JP6042061B2 - Spray nozzle, fluid atomizer using the spray nozzle - Google Patents

Spray nozzle, fluid atomizer using the spray nozzle Download PDF

Info

Publication number
JP6042061B2
JP6042061B2 JP2011225149A JP2011225149A JP6042061B2 JP 6042061 B2 JP6042061 B2 JP 6042061B2 JP 2011225149 A JP2011225149 A JP 2011225149A JP 2011225149 A JP2011225149 A JP 2011225149A JP 6042061 B2 JP6042061 B2 JP 6042061B2
Authority
JP
Japan
Prior art keywords
flow
flow rate
pipe
gas
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011225149A
Other languages
Japanese (ja)
Other versions
JP2013081924A (en
Inventor
林 謙年
謙年 林
以昌 山口
以昌 山口
信幸 榊原
信幸 榊原
和男 伊藤
和男 伊藤
岩田 直也
直也 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Toho Gas Co Ltd
Original Assignee
JFE Engineering Corp
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp, Toho Gas Co Ltd filed Critical JFE Engineering Corp
Priority to JP2011225149A priority Critical patent/JP6042061B2/en
Publication of JP2013081924A publication Critical patent/JP2013081924A/en
Application granted granted Critical
Publication of JP6042061B2 publication Critical patent/JP6042061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nozzles (AREA)

Description

本発明は、気体と液体とを混合して噴霧する噴霧ノズル及び該噴霧ノズルを用いた流体微粒化装置に関する。   The present invention relates to a spray nozzle that mixes and sprays a gas and a liquid, and a fluid atomization apparatus using the spray nozzle.

液化天然ガス(以下、「LNG」という)を気化して都市ガスとして供給する際、熱量調整を行っている。近年はメタン成分の多いLNGの輸入が増加しており、都市ガス用に増熱する場合が多い。熱量調整は天然ガスに液化石油ガス(以下、「LPG」という)等の熱量調整剤を混合することにより行う。
このような熱量調整方法として、例えば特開昭63−265994号公報(特許文献1)には、気化した天然ガスをベンチュリ型の液・ガスミキサーに供給し、ベンチュリ管で発生する高速流れおよび低圧を利用して、ベンチュリ管に液体の状態で供給される熱量調整剤を微粒化・蒸発・混合させる技術が開示されている。
When liquefied natural gas (hereinafter referred to as “LNG”) is vaporized and supplied as city gas, the amount of heat is adjusted. In recent years, the import of LNG rich in methane components has increased, and in many cases the heat is increased for city gas. The calorific value is adjusted by mixing natural gas with a calorific value adjusting agent such as liquefied petroleum gas (hereinafter referred to as “LPG”).
As such a calorific value adjusting method, for example, Japanese Patent Laid-Open No. 63-265994 (Patent Document 1) supplies vaporized natural gas to a venturi-type liquid / gas mixer, and generates a high-speed flow and low pressure generated in a venturi pipe. A technique for atomizing, evaporating, and mixing a calorific value adjusting agent supplied in a liquid state to a venturi tube is disclosed.

また、都市ガスの増熱装置ではないが、内燃機関の燃料気化器に関する特開昭53−131328号公報(特許文献2)には、ベンチュリ管内に流路方向に移動可能な絞り部材を設ける技術が開示されている。
さらに、特開平8−75621号公報(特許文献3)には、定流量サンプリング装置に関し、ガスの流路となる管内に紡錘型のコアを固定し、コアの外側に配置されたスロート部をパルスモータによって流路方向に移動させることによって流路断面積を変化させる技術が開示されている。
また、実開昭56−41210号公報(特許文献4)、特開平4−248414号公報(特許文献5)には、流量測定制御装置に関し、ベンチュリ管のど部に円形の断面積が流路方向に沿って変化する面を有する可動体を配置し、この可動体を流路内に配置したモータによって駆動する技術が開示されている。
さらに、特開2011−56400(特許文献6)は流体の混合方法に関するもので、主流路よりも流路断面が小さい小径部を有する分岐流路を主流路から分岐して設け、分岐流路の出口側を主流路に配置し、分岐流路における小径部又はその近傍に第2流体の供給部を設け、主流路の流量を調整することにより分岐流路の小径部を流れる第1流体の流速を、第1流体と第2流体の混合に必要な流速に保つ技術が開示されている。
Japanese Patent Laid-Open No. 53-131328 (Patent Document 2) relating to a fuel vaporizer for an internal combustion engine, although not a city gas heat increasing device, discloses a technique for providing a throttle member that can move in the flow path direction in a venturi pipe. Is disclosed.
Further, JP-A-8-75621 (Patent Document 3) relates to a constant flow rate sampling device, in which a spindle-shaped core is fixed in a tube serving as a gas flow path, and a throat portion disposed outside the core is pulsed. A technique for changing a cross-sectional area of a flow path by moving it in the flow path direction by a motor is disclosed.
Japanese Utility Model Laid-Open No. 56-41210 (Patent Document 4) and Japanese Patent Application Laid-Open No. 4-248414 (Patent Document 5) relate to a flow rate measurement control device, and a circular cross-sectional area is provided in the flow direction in the throat portion of the Venturi tube. A technique is disclosed in which a movable body having a surface that changes along the line is disposed, and the movable body is driven by a motor disposed in a flow path.
Furthermore, JP 2011-56400 A (Patent Document 6) relates to a fluid mixing method, and a branch channel having a small diameter portion whose channel cross section is smaller than that of the main channel is provided by branching from the main channel. The flow rate of the first fluid that flows through the small-diameter portion of the branch flow path by arranging the outlet side in the main flow path, providing the second fluid supply section at or near the small-diameter section of the branch flow path, and adjusting the flow rate of the main flow path Is a technique for maintaining the flow rate required for mixing the first fluid and the second fluid.

特開昭63−265994号公報JP 63-265994 A 特開昭53−131328号公報JP-A-53-131328 特開平8−75621号公報JP-A-8-75621 実開昭56−41210号公報Japanese Utility Model Publication No. 56-41210 特開平4−248414号公報JP-A-4-248414 特開2011−56400公報JP 2011-56400 A

天然ガスの流量は都市ガス需要量に応じて変動する。運転流量を定格流量で割った数値をターンダウン比というが、天然ガスのターンダウン比は、低いときは1/20程度で運転されることもある。
一方、ベンチュリ管は流量が低下するとその流速および低圧発生効果が低下する。特許文献1に開示されたものの様に、ベンチュリ管のど部の断面積が一定のものでは都市ガス需要量の変化が大きい場合には対応できないという問題がある。
ベンチュリ管などは、定格流量を基準にして設計されるが、天然ガスのターンダウン比が低いときはベンチュリ部の流速が低下するため、熱量調整剤として添加されるLPGが天然ガスと十分に気化混合されず、管底などに液が溜まる液だれ現象が生じてしまう。この現象が生じると、都市ガスの製造に支障が出る。
ベンチュリ管によって気化混合できる天然ガスのターンダウン比は、1/1〜1/5程度である。そのため、流量変動範囲の大きい適用先に特許文献1の技術を用いる場合には、流量範囲に応じて大きさの異なるベンチュリ管を用意する必要があり、装置の複雑化等の問題がある。
The flow rate of natural gas varies according to the city gas demand. A value obtained by dividing the operation flow rate by the rated flow rate is referred to as a turndown ratio. However, when the turndown ratio of natural gas is low, it may be operated at about 1/20.
On the other hand, when the flow rate of the Venturi tube decreases, the flow velocity and the low pressure generation effect decrease. Like the one disclosed in Patent Document 1, there is a problem that it is impossible to cope with a large change in the amount of city gas demand if the sectional area of the venturi tube throat is constant.
Venturi pipes, etc. are designed based on the rated flow rate, but when the natural gas turndown ratio is low, the flow rate of the venturi section decreases, so the LPG added as a calorie regulator is sufficiently vaporized with natural gas A liquid dripping phenomenon occurs in which the liquid is accumulated at the bottom of the tube without being mixed. If this phenomenon occurs, it will interfere with the production of city gas.
The turndown ratio of natural gas that can be vaporized and mixed by the venturi tube is about 1/1 to 1/5. For this reason, when the technique of Patent Document 1 is used as an application destination with a large flow rate fluctuation range, it is necessary to prepare venturi pipes having different sizes according to the flow rate range, which causes problems such as complication of the apparatus.

この点、特許文献2に記載の技術においては、絞り部材の軸方向位置を変化させることによってベンチュリ管を通過する空気流量に変動があっても、対応できるようにしている。
しかしながら、特許文献2においては、絞り部材を軸方向に移動させるための駆動方法が開示されていない。また、仮に駆動源が流路外にあるとすると、駆動軸が流路外へ貫通することになり、頻繁に可動する面をシールすることになる。そのため、この面より流体が漏洩するおそれがあり、流体が可燃性であったり危険物であったりする場合には安全性に懸念が生じる。
また、特許文献3においても、紡錘型のコアの外側に配置したスロート部を流路方向に移動させるようにしているので、ガス流量の変動には対応可能であるが、駆動部が流路外に設置されているため、特許文献2の場合と同様、駆動機構が流路内外を貫通し、かつ可動する面(摺動面)でのシール性の問題が生ずる。
In this regard, in the technique described in Patent Document 2, even if the flow rate of the air passing through the venturi pipe varies, the axial position of the throttle member is changed so as to cope with it.
However, Patent Document 2 does not disclose a driving method for moving the aperture member in the axial direction. Further, if the drive source is outside the flow path, the drive shaft penetrates outside the flow path, and the frequently moving surface is sealed. Therefore, there is a possibility that the fluid may leak from this surface, and there is a concern about safety when the fluid is flammable or dangerous.
Also in Patent Document 3, since the throat portion disposed outside the spindle core is moved in the direction of the flow path, it is possible to cope with fluctuations in the gas flow rate, but the drive section is outside the flow path. As in the case of Patent Document 2, the drive mechanism penetrates the inside and outside of the flow path, and there is a problem of sealing performance on the movable surface (sliding surface).

また、特許文献4、5においても同様に、ガス流量の変動には対応可能であるものの、駆動源としてのモータをガス流路内に配設しているため、構造が複雑になる上に、駆動エネルギーを必要とし、さらに、モータ部への流体の流入を考慮すると、可燃性や腐食性を有している流体への適用が難しいという問題がある。
さらに、特許文献5に開示されたものにおいては、圧力・温度に基づいて「流量」を制御しているが、流体の混合の観点で重要となるのは、流量の変動に合わせてベンチュリ管のど部の流速を制御することであり、特許文献5のものではこのような制御をすることはできない。
Similarly, in Patent Documents 4 and 5, although it is possible to cope with fluctuations in the gas flow rate, a motor as a drive source is disposed in the gas flow path, so that the structure becomes complicated. Considering the inflow of fluid into the motor unit that requires driving energy, there is a problem that it is difficult to apply to fluids that are flammable or corrosive.
Furthermore, in the one disclosed in Patent Document 5, the “flow rate” is controlled based on the pressure and temperature. However, what is important from the viewpoint of mixing the fluid is the throat of the venturi tube in accordance with the fluctuation of the flow rate. This is to control the flow velocity of the part, and such control is not possible with the one of Patent Document 5.

特許文献6に開示されたものは、これらの課題の解決を図ったものであり、広い流量範囲に対して高い混合効果を確実に得ることが可能で、可動体などの可動部が不要であり、それ故可動部を駆動するための駆動部も不要になり、構造を簡易なものにすることができ、可燃性や腐食性を有する流体に対しても適用できる。
この流体混合装置では、分岐管の内部もしくは出口近傍で気体と液体とが混合されるが、気体と液体との速度差により液体が引きちぎられ、微粒化が促進される。しかし、流量などの条件が厳しいときは液体が必ずしも微粒化せず、液だれ現象が起きる懸念もあった。すなわち、定格流量が大きい流体混合装置は、主流管や分岐管の口径も大きくなる。分岐管の口径が大きくなるほど、分岐管の流路容積に対する液相と気相の界面面積(気相と液相の接触面積)が相対的に小さくなる。微粒化は、気相と液相の流速差に起因するせん断力で液相を気相で引きちぎる作用を利用するため、気相と液相の接触面積が相対的に小さくなることは、微粒化性能の低下につながる。
一方、分岐管内の気相流速を増加させると微粒化性能を高めることができるが、流速の2乗に比例して圧力損失が大きくなるため、分岐管内の気相流速をむやみに増加させることはできなかった。
The one disclosed in Patent Document 6 is intended to solve these problems, and can reliably obtain a high mixing effect over a wide flow rate range, and does not require a movable part such as a movable body. Therefore, the driving unit for driving the movable unit is not required, the structure can be simplified, and the present invention can be applied to a flammable or corrosive fluid.
In this fluid mixing apparatus, the gas and the liquid are mixed inside the branch pipe or in the vicinity of the outlet, but the liquid is torn by the speed difference between the gas and the liquid, and atomization is promoted. However, when conditions such as the flow rate are severe, there is a concern that the liquid does not necessarily atomize and a dripping phenomenon may occur. That is, in the fluid mixing device having a large rated flow rate, the diameters of the main flow pipe and the branch pipe are also large. The larger the diameter of the branch pipe, the smaller the interface area between the liquid phase and the gas phase relative to the flow path volume of the branch pipe (the contact area between the gas phase and the liquid phase). Atomization uses the action of tearing the liquid phase into the gas phase due to the shearing force caused by the difference in flow rate between the gas phase and the liquid phase, so the contact area between the gas phase and the liquid phase is relatively small. It will lead to performance degradation.
On the other hand, increasing the gas flow velocity in the branch pipe can improve the atomization performance, but since the pressure loss increases in proportion to the square of the flow velocity, it is not possible to increase the gas flow velocity in the branch pipe unnecessarily. could not.

本発明は係る課題を解決するためになされたものであり、構造が簡単で、可燃性や腐食性を有する流体に対しても適用可能で、かつ液だれ現象を防止する効果の高い噴霧ノズル及び該噴霧ノズルを用いた流体微粒化装置を提供することを目的としている。   The present invention has been made in order to solve such problems, and has a simple structure, is applicable to fluids having flammability and corrosivity, and has a high effect of preventing dripping phenomenon and It is an object of the present invention to provide a fluid atomization apparatus using the spray nozzle.

(1)本発明に係る噴霧ノズルは、基端側から気体の供給を受け、先端側に気体を噴出する外管と、該外管内に該外管と同軸方向に配置された平行な管路からなる内管と、その開口が該内管の内周面に設けられて該内管に液体を供給する液体供給管と、前記内管内に設けられて内管内部を流路方向に仕切る壁部材とを備え、
該壁部材は、前記内管における前記液体供給管によって液体が供給される液体供給部よりも下流側に設けられていると共に、
前記内管における液体供給管の接続部の下流側の流路方向の長さが、前記内管の流路径の5倍以上であることを特徴とするものである。
(1) A spray nozzle according to the present invention includes an outer tube that receives a gas supply from a proximal end side and ejects gas toward a distal end side, and a parallel pipe line that is disposed in the outer tube in a direction coaxial with the outer tube. An inner pipe having an opening provided on the inner peripheral surface of the inner pipe to supply liquid to the inner pipe, and a wall provided in the inner pipe for partitioning the inside of the inner pipe in the flow direction. With members,
The wall member is provided on the downstream side of the liquid supply part to which the liquid is supplied by the liquid supply pipe in the inner pipe ,
The length in the flow path direction on the downstream side of the connection portion of the liquid supply pipe in the inner pipe is at least five times the flow path diameter of the inner pipe .

)また、上記(1)に記載のものにおいて、前記壁部材は、板状部材からなることを特徴とするものである。
( 2 ) Further, in the above (1 ), the wall member is a plate-like member.

)また、上記(1)に記載のものにおいて、前記壁部材は、管状部材からなることを特徴とするものである。
( 3 ) Further, in the above (1 ), the wall member is a tubular member.

)本発明に係る流体微粒化装置は、上記(1)乃至()のいずれかに記載の噴霧ノズルを用いた流体微粒化装置であって、前記噴霧ノズルに供給される気体の流量を検出する流量検出装置と、該流量検出装置の検出値に基づいて前記噴霧ノズル内を流れる気体の流量を調整する流量調整弁とを備えたことを特徴とするものである。 ( 4 ) A fluid atomization apparatus according to the present invention is a fluid atomization apparatus using the spray nozzle according to any one of (1) to ( 3 ) above, and a flow rate of gas supplied to the spray nozzle And a flow rate adjusting valve for adjusting the flow rate of the gas flowing in the spray nozzle based on the detection value of the flow rate detecting device.

本発明によれば、広い流量範囲に対して高い混合効果を確実に得ることが可能であり、液だれ現象を防止する効果が高い。
また、内管を流れ方向に分割する壁部材を設けているので、液膜が複数の分割壁面上に形成され、液膜表面積すなわち気液接触面積が増大し、ノズル径が大きい場合であっても液だれ現象を防止して微粒化性能を向上させることができる。
また、可動体などの可動部が不要で、その可動部を駆動するための駆動部も不要なので、構造を簡易なものにすることができる。
さらに、基本的に管部材のみで構成されるので、材料の選択の自由度が高く、適切な材料を選ぶことによって可燃性や腐食性を有する流体に対しても適用可能である。
According to the present invention, a high mixing effect can be reliably obtained over a wide flow rate range, and the effect of preventing the dripping phenomenon is high.
Further, since the wall member that divides the inner pipe in the flow direction is provided, the liquid film is formed on a plurality of divided wall surfaces, the liquid film surface area, that is, the gas-liquid contact area increases, and the nozzle diameter is large. The dripping phenomenon can be prevented and the atomization performance can be improved.
In addition, since a movable part such as a movable body is unnecessary and a drive part for driving the movable part is also unnecessary, the structure can be simplified.
Furthermore, since it is basically composed of only a pipe member, the degree of freedom in selecting a material is high, and it can be applied to a fluid having combustibility and corrosivity by selecting an appropriate material.

本発明の一実施の形態に係る噴霧ノズルの説明図である。It is explanatory drawing of the spray nozzle which concerns on one embodiment of this invention. 水平管内を流れる液相及び気相の流速の違いによる流動様式を模式的に説明する説明図である。It is explanatory drawing which illustrates typically the flow pattern by the difference in the flow velocity of the liquid phase which flows in a horizontal pipe, and a gaseous phase. 本発明の一実施の形態に係る噴霧ノズルの説明図であって、特に壁部材の他の態様を説明する図である。It is explanatory drawing of the spray nozzle which concerns on one embodiment of this invention, Comprising: It is a figure explaining the other aspect of a wall member especially. 本発明の一実施の形態に係る噴霧ノズルの使用例としてのベンチュリ型微粒化装置の説明図である。It is explanatory drawing of the venturi-type atomization apparatus as an example of use of the spray nozzle concerning one embodiment of the present invention. 図4の一部を拡大して示す拡大図である。It is an enlarged view which expands and shows a part of FIG.

[実施の形態1]
本実施の形態に係る噴霧ノズル1は、気体と液体を混合して噴霧する噴霧ノズルである。
噴霧ノズル1によって混合される気体と液体の性状や用途は特に限定されないが、一例として、LNGを気化した天然ガス(気体)にLPG(液化石油ガス)(液体)を添加・混合して都市ガスを製造する場合が挙げられる。
以下、本実施の形態1の噴霧ノズルを主として図1に基づいて説明する。図1において、図1(a)が噴霧ノズル1の軸方向(流体の流れ方向)に沿う断面図であり、図1(b)が矢視A−Aに沿う断面図である。なお、図1において、白抜き矢印は気体の流れの方向を示し、斜線の矢印は液体の流れの方向を示している。
また、本明細書において気体及び/又は液体の流路に配置された部材の部位を特定する用語として、先端とは気流、液流の流れ方向下流側をいい、基端とは気流、液流の流れ方向上流側をいう。
[Embodiment 1]
The spray nozzle 1 according to the present embodiment is a spray nozzle that mixes and sprays gas and liquid.
The properties and applications of the gas and liquid mixed by the spray nozzle 1 are not particularly limited. As an example, city gas is obtained by adding and mixing LPG (liquefied petroleum gas) (liquid) to natural gas (gas) vaporized LNG. May be mentioned.
Hereinafter, the spray nozzle of the first embodiment will be described mainly with reference to FIG. 1A is a cross-sectional view taken along the axial direction (fluid flow direction) of the spray nozzle 1, and FIG. 1B is a cross-sectional view taken along the line AA. In FIG. 1, white arrows indicate the direction of gas flow, and hatched arrows indicate the direction of liquid flow.
Further, in the present specification, as a term for specifying a part of a member disposed in a gas and / or liquid flow path, the tip refers to the downstream side in the flow direction of the air flow and liquid flow, and the base end refers to the air flow and liquid flow. The upstream side in the flow direction.

本実施の形態に係る噴霧ノズル1の基本構成は、図1に示すように、基端側から気体の供給を受け、先端側に気体を噴出する外管2と、外管2内に外管2と同軸方向に配置された内管3と、内管3に液体を供給する液体供給管4と、内管3内に設けられて内管3の内部を流路方向に仕切る壁部材5とを備えているものである。
以下、各構成を詳細に説明する。
As shown in FIG. 1, the basic configuration of the spray nozzle 1 according to the present embodiment includes an outer tube 2 that receives supply of gas from the proximal end side and jets gas to the distal end side, and an outer tube in the outer tube 2. 2, an inner tube 3 disposed in the same direction as the axis 2, a liquid supply tube 4 that supplies liquid to the inner tube 3, and a wall member 5 that is provided in the inner tube 3 and partitions the inside of the inner tube 3 in the flow direction. It is equipped with.
Hereinafter, each configuration will be described in detail.

<外管>
外管2は基端側から気体の供給を受ける。外管2が気体の供給を受ける態様としては、例えば外管2を気体が通流する配管内に配置する場合や、あるいは外管2の基端側を、気体を供給する図示しない気体供給管に接続する場合がある。
<Outer tube>
The outer tube 2 is supplied with gas from the base end side. As an aspect in which the outer tube 2 is supplied with gas, for example, when the outer tube 2 is arranged in a pipe through which gas flows, or a gas supply tube (not shown) that supplies gas to the proximal end side of the outer tube 2 May be connected to.

<内管>
内管3の先端部は、外管2と同軸方向でかつ外管2の内壁と空間を介して外管2の内側に配置されている。内管3はその側部において、液体供給管4から液体の供給を受けて先端側で液体を噴出する。噴出とは内管3の内部側からの力によって液体が勢いよく吐出する場合のみならず、内管3の先端部に供給された液体が内管3の外部の気流に巻き込まれて吐出する場合を含む。
内管3の断面形状は特に問わず、円でも多角形でもよい。さらに、内管3の内部に通過する流体に旋回流を与える構造、例えば旋回羽根を設けるようにしてもよい。
なお、内管3の内部に付属させる部材は着脱可能にしてもよい。
内管3は外管2に固定されているが、その固定方法は特に問わず、例えばステー(図示なし)によって固定するようにすればよい。
<Inner pipe>
The distal end portion of the inner tube 3 is disposed coaxially with the outer tube 2 and inside the outer tube 2 via the inner wall and space of the outer tube 2. The inner tube 3 receives liquid supply from the liquid supply tube 4 at the side thereof, and ejects liquid at the tip side. The ejection is not only when the liquid is ejected vigorously by the force from the inner side of the inner tube 3, but also when the liquid supplied to the tip of the inner tube 3 is caught in and discharged from the air flow outside the inner tube 3. including.
The cross-sectional shape of the inner tube 3 is not particularly limited, and may be a circle or a polygon. Further, a structure for giving a swirling flow to the fluid passing through the inner pipe 3, for example, swirling blades may be provided.
The member attached to the inside of the inner tube 3 may be detachable.
The inner tube 3 is fixed to the outer tube 2, but the fixing method is not particularly limited, and may be fixed by, for example, a stay (not shown).

内管3は、外管2と同軸方向に配置されており、外管2を流れる気体の一部が流入し、液体供給管4から供給された液体とが二相流状態で流れる。
二相流とは、二つの相、たとえば液相と気相が混ざり合って流動する現象をいう。霧は空気中に非常に小さな水の液滴が存在するが、これは噴霧流(ミスト流)と呼ばれる二相流で、気相中に液相が分散されている。
一方、例えばコップの中に注がれたビールは、ビールの中に小さな炭酸ガスの気泡がたくさん含まれているが、このような形態は気泡流(バブル流)と呼ばれる二相流で、液相中に気相が分散している。噴霧流中の液滴や気泡流中の気泡は分散相と呼ばれ、一方噴霧流中の気相や気泡流中の液相は連続相と呼ばれている。
地上の大気圏のような開かれた空間では、通常は分散相が連続相中にほぼ均一に分散し、噴霧流や気泡流のような均質な流れが存在している。しかし、管内のような閉ざされた空間を流れる二相流は、均質な流れだけではなく不均質な流れも生ずる。
The inner tube 3 is arranged coaxially with the outer tube 2, a part of the gas flowing through the outer tube 2 flows in, and the liquid supplied from the liquid supply tube 4 flows in a two-phase flow state.
Two-phase flow refers to a phenomenon in which two phases, for example, a liquid phase and a gas phase, are mixed and flow. Mist has very small water droplets in the air. This is a two-phase flow called a spray flow (mist flow), and the liquid phase is dispersed in the gas phase.
On the other hand, beer poured into a glass, for example, contains a lot of small carbon dioxide bubbles in the beer, but this form is a two-phase flow called bubble flow, The gas phase is dispersed in the phase. The droplets in the spray flow and the bubbles in the bubble flow are called dispersed phases, while the gas phase in the spray flow and the liquid phase in the bubble flow are called continuous phases.
In an open space such as the earth's atmosphere, the dispersed phase is normally dispersed almost uniformly in the continuous phase, and there is a homogeneous flow such as a spray flow or bubble flow. However, a two-phase flow that flows in a closed space such as in a pipe generates not only a homogeneous flow but also a non-uniform flow.

二相流の流動形態は気相と液相の流速に依存しており、これらによって流動形態がどのようになるかを示す状態図が実験的に得られている。
図2には、水平管内を流れる液相及び気相の流速の違いによる流動様式を模式的に示す図が示されている。ここに示された図は、書籍「気液二相流」(著者:植田辰洋、出版社:養賢堂)に記載のものである。水平管内を流れる液相及び気相は、流速の違いによって次の様な流動様式を示す。なお、液相及び気相の流速とは、それぞれ気相、液相の流量を流路断面積で割った見掛け流速のことで、空塔速度ともいう。以下、本明細書において流速とは空塔速度をいう。
気相の流速の違いによる流動様式の変遷を示すと以下のようになる。
(1)気相の流速が遅い場合
液相の流速も遅いと、液相は配管の底面に沿って流れる(成層流)。一方、液相の流速が速くなると、せん状流や気泡流となる。
(2)気相の流速がやや速い場合
気相流速が速くなると気液界面が波立ち、波状流またはスラグ流となる。
(3)気相の流速が速い場合
さらに気相流速が増すと液の一部が飛散するようになり、液相が壁面方向に押しやられて管壁に沿った環状液膜として流れ、気相が管中央部を連続的にかなりの流速で流れる、環状流または環状噴霧流となる。
なお、流動様式は配管姿勢の影響を受ける場合があり、重力方向が水平配管と異なる鉛直配管などは、流動様式が一部異なる。しかし、気相流速が速いときは流速(慣性力)が重力より相対的に支配的になるため、流動様式に対する配管姿勢の影響は小さくなる。すなわち、気相流速が速いときは、配管姿勢によらずに環状流または環状噴霧流となる。
The flow form of the two-phase flow depends on the flow velocity of the gas phase and the liquid phase, and a phase diagram showing how the flow form is obtained by these is experimentally obtained.
FIG. 2 is a diagram schematically showing a flow pattern according to a difference in flow velocity between the liquid phase and the gas phase flowing in the horizontal pipe. The figure shown here is the one described in the book “Gas-liquid two-phase flow” (author: Yasuhiro Ueda, publisher: Yokendo). The liquid phase and the gas phase flowing in the horizontal pipe show the following flow modes depending on the difference in flow velocity. The liquid-phase and gas-phase flow rates are apparent flow rates obtained by dividing the gas-phase and liquid-phase flow rates by the cross-sectional area of the flow path, and are also referred to as superficial velocity. Hereinafter, the flow velocity in this specification refers to the superficial velocity.
The transition of the flow pattern due to the difference in the flow velocity of the gas phase is as follows.
(1) When the gas phase flow rate is slow When the liquid phase flow rate is slow, the liquid phase flows along the bottom surface of the pipe (stratified flow). On the other hand, when the flow velocity of the liquid phase is increased, a spiral flow or a bubble flow is generated.
(2) When the gas phase flow rate is slightly high When the gas phase flow rate becomes high, the gas-liquid interface undulates and becomes a wavy flow or slag flow.
(3) When the gas phase flow rate is high, when the gas phase flow rate is further increased, part of the liquid is scattered, the liquid phase is pushed toward the wall surface and flows as an annular liquid film along the tube wall, and the gas phase Becomes an annular flow or an annular spray flow that continuously flows in the center of the tube at a considerable flow rate.
Note that the flow mode may be affected by the piping posture, and the flow mode is partially different for vertical pipes and the like whose gravity direction is different from that of the horizontal pipe. However, when the gas-phase flow velocity is high, the flow velocity (inertial force) becomes more dominant than gravity, so the influence of the piping posture on the flow mode becomes small. That is, when the gas phase flow velocity is high, the flow becomes an annular flow or an annular spray flow regardless of the piping posture.

本実施の形態の噴霧ノズル1では、内管3内で環状噴霧流を生じさせると、液体の微粒化が促進され、液体と気体の混合が高まる。
環状噴霧流を生じさせるには、液体と気体の流量比にもよるが、気体の空塔速度を10m/s以上、より望ましくは20m/s以上にすればよい。なお、環状流の状態でも液体の微粒化効果は得られるが、環状噴霧流とすることでその効果をより高めることができる。逆に、内管3内の気体流速が小さくなると、環状流や環状噴霧流状態を保てなくなり、波状流、スラグ流、気泡流などの流動状態に遷移する。その場合、内管3内での液相の分散性・均一性が劣化するとともに、気液接触面積が減少するため、微粒化性能が低下することになる。
In the spray nozzle 1 of the present embodiment, when an annular spray flow is generated in the inner tube 3, the atomization of the liquid is promoted, and the mixing of the liquid and the gas is increased.
In order to generate the annular spray flow, although depending on the flow rate ratio between the liquid and the gas, the superficial velocity of the gas may be 10 m / s or more, more preferably 20 m / s or more. In addition, although the atomization effect of a liquid is acquired also in the state of an annular flow, the effect can be heightened more by setting it as an annular spray flow. On the contrary, when the gas flow velocity in the inner pipe 3 becomes small, the annular flow or the annular spray flow state cannot be maintained, and a transition is made to a flow state such as a wavy flow, a slag flow, or a bubble flow. In this case, the dispersibility and uniformity of the liquid phase in the inner tube 3 is deteriorated and the gas-liquid contact area is reduced, so that the atomization performance is lowered.

気体の空塔速度と液ダレの有無の関係を調査する実験を行ったので、これについて以下説明する。
実験条件は以下の通りである。
・気体:天然ガス
・液体:LPG
・気体質量流量:液体質量流量=1:約0.1〜0.2(表1)
・気体質量流量:液体質量流量=1:約0.5〜1.0(表2)
・液だれの有無の確認方法:LPG添加下流側配管(水平管部)の上部と下部の表面温度の差および可視化部(サイトグラス)観察によって確認した。
実験結果を表1、表2に示す。
An experiment was conducted to investigate the relationship between the gas superficial velocity and the presence or absence of liquid sag. This will be described below.
The experimental conditions are as follows.
・ Gas: Natural gas ・ Liquid: LPG
・ Gas mass flow rate: Liquid mass flow rate = 1: About 0.1 to 0.2 (Table 1)
・ Gas mass flow rate: Liquid mass flow rate = 1: About 0.5 to 1.0 (Table 2)
-Method for confirming the presence or absence of dripping: It was confirmed by the difference in the surface temperature between the upper and lower surfaces of the LPG-added downstream pipe (horizontal pipe part) and the visualization part (sight glass) observation.
The experimental results are shown in Tables 1 and 2.

Figure 0006042061
Figure 0006042061

Figure 0006042061
Figure 0006042061

表1に示す結果によると、気体の空塔速度が遅いと液だれ現象が起きるので、気体の空塔速度を10m/s以上とするのが良いことが分かる。
また、気体の流量に対する液体の流量を表1よりも多くした表2に示す結果によると、気体の空塔速度を20m/s以上とするのが良いことが分かる。
According to the results shown in Table 1, since the dripping phenomenon occurs when the superficial velocity of the gas is slow, it is understood that the superficial velocity of the gas should be 10 m / s or more.
In addition, according to the results shown in Table 2 in which the liquid flow rate with respect to the gas flow rate is higher than that in Table 1, it is understood that the superficial velocity of the gas should be 20 m / s or more.

前述した通り、二相流の流動形態は気相と液相の流速に依存する。噴霧する液体の流量に基づき、内管3において環状噴霧流が生じる流速が得られる様に、内管3の流路断面積を決めることが望ましい。
また、内管3における液体供給管4の接続部(液体供給部)の下流側の流路方向の長さは、内管3の流路径の5倍以上とすることが望ましい。内管3の流路長さを上記に設定することで、気体流路が十分な速度を有する場合において、内管3内部において環状噴霧流が形成されやすくなる。
As described above, the flow form of the two-phase flow depends on the flow rates of the gas phase and the liquid phase. Based on the flow rate of the liquid to be sprayed, it is desirable to determine the cross-sectional area of the flow path of the inner tube 3 so that a flow velocity at which an annular spray flow is generated in the inner tube 3 is obtained.
Further, it is desirable that the length of the inner pipe 3 in the flow path direction on the downstream side of the connection portion (liquid supply section) of the liquid supply pipe 4 is not less than five times the flow path diameter of the inner pipe 3. By setting the flow path length of the inner pipe 3 as described above, an annular spray flow is easily formed inside the inner pipe 3 when the gas flow path has a sufficient speed.

<壁部材>
壁部材5は、内管3内における液体供給管4の接続部(液体供給部)の下流側に設けられて内管内部を流路方向に仕切る部材である。壁部材5は、図1に示したように、平板状のものでもよいし、あるいは図3に示すように、内管3と同軸方向に延びる管状部材7からなるものでもよく、またあるいはハニカム形状のもの(図示せず)でもよい。図3は、壁部材7を他の態様とした噴霧ノズル1を説明する図であり、図3(a)が噴霧ノズル1の軸方向(流体の流れ方向)に沿う断面図であり、図3(b)が噴霧ノズル1の正面図である。なお、図1と同一部分には同一の符号が付してある。なお、図3には管状部材7が内管3と概同軸状に1つ配設されている例を示したが、概同軸状に複数であっても良いし、また図3(c)に示すように流路方向に互いに平行して並ぶように配設しても良い。
壁部材5を設ける理由は以下の通りである。
内管3を流れる気相の流量が多い場合は、内管3の断面積を大きくする必要がある。しかしながら、内管3内の流動様式が環状流もしくは環状噴霧流となっている状態では、液相は内管3の内壁表面上を液膜状に流れており、内管3の断面積が大きくなるほど、内管3の流路容積に対する液相と気相の界面面積(気相と液相の接触面積)が相対的に小さくなる。微粒化は、気相と液相の流速差に起因するせん断力で液相を気相で引きちぎる作用を利用するため、気相と液相の接触面積が相対的に小さくなることは、微粒化性能の低下につながる。
そこで、内管3を流れ方向に分割する壁部材5を設けることにより、薄い液相の流れである液膜が複数の分割壁面上に形成され、液膜表面積すなわち気液接触面積が増大し、微粒化性能が向上する。
<Wall member>
The wall member 5 is a member that is provided on the downstream side of the connection part (liquid supply part) of the liquid supply pipe 4 in the inner pipe 3 and partitions the inside of the inner pipe in the flow path direction. The wall member 5 may be a flat plate as shown in FIG. 1, or may be formed of a tubular member 7 extending in the same direction as the inner tube 3 as shown in FIG. (Not shown) may be used. 3 is a view for explaining the spray nozzle 1 in which the wall member 7 is another embodiment, and FIG. 3A is a cross-sectional view along the axial direction (fluid flow direction) of the spray nozzle 1, and FIG. FIG. 2B is a front view of the spray nozzle 1. In addition, the same code | symbol is attached | subjected to the same part as FIG. Although FIG. 3 shows an example in which one tubular member 7 is arranged substantially coaxially with the inner tube 3, a plurality may be provided substantially coaxially, and FIG. As shown, they may be arranged in parallel to each other in the flow path direction.
The reason why the wall member 5 is provided is as follows.
When the flow rate of the gas phase flowing through the inner pipe 3 is large, the cross-sectional area of the inner pipe 3 needs to be increased. However, in a state in which the flow pattern in the inner tube 3 is an annular flow or an annular spray flow, the liquid phase flows in a liquid film form on the inner wall surface of the inner tube 3, and the cross-sectional area of the inner tube 3 is large. As shown, the interface area between the liquid phase and the gas phase relative to the flow path volume of the inner tube 3 (the contact area between the gas phase and the liquid phase) becomes relatively small. Atomization uses the action of tearing the liquid phase into the gas phase due to the shearing force caused by the difference in flow rate between the gas phase and the liquid phase, so the contact area between the gas phase and the liquid phase is relatively small. It will lead to performance degradation.
Therefore, by providing the wall member 5 that divides the inner pipe 3 in the flow direction, a liquid film that is a thin liquid phase flow is formed on the plurality of divided wall surfaces, and the liquid film surface area, that is, the gas-liquid contact area increases, Atomization performance is improved.

上記のように構成された本実施の形態に係る噴霧ノズル1の作用について説明する。
気体は噴霧ノズル1の基端側から供給され、その一部が内管3に流れる。液体が液体供給管4を介して内管3に供給される。
The operation of the spray nozzle 1 according to the present embodiment configured as described above will be described.
The gas is supplied from the proximal end side of the spray nozzle 1, and a part thereof flows into the inner tube 3. The liquid is supplied to the inner tube 3 through the liquid supply tube 4.

液体供給管4を介して内管3に供給された液体は、内管3の内部で気体と合流して内管3を混相状態で流れる。
内管3内では、気体の流速によって様々な流動形態をとることは前述の通りである。なお、内管3を流れる混合流動状態が環状流もしくは環状噴霧流となっている状態が最も液体の微粒化が良好、すなわち微粒液滴径が小さくなるので好ましい。
The liquid supplied to the inner tube 3 through the liquid supply tube 4 merges with the gas inside the inner tube 3 and flows through the inner tube 3 in a mixed phase.
As described above, the inner pipe 3 takes various flow forms depending on the flow velocity of the gas. A state in which the mixed flow state flowing through the inner tube 3 is an annular flow or an annular spray flow is preferable because the atomization of the liquid is most favorable, that is, the particle droplet diameter is reduced.

気相の流速が環状噴霧流を形成できる流速であった場合、液体供給管4から供給された液体は、環状噴霧流となって内管3の内壁面上に液膜を形成しながら流れる。本実施の形態の噴霧ノズル1は内管3の内部に壁部材5を設けているので、液膜が複数の壁面上に形成され、液膜表面積すなわち気液接触面積が増大し、気相の流量が多い場合、すなわち内管3の口径が大きい場合であっても優れた微粒化性能を実現できる。
内管3の出口部分において、内管3の内壁及び壁部材5の壁面上に形成されている液膜は、内管3の管軸方向に液膜状態を保ったまま噴出する。その液膜の両側には、内管3内を流れてきた気体流れもしくは外管2を流れてきた気体流れが存在する。すなわち、液膜は内外両面で気相と接し、液膜と気相の流速差に起因するせん断力によって液膜が引きちぎられ微粒化される。
When the flow rate of the gas phase is a flow rate capable of forming an annular spray flow, the liquid supplied from the liquid supply pipe 4 flows while forming a liquid film on the inner wall surface of the inner tube 3 as an annular spray flow. Since the spray nozzle 1 of the present embodiment is provided with the wall member 5 inside the inner tube 3, a liquid film is formed on a plurality of wall surfaces, the liquid film surface area, that is, the gas-liquid contact area increases, Even when the flow rate is large, that is, when the diameter of the inner tube 3 is large, excellent atomization performance can be realized.
At the outlet portion of the inner tube 3, the liquid film formed on the inner wall of the inner tube 3 and the wall surface of the wall member 5 is ejected while maintaining the liquid film state in the tube axis direction of the inner tube 3. On both sides of the liquid film, there is a gas flow flowing through the inner tube 3 or a gas flow flowing through the outer tube 2. That is, the liquid film is in contact with the gas phase on both the inner and outer surfaces, and the liquid film is torn and atomized by the shearing force resulting from the difference in flow rate between the liquid film and the gas phase.

なお、内管3内の流動態様が環状流もしくは環状噴霧流を保てる範囲に気相流速を維持するのが好ましく、逆にこの範囲内であれば気相速度を小さくできる(気相側圧力が小さくてよい)。概略、気相見かけ流速が10m/s以上、好ましくは20m/s以上となるように維持すればよい。   In addition, it is preferable to maintain the gas phase flow velocity within a range in which the flow mode in the inner pipe 3 can maintain the annular flow or the annular spray flow, and conversely within this range, the gas phase velocity can be reduced (the gas phase side pressure is reduced). Small). In general, the gas phase apparent flow rate may be maintained at 10 m / s or more, preferably 20 m / s or more.

以上のように、本実施の形態の噴霧ノズル1は、構造が簡単で、可燃性や腐食性を有する流体に対しても適用可能で、かつ液だれ現象を防止する効果が高い。
また、内管3内に壁部材5を設けて、液膜が複数の壁面上に形成されるようにしたので、気相の流量が多く、内管3の口径が大きくなる場合であっても微粒化性能が向上する。
内管3における液膜は気相流れで形成するので、液膜形成のために液相流路の断面積を絞る必要がなく、液相の流路は単純かつ断面積も大きくでき、液相側の圧力損失を小さく保てる。
また、噴霧ノズル1における気相側流路は概直管状であり、なんらの障害物もないので圧力損失が小さい。
As described above, the spray nozzle 1 of the present embodiment has a simple structure, can be applied to a flammable or corrosive fluid, and has a high effect of preventing a dripping phenomenon.
In addition, since the wall member 5 is provided in the inner tube 3 so that the liquid film is formed on the plurality of wall surfaces, even if the flow rate of the gas phase is large and the diameter of the inner tube 3 is increased. Atomization performance is improved.
Since the liquid film in the inner pipe 3 is formed by a gas phase flow, it is not necessary to reduce the cross-sectional area of the liquid phase flow path for forming the liquid film, and the liquid phase flow path is simple and the cross-sectional area can be increased. The pressure loss on the side can be kept small.
Further, the gas-phase-side channel in the spray nozzle 1 has a substantially straight tube shape, and there is no obstacle, so the pressure loss is small.

なお、上記の実施の形態においては、壁部材5を設ける位置を、液体供給部の下流側に設定していたが、壁部材5によって内管3内を複数の流路に分割した場合において、各流路内に液体を供給できる液体供給部を設ければ、壁部材5が液体供給部の上流側まで延出していてもよい。壁部材5で分割された各々区画に液体を均一に供給できる。   In the above embodiment, the position where the wall member 5 is provided is set on the downstream side of the liquid supply unit, but when the inner pipe 3 is divided into a plurality of flow paths by the wall member 5, If the liquid supply part which can supply a liquid is provided in each flow path, the wall member 5 may extend to the upstream of the liquid supply part. The liquid can be uniformly supplied to the respective sections divided by the wall member 5.

[実施の形態2]
本実施の形態は本発明の噴霧ノズル1の使用例として噴霧ノズル1を用いた微粒化装置の例を示したものであり、LNGを気化した天然ガスにLPGを添加することにより増熱して都市ガスを製造する際に用いられるものである。また、本実施の形態2においては、天然ガスが流れる主流管9にベンチュリ管11を設置してベンチュリ型微粒化装置13として構成したものである。
[Embodiment 2]
This embodiment shows an example of a atomization apparatus using the spray nozzle 1 as an example of use of the spray nozzle 1 of the present invention. The temperature is increased by adding LPG to natural gas obtained by vaporizing LNG. It is used when producing gas. Further, in the second embodiment, a venturi pipe 11 is installed in the main flow pipe 9 through which natural gas flows, and the venturi type atomizer 13 is configured.

本実施の形態に係るベンチュリ型微粒化装置13の基本構成は、図4、図5に示すように、天然ガスが流通する主流管9に設けられたベンチュリ管11と、主流管9から分岐した分岐管15と、ベンチュリ管11内に配置された噴霧ノズル1とを備え、噴霧ノズル1の外管2に分岐管15の先端が接続され、液体供給管4にはLPGを供給するLPG供給管(図示なし)が接続されている。   As shown in FIGS. 4 and 5, the basic configuration of the venturi-type atomization apparatus 13 according to the present embodiment is branched from the main flow pipe 9 and the venturi pipe 11 provided in the main flow pipe 9 through which natural gas flows. An LPG supply pipe that includes a branch pipe 15 and a spray nozzle 1 disposed in the venturi pipe 11, the tip of the branch pipe 15 is connected to the outer pipe 2 of the spray nozzle 1, and an LPG is supplied to the liquid supply pipe 4 (Not shown) is connected.

本実施の形態のベンチュリ型微粒化装置13においては、分岐管15に、分岐管15を流れる天然ガスの流量を検知する流量検出器17を設けると共に主流管9におけるベンチュリ管11と分岐管15が分岐する分岐部の間に流量調整弁19を設け、流量検出器17の検知信号に基づいて流量調整弁19の開度を調整するようにしている。
以下、各構成を詳細に説明する。
In the venturi type atomization apparatus 13 of the present embodiment, the branch pipe 15 is provided with a flow rate detector 17 for detecting the flow rate of natural gas flowing through the branch pipe 15, and the venturi pipe 11 and the branch pipe 15 in the main flow pipe 9 are provided. A flow rate adjusting valve 19 is provided between the branching portions, and the opening degree of the flow rate adjusting valve 19 is adjusted based on a detection signal of the flow rate detector 17.
Hereinafter, each configuration will be described in detail.

分岐管15は、主流管9における流量調整弁19の上流側から分岐して、その出口側が噴霧ノズル1の外管2に接続されている。
噴霧ノズル1の先端部は、ベンリュリ管のど部21もしくはベンリュリ管のど部21よりも上流側に配置されている。
The branch pipe 15 branches from the upstream side of the flow regulating valve 19 in the main flow pipe 9, and the outlet side thereof is connected to the outer pipe 2 of the spray nozzle 1.
The tip of the spray nozzle 1 is disposed upstream of the throat portion 21 of the Benury pipe or the throat portion 21 of the Benury tube.

LPGの微粒化・混合性能に大きく影響するのは噴霧ノズル1における内管3での流速である。なぜなら、内管3に供給される天然ガスの流速が所定の流速になることで、内管3内にLPGを巻き込んだ環状噴霧流が発生してLPGの微粒化・混合が行われるからである。
そのため、噴霧ノズル1における内管3の流路断面積は、都市ガスの最低流量運転のときにも、天然ガスの流速が、環状噴霧流発生に必要な流速を保つことができるような径にしておく。
例えば、都市ガス流量の変動範囲が30万Nm3/h〜6千Nm3/hの場合を想定すると、都市ガス流量が最低流量である6千Nm3/hのときには、天然ガスを分岐管15から概略全量流し、このときの内管3の天然ガス流速が環状噴霧流発生に必要な流速を保つような管径とする。(このとき分岐管15を流れる天然ガス流量は、天然ガス流量として想定される最低流量となる。)
その上で、想定される最低流量分を常に分岐管15に流すようにすれば、制御が簡単で安定したLPGの微粒化・混合が実現できる。以下の説明において、分岐管15におけるLPGの微粒化・混合に必要な流速を与える最小流量を所定値Aとする。
It is the flow velocity in the inner tube 3 of the spray nozzle 1 that greatly affects the atomization / mixing performance of LPG. This is because when the flow rate of the natural gas supplied to the inner tube 3 becomes a predetermined flow rate, an annular spray flow including LPG in the inner tube 3 is generated, and LPG is atomized and mixed. .
Therefore, the flow passage cross-sectional area of the inner pipe 3 in the spray nozzle 1 is set to such a diameter that the flow rate of the natural gas can maintain the flow rate necessary for generating the annular spray flow even when the city gas is operated at the minimum flow rate. Keep it.
For example, assuming that the fluctuation range of the city gas flow is 300,000 Nm 3 / h to 6,000 Nm 3 / h, when the city gas flow rate is 6,000 Nm 3 / h, which is the lowest flow rate, natural gas is branched. The pipe diameter is set so that the natural gas flow rate of the inner pipe 3 at this time maintains the flow rate necessary for generating the annular spray flow. (At this time, the flow rate of natural gas flowing through the branch pipe 15 is the lowest flow rate assumed as the flow rate of natural gas.)
In addition, if the assumed minimum flow rate is always allowed to flow through the branch pipe 15, LPG atomization and mixing that is easy and stable can be realized. In the following description, the minimum flow rate that gives the flow rate necessary for atomization / mixing of LPG in the branch pipe 15 is defined as a predetermined value A.

環状噴霧流発生に必要とされる流速は、実施ケースにより異なるが、表1及び表2にも示されるように概ね10〜20m/s以上である。したがって、想定される都市ガスの最低流量の場合に噴霧ノズル1の内管3で前記流速が確保でき、かつ圧力損失が高くなり過ぎないような管路となるように噴霧ノズル1における内管3の径や壁部材5の態様を設定すればよい。
なおベンリュリ管のど部21の径は、設計最大流量時の圧力損失が、その適用システムにとって過大とならないように設計しておく。
The flow rate required for generating the annular spray flow varies depending on the implementation case, but is generally 10 to 20 m / s or more as shown in Tables 1 and 2. Therefore, the inner pipe 3 in the spray nozzle 1 is configured so that the flow rate can be secured by the inner pipe 3 of the spray nozzle 1 and the pressure loss does not become too high at the assumed minimum flow rate of city gas. What is necessary is just to set the diameter and the aspect of the wall member 5.
The diameter of the venturi tube throat portion 21 is designed so that the pressure loss at the maximum design flow rate does not become excessive for the application system.

<流量検知器>
流量検出器17は、分岐管15に設けられて分岐管15を流れる天然ガスの流量を検知するものである。
なお、流量検出器17に代えて差圧検知器を設け、分岐管15における圧力損失を検知することで、あらかじめ把握しておいた分岐管15における流量と圧力損失の関係から、分岐管15内を流れる天然ガスの流量を検知するようにしてもよい。
<Flow detector>
The flow rate detector 17 is provided in the branch pipe 15 and detects the flow rate of natural gas flowing through the branch pipe 15.
It should be noted that a differential pressure detector is provided in place of the flow rate detector 17, and the pressure loss in the branch pipe 15 is detected. You may make it detect the flow volume of the natural gas which flows through.

<流量調整弁>
流量調整弁19は、主流管9におけるベンチュリ管11と分岐管15の分岐部との間に設けられて、流量検出器17の検知信号に基づいて主流管9を流れる天然ガス流量を調整し、これによって分岐管15を流れる天然ガス流量が予め定めた所定流量になるようにする。
なお、図2に示されるように、環状噴霧流とするための気相流速は液相流速の影響を受ける。このため、液体供給管4に供給されるLPG量を検知する第2の流量検知器を設け、供給LPG量も加味して分岐管15を流れる天然ガスの所定量を算出・設定することも可能である。ただし、第2の流量検知器を設けると制御も複雑となるため、実用上はLPG供給量によらず、一定の天然ガス流量(内管3内で例えば20m/sとなる流量)を所定量とすることが簡便である。
<Flow control valve>
The flow rate adjustment valve 19 is provided between the venturi pipe 11 and the branch part of the branch pipe 15 in the main flow pipe 9 and adjusts the flow rate of natural gas flowing through the main flow pipe 9 based on the detection signal of the flow rate detector 17. As a result, the flow rate of natural gas flowing through the branch pipe 15 is set to a predetermined flow rate.
In addition, as FIG. 2 shows, the gaseous-phase flow rate for setting it as a cyclic | annular spray flow is influenced by the liquid-phase flow rate. For this reason, a second flow rate detector that detects the amount of LPG supplied to the liquid supply pipe 4 is provided, and a predetermined amount of natural gas flowing through the branch pipe 15 can be calculated and set in consideration of the supplied LPG amount. It is. However, since the control becomes complicated when the second flow rate detector is provided, a constant natural gas flow rate (for example, a flow rate of 20 m / s in the inner pipe 3) is a predetermined amount regardless of the LPG supply amount in practice. Is convenient.

<動作説明>
次に上記のように構成された本実施の形態に係るベンチュリ型流体微粒化装置13の動作を説明する。
上流側から供給される天然ガスは、分岐部を通過する際に分岐管15にも流れ、分岐管15の出口側において噴霧ノズル1の外管2に流入する。外管2に流入した天然ガスの一部は内管3に流入し、液体供給管4から供給されるLPGを巻き込んで内管3内で環状噴霧流を発生し、LPGの微粒化・混合が行われ、ベンリュリ管のど部21に流入する。
他方、主流管9を流れる天然ガスもベンリュリ管のど部21に流入する。したがって、ベンリュリ管のど部21には、分岐管15を経由してLPGが添加された天然ガスと、主流管9からの天然ガスが流入し、ベンリュリ管のど部21を通過の際、さらにLPGの混合が促進される。
<Description of operation>
Next, the operation of the venturi type fluid atomization apparatus 13 according to the present embodiment configured as described above will be described.
Natural gas supplied from the upstream side also flows into the branch pipe 15 when passing through the branch portion, and flows into the outer pipe 2 of the spray nozzle 1 on the outlet side of the branch pipe 15. Part of the natural gas that flows into the outer pipe 2 flows into the inner pipe 3, entrains the LPG supplied from the liquid supply pipe 4 and generates an annular spray flow in the inner pipe 3, and the atomization and mixing of the LPG is performed. And flows into the throat portion 21 of the Benlury tube.
On the other hand, the natural gas flowing through the main flow pipe 9 also flows into the Bentury pipe throat 21. Therefore, the natural gas to which LPG is added via the branch pipe 15 and the natural gas from the main flow pipe 9 flow into the Benlury pipe throat portion 21 and further pass through the Benury pipe throat portion 21 when the LPG is further passed through. Mixing is promoted.

都市ガスの流量はその需要量に応じて成り行きで増減する。例えば、都市ガス需要量が減少し、流路を流れる流体の流量が減少すると、分岐管15及び主流管9を流れるトータルの天然ガスの流量が減少する。分岐管15を流れる天然ガス流量が所定値Aよりも減少すると内管3の流速が減少し、環状噴霧流が形成されなくなり、LPGの微粒化・混合が不十分になることが懸念される。
そこで、流量検出器17で検知される流量が所定値Aよりも減少したら、流量調整弁19の開度を小さくすることによって分岐管15を流れる天然ガス流量が所定値Aを維持するようにする。
分岐管15を流れる天然ガス流量を所定値A以上に維持することで、内管3における流速が維持されLPGの微粒化・混合効果を確保することができる。
The flow rate of city gas increases or decreases depending on the demand. For example, when the demand for city gas decreases and the flow rate of the fluid flowing through the flow path decreases, the total flow rate of natural gas flowing through the branch pipe 15 and the main flow pipe 9 decreases. When the flow rate of the natural gas flowing through the branch pipe 15 is reduced below the predetermined value A, the flow velocity of the inner pipe 3 is reduced, the annular spray flow is not formed, and there is a concern that LPG atomization / mixing becomes insufficient.
Therefore, when the flow rate detected by the flow rate detector 17 decreases below the predetermined value A, the flow rate of the natural gas flowing through the branch pipe 15 is maintained at the predetermined value A by decreasing the opening degree of the flow rate adjusting valve 19. .
By maintaining the flow rate of natural gas flowing through the branch pipe 15 at a predetermined value A or higher, the flow rate in the inner pipe 3 is maintained, and the effect of atomization / mixing of LPG can be ensured.

逆に、都市ガス需要量が増加し、流路を流れる流体の流量が増加すると、分岐管15及び主流管9を流れる天然ガスの流量が増加する。   Conversely, when the demand for city gas increases and the flow rate of the fluid flowing through the flow path increases, the flow rate of natural gas flowing through the branch pipe 15 and the main flow pipe 9 increases.

分岐管15を流れる天然ガス流量が増加するに伴って圧力損失も大きくなる。
そこで、流量検出器17で検知される流量が所定値Bよりも増加したら、流量調整弁19の開度を大きくして主流管9を流れる量を増やし、分岐管15を流れる天然ガス流量が所定値Bになるようにする。ここで、所定値B≧所定値Aの関係にある。
分岐管15を流れる天然ガス流量を所定値A以上B以下にすることで、分岐管15における流速が所定の範囲に維持されLPGの微粒化・混合を十分にすることができると共に圧力損失の過大な増大を防止することができる。
As the flow rate of natural gas flowing through the branch pipe 15 increases, the pressure loss also increases.
Therefore, when the flow rate detected by the flow rate detector 17 increases from a predetermined value B, the opening degree of the flow rate adjustment valve 19 is increased to increase the amount flowing through the main flow pipe 9, and the flow rate of natural gas flowing through the branch pipe 15 is predetermined. The value B is set. Here, there is a relationship of the predetermined value B ≧ the predetermined value A.
By setting the flow rate of the natural gas flowing through the branch pipe 15 to a predetermined value A or more and B or less, the flow velocity in the branch pipe 15 is maintained within a predetermined range, and LPG can be sufficiently atomized and mixed, and the pressure loss is excessive. Increase can be prevented.

例えば、最も単純な制御方法としては、所定値A=所定値B=[都市ガス最低流量時の天然ガス流量(天然ガス最低流量)]とする場合である。
前述した例と同様、都市ガス流量の変動範囲が30万Nm3/h〜6千Nm3/hの場合を想定すると、都市ガス流量が最低流量である6千Nm3/hのときには、天然ガスを分岐管15から概略全量、すなわち所定値A(=所定値B)の流量を流す。
都市ガス流量が6千Nm3/hより大きくなった場合には、分岐管15に設置された流量検出器17で計測される流量が所定値Aを保つように流量調整弁19の開度を大きくしていき、天然ガス流量増加分を主流管9から流入させるようにする。すなわち、都市ガス流量が変動しても、分岐管15には常に所定値Aの天然ガス流量が流通するようにする。こうすることにより、分岐管15へは常に微粒化・混合に必要な流量が供給されるようになる。また主流管9からの速度成分は、ベンリュリ管のど部21における流速をさらに増大させる方向に寄与する。
なお上記において、所定値Aは[都市ガス最低流量時の天然ガス流量(天然ガス最低流量)]であるが、簡易的には[都市ガス最低流量]としてもよい。
For example, the simplest control method is a case where the predetermined value A = predetermined value B = [natural gas flow rate at the lowest city gas flow rate (natural gas minimum flow rate)].
As in the previous example, assuming that the fluctuation range of the city gas flow rate is 300,000 Nm 3 / h to 6,000 Nm 3 / h, when the city gas flow rate is 6,000 Nm 3 / h, which is the lowest flow rate, The gas is allowed to flow through the branch pipe 15 at a substantially total amount, that is, a flow rate of a predetermined value A (= predetermined value B).
When the city gas flow rate is greater than 6,000 Nm 3 / h, the opening of the flow rate adjustment valve 19 is set so that the flow rate measured by the flow rate detector 17 installed in the branch pipe 15 maintains a predetermined value A. Increasing the natural gas flow rate from the main flow pipe 9 increases. That is, the natural gas flow rate of the predetermined value A always flows through the branch pipe 15 even if the city gas flow rate varies. By doing so, a flow rate necessary for atomization / mixing is always supplied to the branch pipe 15. Further, the velocity component from the main flow tube 9 contributes to the direction of further increasing the flow velocity in the throat portion 21 of the Benlury tube.
In the above description, the predetermined value A is [natural gas flow rate at the minimum city gas flow rate (natural gas minimum flow rate)], but may be simply [minimum city gas flow rate].

以上のように、本実施の形態によれば、流路を流れる流量が大きく変化しても内管3における天然ガス流速を所定の流速に維持することができ、LPGの微粒化・混合効果が得られると共に過度に圧力損失が大きくなりすぎないようにすることができる。   As described above, according to the present embodiment, the natural gas flow rate in the inner pipe 3 can be maintained at a predetermined flow rate even if the flow rate flowing through the flow path changes greatly, and the effect of atomization / mixing of LPG can be achieved. As a result, the pressure loss is not excessively increased.

ここで、所定値Aの天然ガス流量を分岐管15側に流通させるためには、ノズルを含めた分岐管15側の圧力損失と同等以上の圧力損失となるように、流量調整弁19を絞り込む必要がある。そのため、分岐管15の先端に配設された噴霧ノズル1の圧力損失が大きいと、ベンチュリ型微粒化装置13全体としての圧力損失が大きくなり、都市ガスとして送り出すためのガス圧力を維持できなくなる。
本発明の噴霧ノズル1を備えたベンチュリ型微粒化装置13を用いることにより、定格流量が大きな装置の場合でも圧力損失を抑制しつつ微粒化を行うことができるため、送ガス圧力を損なうことなく確実な増熱効果を得ることが可能となる。
Here, in order to distribute the natural gas flow rate of the predetermined value A to the branch pipe 15 side, the flow rate adjustment valve 19 is narrowed down so that the pressure loss is equal to or higher than the pressure loss on the branch pipe 15 side including the nozzle. There is a need. Therefore, if the pressure loss of the spray nozzle 1 disposed at the tip of the branch pipe 15 is large, the pressure loss of the entire venturi atomizer 13 becomes large, and the gas pressure for sending out as city gas cannot be maintained.
By using the Venturi type atomizer 13 provided with the spray nozzle 1 of the present invention, atomization can be performed while suppressing pressure loss even in the case of an apparatus having a large rated flow rate, so that the gas supply pressure is not impaired. A reliable heat increase effect can be obtained.

1 噴霧ノズル
2 外管
3 内管
4 液体供給管
5 壁部材
7 管状部材
9 主流管
11 ベンリュリ管
13 ベンリュリ型微粒化装置
15 分岐管
17 流量検出器
19 流量調整弁
21 ベンリュリ管のど部
DESCRIPTION OF SYMBOLS 1 Spray nozzle 2 Outer pipe | tube 3 Inner pipe | tube 4 Liquid supply pipe | tube 5 Wall member 7 Tubular member 9 Main flow pipe | tube 11 Venturi pipe | tube 13 Venturi type | mold atomizer 15 Branch pipe | tube 17 Flow rate detector 19 Flow control valve 21 Venturi pipe | tube throat part

Claims (4)

基端側から気体の供給を受け、先端側に気体を噴出する外管と、該外管内に該外管と同軸方向に配置された平行な管路からなる内管と、その開口が該内管の内周面に設けられて該内管に液体を供給する液体供給管と、前記内管内に設けられて内管内部を流路方向に仕切る壁部材とを備え、
該壁部材は、前記内管における前記液体供給管によって液体が供給される液体供給部よりも下流側に設けられていると共に、
前記内管における液体供給管の接続部の下流側の流路方向の長さが、前記内管の流路径の5倍以上であることを特徴とする噴霧ノズル。
An outer tube that receives a gas supply from the proximal end side and ejects gas toward the distal end side, an inner tube that includes a parallel pipe line disposed coaxially with the outer tube in the outer tube, and an opening of the inner tube A liquid supply pipe that is provided on the inner peripheral surface of the pipe and supplies a liquid to the inner pipe, and a wall member that is provided in the inner pipe and partitions the inside of the inner pipe in the flow direction.
The wall member is provided on the downstream side of the liquid supply part to which the liquid is supplied by the liquid supply pipe in the inner pipe ,
The spray nozzle characterized in that the length in the flow path direction on the downstream side of the connection portion of the liquid supply pipe in the inner pipe is at least five times the flow path diameter of the inner pipe .
前記壁部材は、板状部材からなることを特徴とする請求項1記載の噴霧ノズル。   The spray nozzle according to claim 1, wherein the wall member is a plate-like member. 前記壁部材は、管状部材からなることを特徴とする請求項1記載の噴霧ノズル。   The spray nozzle according to claim 1, wherein the wall member is a tubular member. 請求項1乃至3のいずれかに記載の噴霧ノズルを用いた流体微粒化装置であって、前記噴霧ノズルに供給される気体の流量を検出する流量検出装置と、該流量検出装置の検出値に基づいて前記噴霧ノズル内を流れる気体の流量を調整する流量調整弁とを備えたことを特徴とする流体微粒化装置。
A fluid atomization device using the spray nozzle according to any one of claims 1 to 3, wherein the flow rate detection device detects a flow rate of a gas supplied to the spray nozzle, and a detection value of the flow rate detection device. A fluid atomization apparatus comprising: a flow rate adjusting valve that adjusts a flow rate of the gas flowing through the spray nozzle.
JP2011225149A 2011-10-12 2011-10-12 Spray nozzle, fluid atomizer using the spray nozzle Active JP6042061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011225149A JP6042061B2 (en) 2011-10-12 2011-10-12 Spray nozzle, fluid atomizer using the spray nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011225149A JP6042061B2 (en) 2011-10-12 2011-10-12 Spray nozzle, fluid atomizer using the spray nozzle

Publications (2)

Publication Number Publication Date
JP2013081924A JP2013081924A (en) 2013-05-09
JP6042061B2 true JP6042061B2 (en) 2016-12-14

Family

ID=48527698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011225149A Active JP6042061B2 (en) 2011-10-12 2011-10-12 Spray nozzle, fluid atomizer using the spray nozzle

Country Status (1)

Country Link
JP (1) JP6042061B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525600B1 (en) * 2015-03-13 2015-06-04 신홍건 Micro fog formation device and fog formation means
US10183302B2 (en) 2015-03-13 2019-01-22 Hong Kun Shin Micro fogging device and method
CN112423893A (en) * 2018-06-14 2021-02-26 明尼苏达大学董事会 Counter-current mixer and atomizer
CN112763684B (en) * 2019-11-04 2023-07-28 中国石油天然气股份有限公司 Mixing device for wet natural gas detection and wet natural gas detection system
CN113101875B (en) * 2020-01-13 2022-10-04 中国石油天然气集团有限公司 Gas-liquid distributor

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH333838A (en) * 1956-11-05 1958-11-15 Berthoud & Cie Spray nozzle for liquid sprayer
JPS4628415Y1 (en) * 1967-12-11 1971-10-01
JPS5443644B2 (en) * 1973-09-25 1979-12-21
JPS5379931U (en) * 1976-12-06 1978-07-03
JPS5527068A (en) * 1978-08-18 1980-02-26 Hirobumi Miyamoto Water jet nozzle
JPS5576448U (en) * 1978-11-13 1980-05-26
JPS5735443U (en) * 1980-08-08 1982-02-24
JPS57105545A (en) * 1980-12-22 1982-07-01 Toyota Central Res & Dev Lab Inc Carburetor
JPS5887958U (en) * 1981-12-11 1983-06-15 株式会社日立製作所 vaporizer
JPH0673697B2 (en) * 1987-10-24 1994-09-21 株式会社共立合金製作所 Nozzle for scale removal
EP0546033A1 (en) * 1990-08-27 1993-06-16 The University Of Newcastle Research Associates Limited Aeration of liquids
DE4128670A1 (en) * 1991-08-29 1993-03-04 Ike Inst Fuer Kerntechnik Und Method for fluid atomisation - has parallel courses for working fluid and atomisation fluids, at constant speed, until atomisation
DE4309918C2 (en) * 1993-03-26 1994-09-15 Voith Gmbh J M Flotation cell with an injector
JP2001316882A (en) * 2000-05-08 2001-11-16 Tokyo Electron Ltd Equipment and method for liquid treatment
JP4766623B2 (en) * 2001-08-30 2011-09-07 澁谷工業株式会社 Gas-liquid mixed flow injection device
JP2004225919A (en) * 2002-11-26 2004-08-12 Nippon Furnace Kogyo Kaisha Ltd Liquid fuel atomizing method
US6889773B2 (en) * 2002-12-09 2005-05-10 Hanratty Associates, Llc Fire fighting adapter for converting a conventional back pack blower into a water and foam fire fighter
JP3776909B2 (en) * 2003-12-11 2006-05-24 三菱重工業株式会社 Bubble generator
EP1894635A4 (en) * 2005-05-23 2009-06-10 Lepeshinsky Igor Aleksandrovic Method for producing a two-phase gas-droplet jet and a device for carrying out said method
JP4997161B2 (en) * 2008-03-31 2012-08-08 Jx日鉱日石エネルギー株式会社 Flow distributor and flow distribution system
JP5370027B2 (en) * 2009-09-10 2013-12-18 Jfeエンジニアリング株式会社 Fluid mixing method and fluid mixing apparatus
JP5509981B2 (en) * 2010-03-26 2014-06-04 Jfeエンジニアリング株式会社 Fluid mixing method and fluid mixing apparatus
JP5912393B2 (en) * 2011-10-12 2016-04-27 Jfeエンジニアリング株式会社 Spray nozzle and method of mixing gas and liquid

Also Published As

Publication number Publication date
JP2013081924A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP6042061B2 (en) Spray nozzle, fluid atomizer using the spray nozzle
JP5212301B2 (en) Fluid mixing method using venturi tube, venturi type mixing device
JP5912393B2 (en) Spray nozzle and method of mixing gas and liquid
Tambe et al. Liquid jets in subsonic crossflow
JP5370027B2 (en) Fluid mixing method and fluid mixing apparatus
JP5589485B2 (en) Fluid mixing method and fluid mixing apparatus
JP6879571B6 (en) Nozzles and methods for mixing fluid flows
JPH0515926B2 (en)
JP5540973B2 (en) Fluid atomization nozzle, fluid atomization device
JP5509981B2 (en) Fluid mixing method and fluid mixing apparatus
JP2012125711A (en) Gas-liquid mixing unit, and gas-liquid spray nozzle
JP2013530033A (en) Method and apparatus for cavitation generation for mixing and emulsification
JP2014031990A (en) Spray nozzle, and burner and combustion device equipped with the same
US9861994B2 (en) Systems, methods, and apparatuses for providing viscous fluid in a particular format and implementations thereof
JP6874965B2 (en) Slag flow generator
KR101465442B1 (en) Supply Apparatus of Gas Fuel Having Converging-Diverging Nozzle
JP2018189362A (en) Improvement of atomizer
GB2566143A (en) Venturi nozzle, combustion device incorporating same and building heating system having such a combustion device
JP4382477B2 (en) INJECTION DEVICE AND METHOD OF USING THE SAME
JP2012139689A (en) Venturi type mixing device
US10173231B2 (en) Systems, methods, and apparatuses for providing viscous fluid in a particular format and implementations thereof
JP5704992B2 (en) Fluid atomization nozzle device, fluid atomization device
JP5752973B2 (en) Fluid atomization nozzle, fluid atomization nozzle device, fluid atomization device
JP2000257610A (en) Turbulence restraining method by autogenous swirl flow using surface flow of fixed rotor, autogenous swirl flow generating device, autogenous swirl flow generating and maintaining control method and verifying method for turbulence restrain effect
Jedelsky et al. Effervescent atomizer: influence of the internal geometry on atomization performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161109

R150 Certificate of patent or registration of utility model

Ref document number: 6042061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250