JP2006198557A - Apparatus for producing water having oxidation-reduction potential - Google Patents

Apparatus for producing water having oxidation-reduction potential Download PDF

Info

Publication number
JP2006198557A
JP2006198557A JP2005014651A JP2005014651A JP2006198557A JP 2006198557 A JP2006198557 A JP 2006198557A JP 2005014651 A JP2005014651 A JP 2005014651A JP 2005014651 A JP2005014651 A JP 2005014651A JP 2006198557 A JP2006198557 A JP 2006198557A
Authority
JP
Japan
Prior art keywords
water
gas
oxidation
reduction potential
potential water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005014651A
Other languages
Japanese (ja)
Other versions
JP4244214B2 (en
Inventor
Yukinobu Sato
之信 佐藤
Norio Arita
法夫 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sato Kogyo Co Ltd
Original Assignee
Sato Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sato Kogyo Co Ltd filed Critical Sato Kogyo Co Ltd
Priority to JP2005014651A priority Critical patent/JP4244214B2/en
Priority to PCT/JP2006/300326 priority patent/WO2006077770A1/en
Publication of JP2006198557A publication Critical patent/JP2006198557A/en
Application granted granted Critical
Publication of JP4244214B2 publication Critical patent/JP4244214B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2326Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles adding the flowing main component by suction means, e.g. using an ejector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4521Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through orifices in elements, e.g. flat plates or cylinders, which obstruct the whole diameter of the tube

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for producing water having an oxidation-reduction potential by which the absolute value of the oxidation-reduction potential of water can be made higher than usual. <P>SOLUTION: This apparatus 100 for producing water having the oxidation-reduction potential is constituted so that the pressure to be exerted on gas-mixed water is made higher and lower repeatedly when the gas-mixed water is made to pass through a mixer 10. As a result, the amount of the gas to be dissolved in the gas-mixed water can be raised and the absolute value of the oxidation-reduction potential (ORP) of the gas-mixed water can be made higher than usual. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸化還元電位水製造装置に関する。   The present invention relates to a redox potential water production apparatus.

近年の環境、人体に優しい水として、酸化還元電位水が注目されている。ここで、酸化還元電位(以下、適宜、「ORP」という。「ORP」は、Oxidation Reduction Potentialの略である)とは、その物質が他の物質を酸化し易い状態にあるか、還元し易い状態にあるかを表す指標である。なお、水道水のORPは、通常、+200〜+800mVであり、人間の体液は、−500〜+250mVである(例えば、非特許文献1参照)。   In recent years, redox potential water has attracted attention as environmentally friendly and human-friendly water. Here, the oxidation-reduction potential (hereinafter referred to as “ORP” as appropriate. “ORP” is an abbreviation for Oxidation Reduction Potential) is a state in which the substance is likely to oxidize other substances or is easily reduced. It is an index indicating whether or not it is in a state. In addition, ORP of tap water is + 200- + 800mV normally, and human body fluid is -500- + 250mV (for example, refer nonpatent literature 1).

ところで、従来は、水を電気分解して酸化還元電位水を製造していた。具体的には、水を電気分解すると陰極側の水のORPがマイナス側に大きくなると共にpHも上がりアルカリ性になる。そこで、この水に酸を加えて中和させ、中性でかつORPがマイナス側に大きくなった還元電位水を得ていた(例えば、特許文献1参照)。
日本インテックアクアケミカル株式会社、[online]、[平成16年8月19日検索]、インターネット[URL:http://www.nipponintek.co.jp/genehop.htm] 特開2002−361250号公報(段落[0010]、[0016]、[0019])
By the way, conventionally, redox potential water has been produced by electrolyzing water. Specifically, when the water is electrolyzed, the ORP of the cathode-side water increases to the minus side, and the pH increases and becomes alkaline. Therefore, neutralization was performed by adding an acid to the water to obtain reduction potential water that was neutral and ORP increased to the negative side (see, for example, Patent Document 1).
Nihon Intec Aqua Chemical Co., Ltd., [online], [Search August 19, 2004], Internet [URL: http://www.nipponintek.co.jp/genehop.htm] JP 2002-361250 A (paragraphs [0010], [0016], [0019])

しかしながら、上記製法では、酸を加えるという工程(中和工程)が必要であるので、酸化還元電位水の量産が困難であると共に、専門の作業者が必要であった。これに対し、中和工程をなくすために、中性の水(例えば、水道水)に水素ガスとを混合する製法が検討されたが、この製法ではORPを−420mV程度とすることが限界であった。   However, the above-described production method requires a step of adding acid (neutralization step), so that mass production of redox potential water is difficult and a specialized worker is required. On the other hand, in order to eliminate the neutralization step, a manufacturing method in which hydrogen gas is mixed with neutral water (for example, tap water) has been studied. However, in this manufacturing method, the ORP is limited to about -420 mV. there were.

本発明は、上記事情に鑑みてなされたもので、水の酸化還元電位の絶対値を従来よりも高い値とすることが可能な酸化還元電位水製造装置の提供を目的とする。   This invention is made | formed in view of the said situation, and provides the oxidation reduction potential water manufacturing apparatus which can make the absolute value of the oxidation reduction potential of water into a higher value than before.

上記目的を達成するためになされた請求項1の発明に係る酸化還元電位水製造装置は、水と共に、水素、酸素、オゾン、アンモニア又は二酸化炭素の何れかのガスを吸引し、そのガスと水とを混合して排出する気液混合ポンプと、気液混合ポンプから排出された水のガス溶存量を高めるためのミキサーとを備え、ミキサーは、気液混合ポンプの排出口に接続された管路と、管路の軸方向に沿って間隔をあけて設けられ、管路内を複数の領域に区画すると共に水の通過を許容し、管路内で流体圧力の強弱が繰り返されるようにするための複数のミキシング壁とを備えたところに特徴を有する。   In order to achieve the above object, an oxidation-reduction potential water production apparatus according to the invention of claim 1 sucks a gas of hydrogen, oxygen, ozone, ammonia or carbon dioxide together with water, and the gas and water And a mixer for increasing the dissolved amount of water discharged from the gas-liquid mixing pump, and the mixer is a pipe connected to the discharge port of the gas-liquid mixing pump. It is provided at intervals along the axial direction of the pipe and the pipe, partitions the pipe into a plurality of regions and allows the passage of water so that the strength of the fluid pressure is repeated in the pipe. And a plurality of mixing walls.

請求項2の発明は、請求項1に記載の酸化還元電位水製造装置において、ミキサーを通過した水を、気液混合ポンプの吸引口に環流させるための循環路を備えたところに特徴を有する。   The invention of claim 2 is characterized in that, in the oxidation-reduction potential water producing apparatus according to claim 1, a circulation path is provided for circulating the water that has passed through the mixer to the suction port of the gas-liquid mixing pump. .

請求項3の発明は、請求項1又は2に記載の酸化還元電位水製造装置において、気液混合ポンプの吸引口より上流又はミキサーと気液混合ポンプとの間に、水のクラスターサイズを小さくするためのクラスターサイズ変更手段を設けたところに特徴を有する。   The invention of claim 3 is the oxidation-reduction potential water production apparatus according to claim 1 or 2, wherein the water cluster size is reduced upstream of the suction port of the gas-liquid mixing pump or between the mixer and the gas-liquid mixing pump. This is characterized in that cluster size changing means is provided.

請求項4の発明は、請求項3に記載の酸化還元電位水製造装置において、クラスターサイズ変更手段は、水に磁場を付与する磁石であるところに特徴を有する。   The invention of claim 4 is characterized in that, in the oxidation-reduction potential water producing apparatus according to claim 3, the cluster size changing means is a magnet for applying a magnetic field to water.

請求項5の発明は、請求項1乃至4の何れかに記載の酸化還元電位水製造装置において、ミキシング壁は、水が通過可能な複数の貫通孔を有する板部材で構成されたところに特徴を有する。   A fifth aspect of the present invention is the oxidation-reduction potential water producing apparatus according to any one of the first to fourth aspects, wherein the mixing wall is composed of a plate member having a plurality of through holes through which water can pass. Have

請求項6の発明は、請求項1乃至4の何れかに記載の酸化還元電位水製造装置において、ミキシング壁は、セラミックフィルタであるところに特徴を有する。   The invention of claim 6 is characterized in that, in the oxidation-reduction potential water producing apparatus according to any one of claims 1 to 4, the mixing wall is a ceramic filter.

請求項7の発明は、請求項1乃至4の何れかに記載の酸化還元電位水製造装置において、各ミキシング壁は、複数のメッシュを重ね合わせてなるところに特徴を有する。   The invention of claim 7 is characterized in that, in the oxidation-reduction potential water producing apparatus according to any one of claims 1 to 4, each mixing wall is formed by overlapping a plurality of meshes.

請求項8の発明は、請求項7に記載の酸化還元電位水製造装置において、ミキシング壁を構成するメッシュの目開きは、1〜3μmであるところに特徴を有する。   The invention of claim 8 is characterized in that, in the oxidation-reduction potential water producing apparatus according to claim 7, the mesh openings constituting the mixing wall are 1 to 3 μm.

請求項9の発明は、請求項1乃至4の何れかに記載の酸化還元電位水製造装置において、ミキシング壁は、水が通過可能な貫通孔を1つのみ有する板部材で構成されたところに特徴を有する。   The invention of claim 9 is the oxidation-reduction potential water production apparatus according to any one of claims 1 to 4, wherein the mixing wall is formed of a plate member having only one through hole through which water can pass. Has characteristics.

請求項10の発明は、請求項9に記載の酸化還元電位水製造装置において、貫通孔は、板部材の中心部に設けられ、その両開口縁は外側に向かって拡径したテーパ形状をなしたところに特徴を有する。   According to a tenth aspect of the present invention, in the oxidation-reduction potential water manufacturing apparatus according to the ninth aspect, the through hole is provided in the center of the plate member, and both opening edges have a tapered shape whose diameter is increased outward. It has the characteristics in that place.

請求項11の発明は、請求項1乃至4の何れかに記載の酸化還元電位水製造装置において、ミキシング壁は、外周面に少なくとも1つの溝を備えた板部材を管路の内部に嵌合してなり、管路の内周面と溝との間に、管路内のミキシング壁を挟んだ2つの領域を連通する流路が形成されたところに特徴を有する。   The invention of claim 11 is the oxidation-reduction potential water producing apparatus according to any one of claims 1 to 4, wherein the mixing wall is fitted with a plate member having at least one groove on the outer peripheral surface thereof inside the pipe line. Thus, a feature is that a flow path is formed between the inner peripheral surface of the pipe line and the groove so as to communicate two regions sandwiching the mixing wall in the pipe line.

請求項12の発明は、請求項11に記載の酸化還元電位水製造装置において、流路を複数設け、それらのうち少なくとも2つの流路を交差させたところに特徴を有する。   The invention of claim 12 is characterized in that, in the oxidation-reduction potential water production apparatus according to claim 11, a plurality of flow paths are provided, and at least two of the flow paths are crossed.

請求項13の発明は、請求項1乃至12の何れかに記載の酸化還元電位水製造装置において、気液混合ポンプの吸引口より上流側に、水から気体を脱気するための脱気手段を備えたところに特徴を有する。   A thirteenth aspect of the present invention is the redox potential water producing apparatus according to any one of the first to twelfth aspects, wherein the degassing means for degassing the gas from the water upstream of the suction port of the gas-liquid mixing pump. It has the feature in having.

請求項14の発明は、請求項1乃至13の何れかに記載の酸化還元電位水製造装置において、気液混合ポンプに吸引される水は、水道水であるところに特徴を有する。   The invention of claim 14 is characterized in that, in the oxidation-reduction potential water producing apparatus according to any one of claims 1 to 13, the water sucked into the gas-liquid mixing pump is tap water.

請求項15の発明は、請求項1乃至13の何れかに記載の酸化還元電位水製造装置において、気液混合ポンプに吸引される水は、水を電気分解することで陰極側に生成する陰極水又は陽極側に生成する陽極水であるところに特徴を有する。   According to a fifteenth aspect of the present invention, in the oxidation-reduction potential water production apparatus according to any one of the first to thirteenth aspects, the water sucked into the gas-liquid mixing pump is generated on the cathode side by electrolyzing water. It is characterized in that it is water or anodic water produced on the anode side.

[請求項1,3〜12の発明]
上記のように構成した請求項1に係る酸化還元電位水製造装置によれば、ガスが混合された水がミキサーを通過する過程で、その水にかかる流体圧力の強弱が繰り返され、水に対するガスの溶存量が向上し、酸化還元電位(ORP)の絶対値を従来より高くすることができる。特に、請求項3及び4の発明のように、クラスターサイズ変更手段を設ければ、酸化還元電位の絶対値を従来よりも高くした状態で安定化(従来よりも長時間維持)させることが可能である。
[Invention of claims 1, 3 to 12]
According to the oxidation-reduction potential water producing apparatus according to claim 1 configured as described above, the strength of the fluid pressure applied to the water is repeated in the process in which the water mixed with the gas passes through the mixer, and the gas with respect to the water Therefore, the absolute value of the oxidation-reduction potential (ORP) can be made higher than before. In particular, if the cluster size changing means is provided as in the inventions of claims 3 and 4, it is possible to stabilize (maintain for a longer time than before) the state in which the absolute value of the oxidation-reduction potential is higher than before. It is.

ここで、ミキシング壁は、板材に複数の貫通孔を形成した構成でもよい(請求項5の発明)。また、ミキシング壁は、板材に1つの貫通孔を形成した構成でもよい(請求項9の発明)。このとき、貫通孔はミキシング壁の中心部に設け、その両開口縁を外側に向かって拡径したテーパ形状とすることが好ましい(請求項10の発明)。   Here, the mixing wall may have a structure in which a plurality of through holes are formed in a plate material (invention of claim 5). Further, the mixing wall may have a configuration in which one through hole is formed in the plate material (invention of claim 9). At this time, it is preferable that the through hole is provided in the center portion of the mixing wall and has a tapered shape in which both opening edges are increased in diameter toward the outside (invention of claim 10).

各ミキシング壁は、複数のメッシュを重ね合わせたものでもよい(請求項7の発明)。このとき、ミキシング壁を構成するメッシュの目開きは、1〜3μmであることが好ましい(請求項8の発明)。   Each mixing wall may be a superposition of a plurality of meshes (invention of claim 7). At this time, the mesh openings constituting the mixing wall are preferably 1 to 3 μm (invention 8).

また、外周面に少なくとも1つの溝を備えた板部材を管路の内部に嵌合してミキシング壁を構成し、管路の内周面と溝との間に、管路内のミキシング壁を挟んだ2つの領域を連通する流路が形成されるようにしてもよい(請求項11の発明)。さらに、流路を複数設け、それらのうち少なくとも2つの流路を交差させてもよい(請求項12の発明)。   Further, a plate member having at least one groove on the outer peripheral surface is fitted inside the pipe to form a mixing wall, and the mixing wall in the pipe is formed between the inner peripheral surface of the pipe and the groove. A flow path that connects the two sandwiched regions may be formed (invention of claim 11). Furthermore, a plurality of flow paths may be provided, and at least two of the flow paths may intersect each other (invention of claim 12).

さらに、ミキシング壁は、セラミックフィルタであってもよい(請求項6の発明)。   Further, the mixing wall may be a ceramic filter (the invention of claim 6).

[請求項2の発明]
請求項2の発明によれば、ミキサーを通過した水は、気液混合ポンプの吸引口に環流されて、再度、ミキサーに通されるので、水に対するガスの溶存量をさらに高めることができる。即ち、酸化還元電位水の酸化還元電位の絶対値をさらに高くすることが可能となる。
[Invention of claim 2]
According to the second aspect of the present invention, the water that has passed through the mixer is circulated to the suction port of the gas-liquid mixing pump and is again passed through the mixer, so that the dissolved amount of gas with respect to water can be further increased. That is, the absolute value of the redox potential of the redox potential water can be further increased.

[請求項3及び4の発明]
請求項3の発明によれば、少なくともミキサーよりも上流側に、水のクラスターサイズを小さくするためのクラスターサイズ変更手段を設けたので、ガスを水に溶け込ませ易くなる。ここで、クラスターサイズ変更手段は、水に磁場を付与する磁石であることが好ましい(請求項4の発明)。
[Inventions of Claims 3 and 4]
According to the invention of claim 3, since the cluster size changing means for reducing the cluster size of water is provided at least upstream of the mixer, the gas can be easily dissolved in water. Here, the cluster size changing means is preferably a magnet that applies a magnetic field to water (invention of claim 4).

[請求項13の発明]
請求項13の発明によれば、気液混合ポンプの吸引口よりも上流側に、水から気体を脱気するための脱気手段を備えたので、水に対する各ガスの溶存量を高めることができる。即ち、酸化還元電位水の酸化還元電位の絶対値をさらに高めることが可能となる。
[Invention of Claim 13]
According to the invention of claim 13, since the degassing means for degassing the gas from the water is provided upstream from the suction port of the gas-liquid mixing pump, the dissolved amount of each gas with respect to the water can be increased. it can. That is, the absolute value of the redox potential of the redox potential water can be further increased.

[請求項14の発明]
請求項14の発明によれば、水道水を利用することで、比較的安価に酸化還元電位水を製造することができる。
[Invention of Claim 14]
According to the invention of claim 14, by using tap water, redox potential water can be produced at a relatively low cost.

[請求項15の発明]
請求項15の発明によれば、水の電気分解によって陰極側に生成する陰極水又は陽極側に生成する陽極水を利用することで、より酸化還元電位の低い還元電位水や、より酸化還元電位の高い酸化電位水を製造することが可能となる。
[Invention of Claim 15]
According to the invention of claim 15, the reduction potential water having a lower oxidation-reduction potential or the more oxidation-reduction potential can be obtained by utilizing the cathode water generated on the cathode side by electrolysis of water or the anode water generated on the anode side. High oxidation potential water can be produced.

[第1実施形態]
以下、本発明に係る第1実施形態を図1〜図6に基づいて説明する。図1に示された本実施形態の酸化還元電位水製造装置100は、水が流される配管11に沿って上流側から順番にクラスターサイズ変更装置17、気液混合ポンプ12、ミキサー10、貯留槽19を備えている。気液混合ポンプ12には、気体の吸引口と液体の吸引口とが備えられ、気体の吸引口には、ガス供給装置13(具体的には、ガスボンベ)から延びたガス配管14が接続されている。ガス配管14の途中には開閉弁16が備えられ、開閉弁16の下流側に気液混合ポンプ12へのガスの供給量(流量)を調節するためのマスフローコントローラ28が備えられている。一方、液体の吸引口には、水道管15が接続されている。水道管15には開閉弁18が設けられ、開閉弁18の下流側に、水道水の流量を調節するための流量調節器29が備えられている。そして、気液混合ポンプ12は、所定流量(例えば、10〜20L/min)の水道水を吸引すると共に、ガス供給装置13から所定圧力(例えば、0.2〜0.4MPa)及び流量(例えば、0.2〜0.4L/min)のガス(具体的には、水素、酸素、オゾン、アンモニア及び二酸化炭素の何れか)を吸引し、これら水道水とガスとを攪拌混合した上で、この混合流体を所定圧力(例えば、0.4〜1.5MPa)でミキサー10に圧送している。気液混合ポンプ12から吐出された混合流体の圧力及び流量は、配管11の途中に設けた圧力計26及び流量計60により計測される。
[First Embodiment]
Hereinafter, a first embodiment according to the present invention will be described with reference to FIGS. The redox potential water production apparatus 100 of the present embodiment shown in FIG. 1 includes a cluster size changing device 17, a gas-liquid mixing pump 12, a mixer 10, and a storage tank in order from the upstream side along a pipe 11 through which water flows. 19 is provided. The gas-liquid mixing pump 12 includes a gas suction port and a liquid suction port, and a gas pipe 14 extending from a gas supply device 13 (specifically, a gas cylinder) is connected to the gas suction port. ing. An on-off valve 16 is provided in the middle of the gas pipe 14, and a mass flow controller 28 for adjusting a gas supply amount (flow rate) to the gas-liquid mixing pump 12 is provided downstream of the on-off valve 16. On the other hand, a water pipe 15 is connected to the liquid suction port. The water pipe 15 is provided with an opening / closing valve 18, and a flow rate regulator 29 for adjusting the flow rate of tap water is provided downstream of the opening / closing valve 18. The gas-liquid mixing pump 12 sucks tap water at a predetermined flow rate (for example, 10 to 20 L / min), and also has a predetermined pressure (for example, 0.2 to 0.4 MPa) and a flow rate (for example, from the gas supply device 13). , 0.2 to 0.4 L / min) gas (specifically, any one of hydrogen, oxygen, ozone, ammonia, and carbon dioxide), and after stirring and mixing these tap water and gas, This mixed fluid is pumped to the mixer 10 at a predetermined pressure (for example, 0.4 to 1.5 MPa). The pressure and flow rate of the mixed fluid discharged from the gas-liquid mixing pump 12 are measured by a pressure gauge 26 and a flow meter 60 provided in the middle of the pipe 11.

なお、本実施形態では、本発明に係るガス供給装置13としてガスボンベが備えられているが、このガスボンベに代えて、ガス供給装置は、例えば、化学反応により水から水素を発生して供給する装置等であってもよい。この場合、発生した水素を気液混合ポンプ12に圧送するためのポンプをガス配管14の途中に設けることが好ましい。   In the present embodiment, a gas cylinder is provided as the gas supply apparatus 13 according to the present invention. Instead of this gas cylinder, the gas supply apparatus is an apparatus that generates and supplies hydrogen from water by a chemical reaction, for example. Etc. In this case, a pump for pumping the generated hydrogen to the gas-liquid mixing pump 12 is preferably provided in the middle of the gas pipe 14.

クラスターサイズ変更装置17(本発明における「クラスターサイズ変更手段」に相当する)は、磁石(例えば、電磁石、永久磁石の何れでもよい)を備えて、気液混合ポンプ12より上流側の配管11を貫通する磁束を発生させている。そして、この磁束による磁場を水道水が通過することで、水道水のクラスターサイズ(水分子の集合体の大きさ)が小さくなる。   The cluster size changing device 17 (corresponding to the “cluster size changing means” in the present invention) includes a magnet (for example, either an electromagnet or a permanent magnet), and connects the pipe 11 upstream of the gas-liquid mixing pump 12. Magnetic flux that penetrates is generated. And tap water passes the magnetic field by this magnetic flux, and the cluster size (size of the aggregate of water molecules) of tap water becomes small.

貯水槽19は、例えば、密閉タンクで構成され、次述するミキサー10を通過することで製造された酸化電位水又は還元電位水(以下、これらを纏めて「酸化還元電位水」という)が一時的にここに貯留される。貯水槽19には、ガス溶存量計測器50、pH計測器51、酸化還元電位計測器52が備えられており、製造された酸化還元電位水の各計測値が計測されている。   The water storage tank 19 is constituted by, for example, a closed tank, and oxidation potential water or reduction potential water (hereinafter collectively referred to as “oxidation reduction potential water”) manufactured by passing through the mixer 10 described below is temporarily stored. Is stored here. The water storage tank 19 is provided with a gas dissolved amount measuring device 50, a pH measuring device 51, and a redox potential measuring device 52, and each measured value of the produced redox potential water is measured.

貯水槽19には、貯留した酸化還元電位水を外部に取り出すための供給配管22と、気液混合ポンプ12よりも上流側(詳細には、流量調節器29とクラスターサイズ変更装置17の間が望ましい)に環流させるための循環配管20とが別々に設けられている。そして、供給配管22に備えた開閉弁27を開くことで、貯水槽19から酸化還元電位水を取得することができる。供給配管22からはドレン管23が分岐しており、ドレン管23に設けられたドレン弁24を開放することで、貯水槽19に貯留された酸化還元電位水を貯水槽19から排出することができる。さらに、循環配管20の途中にも、開閉弁21が備えられている。   The water storage tank 19 includes a supply pipe 22 for taking out the stored oxidation-reduction potential water, and an upstream side of the gas-liquid mixing pump 12 (specifically, between the flow controller 29 and the cluster size changing device 17. A circulation pipe 20 is preferably provided separately for circulation. And the oxidation-reduction potential water can be acquired from the water storage tank 19 by opening the on-off valve 27 provided in the supply pipe 22. A drain pipe 23 branches from the supply pipe 22, and the redox potential water stored in the water storage tank 19 can be discharged from the water storage tank 19 by opening a drain valve 24 provided in the drain pipe 23. it can. Further, an on-off valve 21 is provided in the middle of the circulation pipe 20.

なお、貯水槽19の天井部分に、酸化還元電位水から抜けたガスを気液混合ポンプ12のガス吸引口に戻すためのガス循環路を設けて、ガスの有効利用を図ってもよい。   In addition, a gas circulation path for returning the gas that has escaped from the oxidation-reduction potential water to the gas suction port of the gas-liquid mixing pump 12 may be provided in the ceiling portion of the water storage tank 19 so as to effectively use the gas.

さて、ミキサー10は、図2に示すように、円筒ケース30(本発明の「管路」に相当する)の内部に、複数(例えば、11個)のミキシング壁40を収容してなる。まず、円筒ケース30について説明する。   As shown in FIG. 2, the mixer 10 includes a plurality of (for example, 11) mixing walls 40 housed in a cylindrical case 30 (corresponding to the “pipe” of the present invention). First, the cylindrical case 30 will be described.

円筒ケース30は、ケース本体31と、ケース本体31の上流側端部に接合される流入管32及びケース本体31の下流側端部に接合される流出管33とから構成される。   The cylindrical case 30 includes a case main body 31, an inflow pipe 32 joined to the upstream end of the case main body 31, and an outflow pipe 33 joined to the downstream end of the case main body 31.

ケース本体31は、円筒形状をなし、両端部には、流入管32及び流出管33と接合するフランジ部37が形成されている。また、ケース本体31の内部空間は、径が一定な円柱形状をなしている。   The case body 31 has a cylindrical shape, and flange portions 37 that are joined to the inflow pipe 32 and the outflow pipe 33 are formed at both ends. The internal space of the case body 31 has a cylindrical shape with a constant diameter.

流入管32及び流出管33は、同一形状をなしている。即ち、流入管32及び排出管33の一端には、前記配管11に接続される配管接続部34が形成され、他端には、ケース本体31に接合するフランジ部35が形成されている。そして、その外径は、配管接続部34からフランジ部35に向かって段付き状に拡径している。なお、流入管32及び流出管33の内径は一定となっている。   The inflow pipe 32 and the outflow pipe 33 have the same shape. That is, a pipe connection part 34 connected to the pipe 11 is formed at one end of the inflow pipe 32 and the discharge pipe 33, and a flange part 35 joined to the case body 31 is formed at the other end. The outer diameter is increased in a stepped shape from the pipe connection portion 34 toward the flange portion 35. The inner diameters of the inflow pipe 32 and the outflow pipe 33 are constant.

流入管32及び流出管33のうち、ケース本体31に接合される側の開口縁(フランジ部35の端面35T)からは、円筒ボス36が起立している。そして、流入管32及び流出管33がケース本体31の両端に接合されると、この円筒ボス36がケース本体31の内部空間に突入するようになっている。以上が円筒ケース30の説明である。   Of the inflow pipe 32 and the outflow pipe 33, a cylindrical boss 36 stands from an opening edge (end surface 35 </ b> T of the flange portion 35) on the side joined to the case body 31. When the inflow pipe 32 and the outflow pipe 33 are joined to both ends of the case main body 31, the cylindrical boss 36 enters the internal space of the case main body 31. The above is the description of the cylindrical case 30.

さて、ミキシング壁40は、以下のようである。図3に示すように、ミキシング壁40は、円板部材41に複数の小孔42(本発明の「貫通孔」に相当する)を貫通形成した構成をなす。円板部材41は、例えば、金属(具体的には、ステンレスや真鍮)製であり、その外径は、ケース本体31の内径とほぼ同一となっている。また、小孔42は、ミキシング壁40の板厚方向(図2における上下方向)に延びその内径は、例えば、2μmとなっている。   Now, the mixing wall 40 is as follows. As shown in FIG. 3, the mixing wall 40 has a configuration in which a plurality of small holes 42 (corresponding to “through holes” in the present invention) are formed through a disc member 41. The disc member 41 is made of, for example, metal (specifically, stainless steel or brass), and the outer diameter thereof is substantially the same as the inner diameter of the case main body 31. The small hole 42 extends in the plate thickness direction (vertical direction in FIG. 2) of the mixing wall 40 and has an inner diameter of, for example, 2 μm.

図2に示すように、ミキシング壁40は、円筒ケース30(詳細には、ケース本体31)の内部において、円筒ケース30の軸方向に重なるように配置されている。ミキシング壁40同士の間には、スペーサ(例えば、Oリング)45が挟まれている。このスペーサ45により隣接したミキシング壁40が所定間隔を空けて重ねられ、これらミキシング壁40によって、ケース本体31の内部空間が、複数の扁平円柱形状の空間部46(本発明における「領域」に相当する)に区画されている。換言すれば、ケース本体31の内部には、ケース本体31の軸方向に沿って、ミキシング壁40と空間部46とが交互に備えられている。ここで、ケース本体31の内部に収容された複数のミキシング壁40は、ケース本体31の内側に嵌合されかつ、ケース本体31に流入管32及び流出管33を組み付けると、ケース本体31の両端側から円筒ボス36,36に押圧されて、ケース本体31の内部に固定配置されている。   As shown in FIG. 2, the mixing wall 40 is disposed inside the cylindrical case 30 (specifically, the case main body 31) so as to overlap in the axial direction of the cylindrical case 30. A spacer (for example, an O-ring) 45 is sandwiched between the mixing walls 40. The mixing walls 40 adjacent to each other are overlapped at a predetermined interval by the spacer 45, and the mixing walls 40 allow the internal space of the case main body 31 to correspond to a plurality of flat cylindrical space portions 46 (corresponding to “regions” in the present invention). To be). In other words, the mixing wall 40 and the space 46 are alternately provided in the case body 31 along the axial direction of the case body 31. Here, the plurality of mixing walls 40 accommodated inside the case body 31 are fitted inside the case body 31, and the inflow pipe 32 and the outflow pipe 33 are assembled to the case body 31. The cylindrical bosses 36 and 36 are pressed from the side and fixedly arranged inside the case main body 31.

以上が、本実施形態における酸化還元電位水製造装置100の構造の説明であって、以下に作用及び効果を説明する。本実施形態の酸化還元電位水製造装置100によって、酸化還元電位水を製造する場合には、以下のようである。まず、水道管15に備えられた開閉弁18を開放状態とし、気液混合ポンプ12によって水道水を吸引する。水道水は、所定流量(例えば、10〜20L/min)で吸引され、気液混合ポンプ12に達する前にクラスターサイズ変更装置17を通過する。クラスターサイズ変更装置17を通過することで水道水のクラスターサイズは縮小され、この状態で気液混合ポンプ12に流入する。   The above is description of the structure of the oxidation-reduction potential water production apparatus 100 in the present embodiment, and the operation and effect will be described below. When redox potential water is produced by the redox potential water production apparatus 100 according to the present embodiment, it is as follows. First, the on-off valve 18 provided in the water pipe 15 is opened, and tap water is sucked by the gas-liquid mixing pump 12. The tap water is sucked at a predetermined flow rate (for example, 10 to 20 L / min) and passes through the cluster size changing device 17 before reaching the gas-liquid mixing pump 12. By passing through the cluster size changing device 17, the cluster size of tap water is reduced and flows into the gas-liquid mixing pump 12 in this state.

気液混合ポンプ12は、水道水と共に、ガスボンベ13から所定流量(例えば、0.2〜0.4L/min)でガスを吸引し、このガスと、クラスターサイズが縮小された水道水とを攪拌混合して、その混合流体をミキサー10に圧送する。   The gas-liquid mixing pump 12 sucks gas from the gas cylinder 13 together with tap water at a predetermined flow rate (for example, 0.2 to 0.4 L / min), and stirs this gas and tap water with a reduced cluster size. After mixing, the mixed fluid is pumped to the mixer 10.

ガス及び水道水の混合流体は、ミキサー10の流入管32から円筒ケース30内に流入し、最上段のミキシング壁40に衝突する。ミキシング壁40に衝突した混合流体は、ミキシング壁40に形成された複数の小孔42に押し込められることで加圧されると共に複数の流路に細かく分かれる。   The mixed fluid of gas and tap water flows into the cylindrical case 30 from the inflow pipe 32 of the mixer 10 and collides with the uppermost mixing wall 40. The mixed fluid that has collided with the mixing wall 40 is pressurized by being pushed into a plurality of small holes 42 formed in the mixing wall 40 and is divided into a plurality of flow paths.

ミキシング壁40の小孔42を通過した混合流体は、最上段の空間部46内に流入する。この空間部46において、小孔42を通過する際に複数の流路に分かれた混合流体が合流すると共に混合流体にかかる圧力が低下する。   The mixed fluid that has passed through the small holes 42 of the mixing wall 40 flows into the uppermost space 46. In this space portion 46, when passing through the small hole 42, the mixed fluid divided into a plurality of flow paths merges and the pressure applied to the mixed fluid decreases.

最上段の空間部46に流入した混合流体は、2段目のミキシング壁40に衝突して小孔42を通過する際に、再び強い圧力を受けると共に複数の流路に細かく分かれる。そして、2段目のミキシング壁40を通過すると、2段目の空間部46に流入し、ここでミキシング壁40を複数の流路(小孔42)に分かれて通過した混合流体が合流すると共に、混合流体にかかる圧力が低下する。以下、ミキシング壁40と空間部46とを交互に通過することで、混合流体が分流と合流とを繰り返すと共に、混合流体にかかる圧力の強弱が繰り返される。   When the mixed fluid that has flowed into the uppermost space 46 collides with the second-stage mixing wall 40 and passes through the small holes 42, it is again subjected to a strong pressure and finely divided into a plurality of flow paths. Then, after passing through the second-stage mixing wall 40, it flows into the second-stage space 46, where the mixed fluid that has passed through the mixing wall 40 divided into a plurality of flow paths (small holes 42) joins. , The pressure applied to the mixed fluid decreases. Hereinafter, by alternately passing through the mixing wall 40 and the space portion 46, the mixed fluid repeats the diversion and merging, and the pressure applied to the mixed fluid is repeated.

これにより、混合流体中のガスが水道水に溶け込み、酸化還元電位が水道水に比較して低い還元電位水或いは高い酸化電位水が製造される。ミキサー10を通過して製造された酸化還元電位水は、貯水槽19に流入する。そして、貯水槽19に貯留された酸化還元電位水を使用する場合には、供給配管22に備えられた開閉弁27を開放する。   As a result, the gas in the mixed fluid dissolves in the tap water, and the reduction potential water having a lower oxidation-reduction potential or higher oxidation potential water than the tap water is produced. The redox potential water produced by passing through the mixer 10 flows into the water storage tank 19. When using the redox potential water stored in the water storage tank 19, the on-off valve 27 provided in the supply pipe 22 is opened.

ところで、本実施形態の酸化還元電位水製造装置100では、ミキサー10を通過することで製造された酸化還元電位水を環流させて、再度ミキサー10に通過させることができる。具体的には、水道管15に備えられた開閉弁18、供給配管22に備えられた開閉弁27、ドレン弁24を何れも閉状態とし、循環配管20に備えられた開閉弁21を開放する。すると、貯水槽19に貯留された酸化還元電位水が、循環配管20を通って気液混合ポンプ12の上流側に戻される(クラスターサイズ変更装置17の上流側に戻してもよい)。そして、酸化還元電位水は、気液混合ポンプ12に流入し、ここで、ガスと混合された後、再度ミキサー10を通過する。   By the way, in the oxidation reduction potential water manufacturing apparatus 100 of this embodiment, the oxidation reduction potential water manufactured by passing through the mixer 10 can be circulated and allowed to pass through the mixer 10 again. Specifically, the on-off valve 18 provided on the water pipe 15, the on-off valve 27 provided on the supply pipe 22, and the drain valve 24 are all closed, and the on-off valve 21 provided on the circulation pipe 20 is opened. . Then, the oxidation-reduction potential water stored in the water storage tank 19 is returned to the upstream side of the gas-liquid mixing pump 12 through the circulation pipe 20 (may be returned to the upstream side of the cluster size changing device 17). Then, the redox potential water flows into the gas-liquid mixing pump 12, where it is mixed with the gas and then passes through the mixer 10 again.

[実験1]
本実施形態の酸化還元電位水製造装置100の効果を調べるべく、以下の実験を行った。実験の手順は以下の通りである。なお、本実験で用いた水道水のpHは7.20、ORPは+250mVである。
(1)酸化還元電位水製造装置100によって、水道水に水素ガスを溶存させて、還元電位水を製造した。具体的には、30Lの水道水を5.8L/minの流量で酸化還元電位水製造装置100内を循環させた。
(2)ミキサー10を通過した還元電位水のORP、溶存水素量及びpHを予め設定した時間毎に計測して、還元電位水のミキサー10への通過回数とORP、溶存水素量及びpHとの関係をそれぞれグラフ化した。なお、本実験では、ORP等の計測を行ったときの時間Tを、以下の関係式に基づいてミキサー10への通過回数に換算した。
通過回数=T・5.8/30
[Experiment 1]
In order to examine the effect of the oxidation-reduction potential water production apparatus 100 of the present embodiment, the following experiment was conducted. The experimental procedure is as follows. The tap water used in this experiment has a pH of 7.20 and an ORP of +250 mV.
(1) Reduction potential water was manufactured by dissolving hydrogen gas in tap water using the oxidation-reduction potential water manufacturing apparatus 100. Specifically, 30 L of tap water was circulated in the oxidation-reduction potential water production apparatus 100 at a flow rate of 5.8 L / min.
(2) The ORP, dissolved hydrogen amount, and pH of the reduced potential water that has passed through the mixer 10 are measured every preset time, and the number of passes of the reduced potential water to the mixer 10 and the ORP, dissolved hydrogen amount, and pH Each relationship was graphed. In this experiment, the time T when the ORP or the like was measured was converted to the number of passages to the mixer 10 based on the following relational expression.
Number of passes = T · 5.8 / 30

図4のグラフに示すように、還元電位水のORPは、ミキサー10を約2回通過(通水開始から10分経過)するまでの間に、−560mVまで一気に低下し、その後、通過回数の増加に伴って緩やかに低下して、ミキサー10を約12回通過(通水開始から60分経過)した時点で、−630mVまで低下した。これは、図5のグラフに示すように、ミキサー10への通過回数が増加するに従って、溶存水素量が増加したことが主因であると推測される。しかも、図6のグラフに示すように、還元電位水のpHは、ミキサー10への通過回数が増加しORP値が低下しても殆ど変化せず、ミキサー10を通過する前の水道水のpHとほぼ同じであった。   As shown in the graph of FIG. 4, the ORP of the reduction potential water decreases to −560 mV at a stroke before passing through the mixer 10 about twice (10 minutes after the start of water flow), and then the number of passes is reduced. It gradually decreased with the increase, and decreased to −630 mV when it passed through the mixer 10 about 12 times (60 minutes after the start of water flow). As shown in the graph of FIG. 5, this is presumed to be mainly due to an increase in the amount of dissolved hydrogen as the number of passages to the mixer 10 increases. Moreover, as shown in the graph of FIG. 6, the pH of the reduction potential water hardly changes even when the number of passages to the mixer 10 increases and the ORP value decreases, and the pH of the tap water before passing through the mixer 10. It was almost the same.

実験の結果、本実施形態の酸化還元電位水製造装置100を用いて水と水素とを混合すると、ORPの値が従来よりも低い還元電位水を製造できることが分かった。しかも、水を電気分解して製造した場合に比較して、pH変化が抑えられることが分かった。   As a result of the experiment, it has been found that when water and hydrogen are mixed using the oxidation-reduction potential water production apparatus 100 of the present embodiment, reduction potential water having a lower ORP value than that of the prior art can be produced. In addition, it was found that the pH change can be suppressed as compared with the case of producing water by electrolysis.

なお、ミキサー10への通過回数を増やすことで、酸化還元電位水のORPを、より長時間に亘って維持できることも分かった。   It has also been found that the ORP of the redox potential water can be maintained for a longer time by increasing the number of passes through the mixer 10.

このように、本実施形態の酸化還元電位水製造装置100によれば、ガスが混合された水がミキサー10を通過する過程で、その水にかかる流体圧力の強弱が繰り返され、水に対するガスの溶存量が向上し、酸化還元電位(ORP)の絶対値を従来より高くすることができる。   As described above, according to the oxidation-reduction potential water production apparatus 100 of the present embodiment, the strength of the fluid pressure applied to the water is repeated in the process in which the mixed water passes through the mixer 10, and The dissolved amount is improved, and the absolute value of the oxidation-reduction potential (ORP) can be made higher than before.

なお、本実施形態の酸化還元電位水製造装置100で製造された酸化還元電位水は、医療機器や工業用部品(例えば、半導体部品)の洗浄、医薬品・化粧品・食品の加工・製造、工業排水及び畜産排水の処理、プール・大衆浴場・養殖池・農業用水等の水質改善等に利用することができる。   The oxidation-reduction potential water produced by the oxidation-reduction potential water production apparatus 100 according to the present embodiment is used for cleaning medical equipment and industrial parts (for example, semiconductor parts), processing / manufacturing pharmaceuticals / cosmetics / food, industrial wastewater. It can also be used to treat livestock wastewater, improve water quality of pools, public baths, aquaculture ponds, agricultural water, etc.

[第2実施形態]
図7は本発明の第2実施形態を示す。この第2実施形態は、酸化還元電位水製造装置の構成を上記第1実施形態とは異なる構成としたものである。その他の構成については上記第1実施形態と同じであるため、同じ構成については、同一符号を付し、重複する説明は省略する。
[Second Embodiment]
FIG. 7 shows a second embodiment of the present invention. In this second embodiment, the configuration of the oxidation-reduction potential water production apparatus is different from that of the first embodiment. Since other configurations are the same as those in the first embodiment, the same reference numerals are given to the same configurations, and duplicate descriptions are omitted.

図7に示すように、本実施形態の酸化還元電位水製造装置200では、水道管15のうち、循環配管20との接続部分よりも上流側に、脱気装置25が備えられている。脱気装置25は、密閉空間内に水道水を導入し、その密閉空間内をポンプ等によって真空にすることで水道水から気体(空気)を抜く構成となっている。なお、脱気装置25は、上記した、真空脱気装置に限らず、例えば、超音波振動を利用したものでもよい。   As shown in FIG. 7, in the oxidation-reduction potential water production apparatus 200 of the present embodiment, a deaeration device 25 is provided in the water pipe 15 upstream of the connection portion with the circulation pipe 20. The deaeration device 25 is configured to introduce gas (air) from tap water by introducing tap water into the sealed space and evacuating the sealed space with a pump or the like. Note that the deaeration device 25 is not limited to the vacuum deaeration device described above, and may be one using ultrasonic vibration, for example.

[実験2]
本発明の酸化還元電位水製造装置200の効果を調べるべく以下の実験を行った。本実験で用いた水道水のpHは7.20、ORPは+250mVである。本実験の手順は、前述した実験1と同じであるので、説明を省略する。
[Experiment 2]
The following experiment was conducted to examine the effect of the oxidation-reduction potential water production apparatus 200 of the present invention. The tap water used in this experiment has a pH of 7.20 and an ORP of +250 mV. Since the procedure of this experiment is the same as that of Experiment 1 described above, description thereof is omitted.

図8のグラフに示すように、還元電位水のORPは、通水開始直後に、約−620mVまで一気に低下し、ミキサー10を約1回通過(通水開始から5分経過)した時点で−642mV、約2回通過(通水開始から10分経過)した時点で−648mVであった。その後、ORP値は、ほぼ一定となり、約12回通過(通水開始から60分経過)した時点で、−650mVまで低下した。   As shown in the graph of FIG. 8, the ORP of the reducing potential water immediately decreases to about −620 mV immediately after the start of water flow, and passes through the mixer 10 once (5 minutes after the start of water flow). It was -648 mV at the time of passing about 642 mV and about 2 times (10 minutes passed from the start of water flow). Thereafter, the ORP value became substantially constant, and decreased to −650 mV when it passed about 12 times (60 minutes after the start of water flow).

即ち、本実施形態の酸化還元電位水製造装置200によれば、脱気装置を備えていない前記第1実施形態の酸化還元電位水製造装置100よりも短時間でORPを低下させることができ、しかも、よりORP値をより低い値とすることができた(図8を参照)。これは、図9のグラフに示すように、水道水を脱気したことで、水素ガスが溶け込み易くなる(早く溶け込む)と共に、水道水に対する水素ガスの溶存可能量が高まったからであると考えられる。また、図10のグラフに示すように、還元電位水のpHは、ミキサー10への通過回数が増加しORP値が低下しても殆ど変化せず、ミキサー10を通過する前の水道水のpHとほぼ同じであった。   That is, according to the oxidation-reduction potential water production apparatus 200 of the present embodiment, the ORP can be reduced in a shorter time than the oxidation-reduction potential water production apparatus 100 of the first embodiment that does not include a deaeration device. Moreover, the ORP value could be set to a lower value (see FIG. 8). As shown in the graph of FIG. 9, this is considered to be because the degassing of tap water facilitates the dissolution of hydrogen gas (dissolves quickly) and increases the amount of hydrogen gas that can be dissolved in tap water. . Further, as shown in the graph of FIG. 10, the pH of the reducing potential water hardly changes even when the number of passages to the mixer 10 increases and the ORP value decreases, and the pH of the tap water before passing through the mixer 10. It was almost the same.

実験の結果、本実施形態の酸化還元電位水製造装置200を用いて水と水素とを混合すると、還元電位水のORPがより短時間でより低い値となることが分かった。しかも、水を電気分解して製造した場合に比較して、pH変化が抑えられることが分かった。   As a result of the experiment, it was found that when water and hydrogen are mixed using the oxidation-reduction potential water production apparatus 200 of the present embodiment, the ORP of the reduction potential water becomes a lower value in a shorter time. In addition, it was found that the pH change can be suppressed as compared with the case of producing water by electrolysis.

このように、本実施形態の酸化還元電位水製造装置200によれば、予め脱気した水道水とガスとをミキサー10に通すことで、水道水に対するガスの溶存可能量をより高めることができ、製造される酸化還元電位水のORPの絶対値をさらに高くすることができる。   Thus, according to the oxidation-reduction potential water production apparatus 200 of the present embodiment, the amount of gas that can be dissolved in tap water can be further increased by passing the tap water and gas degassed in advance through the mixer 10. The absolute value of the ORP of the produced oxidation-reduction potential water can be further increased.

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)上記第1及び第2実施形態では、水のクラスターサイズを小さくするためのクラスターサイズ変更装置17を備えていたがクラスターサイズ変更装置を備えていなくてもよい。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.
(1) In the first and second embodiments, the cluster size changing device 17 for reducing the water cluster size is provided, but the cluster size changing device may not be provided.

(2)上記第1及び第2実施形態では、水のクラスターサイズを縮小させるために、水に磁場を付与していたが、水に高周波電流を印加することで、クラスターサイズを縮小させてもよい。 (2) In the first and second embodiments, a magnetic field is applied to water in order to reduce the cluster size of water. However, even if the cluster size is reduced by applying a high-frequency current to water, Good.

(3)上記第1及び第2実施形態では、酸化還元電位水の原水として、水道水を使用していたが、水道水に限るものではない。例えば、井戸水、湧き水や清涼飲料水でもよい。また、軟水、純水、蒸留水を使用してもよいし、水を電気分解することで陰極側に生成された陰極水又は陽極側に生成された陽極水を使用してもよい。ここで、陰極水は、電気分解する前の水よりもORPが低くなっているので、この陰極水に水素ガスやアンモニアガスを溶存させることで、さらにORPの低い還元電位水を製造することができる。また、陽極水は、電気分解する前の水よりもORPが高くなっているので、この陽極水に酸素、オゾン、二酸化炭素を溶存させることで、さらにORPの高い酸化電位水を製造することができる。 (3) In the said 1st and 2nd embodiment, although tap water was used as raw | natural water of oxidation reduction potential water, it is not restricted to tap water. For example, well water, spring water or soft drinks may be used. Moreover, soft water, pure water, or distilled water may be used, or cathode water generated on the cathode side by electrolyzing water or anode water generated on the anode side may be used. Here, since the cathode water has a lower ORP than the water before electrolysis, reducing potential water having a lower ORP can be produced by dissolving hydrogen gas or ammonia gas in the cathode water. it can. Further, since the anode water has a higher ORP than the water before electrolysis, it is possible to produce oxidation potential water having a higher ORP by dissolving oxygen, ozone and carbon dioxide in the anode water. it can.

(4)上記第1及び第2実施形態では、ミキシング壁40を金属製の板材で構成していたが、この板材の表面に、酸化チタン等の光触媒材料やトルマリン、パラジウムをコーティングしてもよい。 (4) In the first and second embodiments, the mixing wall 40 is made of a metal plate. However, the surface of the plate may be coated with a photocatalytic material such as titanium oxide, tourmaline, or palladium. .

(5)上記第1及び第2実施形態では、ミキシング壁40は、円板部材41に複数の小孔42を貫通形成した構成であったが、セラミックフィルターや不織布等でもよい。 (5) In the first and second embodiments, the mixing wall 40 has a configuration in which the plurality of small holes 42 are formed through the disk member 41, but may be a ceramic filter or a nonwoven fabric.

また、ミキシング壁40は、図11の(A)に示すように、網状のメッシュ部材80で構成してもよい。具体的には、メッシュ部材80は、円形のリング部材81の内側に複数の線材82を網目状に編んだ網部83を備えた構成とすればよい。ここで、網部83を構成する線材82を、金属(具体的には、ステンレスや真鍮)製としかつ、網部83の目開き(平行に延びた線材82間の距離)を、1〜3μmとすることが好ましい。また、図11の(B)に示すように、上記構成のメッシュ部材80を複数重ね合わせて、1つのミキシング壁40とすることが好ましい。   Further, the mixing wall 40 may be constituted by a mesh-like mesh member 80 as shown in FIG. Specifically, the mesh member 80 may be configured to include a mesh portion 83 in which a plurality of wire rods 82 are knitted in a mesh shape inside a circular ring member 81. Here, the wire 82 constituting the mesh part 83 is made of metal (specifically, stainless steel or brass), and the mesh opening of the mesh part 83 (distance between the wire members 82 extending in parallel) is 1 to 3 μm. It is preferable that Further, as shown in FIG. 11B, it is preferable to superimpose a plurality of mesh members 80 having the above-described configuration to form one mixing wall 40.

(6)ミキシング壁は、図12の(A)に示すように、円板部材141の周面に板厚方向に延びた複数の溝50を陥没形成した構成としてもよい。そして、図12の(B)に示すように、ケース本体31の内部に円板部材41を嵌合固定したときに、ケース本体31の内周面と溝50との間に水が通過する流路を構成し、この流路によってケース本体31内部の2つの空間部46,46がミキシング壁140を挟んで連通するようにしてもよい。 (6) As shown in FIG. 12A, the mixing wall may have a configuration in which a plurality of grooves 50 extending in the thickness direction are recessed in the peripheral surface of the disk member 141. Then, as shown in FIG. 12B, when the disc member 41 is fitted and fixed inside the case main body 31, water flows between the inner peripheral surface of the case main body 31 and the groove 50. A path may be formed, and the two spaces 46 in the case main body 31 may be communicated with each other with the mixing wall 140 interposed therebetween.

また、溝50(流路)は、図12の(A)に示すように、ミキシング壁140の板厚方向に平行に延びていてもよいし、図13の(A)に示すように、ミキシング壁140の板厚方向に対して斜めに延びていてもよい。さらに図13の(B)に示すように、少なくとも2つの溝50,50(流路)同士が途中で交差するようにしてもよい。   Further, the groove 50 (flow path) may extend in parallel to the thickness direction of the mixing wall 140 as shown in FIG. 12A, or the mixing as shown in FIG. The wall 140 may extend obliquely with respect to the plate thickness direction. Further, as shown in FIG. 13B, at least two grooves 50 and 50 (flow paths) may intersect each other in the middle.

(7)上記第1及び第2実施形態では、配管11の途中にミキサー10を1つだけ備えていたが、複数のミキサー10を直列に接続してもよい。 (7) In the first and second embodiments, only one mixer 10 is provided in the middle of the pipe 11, but a plurality of mixers 10 may be connected in series.

(8)上記第1及び第2実施形態において、ガスは、市販のガスボンベから供給していたがガス発生装置から供給してもよい。具体的には、水素ガスは、水、都市ガス、プロパン、アルコール、メタン等を原料として水素ガスを生成する水素発生装置(より具体的には、電気分解装置、水蒸気改質装置等)から供給してもよい。 (8) In the first and second embodiments, the gas is supplied from a commercially available gas cylinder, but may be supplied from a gas generator. Specifically, hydrogen gas is supplied from a hydrogen generator (more specifically, an electrolyzer, a steam reformer, etc.) that generates hydrogen gas from water, city gas, propane, alcohol, methane, or the like as a raw material. May be.

(9)上記第1及び第2実施形態において、貯水槽19は密閉されていたが、開放していてもよい。これにより、貯水槽19内に水素ガスが滞留することが防がれる。 (9) In the first and second embodiments, the water tank 19 is sealed, but may be opened. This prevents hydrogen gas from staying in the water storage tank 19.

(10)上記第1及び第2実施形態では、貯水槽19にガス溶存量計測器50、pH計測器51、酸化還元電位計測器52が備えられていたが、これら計測器50〜52の計測値に基づいて、水及び/又はガスの流量を自動制御する制御装置を備えていてもよい。また、pHの計測値に応じて、製造された酸化還元電位水に酸又はアルカリ(例えば、石灰)を添加して、酸化還元電位水のpHを予め設定した値に調節するようにしてもよい。 (10) In the first and second embodiments, the water storage tank 19 is provided with the gas dissolved amount measuring device 50, the pH measuring device 51, and the oxidation-reduction potential measuring device 52. However, the measurement of these measuring devices 50 to 52 is performed. A control device that automatically controls the flow rate of water and / or gas based on the value may be provided. Moreover, according to the measured value of pH, acid or alkali (for example, lime) may be added to the produced redox potential water to adjust the pH of the redox potential water to a preset value. .

(11)上記第1及び第2実施形態のミキサー10は、ミキシング壁40を11個備えていたが、複数個であれば、11個に限るものではない。 (11) The mixer 10 of the first and second embodiments includes 11 mixing walls 40. However, the number is not limited to 11 as long as the number is plural.

(12)上記第1及び第2実施形態では、ミキシング壁40に形成される小孔42の数を複数としていたが、1つであってもよい。この場合、小孔42を、図14の(A)に示すように、ミキシング壁40の中心部分に配置し、同図の(B)に示すように、小孔42の上流側の開口縁42Jを上流側に向かって拡径したテーパ形状とし、下流側の開口縁42Kの開口縁を下流側に向かって拡径したテーパ形状とすることが好ましい。ここで、小孔42の開口縁42J,42Kのテーパ角度Pは45°であることが好ましい。 (12) In the first and second embodiments, the number of the small holes 42 formed in the mixing wall 40 is plural, but may be one. In this case, the small hole 42 is disposed in the center portion of the mixing wall 40 as shown in FIG. 14A, and the upstream opening edge 42J of the small hole 42 as shown in FIG. It is preferable to form a taper shape with a diameter increased toward the upstream side and a taper shape with the diameter of the opening edge of the downstream opening edge 42K expanded toward the downstream side. Here, the taper angle P of the opening edges 42J, 42K of the small hole 42 is preferably 45 °.

(13)上記第1及び第2実施形態では、ミキサー10の下流に貯留槽19を設けていたが、貯留槽は設けなくてもよい。この場合、ガス溶存量計測器50、pH計測器51、酸化還元電位計測器52は、ミキサー10の下流側の配管に設ければよい。 (13) In the first and second embodiments, the storage tank 19 is provided downstream of the mixer 10, but the storage tank may not be provided. In this case, the gas dissolved amount measuring device 50, the pH measuring device 51, and the oxidation-reduction potential measuring device 52 may be provided in the downstream pipe of the mixer 10.

(14)上記第1及び第2実施形態では、酸化還元電位水を環流させるための循環配管20が備えられていたが、循環配管を設けずに、気液混合流体がミキサー10を1回だけ通過するような構成としてもよい。 (14) In the first and second embodiments, the circulation pipe 20 for circulating the oxidation-reduction potential water is provided. However, the gas-liquid mixed fluid passes the mixer 10 only once without providing the circulation pipe. It is good also as a structure which passes.

(15)上記第1及び第2実施形態では、水素ガスを使用して還元電位水を製造していたが、アンモニアガス又は、水素ガスとアンモニアガスとの混合ガスを使用してもよい。また、水に酸素、オゾン、二酸化炭素のうちの何れか1つのガス又は複数のガスを溶存させれば、従来よりも酸化還元電位の高い酸化電位水を製造することが可能である。 (15) In the first and second embodiments, hydrogen gas is used to produce reduction potential water, but ammonia gas or a mixed gas of hydrogen gas and ammonia gas may be used. Further, if any one gas or a plurality of gases of oxygen, ozone, and carbon dioxide is dissolved in water, it is possible to produce oxidation potential water having a higher oxidation-reduction potential than before.

本発明の第1実施形態に係る酸化還元電位水製造装置のブロック図The block diagram of the oxidation-reduction potential water manufacturing apparatus which concerns on 1st Embodiment of this invention. ミキサーの部分断面図Partial sectional view of the mixer ミキシング壁の平面図Top view of mixing wall ミキサーへの通過回数とORPとの関係を示すグラフGraph showing the relationship between the number of passes to the mixer and the ORP ミキサーへの通過回数と溶存水素量との関係を示すグラフGraph showing the relationship between the number of passes through the mixer and the amount of dissolved hydrogen ミキサーへの通過回数とpHとの関係を示すグラフGraph showing the relationship between the number of passes to the mixer and pH 第2実施形態に係る酸化還元電位水製造装置のブロック図The block diagram of the oxidation-reduction potential water manufacturing apparatus which concerns on 2nd Embodiment. ミキサーへの通過回数とORPとの関係を示すグラフGraph showing the relationship between the number of passes to the mixer and the ORP ミキサーへの通過回数と溶存水素量との関係を示すグラフGraph showing the relationship between the number of passes through the mixer and the amount of dissolved hydrogen ミキサーへの通過回数とpHとの関係を示すグラフGraph showing the relationship between the number of passes to the mixer and pH (A)他の実施形態(5)に係るミキシング壁の平面図(B)ミキシング壁の側面図(A) Plan view of mixing wall according to other embodiment (5) (B) Side view of mixing wall (A)他の実施形態(6)に係るミキシング壁の斜視図(B)ミキシング壁の平面図(A) Perspective view of mixing wall according to another embodiment (6) (B) Plan view of mixing wall 他の実施形態(6)に係るミキシング壁の斜視図The perspective view of the mixing wall which concerns on other embodiment (6) (A)他の実施形態(12)に係るミキシング壁の平面図(B)ミキシング壁の側断面図(A) Plan view of mixing wall according to other embodiment (12) (B) Side sectional view of mixing wall

符号の説明Explanation of symbols

10 ミキサー
12 気液混合ポンプ
17 クラスターサイズ変更装置(クラスターサイズ変更手段)
20 循環配管(循環路)
25 脱気装置(脱気手段)
30 円筒ケース(管路)
40,140 ミキシング壁
42 小孔(貫通孔)
46 空間部
50 溝
80 メッシュ部材
10 Mixer 12 Gas-liquid mixing pump 17 Cluster size changing device (cluster size changing means)
20 Circulation piping (circulation path)
25 Deaerator (Deaerator)
30 Cylindrical case (pipe)
40,140 Mixing wall 42 Small hole (through hole)
46 Space part 50 Groove 80 Mesh member

Claims (15)

水と共に、水素、酸素、オゾン、アンモニア又は二酸化炭素の何れかのガスを吸引し、そのガスと前記水とを混合して排出する気液混合ポンプと、前記気液混合ポンプから排出された水のガス溶存量を高めるためのミキサーとを備え、
前記ミキサーは、前記気液混合ポンプの排出口に接続された管路と、
前記管路の軸方向に沿って間隔をあけて設けられ、前記管路内を複数の領域に区画すると共に前記水の通過を許容し、前記管路内で流体圧力の強弱が繰り返されるようにするための複数のミキシング壁とを備えたことを特徴とする酸化還元電位水製造装置。
A gas-liquid mixing pump that draws hydrogen, oxygen, ozone, ammonia, or carbon dioxide together with water, and mixes and discharges the gas and the water, and water discharged from the gas-liquid mixing pump And a mixer for increasing the amount of dissolved gas,
The mixer is connected to a discharge port of the gas-liquid mixing pump;
Provided at intervals along the axial direction of the pipe line, partition the pipe line into a plurality of regions and allow the water to pass therethrough, so that the strength of fluid pressure is repeated in the pipe line An oxidation-reduction potential water production apparatus comprising a plurality of mixing walls for carrying out the process.
前記ミキサーを通過した水を、前記気液混合ポンプの吸引口に環流させるための循環路を備えたことを特徴とする請求項1に記載の酸化還元電位水製造装置。   The redox potential water producing apparatus according to claim 1, further comprising a circulation path for circulating water that has passed through the mixer to a suction port of the gas-liquid mixing pump. 前記気液混合ポンプの吸引口より上流又は前記ミキサーと前記気液混合ポンプとの間に、前記水のクラスターサイズを小さくするためのクラスターサイズ変更手段を設けたことを特徴とする請求項1又は2に記載の酸化還元電位水製造装置。   The cluster size changing means for reducing the cluster size of the water is provided upstream of the suction port of the gas-liquid mixing pump or between the mixer and the gas-liquid mixing pump. The oxidation-reduction potential water production apparatus according to 2. 前記クラスターサイズ変更手段は、前記水に磁場を付与する磁石であることを特徴とする請求項3に記載の酸化還元電位水製造装置。   The redox potential water producing apparatus according to claim 3, wherein the cluster size changing means is a magnet that applies a magnetic field to the water. 前記ミキシング壁は、前記水が通過可能な複数の貫通孔を有する板部材で構成されたことを特徴とする請求項1乃至4の何れかに記載の酸化還元電位水製造装置。   5. The oxidation-reduction potential water producing apparatus according to claim 1, wherein the mixing wall is configured by a plate member having a plurality of through holes through which the water can pass. 前記ミキシング壁は、セラミックフィルタであることを特徴とする請求項1乃至4の何れかに記載の酸化還元電位水製造装置。   The oxidation-reduction potential water production apparatus according to any one of claims 1 to 4, wherein the mixing wall is a ceramic filter. 前記各ミキシング壁は、複数のメッシュを重ね合わせてなることを特徴とする請求項1乃至4の何れかに記載の酸化還元電位水製造装置。   5. The oxidation-reduction potential water producing apparatus according to claim 1, wherein each mixing wall is formed by overlapping a plurality of meshes. 前記ミキシング壁を構成するメッシュの目開きは、1〜3μmであることを特徴とする請求項7に記載の酸化還元電位水製造装置。   The redox potential water producing apparatus according to claim 7, wherein the mesh of the mesh constituting the mixing wall has a mesh size of 1 to 3 μm. 前記ミキシング壁は、前記水が通過可能な貫通孔を1つのみ有する板部材で構成されたことを特徴とする請求項1乃至4の何れかに記載の酸化還元電位水製造装置。   The oxidation-reduction potential water production apparatus according to any one of claims 1 to 4, wherein the mixing wall is configured by a plate member having only one through-hole through which the water can pass. 前記貫通孔は、前記板部材の中心部に設けられ、その両開口縁は外側に向かって拡径したテーパ形状をなしたことを特徴とする請求項9に記載の酸化還元電位水製造装置。   10. The oxidation-reduction potential water producing apparatus according to claim 9, wherein the through-hole is provided in a central portion of the plate member, and both opening edges have a tapered shape whose diameter is increased outward. 前記ミキシング壁は、外周面に少なくとも1つの溝を備えた板部材を前記管路の内部に嵌合してなり、前記管路の内周面と前記溝との間に、前記管路内の前記ミキシング壁を挟んだ2つの領域を連通する流路が形成されたことを特徴とする請求項1乃至4の何れかに記載の酸化還元電位水製造装置。   The mixing wall is formed by fitting a plate member having at least one groove on the outer peripheral surface inside the pipe, and between the inner peripheral surface of the pipe and the groove, 5. The oxidation-reduction potential water production apparatus according to claim 1, wherein a flow path that connects two regions sandwiching the mixing wall is formed. 前記流路を複数設け、それらのうち少なくとも2つの流路を交差させたことを特徴とする請求項11に記載の酸化還元電位水製造装置。   The oxidation-reduction potential water production apparatus according to claim 11, wherein a plurality of the flow paths are provided, and at least two of the flow paths intersect each other. 前記気液混合ポンプの吸引口より上流側に、水から気体を脱気するための脱気手段を備えたことを特徴とする請求項1乃至12の何れかに記載の酸化還元電位水製造装置。   The oxidation-reduction potential water production apparatus according to any one of claims 1 to 12, further comprising a deaeration means for degassing water from water upstream of the suction port of the gas-liquid mixing pump. . 前記気液混合ポンプに吸引される水は、水道水であることを特徴とする請求項1乃至13の何れかに記載の酸化還元電位水製造装置。   14. The apparatus for producing redox potential water according to claim 1, wherein the water sucked into the gas-liquid mixing pump is tap water. 前記気液混合ポンプに吸引される水は、水を電気分解することで陰極側に生成する陰極水又は陽極側に生成する陽極水であることを特徴とする請求項1乃至13の何れかに記載の酸化還元電位水製造装置。

The water sucked into the gas-liquid mixing pump is cathode water generated on the cathode side by electrolyzing water or anode water generated on the anode side. The oxidation-reduction potential water production apparatus described.

JP2005014651A 2005-01-21 2005-01-21 Redox potential water production equipment Expired - Fee Related JP4244214B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005014651A JP4244214B2 (en) 2005-01-21 2005-01-21 Redox potential water production equipment
PCT/JP2006/300326 WO2006077770A1 (en) 2005-01-21 2006-01-13 Redox potential water producing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005014651A JP4244214B2 (en) 2005-01-21 2005-01-21 Redox potential water production equipment

Publications (2)

Publication Number Publication Date
JP2006198557A true JP2006198557A (en) 2006-08-03
JP4244214B2 JP4244214B2 (en) 2009-03-25

Family

ID=36692160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005014651A Expired - Fee Related JP4244214B2 (en) 2005-01-21 2005-01-21 Redox potential water production equipment

Country Status (2)

Country Link
JP (1) JP4244214B2 (en)
WO (1) WO2006077770A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307488A (en) * 2006-05-18 2007-11-29 Fujikin Inc Gas solution manufacturing apparatus and gas solution manufacturing method
WO2008029525A1 (en) * 2006-09-05 2008-03-13 Ohta, Shigeo Process and equipment for mass production of liquid containing gas dissolved therein by continuous pressure flowing method
JP2008110342A (en) * 2006-10-26 2008-05-15 E & E Corp Method and apparatus for producing reduced hydrogen water, and method and apparatus for producing reduced hydrogen beverage, utilizing brown's gas
JP2008114185A (en) * 2006-11-07 2008-05-22 Sato Kogyo Kk Gas dissolved water making apparatus
JP2008114184A (en) * 2006-11-07 2008-05-22 Sato Kogyo Kk Gas dissolved water forming mixer and gas dissolved water making apparatus
JP2009112979A (en) * 2007-11-08 2009-05-28 Nomura Micro Sci Co Ltd Apparatus and method for producing ozone water
EP2189212A1 (en) 2008-11-25 2010-05-26 I-Fu Yang Emulsifier system
JP2010125427A (en) * 2008-11-28 2010-06-10 Shinwa:Kk Nozzle for generating microbubble
JP2011098324A (en) * 2009-11-09 2011-05-19 Sankei C & C:Kk Static mixer, method for producing the mixer, and water treatment apparatus using the mixer
EP2353705A1 (en) * 2010-02-03 2011-08-10 Bayer MaterialScience AG Device and method for mixing dispersions and gases
KR101222455B1 (en) 2012-10-15 2013-01-15 (주)이노게이트 Hydrogen-abundant water making apparatus
JP2015013274A (en) * 2013-07-08 2015-01-22 株式会社Mgグローアップ Fluid mixer
CN104525051A (en) * 2014-12-25 2015-04-22 中国科学院深圳先进技术研究院 Water molecular cluster hydrogen bond activation reactor and method for activating water molecular cluster hydrogen bonds
WO2015141459A1 (en) * 2014-03-20 2015-09-24 Idec株式会社 Device for generating fine bubble liquid
JP2015217323A (en) * 2014-05-14 2015-12-07 株式会社 オムシー Method for producing carbonated water
KR101853186B1 (en) * 2016-05-26 2018-04-30 칭 창 우 Hydrogen water machine
JP2018114493A (en) * 2017-01-17 2018-07-26 北海道ニチモウ株式会社 Mixer
JP2018134633A (en) * 2017-02-22 2018-08-30 トスレック株式会社 Hydrogen water, and production system and production method of the same
JP2018134579A (en) * 2017-02-21 2018-08-30 トスレック株式会社 Production system of hydrogen water, and production method of hydrogen water
JP2019042628A (en) * 2017-08-30 2019-03-22 学校法人 工学院大学 Gas-liquid mixer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5878300B2 (en) * 2011-05-11 2016-03-08 株式会社スイソサム Hydrogen water supply device
JP6561403B2 (en) * 2015-07-16 2019-08-21 株式会社スイソサム Hydrogen water supply device
CN110803742A (en) * 2019-10-22 2020-02-18 周廷云 PH value-adjustable asymmetric level electrolysis oxidation-reduction potential water preparation system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269468A (en) * 1992-03-25 1993-10-19 Nippon Sanso Kk Method and apparatus for producing functional water
JP2805593B2 (en) * 1994-12-09 1998-09-30 昭和炭酸株式会社 Liquid gas mixing equipment
JP3296405B2 (en) * 1996-08-20 2002-07-02 オルガノ株式会社 Cleaning method and cleaning device for electronic component members
JPH1066850A (en) * 1996-08-29 1998-03-10 O H L Ryutai Kogaku Kenkyusho Solubility regulating method of continuous water passing-type gas-dissolving apparatus and continuos water passing-type gas-dissolving apparatus for execution thereof
JPH11319529A (en) * 1998-05-08 1999-11-24 Nishigaki Pump Seizo Kk Gas absorbing apparatus
DE19851360A1 (en) * 1998-11-08 2000-05-25 Spiegel Margret Method and arrangement for introducing gas into liquids using a novel mixer
JP2004066073A (en) * 2002-08-05 2004-03-04 Kitahara Shozo Fluid mixing/feeding apparatus
JP4388290B2 (en) * 2003-02-26 2009-12-24 株式会社フジキン Static mixing device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307488A (en) * 2006-05-18 2007-11-29 Fujikin Inc Gas solution manufacturing apparatus and gas solution manufacturing method
WO2008029525A1 (en) * 2006-09-05 2008-03-13 Ohta, Shigeo Process and equipment for mass production of liquid containing gas dissolved therein by continuous pressure flowing method
JP2008110342A (en) * 2006-10-26 2008-05-15 E & E Corp Method and apparatus for producing reduced hydrogen water, and method and apparatus for producing reduced hydrogen beverage, utilizing brown's gas
JP2008114185A (en) * 2006-11-07 2008-05-22 Sato Kogyo Kk Gas dissolved water making apparatus
JP2008114184A (en) * 2006-11-07 2008-05-22 Sato Kogyo Kk Gas dissolved water forming mixer and gas dissolved water making apparatus
JP4537988B2 (en) * 2006-11-07 2010-09-08 佐藤工業株式会社 Gas dissolved water production mixer and gas dissolved water production apparatus
JP4557262B2 (en) * 2006-11-07 2010-10-06 佐藤工業株式会社 Gas dissolved water production equipment
JP2009112979A (en) * 2007-11-08 2009-05-28 Nomura Micro Sci Co Ltd Apparatus and method for producing ozone water
EP2189212A1 (en) 2008-11-25 2010-05-26 I-Fu Yang Emulsifier system
JP2010125427A (en) * 2008-11-28 2010-06-10 Shinwa:Kk Nozzle for generating microbubble
JP2011098324A (en) * 2009-11-09 2011-05-19 Sankei C & C:Kk Static mixer, method for producing the mixer, and water treatment apparatus using the mixer
WO2011095454A1 (en) * 2010-02-03 2011-08-11 Bayer Materialscience Ag Apparatus and method for mixing dispersions and gases
EP2353705A1 (en) * 2010-02-03 2011-08-10 Bayer MaterialScience AG Device and method for mixing dispersions and gases
KR101222455B1 (en) 2012-10-15 2013-01-15 (주)이노게이트 Hydrogen-abundant water making apparatus
JP2015013274A (en) * 2013-07-08 2015-01-22 株式会社Mgグローアップ Fluid mixer
US10315170B2 (en) 2014-03-20 2019-06-11 Idec Corporation Fine bubble-containing liquid generating apparatus
WO2015141459A1 (en) * 2014-03-20 2015-09-24 Idec株式会社 Device for generating fine bubble liquid
JP2015181976A (en) * 2014-03-20 2015-10-22 Idec株式会社 Fine bubble liquid generation device
JP2015217323A (en) * 2014-05-14 2015-12-07 株式会社 オムシー Method for producing carbonated water
CN104525051A (en) * 2014-12-25 2015-04-22 中国科学院深圳先进技术研究院 Water molecular cluster hydrogen bond activation reactor and method for activating water molecular cluster hydrogen bonds
KR101853186B1 (en) * 2016-05-26 2018-04-30 칭 창 우 Hydrogen water machine
JP2018114493A (en) * 2017-01-17 2018-07-26 北海道ニチモウ株式会社 Mixer
JP2018134579A (en) * 2017-02-21 2018-08-30 トスレック株式会社 Production system of hydrogen water, and production method of hydrogen water
JP2018134633A (en) * 2017-02-22 2018-08-30 トスレック株式会社 Hydrogen water, and production system and production method of the same
JP2019042628A (en) * 2017-08-30 2019-03-22 学校法人 工学院大学 Gas-liquid mixer
JP2022092055A (en) * 2017-08-30 2022-06-21 学校法人 工学院大学 Gas-liquid mixer
JP7441538B2 (en) 2017-08-30 2024-03-01 学校法人 工学院大学 Gas-liquid mixing device

Also Published As

Publication number Publication date
JP4244214B2 (en) 2009-03-25
WO2006077770A1 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP4244214B2 (en) Redox potential water production equipment
WO2009088085A1 (en) Static fluid mixer
JP2007237161A (en) Method and device for producing hydrogen-incorporated water
JP2010088973A (en) Hydrogen-containing electrolytic water generation device and hot water supply device
JP2015205225A (en) Reducing water production apparatus and reducing water
JP2014147870A (en) Nano-bubble forming device of microbubble
JP4394942B2 (en) Electrolytic ozonizer
JP2010137203A (en) Microbubble production apparatus, and apparatus and method of producing hydrogen water
JP2011098324A (en) Static mixer, method for producing the mixer, and water treatment apparatus using the mixer
JP2006198499A (en) Method for sterilizing water and sterilization apparatus
CN112934023A (en) System and method for generating oxidizing bubbles in a fluid
JP6837351B2 (en) Mixing aqueous solution manufacturing equipment and manufacturing method
JP2016013349A (en) Device for manufacturing hydrogen water for diluting dialysis fluid
JP2007330958A (en) Gas/liquid mixer
JP5758099B2 (en) Hypochlorous acid water production apparatus and production method
WO2013065355A1 (en) Ozone liquid generator and ozone liquid generation method
RU156246U1 (en) DEVICE FOR ELECTROCHEMICAL TREATMENT OF LIQUID MEDIA
KR20150003447A (en) Apparatus for manufacturing of hypochlorous acid sloution
JP5814185B2 (en) Nozzle for generating fine bubbles
JP3158341U (en) Ultra-fine bubble generator
JP2017056390A (en) Electrolyzed water generation apparatus
CN215175946U (en) Water heater
RU75649U1 (en) SILVER WATER PRODUCTION DEVICE
CN205151978U (en) Ozone water purification unit
JP4557262B2 (en) Gas dissolved water production equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees