flowing through the central flow path 11 of the inner cylinder 5 is an annular flow or an annular spray flow, atomization is most favorable, that is, the particle droplet diameter is reduced.
Here, the annular spray flow generated in the inner pipe 12 will be described.

図2には、管内を流れる液相及び気送の流速と、流動様式との関係を示した線図(図2(a))と、該線図内に示された流動様式を模式的に示す図(図2(b))が示されている。ここに示された図は、書籍「気液二相流」(著者:植田辰洋、出版社:養賢堂)に記載のものである。
図2(a)に示されるように、管内を流れる液相及び気相はそれぞれの流速によってその流動様式が異なるが、気相の流速が20m/s以上になることで、液相が管壁を環状に流れる環状流となり、さらに、環状になった液相の環内の液を巻き込んで噴霧状になった気相が流れる環状噴霧流(図2(b)右下の図参照)となる。
本実施の形態では、液体が液体供給管7によって内筒5の内壁に供給されると共に内筒5の中央流路11に高速の気体が流れることで、内筒5内の流動様式が環状噴霧流となり、液体が微粒化されて気体に効果的に混合される。なお、管状流の状態でも液体の微粒化効果は得られるが、管状噴霧流とすることでその効果をより高めることができる。
FIG. 2 is a diagram (FIG. 2 (a)) showing the relationship between the liquid phase flowing in the pipe and the flow rate of air feeding and the flow mode, and the flow mode shown in the diagram is schematically shown. The figure shown (FIG.2 (b)) is shown. The figure shown here is the one described in the book “Gas-liquid two-phase flow” (author: Yasuhiro Ueda, publisher: Yokendo).
As shown in FIG. 2 (a), the liquid phase and the gas phase flowing in the pipe have different flow modes depending on the respective flow rates. And an annular spray flow (see the lower right figure in FIG. 2 (b)) in which the liquid in the annular liquid phase is entrained with the liquid in the ring and the gas phase in the form of a spray flows. .
In the present embodiment, liquid is supplied to the inner wall of the inner cylinder 5 by the liquid supply pipe 7 and high-speed gas flows through the central flow path 11 of the inner cylinder 5, so that the flow pattern in the inner cylinder 5 is an annular spray. The liquid is atomized and effectively mixed with the gas. In addition, although the atomization effect of a liquid is acquired also in the state of a tubular flow, the effect can be heightened more by setting it as a tubular spray flow.

液体供給管7から内筒5の内壁に供給された液体は、管状噴霧流となって内筒5の内壁面上に液膜を形成しながら流れる。内筒5の外周側にもリング状流路9が形成されており、このリング状流路9にも気体が流れている。内筒5の出口部分において、内筒5内壁面上に形成されている液膜は、内筒5の管軸方向に液膜状態を保ったまま噴出する。その液膜の内側には内筒5内を流れてきた気体流れが存在し、液膜の外側にはリング状流路9を流れてきた気体流れが存在する。すなわち、液膜は内外両面で気相と接し、液膜と気相の流速差に起因するせん断力によって液膜が引きちぎられ微粒化される。
このように二重管構造にしたことにより、上述したように、液膜状となった液体を気体の流れで挟み込むことによって液体の微粒化をより促進することができる。
内筒5内の気体流速が小さくなると、管状流や管状噴霧流状態を保てなくなり、波状流、スラグ流、気泡流などの流動状態に遷移する。その場合、内筒5内での微粒化特性が劣化するのみならず、内筒5出口で液膜を気体の流れで挟み込む状態が形成できないため、微粒化性能は急激に低下することになる。
The liquid supplied from the liquid supply pipe 7 to the inner wall of the inner cylinder 5 becomes a tubular spray flow and flows while forming a liquid film on the inner wall surface of the inner cylinder 5. A ring-shaped channel 9 is also formed on the outer peripheral side of the inner cylinder 5, and gas flows through the ring-shaped channel 9. At the outlet portion of the inner cylinder 5, the liquid film formed on the inner wall surface of the inner cylinder 5 is ejected while maintaining the liquid film state in the tube axis direction of the inner cylinder 5. The gas flow that has flowed through the inner cylinder 5 exists inside the liquid film, and the gas flow that has flowed through the ring-shaped channel 9 exists outside the liquid film. That is, the liquid film is in contact with the gas phase on both the inner and outer surfaces, and the liquid film is torn and atomized by the shearing force resulting from the difference in flow rate between the liquid film and the gas phase.
By adopting such a double tube structure, as described above, liquid atomization can be further promoted by sandwiching the liquid film-like liquid with a gas flow.
When the gas flow velocity in the inner cylinder 5 is reduced, the tubular flow or the tubular spray flow state cannot be maintained, and the state transitions to a flow state such as a wavy flow, a slag flow, or a bubble flow. In this case, not only the atomization characteristics in the inner cylinder 5 are deteriorated, but also the state in which the liquid film is sandwiched by the gas flow at the outlet of the inner cylinder 5 cannot be formed, and the atomization performance is drastically lowered.

なお、環状流もしくは環状噴霧流となる範囲内であれば気相速度を小さくできる(気相側圧力が小さくてよい)。概略、気相見かけ流速が20m/s以上となるように維持すればよい。例えば、気相見かけ流速が30m/sの時の理論気相差圧は元圧の約0.5%であり、例えば元圧が大気圧(100kPa(abs))の空気の場合、ノズルにおける気相側の必要差圧は0.5kPaと非常に小さい値となる。   Note that the gas phase velocity can be reduced (the gas phase pressure may be small) as long as it is within the range of an annular flow or an annular spray flow. In general, the gas phase apparent flow rate may be maintained at 20 m / s or more. For example, when the apparent gas phase flow velocity is 30 m / s, the theoretical gas phase differential pressure is about 0.5% of the original pressure. For example, when the original pressure is atmospheric pressure (100 kPa (abs)), The required differential pressure is as small as 0.5kPa.

液膜は気相流れで形成するので、従来例のように液膜形成のために液相流路の断面積を絞る必要がないため、液相の流路は単純かつ断面積も大きくでき、液相側の圧損を小さく保てる。   Since the liquid film is formed by a gas-phase flow, it is not necessary to reduce the cross-sectional area of the liquid-phase flow path for liquid film formation as in the conventional example, so the liquid-phase flow path can be simple and the cross-sectional area can be increased, The pressure loss on the liquid phase side can be kept small.

気相側流路となる中央流路11は概直管状であり、なんらの障害物もないので圧損が小さい。
図3はこの点を従来例と比較して示したものであり、ノズル圧力損失と微粒化性能(微粒化径)の関係を示したものであり、横軸がノズル圧力損失、縦軸が微粒化径を示している。縦軸、横軸ともに無次元化している。
同じ径100の液滴を生成するのに、従来技術では圧力損失100超であるのに対して、本実施の形態のノズルでは、圧力損失10未満でよいことを示している。
このように圧損が極めて少ないことから、気相供給圧力が低いために従来の微粒化ノズルの適用が困難であるような場合でも、本ノズルでは適用が可能となる
例えば、気化した液化天然ガスに液化石油ガスを液体の状態で供給して増熱し、都市ガスとして送り出すシステムに適用した場合に、圧損を抑制しつつ微粒化を行うことができるため、送ガス圧力を損なうことなく確実な増熱効果を得ることが可能となる。
The central flow path 11 serving as the gas phase side flow path has a substantially straight tube shape, and there is no obstacle, so the pressure loss is small.
FIG. 3 shows this point in comparison with the conventional example, showing the relationship between nozzle pressure loss and atomization performance (atomization diameter), the horizontal axis is nozzle pressure loss, and the vertical axis is fine particles. The diameter is shown. Both the vertical and horizontal axes are dimensionless.
In order to generate droplets having the same diameter 100, the pressure loss of the prior art is more than 100, whereas the nozzle of the present embodiment requires less than 10 pressure loss.
Thus, since the pressure loss is extremely small, even when it is difficult to apply the conventional atomization nozzle because the gas-phase supply pressure is low, this nozzle can be applied.For example, to vaporized liquefied natural gas When liquefied petroleum gas is supplied in a liquid state to increase heat and applied to a system that sends it out as city gas, atomization can be performed while suppressing pressure loss, so reliable heat increase without impairing the gas supply pressure An effect can be obtained.

また、液相流量が増加して中央流路11に占める液断面積が増大した場合でも、気相はリング状流路9へより多く流れるように自律的に分流し、圧力損失の過度の増大を防止できる。   Further, even when the liquid phase flow rate increases and the liquid cross-sectional area occupying the central flow path 11 increases, the gas phase is diverted autonomously so as to flow more into the ring-shaped flow path 9, and the pressure loss is excessively increased. Can be prevented.

以上のように、本実施の形態によれば、広い液相流量範囲において、低い気相圧力で、液相・気相両方の圧損の増大を抑制しつつ良好な微粒化・混合性能を得ることができる。   As described above, according to the present embodiment, it is possible to obtain a good atomization / mixing performance while suppressing an increase in pressure loss in both the liquid phase and the gas phase at a low gas phase pressure in a wide liquid phase flow rate range. Can do.

[実施の形態2]
本実施の形態は本発明の流体微粒化ノズルを用いた微粒化装置の例を示したものであり、LNGを気化した天然ガスにLPGを添加することにより増熱して都市ガスを製造する際に用いられるものである。また、本実施の形態2においては、天然ガスが流れる主流管にベンチュリ管を設置してベンチュリ型微粒化装置として構成したものである。
[Embodiment 2]
This embodiment shows an example of a atomization apparatus using the fluid atomization nozzle of the present invention. When producing city gas by increasing the heat by adding LPG to natural gas obtained by vaporizing LNG. It is used. In the second embodiment, a venturi pipe is installed in a mainstream pipe through which natural gas flows, and is configured as a venturi type atomization apparatus.

本実施の形態に係るベンチュリ型微粒化装置21の基本構成は、図4に示すように、天然ガスが通流する主流管23に設けられたベンチュリ管25と、主流管23よりも出口流路断面が小径の分岐管27を主流管23から分岐して設け、分岐管27の出口側をベンチュリ管のど部29またはその上流側に接続し、該分岐管27の出口管(外筒に相当)内に該出口部を二重管構造にするように内管32(内筒に相当)を設置し、該内管32にLPGを供給するLPG供給管31(液体供給管に相当)の供給部31aを取り付けている。分岐管27の出口管、内管32、LPG供給管31が本発明の流体微粒化ノズルを構成している。   As shown in FIG. 4, the basic configuration of the venturi-type atomization apparatus 21 according to the present embodiment includes a venturi pipe 25 provided in a main flow pipe 23 through which natural gas flows, and an outlet channel than the main flow pipe 23. A branch pipe 27 having a small cross section is provided by branching from the main flow pipe 23, the outlet side of the branch pipe 27 is connected to the throat portion 29 of the venturi pipe or the upstream side thereof, and the outlet pipe of the branch pipe 27 (corresponding to an outer cylinder) An inner pipe 32 (corresponding to an inner cylinder) is installed so that the outlet part has a double-pipe structure, and an LPG supply pipe 31 (corresponding to a liquid supply pipe) for supplying LPG to the inner pipe 32 31a is attached. The outlet pipe of the branch pipe 27, the inner pipe 32, and the LPG supply pipe 31 constitute a fluid atomization nozzle of the present invention.

本実施の形態のベンチュリ型微粒化装置21においては、分岐管27に、分岐管27を流れる天然ガスの流量を検知する流量検出器33を設けると共に主流管23におけるベンチュリ管25と分岐管が分岐する分岐部の間に流量調整弁35を設け、流量検出器33の検知信号に基づいて流量調整弁35の開度を調整するようにしている。
以下、各構成を詳細に説明する。
In the venturi-type atomization apparatus 21 of the present embodiment, the branch pipe 27 is provided with a flow rate detector 33 for detecting the flow rate of natural gas flowing through the branch pipe 27, and the venturi pipe 25 and the branch pipe in the main flow pipe 23 are branched. A flow rate adjustment valve 35 is provided between the branching portions, and the opening degree of the flow rate adjustment valve 35 is adjusted based on the detection signal of the flow rate detector 33.
Hereinafter, each configuration will be described in detail.

<LPG供給管>
LPG供給管31はベンチュリ管25内にLPGを供給するためのものであり、LPG供給場所となる供給部31aは、図4及び図5に示すように、内管32の管壁に配置されている。供給部31aを内管32の管壁に配置することで、内管32内を流れる流速が増した天然ガスによって内管32に供給されたLPGが巻き込まれて環状噴霧流となってLPGの微粒化混合が効果的に行われる。
<LPG supply pipe>
The LPG supply pipe 31 is for supplying LPG into the venturi pipe 25, and the supply part 31a serving as the LPG supply place is disposed on the pipe wall of the inner pipe 32 as shown in FIGS. Yes. By arranging the supply portion 31a on the tube wall of the inner tube 32, the LPG supplied to the inner tube 32 is entrained by the natural gas having an increased flow velocity in the inner tube 32 to form an annular spray flow. Chemical mixing is performed effectively.

<分岐管>
分岐管27は、主流管23におけるベンチュリ管25の上流側から分岐して、その出口側がベンチュリ管のど部29もしくはベンチュリ管のど部29よりも上流側に接続されている。
分岐管27の流路断面積は主流管23よりも小径となる部分を有しており、分岐管27の前記小径部分を流れる天然ガスの流速が主流管23を流れる天然ガスの流速よりも速くなるように設定されている。前記小径部分は分岐管27の出口に配設するのが一般的である。
分岐管27出口に配設された小径部における天然ガスの流速を高速にすることで、ここに配置された内管32内に供給されるLPGを巻き込んだ環状噴霧流が発生してLPGの微粒化が促進される。
<Branch pipe>
The branch pipe 27 branches from the upstream side of the venturi pipe 25 in the main pipe 23, and the outlet side thereof is connected to the upstream side of the venturi pipe throat portion 29 or the venturi pipe throat portion 29.
The flow passage cross-sectional area of the branch pipe 27 has a portion having a smaller diameter than the main flow pipe 23, and the flow rate of the natural gas flowing through the small diameter portion of the branch pipe 27 is faster than the flow rate of the natural gas flowing through the main flow pipe 23. It is set to be. The small diameter portion is generally disposed at the outlet of the branch pipe 27.
By increasing the flow rate of natural gas in the small diameter portion arranged at the outlet of the branch pipe 27, an annular spray flow involving LPG supplied into the inner pipe 32 arranged here is generated, and the fine particles of LPG are produced. Is promoted.

分岐管27の出口側の配置は任意でよい。一番望ましいのは図4に示すように、ベンチュリ管25と同軸方向に配置するものであるが、特に限定されるものではない。   Arrangement | positioning by the side of the exit of the branch pipe 27 may be arbitrary. As shown in FIG. 4, the most desirable one is arranged in the same direction as the venturi tube 25, but is not particularly limited.

LPGの微粒化・混合性能に大きく影響するのは分岐管27における内管32が設けられた部位での流速である。天然ガスを主流管23よりも流路断面積が小さい分岐管27に流すことによって流速を増し、該流速を増した天然ガスによって環状噴霧流が発生してLPGの微粒化・混合が行われるからである。
分岐管27における内管32が設けられた部位の管径は、都市ガスの最低流量運転のときにも、内管32内を流れる天然ガスの流速が、環状噴霧流発生に必要な流速を保つことができるような径にしておく。
例えば、都市ガス流量の変動範囲が30万Nm3/h〜6千Nm3/hの場合を想定すると、都市ガス流量が最低流量である6千Nm3/hのときには、天然ガスを分岐管27から全量流し、このときの分岐管27における内管32が設けられた部位(分岐管27における小径部)の天然ガス流速が環状噴霧流発生に必要な流速を保つような管径とする。(このとき分岐管27を流れる天然ガス流量は、天然ガス流量として想定される最低流量となる。)
その上で、想定される最低流量分を常に分岐管27に流すようにすれば、制御が簡単で安定したLPGの微粒化・混合が実現できる。以下の説明において、分岐管におけるLPGの微粒化・混合に必要な流速を与える最小流量を所定値Aという場合がある。
The flow velocity at the portion of the branch pipe 27 where the inner pipe 32 is provided has a great influence on the atomization / mixing performance of LPG. The flow rate is increased by flowing the natural gas through the branch pipe 27 having a smaller flow path cross-sectional area than the main flow pipe 23, and an annular spray flow is generated by the natural gas having the increased flow speed, and LPG is atomized and mixed. It is.
The pipe diameter of the portion of the branch pipe 27 where the inner pipe 32 is provided is such that the flow rate of the natural gas flowing through the inner pipe 32 maintains the flow rate necessary for generating the annular spray flow even when the city gas is operated at the lowest flow rate. The diameter should be such that it can be used.
For example, assuming that the fluctuation range of the city gas flow is 300,000 Nm 3 / h to 6,000 Nm 3 / h, when the city gas flow rate is 6,000 Nm 3 / h, which is the lowest flow rate, natural gas is branched. 27, and the natural gas flow rate of the portion where the inner pipe 32 is provided in the branch pipe 27 at this time (small diameter portion in the branch pipe 27) is set to a pipe diameter that maintains the flow speed necessary for generating the annular spray flow. (At this time, the flow rate of natural gas flowing through the branch pipe 27 is the lowest flow rate assumed as the flow rate of natural gas.)
In addition, if the assumed minimum flow rate is always allowed to flow through the branch pipe 27, LPG atomization and mixing that is easy and stable can be realized. In the following description, the minimum flow rate that provides a flow rate necessary for atomization / mixing of LPG in the branch pipe may be referred to as a predetermined value A.

環状噴霧流発生に必要とされる流速は、実施ケースにより異なるが、図3(a)にも示されるように概ね20m/s以上である。したがって、想定される都市ガスの最低流量の場合に分岐管における内管32内で前記流速が確保でき、かつ圧損が高くなり過ぎないような管路となるように分岐管27を設定すればよい。   The flow rate required for generating the annular spray flow varies depending on the implementation case, but is generally 20 m / s or more as shown in FIG. Therefore, the branch pipe 27 may be set so that the flow rate can be ensured in the inner pipe 32 of the branch pipe and the pressure loss does not become excessively high at the assumed city gas flow rate. .

例えば、分岐管27の管径は入り口側から出口側まで同じであってもよいが、内管32が設けられた部位の流路断面を主流管23の流路断面より小さい小径部として、その他の部位は小径部よりも管径を大きくしてもよい。小径部以外の管径をこれより大きくしておくことで、分岐管27における圧損が大きくなりすぎることを回避することができる。
なおベンチュリ管のど部29の径は、設計最大流量時の圧力損失が、その適用システムにとって過大とならないように設計しておく。
For example, the pipe diameter of the branch pipe 27 may be the same from the inlet side to the outlet side, but the flow path cross section of the portion where the inner pipe 32 is provided is set to a smaller diameter portion smaller than the flow path cross section of the main flow pipe 23. This part may have a larger tube diameter than the small diameter part. By making the pipe diameters other than the small diameter part larger than this, it is possible to avoid the pressure loss in the branch pipe 27 from becoming too large.
The diameter of the venturi throat portion 29 is designed so that the pressure loss at the maximum design flow rate does not become excessive for the application system.

<流量検知器>
流量検出器33は、分岐管27に設けられて分岐管27を流れる天然ガスの流量を検知するものである。
なお、流量検出器33に代えて差圧検知器を設け、分岐管27における圧力損失を検知することで、あらかじめ把握しておいた分岐管27における流量と圧力損失の関係から、分岐管27内を流れる天然ガスの流量を検知するようにしてもよい。
<Flow detector>
The flow rate detector 33 is provided in the branch pipe 27 and detects the flow rate of natural gas flowing through the branch pipe 27.
It should be noted that a differential pressure detector is provided in place of the flow rate detector 33 and pressure loss in the branch pipe 27 is detected, so that the relationship between the flow rate and pressure loss in the branch pipe 27 that has been grasped in advance is determined in the branch pipe 27. You may make it detect the flow volume of the natural gas which flows through.

<流量調整弁>
流量調整弁35は、主流管23におけるベンチュリ管25と分岐管27の分岐部との間に設けられて、流量検出器33の検知信号に基づいて主流管23を流れる天然ガス流量を調整し、これによって分岐管27を流れる天然ガス流量が予め定めた所定流量になるようにする。
なお、図2(a)に示されるように、管状噴霧流とするための気相流速は液相流速の影響を受ける。このため、LPG供給管31を流れるLPG量を検知する第2の流量検知器を設け、供給LPG量も加味して分岐管27を流れる天然ガスの所定量を算出・設定することも可能である。ただし、第2の流量検知器を必要とし、制御も複雑となるため、実用上はLPG供給量によらず、一定の天然ガス流量(内管32内で例えば20m/sとなる流量)を所定量とすることが簡便である。
<Flow control valve>
The flow rate adjustment valve 35 is provided between the venturi pipe 25 and the branch part of the branch pipe 27 in the main flow pipe 23, and adjusts the flow rate of natural gas flowing through the main flow pipe 23 based on the detection signal of the flow rate detector 33. As a result, the flow rate of natural gas flowing through the branch pipe 27 is set to a predetermined flow rate.
As shown in FIG. 2 (a), the gas phase flow rate for making the tubular spray flow is affected by the liquid phase flow rate. For this reason, it is also possible to provide a second flow rate detector that detects the amount of LPG flowing through the LPG supply pipe 31, and to calculate and set the predetermined amount of natural gas flowing through the branch pipe 27 in consideration of the supply LPG amount. . However, since the second flow rate detector is required and the control is complicated, practically a constant natural gas flow rate (for example, a flow rate of 20 m / s in the inner pipe 32) is set regardless of the LPG supply amount. It is convenient to use a fixed amount.

<動作説明>
次に上記のように構成された本実施の形態に係るベンチュリ型流体微粒化装置21の動作を説明する。
上流側から供給される天然ガスは、分岐部を通過する際に分岐管27にも流れ、分岐管27の出口側において内管32内に供給されるLPGを巻き込んだ環状噴霧流を発生し、LPGの微粒化・混合が行われ、ベンチュリ管のど部29に流入する。他方、主流管23を流れる天然ガスもベンチュリ管のど部29に流入する。したがって、ベンチュリ管のど部29には、分岐管27を経由してLPGが添加された天然ガスと、主流管23からの天然ガスが流入し、ベンチュリ管のど部29を通過の際、さらにLPGの混合が促進される。
<Description of operation>
Next, the operation of the venturi type fluid atomization apparatus 21 according to the present embodiment configured as described above will be described.
Natural gas supplied from the upstream side also flows into the branch pipe 27 when passing through the branch portion, and generates an annular spray flow including LPG supplied into the inner pipe 32 on the outlet side of the branch pipe 27, LPG is atomized and mixed, and flows into the venturi tube throat 29. On the other hand, natural gas flowing through the main flow pipe 23 also flows into the venturi throat 29. Therefore, the natural gas to which LPG is added via the branch pipe 27 and the natural gas from the mainstream pipe 23 flow into the venturi pipe throat portion 29 and pass through the venturi pipe throat portion 29, and further the LPG Mixing is promoted.

都市ガスの流量はその需要量に応じて成り行きで増減する。例えば、都市ガス需要量が減少し、流路を流れる流体の流量が減少すると、分岐管27及び主流管23を流れるトータルの天然ガスの流量が減少する。分岐管27を流れる天然ガス流量が所定値Aよりも減少すると内管32内での流速が減少し、管状噴霧流が形成されなくなり、LPGの微粒化・混合が不十分になることが懸念される。
そこで、流量検出器33で検知される流量が所定値Aよりも減少したら、流量調整弁35の開度を小さくすることによって分岐管27を流れる天然ガス流量が所定値Aを維持するようにする。
分岐管27を流れる天然ガス流量を所定値A以上に維持することで、分岐管27における流速が維持されLPGの微粒化・混合効果を確保することができる。
The flow rate of city gas increases or decreases depending on the demand. For example, when the demand for city gas decreases and the flow rate of the fluid flowing through the flow path decreases, the total flow rate of natural gas flowing through the branch pipe 27 and the main flow pipe 23 decreases. When the flow rate of natural gas flowing through the branch pipe 27 decreases below the predetermined value A, the flow velocity in the inner pipe 32 decreases, and a tubular spray flow is not formed, and there is a concern that the atomization / mixing of LPG becomes insufficient. The
Therefore, when the flow rate detected by the flow rate detector 33 is less than the predetermined value A, the flow rate of the natural gas flowing through the branch pipe 27 is maintained at the predetermined value A by reducing the opening degree of the flow rate adjustment valve 35. .
By maintaining the flow rate of the natural gas flowing through the branch pipe 27 at a predetermined value A or higher, the flow rate in the branch pipe 27 is maintained, and the effect of atomization / mixing of LPG can be ensured.

逆に、都市ガス需要量が増加し、流路を流れる流体の流量が増加すると、分岐管27及び主流管23を流れる天然ガスの流量が増加する。分岐管27を流れる天然ガス流量が所定量よりも増加すると圧力損失が大きくなる。
そこで、流量検出器33で検知される流量が所定値Bよりも増加したら、流量調整弁35の開度を大きくして主流管23を流れる量を増やし、分岐管27を流れる天然ガス流量が所定値Bになるようにする。ここで、所定値B≧所定値Aの関係にある。
分岐管27を流れる天然ガス流量を所定値A以上B以下にすることで、分岐管27における流速が所定の範囲に維持されLPGの微粒化・混合を十分にすることができると共に圧損の過大な増大を防止することができる。
Conversely, when the demand for city gas increases and the flow rate of the fluid flowing through the flow path increases, the flow rate of natural gas flowing through the branch pipe 27 and the main flow pipe 23 increases. When the flow rate of natural gas flowing through the branch pipe 27 increases beyond a predetermined amount, the pressure loss increases.
Therefore, when the flow rate detected by the flow rate detector 33 increases above the predetermined value B, the opening degree of the flow rate adjustment valve 35 is increased to increase the amount flowing through the main flow pipe 23, and the flow rate of natural gas flowing through the branch pipe 27 is predetermined. The value B is set. Here, there is a relationship of the predetermined value B ≧ the predetermined value A.
By setting the flow rate of natural gas flowing through the branch pipe 27 to a predetermined value A or more and B or less, the flow velocity in the branch pipe 27 is maintained within a predetermined range, and the atomization / mixing of LPG can be sufficiently performed and the pressure loss is excessive. An increase can be prevented.

例えば、最も単純な制御方法としては、所定値A=所定値B=[都市ガス最低流量時の天然ガス流量(天然ガス最低流量)]とする場合である。
前述した例と同様、都市ガス流量の変動範囲が30万Nm3/h〜6千Nm3/hの場合を想定すると、都市ガス流量が最低流量である6千Nm3/hのときには、天然ガスを分岐管27から全量、すなわち所定値A(=所定値B)の流量を流す。
都市ガス流量が6千Nm3/hより大きくなった場合には、分岐管27に設置された流量検出器33で計測される流量が所定値Aを保つように流量調整弁35の開度を大きくしていき、天然ガス流量増加分を主流管23から流入させるようにする。すなわち、都市ガス流量が変動しても、分岐管27には常に所定値Aの天然ガス流量が流通するようにする。こうすることにより、分岐管27へは常に微粒化・混合に必要な流量が供給されるようになる。また主流管23からの速度成分は、ベンチュリ管のど部29における流速をさらに増大させる方向に寄与する。
なお上記において、所定値Aは[都市ガス最低流量時の天然ガス流量(天然ガス最低流量)]であるが、簡易的には[都市ガス最低流量]としてもよい。
For example, the simplest control method is a case where the predetermined value A = predetermined value B = [natural gas flow rate at the lowest city gas flow rate (natural gas minimum flow rate)].
As in the previous example, assuming that the fluctuation range of the city gas flow rate is 300,000 Nm 3 / h to 6,000 Nm 3 / h, when the city gas flow rate is 6,000 Nm 3 / h, which is the lowest flow rate, A total amount of gas is flowed from the branch pipe 27, that is, a flow rate of a predetermined value A (= predetermined value B).
When the city gas flow rate is greater than 6,000 Nm 3 / h, the opening degree of the flow rate adjustment valve 35 is set so that the flow rate measured by the flow rate detector 33 installed in the branch pipe 27 maintains a predetermined value A. Increasing the natural gas flow rate causes the increase in the natural gas flow rate to flow from the main flow pipe 23. That is, even if the city gas flow rate fluctuates, the natural gas flow rate of the predetermined value A always flows through the branch pipe 27. By doing so, a flow rate necessary for atomization / mixing is always supplied to the branch pipe 27. Further, the velocity component from the main flow tube 23 contributes to the direction of further increasing the flow velocity in the venturi tube throat 29.
In the above description, the predetermined value A is [natural gas flow rate at the minimum city gas flow rate (natural gas minimum flow rate)], but may be simply [minimum city gas flow rate].

以上のように、本実施の形態によれば、流路を流れる流量が大きく変化してもLPGの供給部となる内管32が配設されている位置における分岐管27の天然ガス流速を所定の流速に維持することができ、LPGの微粒化・混合効果が得られると共に過度に圧力損失が大きくなりすぎないようにすることができる。   As described above, according to the present embodiment, the natural gas flow rate of the branch pipe 27 at the position where the inner pipe 32 serving as the LPG supply unit is disposed is predetermined even if the flow rate flowing through the flow path changes greatly. It is possible to maintain the flow rate of LPG, and it is possible to obtain the effect of atomization / mixing of LPG and to prevent the pressure loss from becoming excessively large.

ここで、所定値Aの天然ガス流量を分岐管側に流通させるためには、ノズルを含めた分岐管側の圧損と同等以上の圧損となるように、流量調節弁35を絞り込む必要がある。そのため、分岐管先端に配設された微粒化ノズルの圧損が大きいと、微粒化装置全体としての圧損が大きくなり、都市ガスとして送り出すためのガス圧力を維持できなくなる。
本発明の微粒化装置は、本発明の流体微粒化ノズルを用いることにより圧損を抑制しつつ微粒化を行うことができるため、送ガス圧力を損なうことなく確実な増熱効果を得ることが可能となる。
Here, in order to distribute the natural gas flow rate of the predetermined value A to the branch pipe side, it is necessary to narrow down the flow rate control valve 35 so that the pressure loss is equal to or higher than the pressure loss on the branch pipe side including the nozzle. Therefore, if the pressure loss of the atomization nozzle disposed at the tip of the branch pipe is large, the pressure loss of the atomization apparatus as a whole increases, and the gas pressure for sending out as city gas cannot be maintained.
Since the atomization apparatus of the present invention can perform atomization while suppressing pressure loss by using the fluid atomization nozzle of the present invention, it is possible to obtain a reliable heat increase effect without impairing the gas supply pressure. It becomes.

[実施の形態3]
実施の形態2においては、本発明の流体微粒化ノズルを用いた流体微粒化装置の例として、主流管にベンチュリ管を設置して、そのベンチュリ管内に流体微粒化ノズルを配置した例を示した。
しかし、本発明の流体微粒化装置は、ベンチュリ管内に流体微粒化ノズルを配置するものに限られず、気体供給管に直接流体微粒化ノズルを設置して構成してもよい。
[Embodiment 3]
In the second embodiment, as an example of the fluid atomization apparatus using the fluid atomization nozzle of the present invention, an example in which a venturi pipe is installed in the mainstream pipe and the fluid atomization nozzle is arranged in the venturi pipe is shown. .
However, the fluid atomization apparatus of the present invention is not limited to the one in which the fluid atomization nozzle is disposed in the venturi pipe, and may be configured by directly installing the fluid atomization nozzle in the gas supply pipe.

図6は本実施の形態の流体微粒化装置41の説明図であり、図1と同一部分には同一の符号を付してある。本実施の形態の流体微粒化装置41は、気体供給管14の端部に設置した流体微粒化ノズル1と、流体微粒化ノズル1に供給される気体の流量を検出する流量検出装置43と、流量検出装置43の検出値に基づいて流体微粒化ノズル内を流れる気体の流速を、気体が液体を巻き込んで環状噴霧流になるのに必要な流速になるように調整する流量調整弁45とを備えてなるものである。   FIG. 6 is an explanatory diagram of the fluid atomizer 41 of the present embodiment, and the same reference numerals are given to the same parts as those in FIG. The fluid atomization device 41 of the present embodiment includes a fluid atomization nozzle 1 installed at an end of the gas supply pipe 14, a flow rate detection device 43 that detects the flow rate of gas supplied to the fluid atomization nozzle 1, and A flow rate adjusting valve 45 for adjusting the flow rate of the gas flowing in the fluid atomization nozzle based on the detection value of the flow rate detection device 43 so that the gas becomes a flow rate necessary for entraining the liquid into an annular spray flow. It is prepared.

1 流体微粒化ノズル
3 外筒
5 内筒
7 液体供給管
9 リング状流路
11 中央流路
13 傾斜面
14 気体供給管
15 液体流路
21 ベンチュリ型微粒化装置
23 主流管
25 ベンチュリ管
27 分岐管
29 ベンチュリ管のど部
31 LPG供給管
31a 供給部
32 内管
33 流量検出器
35 流量調整弁
41 流体微粒化装置
43 流量検出装置
45 流量調整弁
DESCRIPTION OF SYMBOLS 1 Fluid atomization nozzle 3 Outer cylinder 5 Inner cylinder 7 Liquid supply pipe 9 Ring-shaped flow path 11 Central flow path 13 Inclined surface 14 Gas supply pipe 15 Liquid flow path 21 Venturi type atomization apparatus 23 Main flow pipe 25 Venturi pipe 27 Branch pipe 29 Venturi pipe throat part 31 LPG supply pipe 31a Supply part 32 Inner pipe 33 Flow rate detector 35 Flow rate adjustment valve 41 Fluid atomization device 43 Flow rate detection device 45 Flow rate adjustment valve

Claims (5)

基端側から気体の供給を受け、先端側に気体を噴出する外筒と、該外筒内に該外筒と同軸方向でかつ外筒内壁と空間を介して配置されると共に内部が中空の内筒と、該内筒の内壁に液体を供給する液体供給管とを備え、前記内筒の基端側は前記外筒の基端よりも下流側に配置され、該内筒の先端は前記外筒の先端と同じ位置又は前記外筒の先端よりも上流側に配置されており前記液体供給管は前記内筒の側壁に接続されてなり、前記液体供給管によって供給された液体が前記外筒及び前記内筒に供給された気体によって微粒化されて該気体に混合されることを特徴とする流体微粒化ノズル。   An outer cylinder that receives gas supply from the base end side and ejects gas to the distal end side, and is disposed in the outer cylinder in a direction coaxial with the outer cylinder and through the inner wall of the outer cylinder and a space inside. An inner cylinder and a liquid supply pipe for supplying a liquid to the inner wall of the inner cylinder, the proximal end side of the inner cylinder being disposed downstream of the proximal end of the outer cylinder, and the distal end of the inner cylinder is The liquid supply pipe is connected to the side wall of the inner cylinder at the same position as the front end of the outer cylinder or upstream of the front end of the outer cylinder, and the liquid supplied by the liquid supply pipe is A fluid atomization nozzle characterized by being atomized by a gas supplied to a cylinder and the inner cylinder and mixed with the gas. 前記外筒内周面と前記内筒外周面で形成される流路の先端側が、流路中心側に向かっていることを特徴とする請求項1記載の流体微粒化ノズル。   2. The fluid atomizing nozzle according to claim 1, wherein a front end side of a flow path formed by the inner peripheral surface of the outer cylinder and the outer peripheral surface of the inner cylinder is directed toward the center side of the flow path. 前記内筒の上流端がテーパ状の縮流形状となっていることを特徴とする請求項1又は2に記載の流体微粒化ノズル。   The fluid atomization nozzle according to claim 1 or 2, wherein an upstream end of the inner cylinder has a tapered contracted flow shape. 前記気体供給管が前記内筒の上流端に対向して同軸に配設され、その相対位置が可変になっていることを特徴とする請求項1乃至3のいずれかに記載の流体微粒化ノズル。   The fluid atomization nozzle according to any one of claims 1 to 3, wherein the gas supply pipe is coaxially disposed facing the upstream end of the inner cylinder, and the relative position thereof is variable. . 請求項1乃至4のいずれかに記載の流体微粒化ノズルを用いた流体微粒化装置であって、前記流体微粒化ノズルに供給される気体の流量を検出する流量検出装置と、該流量検出装置の検出値に基づいて前記流体微粒化ノズル内を流れる気体の流速を、気体が液体を巻き込んで環状噴霧流になるのに必要な流速になるように調整する流量調整弁とを備えたことを特徴とする流体微粒化装置。   A fluid atomization device using the fluid atomization nozzle according to any one of claims 1 to 4, wherein the flow rate detection device detects a flow rate of a gas supplied to the fluid atomization nozzle, and the flow rate detection device. And a flow rate adjusting valve that adjusts the flow rate of the gas flowing in the fluid atomization nozzle based on the detected value so that the flow rate of the gas is necessary to entrain the liquid into an annular spray flow. A fluid atomizer characterized by the above.
JP2010174134A 2010-08-03 2010-08-03 Fluid atomization nozzle, fluid atomization device Active JP5540973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010174134A JP5540973B2 (en) 2010-08-03 2010-08-03 Fluid atomization nozzle, fluid atomization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010174134A JP5540973B2 (en) 2010-08-03 2010-08-03 Fluid atomization nozzle, fluid atomization device

Publications (2)

Publication Number Publication Date
JP2012030200A true JP2012030200A (en) 2012-02-16
JP5540973B2 JP5540973B2 (en) 2014-07-02

Family

ID=45844279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010174134A Active JP5540973B2 (en) 2010-08-03 2010-08-03 Fluid atomization nozzle, fluid atomization device

Country Status (1)

Country Link
JP (1) JP5540973B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206071A (en) * 2011-03-30 2012-10-25 Jfe Engineering Corp Fluid atomization nozzle, fluid atomization nozzle device, and fluid atomization device
JP2014207893A (en) * 2013-03-28 2014-11-06 株式会社 土佐農機 Sprayer
CN107537335A (en) * 2017-10-10 2018-01-05 中煤科工清洁能源股份有限公司 A kind of nozzle, blender and feeding system
CN107930934A (en) * 2017-12-14 2018-04-20 上海理工大学 A kind of adjustable air atomizer spray nozzle of spray cone angle and the spray gun with the nozzle
CN111471499A (en) * 2020-04-14 2020-07-31 北京石油化工学院 Tubular parallel flow type gas-liquid contact absorber
JP7389408B2 (en) 2020-03-19 2023-11-30 Jfeエンジニアリング株式会社 fluid mixing device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4628415Y1 (en) * 1967-12-11 1971-10-01
JPS55130735U (en) * 1979-03-09 1980-09-16
JPS56113333A (en) * 1980-02-14 1981-09-07 Daido Steel Co Ltd Fluid mixer
JPH08261413A (en) * 1995-03-27 1996-10-11 Mitsubishi Heavy Ind Ltd Air blast fuel nozzle
JPH11104529A (en) * 1997-10-01 1999-04-20 Mitsubishi Electric Corp Gas-liquid jetting device
JP2001149822A (en) * 1999-11-24 2001-06-05 Ikeuchi:Kk Two fluids nozzle
JP2002303300A (en) * 2001-04-03 2002-10-18 Daikin Ind Ltd Ejector
JP2003214604A (en) * 2002-01-21 2003-07-30 National Aerospace Laboratory Of Japan Fluid atomizing nozzle
JP2006167624A (en) * 2004-12-16 2006-06-29 Gifu Prefecture Mixer
JP2007021454A (en) * 2005-07-21 2007-02-01 Ngk Insulators Ltd Functional water making apparatus and functional water making method using it
JP2011200807A (en) * 2010-03-26 2011-10-13 Jfe Engineering Corp Method for mixing fluid and apparatus for mixing the fluid

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4628415Y1 (en) * 1967-12-11 1971-10-01
JPS55130735U (en) * 1979-03-09 1980-09-16
JPS56113333A (en) * 1980-02-14 1981-09-07 Daido Steel Co Ltd Fluid mixer
JPH08261413A (en) * 1995-03-27 1996-10-11 Mitsubishi Heavy Ind Ltd Air blast fuel nozzle
JPH11104529A (en) * 1997-10-01 1999-04-20 Mitsubishi Electric Corp Gas-liquid jetting device
JP2001149822A (en) * 1999-11-24 2001-06-05 Ikeuchi:Kk Two fluids nozzle
JP2002303300A (en) * 2001-04-03 2002-10-18 Daikin Ind Ltd Ejector
JP2003214604A (en) * 2002-01-21 2003-07-30 National Aerospace Laboratory Of Japan Fluid atomizing nozzle
JP2006167624A (en) * 2004-12-16 2006-06-29 Gifu Prefecture Mixer
JP2007021454A (en) * 2005-07-21 2007-02-01 Ngk Insulators Ltd Functional water making apparatus and functional water making method using it
JP2011200807A (en) * 2010-03-26 2011-10-13 Jfe Engineering Corp Method for mixing fluid and apparatus for mixing the fluid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206071A (en) * 2011-03-30 2012-10-25 Jfe Engineering Corp Fluid atomization nozzle, fluid atomization nozzle device, and fluid atomization device
JP2014207893A (en) * 2013-03-28 2014-11-06 株式会社 土佐農機 Sprayer
CN107537335A (en) * 2017-10-10 2018-01-05 中煤科工清洁能源股份有限公司 A kind of nozzle, blender and feeding system
CN107537335B (en) * 2017-10-10 2024-02-06 中煤科工清洁能源股份有限公司 Nozzle, mixer and feeding system
CN107930934A (en) * 2017-12-14 2018-04-20 上海理工大学 A kind of adjustable air atomizer spray nozzle of spray cone angle and the spray gun with the nozzle
JP7389408B2 (en) 2020-03-19 2023-11-30 Jfeエンジニアリング株式会社 fluid mixing device
CN111471499A (en) * 2020-04-14 2020-07-31 北京石油化工学院 Tubular parallel flow type gas-liquid contact absorber

Also Published As

Publication number Publication date
JP5540973B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP6487041B2 (en) Atomizer nozzle
JP5540973B2 (en) Fluid atomization nozzle, fluid atomization device
RU2329873C2 (en) Liquid sprayer
JP2012508107A5 (en)
BRPI0920853B1 (en) spray method and nozzle for atomizing a liquid
JP4394075B2 (en) Nozzle for atomizing liquid by gas and atomization method
JP2013063369A (en) Spray nozzle, spray nozzle device and spray method
JP2005288390A (en) Two-fluid nozzle and spraying method
US20030015604A1 (en) Nozzle to promote flat fluid stream
JP5370027B2 (en) Fluid mixing method and fluid mixing apparatus
JP6042061B2 (en) Spray nozzle, fluid atomizer using the spray nozzle
CA2026857A1 (en) Process for exploiting a burner and burners for a rotary tubular furnace
JP5912393B2 (en) Spray nozzle and method of mixing gas and liquid
JP5509981B2 (en) Fluid mixing method and fluid mixing apparatus
JP5589485B2 (en) Fluid mixing method and fluid mixing apparatus
US11014054B2 (en) Fluid-gas mixer
JP5752973B2 (en) Fluid atomization nozzle, fluid atomization nozzle device, fluid atomization device
JP5704992B2 (en) Fluid atomization nozzle device, fluid atomization device
US20140252131A1 (en) Swirl combustion air fuel torch
JP2000028111A (en) Fuel injector and burner using the same
JP2020127932A (en) Ultrafine bubble generation device and ultrafine bubble generation apparatus
JP2018189362A (en) Improvement of atomizer
JP4382477B2 (en) INJECTION DEVICE AND METHOD OF USING THE SAME
US20020090584A1 (en) Liquid fuel industrial burner
JP2017519623A (en) Injection device for injecting hydrocarbon feedstock into a refiner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5540973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350