JP4388290B2 - Static mixing device - Google Patents

Static mixing device Download PDF

Info

Publication number
JP4388290B2
JP4388290B2 JP2003050001A JP2003050001A JP4388290B2 JP 4388290 B2 JP4388290 B2 JP 4388290B2 JP 2003050001 A JP2003050001 A JP 2003050001A JP 2003050001 A JP2003050001 A JP 2003050001A JP 4388290 B2 JP4388290 B2 JP 4388290B2
Authority
JP
Japan
Prior art keywords
plate
bodies
hole
hole portion
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003050001A
Other languages
Japanese (ja)
Other versions
JP2004255320A (en
Inventor
建二 久保
▲えい▼三 杉野
央欣 目瀬
樹伸 斉藤
丈士 安河内
克利 小路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikin Inc
Original Assignee
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikin Inc filed Critical Fujikin Inc
Priority to JP2003050001A priority Critical patent/JP4388290B2/en
Publication of JP2004255320A publication Critical patent/JP2004255320A/en
Application granted granted Critical
Publication of JP4388290B2 publication Critical patent/JP4388290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、複数の板状体の貫通孔部に流体を流通させることにより流体を混合する静止型混合装置の改良に関する。なお、請求項を含め本明細書において、混合とは、流体を混ぜ合わすことをいい、分散・溶解などを含む意味である。
【0002】
【従来の技術】
従来、この種の装置として、本発明者らが既に提案した特開2000−254469に記載のものが知られている。
この装置は、複数の孔部が穿設されてなる複数種のディスク形のエレメントが筒状ケース体内に組み合わされた構造からなり、そのケース体内に流体を流すことにより、エレメントの複数の孔部に流体が流通する間に集合・分離を繰り返し、優れた混合効果を得ることができるものである。
このようにかかる装置は、簡単に流体混合を実現できるものであるが、より混合効率に優れたものが望まれていた。特に、粒子径がより細かい分散体を簡単に得ることが望まれていた。
【0003】
【特許文献1】
特開2000−254469号公報(第4−5頁、図1等)
【0004】
【発明が解決しようとする課題】
本発明は、この種の静止型混合装置の改良を目的とするものである。また、極めて粒子の細かい分散体を簡単に作製できる静止型混合装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
そこで、本発明は、貫通孔部を有する少なくとも2枚の板状体を備え、前記各板状体の貫通孔部に流体を流通させることによりこれを混合する静止型混合装置であって、前記板状体のうちから任意に選ばれる隣合う2枚の板状体の一方には、貫通孔部が複数形成されており、他方の板状体には、貫通孔部が1個形成されており、前記貫通孔部は、板状体の表面及び裏面に表面開口部及び裏面開口部が形成され、且つ板厚方向の中途部に貫通面積が最小となる最小開口部が形成されていると共に、表面開口部及び裏面開口部から最小開口部に向かうに従い次第に縮径する縮径開口部が連設された形状であり、前記一方の板状体の複数の貫通孔部は、前記表面開口部及び裏面開口部の周縁同士が接して配置されており、前記一方の板状体の各貫通孔部の中心点と他方の板状体の貫通孔部の中心点を異なる位置とし、且つ一方の板状体の各貫通孔部の表面開口部又は裏面開口部の周縁と他方の板状体の貫通孔部の裏面開口部又は表面開口部の周縁を交差させて、前記一方の板状体と他方の板状体が当接状態で並設されている静止型混合装置を提供する。
【0007】
さらに、前記一方の板状体の貫通孔部の総貫通面積が、他方の板状体の貫通孔部の総貫通面積の1.5倍以上の大きさに形成されていることが好ましい。また、前記隣合う2枚の板状体の貫通孔部は、その貫通面積が同じに形成されていることが好ましい。
ここで、貫通孔部の貫通面積とは、貫通孔部の各横断面(板厚方向に対し鉛直な断面)の面積のうち最も小さい面積を言い、例えば、最小開口部を有する貫通孔部の貫通面積は、最小開口部の横断面積である。また、板状体の貫通孔部の総貫通面積とは、流体の流通路を構成する全ての貫通孔部の貫通面積の和を言い、例えば、1つの流通路を構成する貫通孔部が4個の場合には、4つの貫通孔部の貫通面積を足したものである。
【0009】
さらに、前記隣合う2枚の板状体のうち、一方の板状体が、他方の板状体よりも流体の下流側に配設されていることが好ましい。
【0010】
【発明の実施形態】
以下、本発明の実施形態について、図面を参照しつつ詳細に説明する。尚、複数の板状体を個々に説明する場合、板状体を示す符号「3」に加えて、上流側の板状体から順に「a,b…」のアルファベットを必要に応じて付記している。
<第1実施形態>
第1実施形態は、任意に選ばれる隣合う2枚の板状体間に於ける流体の流通路が、複数の貫通孔部と1個の貫通孔部によって構成されている形態について詳述する。
図1(a)は、静止型混合装置1の縦断面図で、(b)は、並設された板状体3を流体の上流側から見た正面図である。図2は、第1及び第3の板状体3a,3cの正面図及び断面図で、図3は、第2の板状体3bの正面図及び断面図である。
【0011】
図1において、1は、本発明に係る静止型混合装置を示す。この装置1は、筒状のケース体2と、該ケース体2内に設けられた複数の板状体3と、を備える。
【0012】
ケース体2は、内部に板状体3を収納保持する収納部が設けられ、且つ一方端に配管用接続部5と他方端にフランジ部6が設けられた2個の筒状体7からなり、この2つの筒状体7のフランジ部6同士をパッキン4を介在させて付き合わせ、着脱可能な締付け具8によって気密的に一体化することにより構成されている。そして、この締付け具8を外して2つの筒状体7を分離することにより、板状体3を取り出すことができる。尚、図中、10は、各板状体の位置決め孔に挿入脱可能な板状体回転防止用挿入棒を示し、11は、板状体の枚数に応じて収納部の間隙を調整するリング状のスペーサーを示す。
【0013】
このケース体2内には、少なくとも2以上の板状体3が、隣合う板状体3の板面を当接させた状態で並設されている。
本実施形態では、3枚の板状体3が並設されており、各板状体3には、その一面側から他面側に貫通する貫通孔部9が形成されている。各板状体3は、何れも同形同大であって、円筒状のケース体2内に挿入脱可能な円盤状に形成されている。また、この3枚の板状体3のうちから任意に選ばれる隣合う2枚の板状体3は、その一方の板状体3が複数個の貫通孔部9を有し、他方の板状体3は1個の貫通孔部9を有する。この一方の板状体3の複数個の貫通孔部9と、他方の板状体3の1個の貫通孔部9とによって、隣合う2枚の板状体3間に於ける流通路Rが構成されている。
【0014】
具体的には、流体の上流側から順に、一方の板状体に相当する第1及び第3の板状体3a,3cは、同一であって、それぞれ4個の貫通孔部9が形成されている。また、他方の板状体に相当する第2の板状体3bは、1個の貫通孔部9が形成されている。各貫通孔部9は、図2及び図3に示すように、板状体3の表面及び裏面の相対位置に、最も面積が大きい円形の表面開口部12及び裏面開口部13が形成され、且つ板厚方向の中途部に貫通面積が最小となる最小開口部14が形成されていると共に、表面開口部12及び裏面開口部13から最小開口部14に向かうに従い次第に縮径する縮径開口部15が連設された形状(全体として略鼓状)である。
そして、何れの板状体3の貫通孔部9も同形同大に形成されている。従って、第1又は第3の板状体3a,3cの貫通孔部9の総貫通面積は、第2の板状体3bの貫通孔部9の総貫通面積の4倍の大きさである。
【0015】
また、第1及び第3の板状体3a,3cの各貫通孔部9は、表面開口部12及び裏面開口部13の周縁同士が接し、且つ板状体3の中心から放射状の位置に配置されている。一方、第2の板状体3cの貫通孔部9は、板状体3の中心に一致して形成されている。従って、3枚の板状体3をケース体2内に並設すると、図1(b)に示すように、第1及び第3の板状体3a,3cと第2の板状体3bの貫通孔部9の中心点は異なる位置となる。
【0016】
貫通孔部9の最小開口部14の大きさは、特に限定されず流す流体に応じて種々に設定することができる。例えば、液−液を流体とする場合には直径0.1mm以上の円が形成できる寸法であることが好ましく、更に0.5mm以上の円が形成できる寸法であることがより好ましい。また、気−気を流体とする場合には、極めて小さく形成することができる。
【0017】
また、貫通孔部9の表面開口部12及び裏面開口部13の大きさについても特に限定されないが、各板状体3の板面を当接させて並設しても貫通孔部9に流体が流通するように(つまり流体の流通路を確保すべく)、一方の板状体3の裏面開口部13の周縁と他方の板状体3の表面開口部12の周縁が交差する程度の大きさに形成されている。従って、第1の板状体3aの各貫通孔部9を通過した流体は、第2の板状体3bの1個の貫通孔部9に集合し、更に、第3の板状体3cの各貫通孔部9に分流するというように、3枚の板状体3には、1つのルートの流通路Rが構成されている。
【0018】
次に、上記静止型混合装置1の使用例を図4に示す。
図4中、Pは、流体を送出するポンプを、Tは、流体を貯蔵するタンクを、Sは送入管や送出管などの配管部を、矢印は流体の流れ方向を示す。
混合する流体としては流動可能な物質であれば特に限定されず、同種又は異種の液−液、気−液、固−液、気−気、固−気、気−液−固など、任意のものを2以上組み合わせて使用することができる。
【0019】
流体は、2種以上のものを予め予備混合したものをタンクTに投入してもよいし、複数のタンクTを準備してそれぞれ別に投入しておいてもよい。また、配管Sの途中で適宜投入するようにしてもよい。
【0020】
そして、ポンプPを作動させると、流体はタンクTから送入管Sを通じて、装置1のケース体2内に圧送される。流体の圧力についても特に限定されないが、高圧にするほど流体の混合効率が高く、細かい粒子からなる分散体を得ることができる。
【0021】
ケース体2内に送入された流体は、各板状体3の貫通孔部9によって構成された流通路Rを流通する。具体的には、図5の矢印で示すように、流体は、第1の板状体3aの表面に当たり、この板状体3aの4個の貫通孔部9へと分流する。更に、第1の板状体3aの各貫通孔部9を通過した流体は、第2の板状体3bの表面に当たり渦を伴った複雑な流れを作りながら、この板状体3bの1個の貫通孔部9に集合した後、同様に第3の板状体3cの表面に当たり4個の貫通孔部9へ分流し、送出管Sから装置1外部へと送り出される。
【0022】
本装置1によれば、流体を効率よく混合することができる。さらに、例えば相溶性のない流体同士等(例えば、水と油など)を流通させると、より粒子の細かい分散体を得ることができる。
この作用は、明確ではないが、貫通孔部9を通過する際、流体が拡大縮小し、流体同士又は板状体に激しく衝突して渦を伴った複雑な流れとなり、流体がキャビテーションを引き起こすためと考えられる。
さらに、第2の板状体3bを通過する際、分離した流体が1箇所の貫通孔部9に集合すること、及び、その後再び複数に分流することによって、流体に強い剪断力が働くためと考えられる。また、第2の板状体3bの貫通孔部9の総貫通面積は、第1又は第3の板状体3a,3cの貫通孔部9の総貫通面積に比して非常に小さいので、第2の板状体3bの貫通孔部9を通過する際の流速は、極めて早くなることから、流体が、第3の板状体3cの表面により強く当たり、流体が破砕されるためと考えられる。
【0023】
<第1実施形態の変形例>
上記第1実施形態では、各板状体9を通じて構成される流通路Rが1つのルートのみのものを例示したが、これを複数ルートに構成することもできる。
例えば、2ルートの流通路R1,R2を構成する例として、図6及び図7に示すように、第2の板状体3bに、間隔を開けて2個(複数)の貫通孔部9を形成し、且つ第1及び第3の板状体3a,3cに、この第2の板状体3bのそれぞれの貫通孔部9に対応するように4個(複数)の貫通孔部9をそれぞれ形成し、3枚の板状体3を接触状態で並設させた装置1などが例示される。この変形例に係る装置1でも上記と同様の効果を奏する。
【0024】
このように、各板状体3の貫通孔部9によって構成される流通路Rを、実質的に別個独立して構成すれば、構造的に複数の貫通孔部9が形成された板状体3(上記第2の板状体3b等)を用いることも可能である。
このように、1個の貫通孔部9を有する板状体3とは、貫通孔部9が板状体3に1個形成されているという構造的な意味に限られず、実質的に独立した1つの流通路Rに対して1個の貫通孔部9を有するという意味も含まれる。つまり、任意に選ばれる隣合う2枚の板状体3間に於ける流通路R(複数ルートの流通路が構成されている場合には、そのうちの1つの流通路)が、複数の貫通孔部9と1個の貫通孔部9によって構成されていればよい。
【0025】
また、第1実施形態では、3枚の板状体3が並設され、そのうちの第2の板状体3bが1個の貫通孔部9を有する装置1を例示したが、板状体3の数や貫通孔部9の数、1個の貫通孔部9を有する板状体3の配置などは適宜設計変更することができる。例えば、下記表1に種々の組み合わせを例示する。
【0026】
【表1】

Figure 0004388290
【0027】
表1に於いて、例1,2は、2枚の板状体、例3,4は、3枚の板状体、例5,6は、4枚の板状体、例7,8は、5枚の板状体が組み合わされたものを示す。また、例5,7,8は、1個の貫通孔部を有する板状体が2枚(複数)設けられたものを示す。また、例2を除いて、1個の貫通孔部を有する板状体は、複数の貫通孔部を有する板状体よりも流体の上流側に配置されている。このように1個の貫通孔部9を有する板状体3を上流側に配置すれば、流体の混合効率がより向上するので好ましい。
【0028】
更に、第1実施形態では、流体の流速を早めるため、第1又は第3の板状体3a,3cの貫通孔部9の総貫通面積が、第2の板状体3bの貫通孔部9の総貫通面積の4倍大に形成されているが、総貫通面積の関係はこれに限定されるものではない。少なくとも2枚の板状体3のうちから任意に選ばれる隣合う2枚の板状体のうち、一方の板状体3の総貫通面積が他方の板状体3の総貫通面積の1.5倍以上、好ましくは2倍以上となるように形成されていればよい。また、一方の板状体3と他方の板状体3の総貫通面積の差が大きいほど流体の流れを早くできるので、その上限は特に限定されないが、総貫通面積の差が余りに大きすぎると流体が流れ難くなる場合もあるので、この点を考慮すると、一方の板状体3の総貫通面積が他方の板状体3の総貫通面積の100倍以下、好ましくは10倍以下に形成すればよい。
尚、各板状体3の総貫通面積を同じにしたり、或いは、1個の貫通孔部9を有する板状体3の総貫通面積を他の板状体3の総貫通面積よりも大きく形成してもよい。
【0029】
また、図8に示すように、1個の貫通孔部9を有する板状体3として、貫通孔部9の表面開口部12及び裏面開口部13を大開口部とし且つ縮径開口部15の傾斜角θを板面に対して鋭角に形成された板状体3を用いてもよい。この変形例に係る板状体3が並設された装置1は、図8(b)に示すように、隣合う板状体3a,3cに極めて多くの貫通孔部9が形成されている場合でも、上流側の板状体3aの多数の貫通孔部9から流れ出る流体を、1個の貫通孔部へと集合させ、且つ下流側の板状体3cの多数の貫通孔部9へ分流させることができるので好ましい。
【0030】
<第2実施形態>
第2実施形態は、全ての板状体3が複数の貫通孔部9を有し、且つこれら複数の貫通孔部9によって1つの流通路Rが構成されている点で、上記第1実施形態と異なる。
主として第1実施形態と異なる部分について説明し、上記実施形態1と共通する部分の説明は、適宜省略し、各部の名称・図番などを援用することがある。
【0031】
本実施形態の装置1は、少なくとも2枚の板状体3のうちから任意に選ばれる隣合う2枚の板状体3に関し、一方の板状体3の貫通孔部9の総貫通面積が他方の板状体3の貫通孔部9の総貫通面積の1.5倍以上、好ましくは2倍以上に形成されている。
【0032】
具体的には、図9に示すように、この装置1は、ケース体2内に2枚の板状体3が並設されている。他方の板状体に相当する第1の板状体3aは、図10に示すように、4個の貫通孔部9が形成されており、一方の板状体に相当する第2の板状体3bは、図11に示すように、5個の貫通孔部9が形成されている。そして、第1の板状体3aと第2の板状体3bの貫通孔部9の中心点が異なる位置となるように(図9(b)に示す)、各貫通孔部9はそれぞれ均等配置されている。
また、第1の板状体3aの貫通孔部9の貫通面積(最小開口部14)は、第2の板状体3bの貫通孔部9の貫通面積の1/4の大きさに形成されている。従って、第2の板状体3bは、その総貫通面積が第1の板状体3aの5倍である。
【0033】
かかる静止型混合装置1を用いて流体を混合すると、上記第1実施形態と同様の混合効果を得られる。これは、流体がキャビテーションを引き起こすこと、及び、第1の板状体3aの貫通孔部9の総貫通面積が、第2の板状体3bの貫通孔部の総貫通面積に比して非常に小さい(具体的には1:5の比)ので、第1の板状体3aの貫通孔部9を通過する際の流速が極めて早くなり、第2の板状体3bに強く当たって流体が破砕されるためと考えられる。
【0034】
<第2実施形態の変形例>
第2実施形態に示す板状体3の数、貫通孔部9の数、貫通孔部9の貫通面積、各板状体3の総貫通面積の比率などは適宜設計変更することができる。例えば、表2に種々の組み合わせを例示する。尚、総貫通面積の比率は、貫通孔部の大きさや貫通孔部の数を変更することによって適宜に変更することができる。
【0035】
【表2】
Figure 0004388290
【0036】
表2に於いて、例1は、2枚の板状体、例2は、3枚の板状体、例3,4は、4枚の板状体、例5は、5枚の板状体が組み合わされたものを示す。また、例1を除いて、総貫通面積が1の比率の板状体が、上流側に配置されており、これらは流体の混合効率がより向上するので好ましい例である。
【0037】
<各実施形態に共通する変形例>
(板状体について)
上記各実施形態では、隣合う板状体3は、板面が接触状態で並設されているので、より高速で流体を流通させることができるという利点があるが、これらは間隔を開けて並設してもよい。また、上記各実施形態に於いては、隣合う板状体3は、流通方向に対し鉛直に並設されているが、必ずしもこのように並設しなければならないわけではなく、上流側の板状体3から下流側の板状体3へと流れるように流通路Rが確保されるように並設されていればよい。
【0038】
また、上記各実施形態では、板状体3は円盤状に形成されているが、この形状に限定されるものではなく、四角盤状などであってもよい。もっとも、均質な流れを得るために、厚みが一定で、表面が平滑で、更にケース体2の内周形状に適合したものが好ましい。尚、板状体3は、切削加工、鋳造、焼結成型など公知の方法で製作することができる。
【0039】
(貫通孔部の形状について)
上記各実施形態の貫通孔部9は、板厚方向に鉛直な断面(横断面)形状が円形に形成されているが、この横断面形状に限定されるものでなく、例えば、楕円形、長円形、三角形、四角形、台形、星形、その他の多角形などの形状でもよい。中でも、横断面形状が、円形又は正方形や長方形などの正多角形が好ましい。さらに、上記各実施形態の貫通孔部9の横断面形状は、板厚方向全体を通して円形であるが、異種形状の組み合わせ形状(例えば、表面開口部12及び裏面開口部13の横断面形状が四角形で、最小開口部14の横断面形状が円形など)であってもよい。
【0040】
また、上記各実施形態の貫通孔部9は、板厚方向に沿った断面(縦断面)形状が、図2(b)に示すような形状であるが、この縦断面形状はこれに限定されず、例えば、図12(a)に示すような板面に鉛直な直線状、(b)に示すような板面に斜交する直線状、(c)に示すような曲線状、(d)に示すような間隔が拡大する直線状、(e)に示すような間隔が縮小する直線状、(f)に示すような間隔が縮小する直線状と板面に鉛直な直線状の組み合わせ形状、(g)に示すような板面に鉛直な直線状と間隔が拡大する直線状の組み合わせ形状、又、(h)に示すような、その他任意の形状などでもよい。
尚、これら各種の横断面形状と縦断面形状を組み合わせた貫通孔部9の全体形状の一部を図13の(a)〜(l)に例示する。
【0041】
さらに、板状体3について、必ずしも同一の形状及び/又は貫通面積の貫通孔部9を有するものに限定されず、各板状体3の貫通孔部9の形状及び/又は貫通面積をそれぞれ異なるものとしてもよい。例えば、第1の板状体3aの貫通孔部9が円形で、且つ第2の板状体3bの貫通孔部9が四角形など、各板状体3に於ける貫通孔部9の形状を適宜に変更してもよい。
【0042】
(貫通孔部の配置について)
各板状体3は、上記各実施形態のように、隣合う板状体3の貫通孔部9の中心点が異なる位置となるように配置することが好ましいが、複数個の貫通孔部9のうち一部の貫通孔部9が、隣合う板状体3の貫通孔部9の中心点と一致するように配置されていてもよい。隣合う板状体3の全ての貫通孔部9の中心点を一致させるように配置すると、流体は、下流側の板状体の表面に実質的に衝突することなく流れるが、全ての貫通孔部9の中心点が一致していなければ、衝突による剪断作用などを期待できるからである。
【0043】
(ケース体について)
上記各実施形態のケース体2として、2個の筒状体7を一体化した構造のものを例示したが、これに限定されず、例えば1本の筒状体によって構成するなど適宜設計変更可能である。また、ケース体2の横断面形状は円形のほか、四角形、多角形などの種々の形状のものを使用してもよい。
また、本装置1に於いて、ケース体は、必ずしも必要なものではなく、例えば、新規に又は既設の配管部Sの途中に板状体3を直接取り付けて装置1を構成してもよい。具体的には、図14に示すように、送入管S及び送出管Sの端部に、板状体3の表面に当接可能なリング状のフランジ部17を設け、両フランジ部17の間に少なくとも2枚以上の板状体3をパッキンを介して並設し、これらをネジ棒とナットなどの緊結具18で全体を気密的に一体化したものなどが例示できる。
【0044】
(ケース体や板状体の材質等)
上記各実施形態で用いるケース体2及び板状体3は、流体の圧力に耐えうる機械的強度を有する材質又は構造のものであれば特に限定されず、例えば、ステンレスなどの金属製、セラミック製、エンプラなどの合成樹脂製などを適宜用いることができる。更に、内面が平滑なもの、耐腐食性を有するものが好ましい。
【0045】
(使用例について)
上記各実施形態の装置1の使用例として、図4に示す方法を例示したが、例えば、図15に示すように、複数の装置1を直列又は並列に配置して使用してもよく、更に、必要に応じてケニックス型等の混合方式の異なる静止型混合器を併用することも可能である。また、タンクTやポンプSを複数使用してもよい。
さらに、通常、流体を1回通過させると、十分に混合されるが、必要に応じて、装置1に流体を複数回循環させて流通させてもよい。この場合、送出管の途中に切替バルブなどを設け、図4に示すように、返送管S1を別途設ければよい。
【0046】
【実施例】
以下、実施例及び比較例を示して本発明を更に詳述する。
各実施例及び比較例は、下記のものを用いた。
(1)用いた流体及び配合比率
流体1:水道水…95重量部
流体2:白絞油(昭和産業株式会社製、商品名:大豆白絞め油)…5重量部
流体3:乳化剤(株式会社花王製、商品名:レオドールスーパーTW−O120)…0.5重量部
(2)粒子径測定の使用機器
株式会社堀場製作所製、レーザ回析/散乱式粒子径分布測定装置(LA−300形)
【0047】
(3)使用した板状体(表3に要部を表示)
板状体▲1▼:図2に示す4個の貫通孔部を有する形状のもの。表面開口部及び裏面開口部の直径L…6(mm)。最小開口部M…2(mm)。板厚D…5(mm)。縮径開口部の傾斜角θ…45度。貫通面積…π(mm)。総貫通面積…4π(mm)。
板状体▲2▼:図3に示す1個の貫通孔部を有する形状のもの。表面開口部及び裏面開口部の直径L…6(mm)。最小開口部M…2(mm)。板厚D…5(mm)。縮径開口部の傾斜角θ…45(度)。貫通面積…π(mm)。総貫通面積…π(mm)。
板状体▲3▼:図8に示す1個の貫通孔部を有する形状のもの。表面開口部及び裏面開口部の直径L…25(mm)。最小開口部M…4(mm)。板厚D…5(mm)。縮径開口部の傾斜角θ…11(度)。貫通面積…4π(mm)。総貫通面積…4π(mm)。
板状体▲4▼:図10に示す4個の貫通孔部を有する形状のもの。表面開口部及び裏面開口部の直径L…6(mm)。最小開口部M…1(mm)。板厚D…5(mm)。縮径開口部の傾斜角θ…45(度)。貫通面積…0.25π(mm)。総貫通面積…π(mm)。
板状体▲5▼:図11に示す5個の貫通孔部を有する形状のもの。表面開口部及び裏面開口部の直径L…6(mm)。最小開口部M…2(mm)。板厚D…5(mm)。縮径開口部の傾斜角θ…45(度)。貫通面積…π(mm)。総貫通面積…5π(mm)。
【0048】
【表3】
Figure 0004388290
【0049】
実施例1
実施例1は、図1(a)に示す円筒状ケース体内に、上流側から順に、板状体▲1▼、板状体▲2▼、板状体▲1▼の3枚の板状体が接触状態で並設された装置を使用した。
図4に示すように、タンク及びポンプを設置し、このタンク内に、予め攪拌棒を用いて予備混合した流体1〜3の混合物を約10リットル(液温30℃)投入し、3(MPa)の圧力で装置内に圧入し、装置内に1回流通させた。連続して約2分間運転し、このうち約1分後に得られた流体の粒子径を測定した。また、ストップウォッチとメスシリンダーを用いて流量を測定し、流路断面で割って流速を測定したところ、第2の板状体▲1▼の貫通孔部では、246.0(m/s)、第3の板状体▲2▼の貫通孔部では、61.5(m/s)であった。
各実施例、比較例の試験結果を表4に示す。尚、比較例2を除き、粒度分布には大きな差は見られなかった。
【0050】
【表4】
Figure 0004388290
【0051】
実施例2
実施例2は、上流側から順に、板状体▲1▼、板状体▲5▼、板状体▲2▼の3枚の板状体が接触状態で並設された装置を使用した。そして、実施例1と同様にして流体1〜3の混合物を流し、粒子径を測定した。尚、第1の板状体▲1▼の貫通孔部での流速は164.0(m/s)で、第2の板状体▲5▼の貫通孔部での流速は131.0(m/s)であった。
実施例3
実施例3は、上流側から順に、板状体▲5▼、板状体▲3▼の2枚の板状体が接触状態で並設された装置を使用した。そして、実施例1と同様にして流体1〜3の混合物を流し、粒子径を測定した。尚、第1の板状体▲5▼の貫通孔部での流速は127.0(m/s)で、第2の板状体▲3▼の貫通孔部での流速は159.0(m/s)であった。
実施例4
実施例4は、上流側から順に、板状体▲4▼、板状体▲5▼の2枚の板状体が接触状態で並設された装置を使用した。そして、実施例1と同様にして流体1〜3の混合物を流し、粒子径を測定した。尚、第1の板状体▲4▼の貫通孔部での流速は246.0(m/s)で、第2の板状体▲5▼の貫通孔部での流速は49.2(m/s)であった。
【0052】
比較例1
比較例1は、各板状体に複数の貫通孔部が形成され、且つ各板状体の総貫通面積が略等しいものであって、上流側から順に、板状体▲5▼、板状体▲1▼の2枚の板状体が当接状態で並設された装置を使用した。そして、実施例1と同様にして流体1〜3の混合物を流し、粒子径を測定した。尚、第1の板状体▲5▼の貫通孔部での流速は157.0(m/s)で、第2の板状体▲1▼の貫通孔部での流速は196.0(m/s)であった。
比較例2
比較例2は、板状体▲2▼を1枚のみの装置を使用した。そして、実施例1と同様にして流体1〜3の混合物を流し、粒子径を測定した。尚、第1の板状体▲2▼の貫通孔部での流速は259.0(m/s)であった。
【0053】
表4から明らかな通り、各実施例では白絞油がより細かい粒子となって分散していることが判る。
また、実施例3と比較例1を比べると、板状体の数や第1の板状体と第2の板状体の総貫通面積が一致するが、1個の貫通孔部を有する板状体を用いた実施例3の方が優れている。さらに、実施例4と比較例1を比べると、板状体の数や貫通孔部の数は略一致するが、小さい総貫通面積を有する板状体を用いた実施例4の方が優れている。また、実施例1と実施例2を比較すると、実施例1の方が優れていることから、1個の貫通孔部を有する板状体が、複数個の貫通孔部を有する板状体よりも上流側に配置する方が好ましいことが判る。
【0054】
【発明の効果】
以上の通り、本発明の静止型混合装置は、従来の装置よりも、更に混合効率に優れており、流体を流すだけで、効率よく流体を混合することができる。さらに、より粒子の細かい分散体を作製することができる。
また、本発明の装置によれば、処理する流体が少量であっても、十分に混合することができ、粒子の細かい分散体を作製することができる。
【図面の簡単な説明】
【図1】 (a)は第1実施形態に係る静止型混合装置の縦断面図を示し、(b)は、ケース体内に並設された板状体を流体の上流側から見た正面図を示す。
【図2】(a)は、第1実施形態に係る第1及び第3の板状体の正面図を示し、(b)はそのA−A線断面図、(c)はそのB−B線断面図を示す。
【図3】(a)は、第1実施形態に係る第2の板状体の正面図を示し、(b)はそのA−A線断面図を示す。
【図4】本装置の使用例を示す概念図。
【図5】第1実施形態に係る静止型混合装置の使用状態を示す一部省略縦断面図。
【図6】(a)は、第2の板状体の変形例を示す正面図、(b)は、第1及び第3の板状体の変形例を示す正面図、(c)は、これらを並設した状態を流体の上流側から見た正面図を示す。
【図7】図6の板状体を並設した静止型混合装置の使用状態を示す一部省略縦断面図。
【図8】(a)は、第2の板状体の他の変形例を示す正面図、(b)は、それを第1及び第3の板状体の間に並設した静止型混合装置の一部省略縦断面図。
【図9】(a)は、第2実施形態に係るに係る静止型混合装置の縦断面図を示し、(b)は、この並設された板状体を流体の上流側から見た正面図を示す。
【図10】(a)は、第2実施形態に係る第1の板状体の正面図を示し、(b)はそのA−A線断面図、(c)はそのB−B線断面図を示す。
【図11】(a)は、第2実施形態に係る第2の板状体の正面図を示し、(b)はそのA−A線断面図を示す。
【図12】(a)〜(h)は、板状体の貫通孔部の縦断面形状の各種変形例を示す一部省略縦断図。
【図13】(a)〜(l)は、貫通孔部の全体形状の各種変形例を示す斜視図。
【図14】ケース体を用いない装置の変形例を示す一部縦断面図(配管部のみ断面で示す)。
【図15】(a),(b)は、本装置の他の使用例を示す概念図。
【符号の説明】
1…静止型混合装置、2…筒状ケース体、3…板状体、3a…第1の板状体、3b…第2の板状体、3c…第3の板状体、9…貫通孔部、12…表面開口部、13…裏面開口部、14…最小開口部、15…縮径開口部、R…流通路、P…ポンプ、T…タンク[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a static mixing device that mixes fluid by flowing fluid through through holes of a plurality of plate-like bodies. In addition, in this specification including a claim, mixing means mixing fluids, and means that it includes dispersion and dissolution.
[0002]
[Prior art]
Conventionally, as this type of apparatus, the apparatus described in Japanese Patent Laid-Open No. 2000-254469, which has already been proposed by the present inventors, is known.
This device has a structure in which a plurality of types of disk-shaped elements each having a plurality of holes formed therein are combined in a cylindrical case body, and a plurality of hole portions of the elements are formed by flowing fluid into the case body. In this way, it is possible to obtain an excellent mixing effect by repeating the assembly and separation while the fluid flows.
Thus, although such an apparatus can implement | achieve fluid mixing easily, the thing excellent in mixing efficiency was desired. In particular, it has been desired to easily obtain a dispersion having a finer particle diameter.
[0003]
[Patent Document 1]
JP 2000-254469 A (page 4-5, FIG. 1 etc.)
[0004]
[Problems to be solved by the invention]
The present invention aims to improve this type of static mixing apparatus. It is another object of the present invention to provide a static mixing device that can easily produce a dispersion having extremely fine particles.
[0005]
[Means for Solving the Problems]
  Therefore, the present invention is a static mixing device that includes at least two plate-like bodies having through-hole portions, and mixes the fluid by circulating fluid through the through-hole portions of the plate-like bodies, One of two adjacent plate-like bodies arbitrarily selected from the plate-like bodies has a plurality of through-hole portions, and the other plate-like body has one through-hole portion. The through hole has a front opening and a back opening formed on the front and back surfaces of the plate-like body, and a minimum opening having a minimum penetrating area in the middle of the plate thickness direction. The diameter-reducing openings gradually decreasing in diameter from the front-side opening and the back-side opening toward the minimum opening, and the plurality of through-holes of the one plate-like body have the shape of the surface-opening And the peripheries of the opening on the back surface are arranged in contact with each other, and each of the one plate-like bodies penetrates. The center point of the part and the center point of the through hole part of the other plate-like body are set at different positions, and the periphery of the front surface opening or the back surface opening part of each through-hole part of one plate-like body and the other plate-like body The one plate-like body and the other plate-like body by crossing the periphery of the back surface opening portion or the front surface opening portion of the through-hole portionIs in contactProvided is a static mixing device arranged side by side.
[0007]
Furthermore, it is preferable that the total penetration area of the through hole portion of the one plate-like body is formed to be 1.5 times or more larger than the total penetration area of the through-hole portion of the other plate-like body. Moreover, it is preferable that the through-hole part of the said 2 adjacent plate-shaped body is formed in the same penetration area.
Here, the through-hole area of the through-hole portion means the smallest area among the areas of the respective cross-sections (cross-sections perpendicular to the plate thickness direction) of the through-hole portion. For example, the through-hole portion having the smallest opening portion The penetrating area is the cross-sectional area of the minimum opening. Further, the total through-area of the through-hole portion of the plate-like body means the sum of the through-areas of all the through-hole portions constituting the fluid flow passage. For example, there are 4 through-hole portions constituting one flow passage. In the case of a piece, it is the sum of the through areas of the four through holes.
[0009]
  Further, it is preferable that one of the two adjacent plate-like bodies is disposed on the downstream side of the fluid from the other plate-like body.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, when individually explaining a plurality of plate-like bodies, in addition to the symbol “3” indicating the plate-like bodies, alphabets “a, b. ing.
<First Embodiment>
In the first embodiment, a detailed description will be given of a mode in which a fluid flow path between two arbitrarily selected plate-like bodies is constituted by a plurality of through-hole portions and a single through-hole portion. .
FIG. 1A is a longitudinal sectional view of the static mixing device 1, and FIG. 1B is a front view of the plate-like bodies 3 arranged side by side as viewed from the upstream side of the fluid. FIG. 2 is a front view and a sectional view of the first and third plate-like bodies 3a and 3c, and FIG. 3 is a front view and a sectional view of the second plate-like body 3b.
[0011]
In FIG. 1, reference numeral 1 denotes a static mixing apparatus according to the present invention. The device 1 includes a cylindrical case body 2 and a plurality of plate-like bodies 3 provided in the case body 2.
[0012]
The case body 2 includes two cylindrical bodies 7 each having a housing portion for housing and holding the plate-like body 3 and having a pipe connection portion 5 at one end and a flange portion 6 at the other end. The flange portions 6 of the two cylindrical bodies 7 are brought together with the packing 4 interposed therebetween, and are hermetically integrated by a detachable fastener 8. Then, the plate-like body 3 can be taken out by removing the fastener 8 and separating the two cylindrical bodies 7. In the figure, reference numeral 10 denotes a plate-shaped rotation preventing insertion rod that can be inserted into and removed from the positioning hole of each plate-shaped body, and 11 is a ring that adjusts the gap of the storage portion according to the number of plate-shaped bodies. The shape of the spacer is shown.
[0013]
In the case body 2, at least two or more plate-like bodies 3 are juxtaposed with the plate surfaces of adjacent plate-like bodies 3 in contact with each other.
In the present embodiment, three plate-like bodies 3 are arranged side by side, and each plate-like body 3 is formed with a through-hole portion 9 penetrating from one surface side to the other surface side. Each plate-like body 3 has the same shape and the same size, and is formed in a disk shape that can be inserted into and removed from the cylindrical case body 2. In addition, two adjacent plate-like bodies 3 arbitrarily selected from the three plate-like bodies 3 have one plate-like body 3 having a plurality of through-hole portions 9 and the other plate. The body 3 has one through hole 9. The flow path R between the two adjacent plate-like bodies 3 by the plurality of through-hole portions 9 of the one plate-like body 3 and the one through-hole portion 9 of the other plate-like body 3. Is configured.
[0014]
Specifically, the first and third plate-like bodies 3a and 3c corresponding to one plate-like body are the same in order from the upstream side of the fluid, and four through-hole portions 9 are formed respectively. ing. The second plate body 3b corresponding to the other plate body has one through-hole portion 9 formed therein. As shown in FIGS. 2 and 3, each through-hole portion 9 has a circular surface opening 12 and a back surface opening 13 having the largest area at the relative positions of the surface and the back surface of the plate-like body 3, and A minimum opening 14 having a minimum penetrating area is formed in the middle of the plate thickness direction, and the diameter-reducing opening 15 gradually decreases in diameter from the front surface opening 12 and the back surface opening 13 toward the minimum opening 14. Is a continuous shape (generally a drum shape as a whole).
And the through-hole part 9 of any plate-like body 3 is also formed in the same shape and the same size. Accordingly, the total penetration area of the through-hole portion 9 of the first or third plate-like body 3a, 3c is four times as large as the total penetration area of the through-hole portion 9 of the second plate-like body 3b.
[0015]
Further, the through-hole portions 9 of the first and third plate-like bodies 3 a and 3 c are arranged at radial positions from the center of the plate-like body 3 so that the peripheral edges of the front surface opening portion 12 and the back surface opening portion 13 are in contact with each other. Has been. On the other hand, the through hole 9 of the second plate-like body 3 c is formed so as to coincide with the center of the plate-like body 3. Accordingly, when the three plate-like bodies 3 are arranged in the case body 2, as shown in FIG. 1 (b), the first and third plate-like bodies 3a and 3c and the second plate-like body 3b are arranged. The center point of the through-hole part 9 becomes a different position.
[0016]
The magnitude | size of the minimum opening part 14 of the through-hole part 9 is not specifically limited, It can set variously according to the fluid to flow. For example, when a liquid-liquid is used as a fluid, the dimension is preferably such that a circle having a diameter of 0.1 mm or more can be formed, and more preferably a dimension capable of forming a circle having a diameter of 0.5 mm or more. Further, when the gas is used as a fluid, it can be formed extremely small.
[0017]
Further, the sizes of the front surface opening 12 and the back surface opening 13 of the through hole 9 are not particularly limited. However, even if the plate surfaces of the plate-like bodies 3 are brought into contact with each other and arranged in parallel, the fluid is not supplied to the through hole 9. In such a manner that the peripheral edge of the back surface opening 13 of one plate-like body 3 and the peripheral edge of the surface opening portion 12 of the other plate-like body 3 intersect each other. Is formed. Therefore, the fluid that has passed through each through-hole portion 9 of the first plate-like body 3a gathers in one through-hole portion 9 of the second plate-like body 3b, and further, the fluid of the third plate-like body 3c. A flow path R of one route is formed in the three plate-like bodies 3 so as to divert to each through-hole portion 9.
[0018]
  Next, the usage example of the said static type mixing apparatus 1 is shown in FIG.
  In FIG. 4, P is a pump for delivering fluid, T is a tank for storing fluid, S is a piping section such as an inlet pipe and an outlet pipe,ArrowIndicates the direction of fluid flow.
  The fluid to be mixed is not particularly limited as long as it is a substance that can flow, and the same or different liquid-liquid, gas-liquid, solid-liquid, gas-gas, solid-gas, gas-liquid-solid, etc. Two or more things can be used in combination.
[0019]
Two or more kinds of fluids preliminarily mixed may be charged into the tank T, or a plurality of tanks T may be prepared and charged separately. Moreover, you may make it throw in suitably in the middle of the piping S.
[0020]
When the pump P is operated, the fluid is pumped from the tank T through the feed pipe S into the case body 2 of the device 1. The pressure of the fluid is not particularly limited, but the higher the pressure, the higher the fluid mixing efficiency, and a dispersion composed of fine particles can be obtained.
[0021]
The fluid fed into the case body 2 flows through the flow path R formed by the through-hole portions 9 of the plate-like bodies 3. Specifically, as shown by the arrows in FIG. 5, the fluid hits the surface of the first plate-like body 3 a and diverts to the four through-hole portions 9 of the plate-like body 3 a. Further, the fluid that has passed through each through-hole portion 9 of the first plate-like body 3a hits the surface of the second plate-like body 3b and creates a complicated flow with vortices, while one of the plate-like bodies 3b. After gathering in the through-hole portions 9, the surface of the third plate-like body 3 c is similarly hit and divided into four through-hole portions 9 and sent out from the delivery pipe S to the outside of the apparatus 1.
[0022]
According to this apparatus 1, fluid can be mixed efficiently. Furthermore, for example, when fluids having no compatibility (for example, water and oil) are circulated, a finer particle dispersion can be obtained.
Although this effect is not clear, when the fluid passes through the through-hole portion 9, the fluid expands and contracts, violently collides with each other or the plate-like body, and becomes a complicated flow with a vortex, which causes cavitation. it is conceivable that.
Furthermore, when passing through the second plate-like body 3b, the separated fluid collects in one through-hole portion 9, and after that, a strong shearing force acts on the fluid by dividing it again into a plurality of parts. Conceivable. Further, the total through area of the through-hole portion 9 of the second plate-like body 3b is very small compared to the total through-area of the through-hole portion 9 of the first or third plate-like body 3a, 3c. Since the flow velocity when passing through the through-hole portion 9 of the second plate-like body 3b becomes extremely fast, it is considered that the fluid hits the surface of the third plate-like body 3c more strongly and the fluid is crushed. It is done.
[0023]
<Modification of First Embodiment>
In the said 1st Embodiment, although the flow path R comprised through each plate-shaped body 9 illustrated the thing of only one route, this can also be comprised in a several route.
For example, as an example of constituting two routes of flow passages R1 and R2, as shown in FIGS. 6 and 7, two (a plurality of) through-hole portions 9 are provided in the second plate-like body 3b with a space therebetween. Four (a plurality of) through-hole portions 9 are formed in the first and third plate-like bodies 3a and 3c so as to correspond to the respective through-hole portions 9 of the second plate-like body 3b. An apparatus 1 or the like in which three plate-like bodies 3 are formed and arranged in contact with each other is exemplified. The device 1 according to this modification also has the same effect as described above.
[0024]
Thus, if the flow path R comprised by the through-hole part 9 of each plate-shaped body 3 is comprised substantially independently independently, the plate-shaped body in which the several through-hole part 9 was structurally formed 3 (the second plate-like body 3b and the like) can also be used.
Thus, the plate-like body 3 having one through-hole portion 9 is not limited to the structural meaning that one through-hole portion 9 is formed in the plate-like body 3, and is substantially independent. The meaning of having one through-hole portion 9 for one flow passage R is also included. In other words, the flow path R (one of the flow paths when a plurality of flow paths are configured) between the two adjacent plate-like bodies 3 that are arbitrarily selected is a plurality of through holes. What is necessary is just to be comprised by the part 9 and the one through-hole part 9. FIG.
[0025]
Moreover, in 1st Embodiment, although the three plate-shaped bodies 3 were arranged in parallel and the 2nd plate-shaped body 3b illustrated the apparatus 1 which has the one through-hole part 9, plate-shaped body 3 was shown. The number and the number of through-hole portions 9 and the arrangement of the plate-like body 3 having one through-hole portion 9 can be appropriately changed in design. For example, various combinations are illustrated in Table 1 below.
[0026]
[Table 1]
Figure 0004388290
[0027]
In Table 1, Examples 1 and 2 are two plate-like bodies, Examples 3 and 4 are three plate-like bodies, Examples 5 and 6 are four plate-like bodies, and Examples 7 and 8 are It shows a combination of five plate-like bodies. Examples 5, 7, and 8 show the case where two (a plurality) plate-like bodies having one through-hole portion are provided. Moreover, except for Example 2, the plate-like body having one through-hole portion is arranged on the upstream side of the fluid from the plate-like body having a plurality of through-hole portions. Thus, it is preferable to arrange the plate-like body 3 having one through-hole portion 9 on the upstream side because the fluid mixing efficiency is further improved.
[0028]
Furthermore, in the first embodiment, in order to increase the fluid flow velocity, the total through-area of the through-hole portion 9 of the first or third plate-like body 3a, 3c is equal to the through-hole portion 9 of the second plate-like body 3b. However, the relationship of the total penetration area is not limited to this. Among two adjacent plate-like bodies arbitrarily selected from at least two plate-like bodies 3, the total penetrating area of one plate-like body 3 is the total penetrating area of the other plate-like body 3. What is necessary is just to form so that it may become 5 times or more, preferably 2 times or more. In addition, the larger the difference in the total penetrating area between the one plate-like body 3 and the other plate-like body 3, the faster the fluid can flow. Therefore, the upper limit is not particularly limited, but the difference in the total penetrating area is too large. In consideration of this point, the total penetration area of one plate-like body 3 should be 100 times or less, preferably 10 times or less than the total penetration area of the other plate-like body 3. That's fine.
In addition, the total penetration area of each plate-like body 3 is made the same, or the total penetration area of the plate-like body 3 having one through-hole portion 9 is made larger than the total penetration area of the other plate-like bodies 3. May be.
[0029]
Further, as shown in FIG. 8, as the plate-like body 3 having one through hole portion 9, the front surface opening portion 12 and the back surface opening portion 13 of the through hole portion 9 are made large openings and the reduced diameter opening portion 15 is formed. A plate-like body 3 having an inclination angle θ formed at an acute angle with respect to the plate surface may be used. In the device 1 in which the plate-like bodies 3 according to this modification are arranged side by side, as shown in FIG. 8B, a very large number of through-hole portions 9 are formed in the adjacent plate-like bodies 3a and 3c. However, the fluid flowing out from a large number of through-hole portions 9 of the upstream plate-like body 3a is gathered into one through-hole portion, and is divided into a large number of through-hole portions 9 of the downstream-side plate-like body 3c. This is preferable.
[0030]
Second Embodiment
In the second embodiment, all the plate-like bodies 3 have a plurality of through-hole portions 9, and one flow path R is configured by the plurality of through-hole portions 9. And different.
Parts different from those of the first embodiment will be mainly described, and descriptions of parts common to the first embodiment will be omitted as appropriate, and names and drawing numbers of each part may be used.
[0031]
The apparatus 1 of this embodiment relates to two adjacent plate-like bodies 3 arbitrarily selected from at least two plate-like bodies 3, and the total through-area of the through-hole portion 9 of one plate-like body 3 is the same. The other plate-like body 3 is formed to be 1.5 times or more, preferably 2 times or more the total penetration area of the through-hole portion 9 of the plate-like body 3.
[0032]
Specifically, as shown in FIG. 9, the apparatus 1 has two plate-like bodies 3 arranged in parallel within a case body 2. As shown in FIG. 10, the first plate-like body 3a corresponding to the other plate-like body has four through-hole portions 9 formed therein, and the second plate-like body corresponding to the one plate-like body. As shown in FIG. 11, the body 3b has five through-hole portions 9 formed therein. And each through-hole part 9 is each equal so that the center point of the through-hole part 9 of the 1st plate-shaped body 3a and the 2nd plate-shaped body 3b may become a different position (shown in FIG.9 (b)). Has been placed.
Further, the through area (minimum opening 14) of the through hole portion 9 of the first plate-like body 3a is formed to be 1/4 of the through area of the through-hole portion 9 of the second plate-like body 3b. ing. Therefore, the second plate-like body 3b has a total penetrating area five times that of the first plate-like body 3a.
[0033]
When fluids are mixed using such a static mixing device 1, the same mixing effect as in the first embodiment can be obtained. This is because the fluid causes cavitation, and the total penetration area of the through-hole portion 9 of the first plate-like body 3a is much smaller than the total penetration area of the through-hole portion of the second plate-like body 3b. Is small (specifically, a ratio of 1: 5), the flow velocity when passing through the through-hole portion 9 of the first plate-like body 3a becomes extremely fast, and the fluid strongly hits the second plate-like body 3b. This is thought to be due to crushing.
[0034]
<Modification of Second Embodiment>
The number of plate-like bodies 3, the number of through-hole portions 9, the through-area of the through-hole portions 9, the ratio of the total through-area of each plate-like body 3 and the like shown in the second embodiment can be appropriately changed. For example, Table 2 illustrates various combinations. The ratio of the total through area can be changed as appropriate by changing the size of the through hole part or the number of the through hole parts.
[0035]
[Table 2]
Figure 0004388290
[0036]
In Table 2, Example 1 has two plate-like bodies, Example 2 has three plate-like bodies, Examples 3 and 4 have four plate-like bodies, and Example 5 has five plate-like bodies. Indicates a combination of bodies. Further, except for Example 1, plate-like bodies having a ratio of total penetrating area of 1 are arranged on the upstream side, and these are preferable examples because the fluid mixing efficiency is further improved.
[0037]
<Modification common to each embodiment>
(About plate-shaped body)
In each of the above embodiments, the adjacent plate-like bodies 3 have the advantage that the fluid can be circulated at a higher speed because the plate surfaces are arranged side by side in contact with each other. You may set up. In each of the above embodiments, the adjacent plate-like bodies 3 are arranged side by side vertically with respect to the flow direction. However, it is not always necessary to arrange them side by side as described above. It suffices if the flow path R is secured in parallel so as to flow from the plate-like body 3 to the plate-like body 3 on the downstream side.
[0038]
Moreover, in each said embodiment, although the plate-shaped body 3 is formed in the disk shape, it is not limited to this shape, A square disk shape etc. may be sufficient. However, in order to obtain a uniform flow, it is preferable that the thickness is constant, the surface is smooth, and the inner shape of the case body 2 is adapted. The plate-like body 3 can be manufactured by a known method such as cutting, casting, or sintering.
[0039]
(About the shape of the through hole)
The through-hole portion 9 of each of the above embodiments has a circular cross section (cross section) shape that is perpendicular to the plate thickness direction, but is not limited to this cross section shape. A shape such as a circle, a triangle, a quadrangle, a trapezoid, a star, and other polygons may be used. Among these, the cross-sectional shape is preferably a regular polygon such as a circle or a square or a rectangle. Furthermore, the cross-sectional shape of the through-hole portion 9 in each of the above embodiments is circular throughout the thickness direction, but the combined shape of different shapes (for example, the cross-sectional shape of the front surface opening 12 and the back surface opening 13 is a quadrangle) The cross-sectional shape of the minimum opening 14 may be circular.
[0040]
Moreover, although the through-hole part 9 of each said embodiment is a shape as shown in FIG.2 (b) in the cross section (vertical cross section) shape along a plate | board thickness direction, this vertical cross section shape is limited to this. For example, a straight line perpendicular to the plate surface as shown in FIG. 12 (a), a straight line oblique to the plate surface as shown in (b), a curved shape as shown in (c), (d) A linear shape in which the interval as shown in FIG. 5 is expanded, a linear shape in which the interval is reduced as shown in (e), a linear shape in which the interval is reduced as shown in (f) and a linear shape perpendicular to the plate surface, A straight line shape perpendicular to the plate surface as shown in (g) and a straight line shape in which the interval is increased, or any other shape as shown in (h) may be used.
A part of the overall shape of the through-hole portion 9 that combines these various cross-sectional shapes and vertical cross-sectional shapes is illustrated in FIGS.
[0041]
Further, the plate-like body 3 is not necessarily limited to the one having the same shape and / or through-hole portion 9 of the through-area, and the shape and / or through-area of the through-hole portion 9 of each plate-like body 3 is different. It may be a thing. For example, the shape of the through-hole portion 9 in each plate-like body 3 is such that the through-hole portion 9 of the first plate-like body 3a is circular and the through-hole portion 9 of the second plate-like body 3b is square. You may change suitably.
[0042]
(About the arrangement of the through hole)
Each plate-like body 3 is preferably arranged so that the center points of the through-hole portions 9 of the adjacent plate-like bodies 3 are different from each other as in the above-described embodiments. Among them, a part of the through-hole portions 9 may be arranged so as to coincide with the center point of the through-hole portions 9 of the adjacent plate-like bodies 3. If it arrange | positions so that the center point of all the through-hole parts 9 of the adjacent plate-shaped body 3 may correspond, fluid will flow, without colliding substantially with the surface of a downstream plate-shaped body, but all the through-holes This is because if the center points of the portions 9 do not match, a shearing action due to a collision can be expected.
[0043]
(About the case body)
The case body 2 of each of the above embodiments is exemplified by a structure in which two cylindrical bodies 7 are integrated. However, the present invention is not limited to this, and the design can be changed as appropriate, for example, a single cylindrical body. It is. Further, the cross-sectional shape of the case body 2 may be various shapes such as a square and a polygon in addition to a circle.
Moreover, in this apparatus 1, a case body is not necessarily required, for example, you may comprise the apparatus 1 by attaching the plate-shaped body 3 directly in the middle of the piping part S newly or existing. Specifically, as shown in FIG. 14, ring-shaped flange portions 17 that can come into contact with the surface of the plate-like body 3 are provided at the end portions of the feeding pipe S and the sending pipe S, and There can be exemplified such that at least two or more plate-like bodies 3 are arranged in parallel through a packing, and these are hermetically integrated with a fastening tool 18 such as a screw rod and a nut.
[0044]
(Materials for cases and plates)
The case body 2 and the plate-like body 3 used in the above embodiments are not particularly limited as long as they have a material or structure having mechanical strength that can withstand the pressure of the fluid. For example, the case body 2 and the plate body 3 are made of metal such as stainless steel or ceramic. A synthetic resin such as engineering plastic can be used as appropriate. Further, those having a smooth inner surface and those having corrosion resistance are preferred.
[0045]
(About usage examples)
As an example of use of the device 1 of each of the above embodiments, the method shown in FIG. 4 is illustrated. However, for example, as shown in FIG. 15, a plurality of devices 1 may be arranged in series or in parallel. If necessary, it is also possible to use a static mixer having a different mixing method such as a Kenix type. A plurality of tanks T and pumps S may be used.
Further, normally, when the fluid is passed once, the fluid is sufficiently mixed. However, the fluid may be circulated through the device 1 a plurality of times and circulated as necessary. In this case, a switching valve or the like may be provided in the middle of the delivery pipe, and a return pipe S1 may be provided separately as shown in FIG.
[0046]
【Example】
  Hereinafter, the present invention will be described in further detail with reference to Examples and Comparative Examples.
Examples and comparative examplesUsed the following.
(1) Used fluid and mixing ratio
Fluid 1: Tap water ... 95 parts by weight
Fluid 2: White squeezed oil (manufactured by Showa Sangyo Co., Ltd., trade name: soybean white squeezed oil): 5 parts by weight
Fluid 3: Emulsifier (manufactured by Kao Corporation, trade name: Rheodor Super TW-O120) ... 0.5 parts by weight
(2) Equipment used for particle size measurement
Laser diffraction / scattering particle size distribution measuring device (LA-300 type), manufactured by HORIBA, Ltd.
[0047]
(3) Used plate-like body (the main part is shown in Table 3)
Plate-like body {circle around (1)}: a shape having four through-hole portions shown in FIG. Diameter L ... 6 (mm) of front surface opening and back surface opening. Minimum opening M ... 2 (mm). Plate thickness D ... 5 (mm). Inclination angle θ of the reduced diameter opening: 45 degrees. Through area ... π (mm2). Total penetration area: 4π (mm2).
Plate-shaped body (2): a shape having one through-hole portion shown in FIG. Diameter L ... 6 (mm) of front surface opening and back surface opening. Minimum opening M ... 2 (mm). Plate thickness D ... 5 (mm). The inclination angle θ of the reduced diameter opening portion 45 (degrees). Through area ... π (mm2). Total penetration area ... π (mm2).
Plate-shaped body (3): a shape having one through-hole portion shown in FIG. Diameter L ... 25 (mm) of front surface opening and back surface opening. Minimum opening M ... 4 (mm). Plate thickness D ... 5 (mm). The inclination angle θ of the reduced diameter opening portion 11 (degrees). Through area ... 4π (mm2). Total penetration area: 4π (mm2).
Plate-shaped body (4): a shape having four through-hole portions shown in FIG. Diameter L ... 6 (mm) of front surface opening and back surface opening. Minimum opening M ... 1 (mm). Plate thickness D ... 5 (mm). The inclination angle θ of the reduced diameter opening portion 45 (degrees). Through area ... 0.25π (mm2). Total penetration area ... π (mm2).
Plate-shaped body (5): a shape having five through-hole portions shown in FIG. Diameter L ... 6 (mm) of front surface opening and back surface opening. Minimum opening M ... 2 (mm). Plate thickness D ... 5 (mm). The inclination angle θ of the reduced diameter opening portion 45 (degrees). Through area ... π (mm2). Total penetration area: 5π (mm2).
[0048]
[Table 3]
Figure 0004388290
[0049]
Example 1
Example 1 has three plate-like bodies of a plate-like body (1), a plate-like body (2), and a plate-like body (1) in order from the upstream side in the cylindrical case body shown in FIG. Were used side by side in contact.
As shown in FIG. 4, a tank and a pump are installed, and about 10 liters (a liquid temperature of 30 ° C.) of a mixture of fluids 1 to 3 preliminarily mixed with a stirring rod is put into the tank and 3 (MPa ) Was pressed into the apparatus at a pressure of 1) and circulated once in the apparatus. The operation was continued for about 2 minutes, and the particle size of the fluid obtained after about 1 minute was measured. In addition, when the flow rate was measured using a stopwatch and a graduated cylinder and divided by the cross section of the flow path, the flow velocity was measured, and in the through hole portion of the second plate (1), 246.0 (m / s) In the through hole portion of the third plate-like body (2), it was 61.5 (m / s).
Table 4 shows the test results of each example and comparative example. Except for Comparative Example 2, no great difference was observed in the particle size distribution.
[0050]
[Table 4]
Figure 0004388290
[0051]
Example 2
In Example 2, an apparatus in which three plate bodies of a plate-like body (1), a plate-like body (5), and a plate-like body (2) were arranged side by side in order from the upstream side was used. And the mixture of the fluids 1-3 was poured like Example 1, and the particle diameter was measured. The flow rate at the through hole portion of the first plate-like body (1) is 164.0 (m / s), and the flow rate at the through-hole portion of the second plate-like body (5) is 131.0 (m / s). m / s).
Example 3
In Example 3, an apparatus in which two plate-like bodies of the plate-like body (5) and the plate-like body (3) were arranged in contact with each other in order from the upstream side was used. And the mixture of the fluids 1-3 was poured like Example 1, and the particle diameter was measured. The flow rate at the through hole portion of the first plate-like body (5) is 127.0 (m / s), and the flow rate at the through-hole portion of the second plate-like body (3) is 159.0 (m / s). m / s).
Example 4
In Example 4, an apparatus in which two plate-like bodies of plate-like body (4) and plate-like body (5) were arranged in contact with each other in order from the upstream side was used. And the mixture of the fluids 1-3 was poured like Example 1, and the particle diameter was measured. The flow velocity at the through hole portion of the first plate-like body (4) is 246.0 (m / s), and the flow velocity at the through-hole portion of the second plate-like body (5) is 49.2 ( m / s).
[0052]
Comparative Example 1
In Comparative Example 1, a plurality of through-hole portions are formed in each plate-like body, and the total penetration area of each plate-like body is substantially equal, and the plate-like body {circle over (5)}, plate-like in order from the upstream side A device in which the two plate-like bodies of the body (1) were arranged side by side in contact was used. And the mixture of the fluids 1-3 was poured like Example 1, and the particle diameter was measured. The flow rate at the through-hole portion of the first plate-like body (5) is 157.0 (m / s), and the flow rate at the through-hole portion of the second plate-like body (1) is 196.0 ( m / s).
Comparative Example 2
In Comparative Example 2, an apparatus having only one plate-like body (2) was used. And the mixture of the fluids 1-3 was poured like Example 1, and the particle diameter was measured. The flow rate at the through hole of the first plate-like body (2) was 259.0 (m / s).
[0053]
As is apparent from Table 4, it can be seen that in each Example, white squeezed oil is dispersed as finer particles.
Moreover, when Example 3 and Comparative Example 1 are compared, the number of plate-like bodies and the total penetration area of the first plate-like body and the second plate-like body coincide with each other, but a plate having one through-hole portion. Example 3 using a solid body is superior. Furthermore, when Example 4 and Comparative Example 1 are compared, the number of plate-like bodies and the number of through-hole portions are substantially the same, but Example 4 using a plate-like body having a small total penetrating area is superior. Yes. Further, when Example 1 is compared with Example 2, Example 1 is superior, so that a plate-like body having one through-hole portion is more than a plate-like body having a plurality of through-hole portions. It can also be seen that it is preferable to arrange them upstream.
[0054]
【The invention's effect】
As described above, the static mixing device of the present invention is more excellent in mixing efficiency than the conventional device, and the fluid can be mixed efficiently only by flowing the fluid. Furthermore, a finer particle dispersion can be produced.
In addition, according to the apparatus of the present invention, even if the amount of fluid to be processed is small, it can be sufficiently mixed and a fine particle dispersion can be produced.
[Brief description of the drawings]
FIG. 1A is a longitudinal sectional view of a static mixing device according to a first embodiment, and FIG. 1B is a front view of plate-like bodies arranged in a case body as viewed from the upstream side of a fluid. Indicates.
2A is a front view of the first and third plate-like bodies according to the first embodiment, FIG. 2B is a cross-sectional view taken along line AA, and FIG. A line sectional view is shown.
3A is a front view of a second plate-like body according to the first embodiment, and FIG. 3B is a cross-sectional view taken along line AA.
FIG. 4 is a conceptual diagram showing a usage example of the apparatus.
FIG. 5 is a partially omitted longitudinal sectional view showing a usage state of the static mixing device according to the first embodiment.
6A is a front view showing a modification of the second plate-like body, FIG. 6B is a front view showing a modification of the first and third plate-like bodies, and FIG. The front view which looked at the state which arranged these in parallel from the upstream of the fluid is shown.
7 is a partially omitted longitudinal sectional view showing a usage state of a static mixing device in which the plate-like bodies of FIG. 6 are arranged side by side.
FIG. 8A is a front view showing another modified example of the second plate-like body, and FIG. 8B is a static mixing system in which it is arranged in parallel between the first and third plate-like bodies. FIG.
9A is a longitudinal sectional view of a static mixing device according to a second embodiment, and FIG. 9B is a front view of the plate-like bodies arranged side by side as viewed from the upstream side of the fluid. The figure is shown.
10A is a front view of the first plate-like body according to the second embodiment, FIG. 10B is a sectional view taken along line AA, and FIG. 10C is a sectional view taken along line BB. Indicates.
11A is a front view of a second plate-like body according to the second embodiment, and FIG. 11B is a sectional view taken along line AA.
FIGS. 12A to 12H are partially omitted longitudinal sectional views showing various modified examples of the longitudinal sectional shape of the through-hole portion of the plate-like body.
FIGS. 13A to 13L are perspective views showing various modifications of the overall shape of the through-hole portion.
FIG. 14 is a partial longitudinal sectional view showing a modification of the apparatus not using the case body (only the piping portion is shown in cross section).
FIGS. 15A and 15B are conceptual diagrams showing other usage examples of the present apparatus. FIGS.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Static type mixing apparatus, 2 ... Cylindrical case body, 3 ... Plate-shaped body, 3a ... 1st plate-shaped body, 3b ... 2nd plate-shaped body, 3c ... 3rd plate-shaped body, 9 ... Through-hole Hole: 12 ... Front opening, 13 ... Back opening, 14 ... Minimum opening, 15 ... Reduced diameter opening, R ... Flow passage, P ... Pump, T ... Tank

Claims (4)

貫通孔部を有する少なくとも2枚の板状体を備え、前記各板状体の貫通孔部に流体を流通させることによりこれを混合する静止型混合装置であって、
前記板状体のうちから任意に選ばれる隣合う2枚の板状体の一方には、貫通孔部が複数形成されており、他方の板状体には、貫通孔部が1個形成されており、
前記貫通孔部は、板状体の表面及び裏面に表面開口部及び裏面開口部が形成され、且つ板厚方向の中途部に貫通面積が最小となる最小開口部が形成されていると共に、表面開口部及び裏面開口部から最小開口部に向かうに従い次第に縮径する縮径開口部が連設された形状であり、
前記一方の板状体の複数の貫通孔部は、前記表面開口部及び裏面開口部の周縁同士が接して配置されており、
前記一方の板状体の各貫通孔部の中心点と他方の板状体の貫通孔部の中心点を異なる位置とし、且つ一方の板状体の各貫通孔部の表面開口部又は裏面開口部の周縁と他方の板状体の貫通孔部の裏面開口部又は表面開口部の周縁を交差させて、前記一方の板状体と他方の板状体が当接状態で並設されていることを特徴とする静止型混合装置。
A stationary mixing apparatus comprising at least two plate-like bodies having through-hole portions, and mixing the fluid by circulating fluid through the through-hole portions of each plate-like body,
One of two adjacent plate-like bodies arbitrarily selected from the plate-like bodies has a plurality of through-hole portions, and the other plate-like body has one through-hole portion. And
The through hole has a front opening and a back opening formed on the front and back surfaces of the plate-like body, and a minimum opening having a minimum penetrating area in the middle of the plate thickness direction. It is a shape in which a reduced diameter opening portion that gradually decreases in diameter as it goes from the opening portion and the back surface opening portion to the minimum opening portion is continuously provided,
The plurality of through-hole portions of the one plate-like body are arranged so that the peripheral edges of the front surface opening portion and the back surface opening portion are in contact with each other,
The center point of each through-hole portion of the one plate-like body is different from the center point of the through-hole portion of the other plate-like body, and the front surface opening or the back surface opening of each through-hole portion of one plate-like body The one plate-like body and the other plate-like body are juxtaposed in contact with each other so that the peripheral edge of the portion intersects the back surface opening of the through-hole portion of the other plate-like body or the peripheral edge of the front-surface opening. A static mixing device characterized by that.
前記一方の板状体の貫通孔部の総貫通面積が、他方の板状体の貫通孔部の総貫通面積の1.5倍以上である請求項1に記載の静止型混合装置。  The static mixing device according to claim 1, wherein a total through area of the through hole portion of the one plate-like body is 1.5 times or more of a total through area of the through hole portion of the other plate-like body. 前記隣合う2枚の板状体の貫通孔部は、その貫通面積が同じに形成されている請求項1又は2に記載の静止型混合装置。  The stationary mixing device according to claim 1 or 2, wherein the through-hole portions of the two adjacent plate-like bodies have the same penetration area. 前記隣合う2枚の板状体のうち、一方の板状体が、他方の板状体よりも流体の下流側に設けられている請求項1〜3の何れかに記載の静止型混合装置。  The stationary mixing device according to any one of claims 1 to 3, wherein, of the two adjacent plate-like bodies, one plate-like body is provided on the downstream side of the fluid from the other plate-like body. .
JP2003050001A 2003-02-26 2003-02-26 Static mixing device Expired - Fee Related JP4388290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003050001A JP4388290B2 (en) 2003-02-26 2003-02-26 Static mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003050001A JP4388290B2 (en) 2003-02-26 2003-02-26 Static mixing device

Publications (2)

Publication Number Publication Date
JP2004255320A JP2004255320A (en) 2004-09-16
JP4388290B2 true JP4388290B2 (en) 2009-12-24

Family

ID=33115558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003050001A Expired - Fee Related JP4388290B2 (en) 2003-02-26 2003-02-26 Static mixing device

Country Status (1)

Country Link
JP (1) JP4388290B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4244214B2 (en) * 2005-01-21 2009-03-25 佐藤工業株式会社 Redox potential water production equipment
JP2006312165A (en) * 2005-04-08 2006-11-16 Sumitomo Chemical Co Ltd Method for producing emulsion
JP4151681B2 (en) * 2005-07-19 2008-09-17 株式会社日立製作所 Fine bubble generating apparatus and method
JP6046465B2 (en) * 2012-11-22 2016-12-14 株式会社Mgグローアップ Static fluid mixing device
KR101673139B1 (en) * 2014-04-15 2016-11-22 이여형 Desolving tube using mesh screen with venturi-structured sectional area
WO2016068055A1 (en) * 2014-10-27 2016-05-06 株式会社Mgグローアップ Device for producing high-concentration carbonated spring
JP6777359B2 (en) * 2016-05-20 2020-10-28 ニッタ株式会社 Disperser nozzle, disperser equipped with the nozzle, and dispersal method
KR101937762B1 (en) * 2017-05-26 2019-01-14 (주)지디티 The venturi tube of plate type
KR102008743B1 (en) * 2018-08-08 2019-08-09 (주)지디티 The venturi tube of plate type

Also Published As

Publication number Publication date
JP2004255320A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP4388290B2 (en) Static mixing device
US6379035B1 (en) Static mixing and stirring device
JP6229185B2 (en) Mixing element, apparatus using the same, fluid mixing method and fluid
JP5032703B2 (en) Apparatus for mixing liquids by generating shear forces and / or cavitation
JP5935969B2 (en) Static mixer
US5460449A (en) In-line mixer for dispersions
EP3560581B1 (en) Dispersion and defoaming device
JP2006289250A (en) Micro mixer and fluid mixing method using the same
US6467949B1 (en) Static mixer element and method for mixing two fluids
JP2009082841A (en) Microbubble generation nozzle
CA2939162C (en) Mixing apparatus with stator and method
US9782734B2 (en) Integrated rotary mixer and disperser head
JP2011251202A (en) Stirring mixer
JP5789144B2 (en) Fluid stirring device and method
JP2001321651A (en) Agitating device
JPS602899B2 (en) mixing device
JPH1142431A (en) Atomizing method and device therefor
CN107551848B (en) High-viscosity combined working head
JP5794564B2 (en) Stirrer
JP5685419B2 (en) Static distributed system
JPH08103642A (en) Liquid superfine atomizing mixer
US3809372A (en) Devices for the generation of ultrasonics and their application to the preparation of emulsions
CN211537294U (en) Pipeline mixer
CN215138727U (en) Butterfly type static mixer
JP2005169269A (en) Bubble generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091002

R150 Certificate of patent or registration of utility model

Ref document number: 4388290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees