JP2006289250A - Micro mixer and fluid mixing method using the same - Google Patents

Micro mixer and fluid mixing method using the same Download PDF

Info

Publication number
JP2006289250A
JP2006289250A JP2005112650A JP2005112650A JP2006289250A JP 2006289250 A JP2006289250 A JP 2006289250A JP 2005112650 A JP2005112650 A JP 2005112650A JP 2005112650 A JP2005112650 A JP 2005112650A JP 2006289250 A JP2006289250 A JP 2006289250A
Authority
JP
Japan
Prior art keywords
fluid
mixing
pipe
diameter
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005112650A
Other languages
Japanese (ja)
Inventor
Kazuo Matsuyama
一雄 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005112650A priority Critical patent/JP2006289250A/en
Publication of JP2006289250A publication Critical patent/JP2006289250A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a micro mixer with a simple configuration and a fluid mixing method using the mixer. <P>SOLUTION: The micro mixer 100 comprises a fluid flow pipe 10 which forms a plurality of fluid channels 11 expended in parallel to each other in the inside along the longitudinal direction and a fluid mixing part 20 which is installed continuously in the fluid flow-out side of the fluid flow pipe 10, forms a fluid stagnation region 21 for stagnating a plurality of fluids flowing out of the fluid flow pipe 10 in a state the fluids are mixed, and has mixing fine pores for for passing, stratifying and mixing a plurality of the fluids. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、マイクロミキサー及びそれを用いた流体混合方法に関する。   The present invention relates to a micromixer and a fluid mixing method using the micromixer.

複数種の原料を用いて化学反応を起こさせる場合、それらの原料の混合操作が必要不可欠である。そして、そのような混合操作には各種の混合器が用いられる。   When a chemical reaction is caused by using plural kinds of raw materials, a mixing operation of these raw materials is indispensable. Various mixers are used for such a mixing operation.

例えば、静止型管内混合器は、幅が数mm〜数十mmである流体流路を有し、その流体流路を流通する複数種の原料流体を層流及び乱流混合によりマクロ混合させる。   For example, a static in-pipe mixer has a fluid flow channel having a width of several mm to several tens of mm, and macro-mixes a plurality of kinds of raw material fluids flowing through the fluid flow channel by laminar flow and turbulent flow mixing.

また、マイクロミキサーは、幅が数μm〜数百μmである流体流路を有し、流体流路が非常に狭いため、そこを流通する複数種の原料流体を層流混合によりマイクロ混合させる。   In addition, the micromixer has a fluid flow channel having a width of several μm to several hundreds μm, and the fluid flow channel is very narrow. Therefore, a plurality of kinds of raw material fluids flowing therethrough are micromixed by laminar flow mixing.

ここで、マイクロ混合は、分子拡散が支配的であるが、その分子拡散による混合時間は、拡散距離の二乗に比例する。従って、流体流路が極めて狭いマイクロミキサーは、拡散距離が非常に小さいために高速且つ高効率な混合を行うことができ、静止型管内混合器等のマクロ混合では行い得なかった混合の実現が期待され、近年、特に注目されている。   Here, in the micromixing, molecular diffusion is dominant, but the mixing time by the molecular diffusion is proportional to the square of the diffusion distance. Therefore, a micromixer with an extremely narrow fluid flow path can perform mixing at high speed and high efficiency because the diffusion distance is very small, and can realize mixing that could not be performed by macro mixing such as a static in-tube mixer. It is expected and has attracted particular attention in recent years.

例えば、特許文献1には、ベースプレートの表面部に一対の給液路が形成され、それらの給液路における櫛歯状のマイクロチャンネル部が互いに平行に延在しており、また、裏面部にも一対の給液路が形成され、それらの給液路における櫛歯状のマイクロチャンネル部も互いに平行に延在しており、さらに、ベースプレートには、後者の給液路のマイクロチャンネル部の底面部分からミキシング流路へ連通する貫通部が穿設されており、これら全てのマイクロチャンネルの幅が1〜500μmの範囲で設定されているマイクロミキサーが開示されている。そして、これによれば、混合する溶液が3種類以上の場合でも、混合する溶液の種類に等しい本数の給液路をミキサー本体に形成し、これらの給液路から溶液を薄片状の層流としてミキシング流路へ供給することができる、と記載されている。
特開2003−210957号公報
For example, in Patent Document 1, a pair of liquid supply passages are formed on the front surface portion of the base plate, and comb-shaped microchannel portions in the liquid supply passages extend in parallel with each other. A pair of liquid supply passages are formed, and comb-shaped microchannel portions in the liquid supply passages extend in parallel with each other. Further, the base plate has a bottom surface of the microchannel portion of the latter liquid supply passage. There is disclosed a micromixer in which a penetrating portion communicating from the portion to the mixing channel is formed, and the widths of all the microchannels are set in a range of 1 to 500 μm. According to this, even when there are three or more types of solutions to be mixed, the number of liquid supply passages equal to the type of the solution to be mixed is formed in the mixer body, and the solution is fed from the liquid supply passages into a laminar laminar flow. It can be supplied to the mixing channel.
JP 2003-210957 A

本出願の目的は、構成の簡単なマイクロミキサー及びそれを用いた流体混合方法を提供することである。   An object of the present application is to provide a micro mixer having a simple structure and a fluid mixing method using the micro mixer.

上記目的を達成する本発明に係るマイクロミキサーは、
管内部に相互に並行に延びる複数の流体流路が長さ方向に沿って構成された流体流通管と、
上記流体流通管の流体流出側に連続して設けられ、該流体流通管から流出した複数種の流体を混在状態に溜めるための流体溜め領域を形成すると共に、それらの複数種の流体を流通させて層流混合させるための混合用細孔が穿孔された流体混合部と、
を備える。
The micromixer according to the present invention that achieves the above-described object is
A fluid circulation pipe in which a plurality of fluid flow paths extending in parallel with each other inside the pipe are configured along the length direction;
It is provided continuously on the fluid outflow side of the fluid circulation pipe, and forms a fluid reservoir region for collecting a plurality of types of fluid flowing out from the fluid circulation pipe in a mixed state, and distributes the plurality of types of fluid. A fluid mixing part having mixing pores for laminar mixing.
Is provided.

また、本発明に係る流体混合方法は、
管内部に相互に並行に延びる複数の流体流路が長さ方向に沿って構成された流体流通管と、該流体流通管の流体流出側に連続して設けられ且つ流体溜め領域を形成すると共に混合用細孔が穿孔された流体混合部と、を備えたマイクロミキサーを用い、
上記流体流通管から流出した複数種の流体を上記流体混合部により形成された流体溜め領域に混在状態に溜め、該流体溜め領域に溜められた複数種の流体を層流混合させるように上記流体混合部の上記混合用細孔に流通させるものである。
Further, the fluid mixing method according to the present invention includes:
A fluid circulation pipe having a plurality of fluid flow paths extending in parallel with each other inside the pipe along the length direction, and continuously provided on the fluid outflow side of the fluid circulation pipe and forming a fluid reservoir region Using a micromixer equipped with a fluid mixing section with pores for mixing,
A plurality of types of fluids flowing out from the fluid circulation pipe are stored in a mixed state in a fluid storage region formed by the fluid mixing unit, and the plurality of types of fluid stored in the fluid storage region are laminar mixed. It is made to distribute | circulate through the said pore for mixing of the mixing part.

本発明によれば、配管経路に設けられた構造により混合操作を行う構成の簡単なものであるが、それによってマイクロミキサーに特有の層流混合による高速混合を行うことができる。しかも、混合用細孔でのみでしか圧力損失が生じないので、全体として圧力損失を小さく抑えることができ、そのため、従来のマイクロミキサーに比較して単位時間当たりの流量を多くすることができる。   According to the present invention, the structure for performing the mixing operation by the structure provided in the piping path is simple, and thereby, high-speed mixing by laminar flow mixing unique to the micromixer can be performed. In addition, since the pressure loss occurs only at the mixing pores, the pressure loss can be suppressed as a whole, so that the flow rate per unit time can be increased as compared with the conventional micromixer.

以下、本発明の実施形態について図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係るマイクロミキサー100を示す。   FIG. 1 shows a micromixer 100 according to an embodiment of the present invention.

このマイクロミキサー100は、流体流通管10とその流体流出側に連続して設けられた流体混合部20とを備えている。   The micromixer 100 includes a fluid circulation pipe 10 and a fluid mixing unit 20 provided continuously on the fluid outflow side.

流体流通管10は、管内部に相互に並行に延びる複数の流体流路11が長さ方向に沿って構成されている。   The fluid circulation pipe 10 includes a plurality of fluid flow paths 11 extending in parallel with each other inside the pipe along the length direction.

流体流通管10は、その構成が特に限定されるものではなく、図1(a)に示すように、大径管12とそれに挿通された小径管13とにより構成された二重管構造に構成されたものであっても、また、図1(b)に示すように、複数の貫通孔が長さ方向に沿って形成されたチューブ状部材で構成されたものであってもよい。   The configuration of the fluid circulation pipe 10 is not particularly limited. As shown in FIG. 1A, the fluid circulation pipe 10 has a double-pipe structure constituted by a large-diameter pipe 12 and a small-diameter pipe 13 inserted therethrough. In addition, as shown in FIG. 1B, it may be configured by a tubular member in which a plurality of through holes are formed along the length direction.

前者の大径管12及び小径管13による二重管構造であれば、既存の外径の異なる2種の管により特別な加工を必要とせずに容易に得ることができる。ここで、二重管構造には、大径管12に1本の小径管13が挿通されているものだけでなく、図1(a)に示すように、大径管12に複数本の小径管13が挿通されているものも含まれる。   If the former is a double-tube structure composed of a large-diameter pipe 12 and a small-diameter pipe 13, it can be easily obtained without requiring special processing by using two existing pipes having different outer diameters. Here, in the double tube structure, not only a single small-diameter tube 13 is inserted into the large-diameter tube 12, but a plurality of small-diameters are provided in the large-diameter tube 12 as shown in FIG. The thing into which the pipe | tube 13 is penetrated is also included.

二重管構造の場合、図1(a)に示すように、大径管12の内側で且つ小径管13の外側の部分が流体流路11に構成されていてもよい。このような構成であれば、管内を流体流路11として最大限に活用することができる。   In the case of a double tube structure, as shown in FIG. 1A, a portion inside the large diameter tube 12 and outside the small diameter tube 13 may be formed in the fluid flow path 11. With such a configuration, the inside of the pipe can be utilized to the maximum as the fluid flow path 11.

流体混合部20は、流体流通管10から流出した複数種の流体を混在状態に溜めるための流体溜め領域21を形成する。また、流体混合部20は、それらの複数種の流体を流通させて層流混合させるための混合用細孔22が穿孔されている。   The fluid mixing unit 20 forms a fluid reservoir region 21 for storing a plurality of types of fluids flowing out from the fluid circulation pipe 10 in a mixed state. Further, the fluid mixing unit 20 is provided with mixing pores 22 for circulating these plural types of fluids and mixing them in a laminar flow.

流体混合部20に穿孔された混合用細孔22は、流体を層流混合させるものであるので非常に小さく、層流混合性を考慮すると、孔径D1が0.1〜1.0mm、或いは、孔面積S1が0.008〜0.8mm2であるのが好ましい。ここで、孔径D1が0.1mm未満、或いは、孔面積S1が0.008mm2未満であると、圧力損失が大きくなってしまう。かかる観点から、孔径D1については、0.2mm以上、孔面積S1については0.030mm2以上であるのがより好ましい。一方、孔径D1が1.0mmより大きい、或いは、孔面積S1が0.8mm2より大きくなると、層流混合性が劣るものとなってくる。かかる観点から、孔径D1については、0.5mm以下、孔面積S1については0.200mm2以下であるのがより好ましい。また、孔径D1は、混合用細孔22の横断面外郭を内包する最小円の直径である。 The mixing pores 22 perforated in the fluid mixing unit 20 are very small because the fluid is mixed in a laminar flow, and considering the laminar mixing property, the pore diameter D1 is 0.1 to 1.0 mm, or It is preferable that the pore area S1 is 0.008 to 0.8 mm 2 . Here, when the hole diameter D1 is less than 0.1 mm or the hole area S1 is less than 0.008 mm 2 , the pressure loss becomes large. From this viewpoint, it is more preferable that the hole diameter D1 is 0.2 mm or more and the hole area S1 is 0.030 mm 2 or more. On the other hand, when the hole diameter D1 is larger than 1.0 mm or the hole area S1 is larger than 0.8 mm 2 , the laminar mixing property becomes poor. From this viewpoint, the hole diameter D1 is more preferably 0.5 mm or less, and the hole area S1 is more preferably 0.200 mm 2 or less. The pore diameter D1 is the diameter of the smallest circle that encloses the cross-sectional outline of the mixing pore 22.

上記のように小さい混合用細孔22では、その孔長さL1の孔径D1に対する比が40以下であることが好ましい。   In the small mixing pores 22 as described above, the ratio of the pore length L1 to the pore diameter D1 is preferably 40 or less.

一般に、孔を流通する流体が定常的な乱流状態に到達するためには、ある程度の時間、従って、この場合にはある程度の孔長さが必要となる。そして、乱流状態に達するためには孔長さ/孔径>40程度でなければならないとされている(産業図書株式会社発行 水科篤郎・荻野文丸著「輸送現象」第56頁)。従って、孔長さL1の孔径D1に対する比が40以下、つまり、L1/D1≦40であれば、仮に、レイノルズ数Reが乱流域(Re>3000)の条件であっても、混合用細孔22において乱流は発達せずに層流混合により高速混合を行うことができる。また、L1/D1が必要以上に大きいと圧力損失が大きくなって送液系の負荷が大きくなることを考慮すると、L1/D1≦40であることが好ましく、L1/D1≦20であることがより好ましく、L1/D1≦10であることがさらに好ましい。一方、耐圧強度の観点から、孔長さL1は孔径D1の1/2以上、つまり、L1/D1≧0.5であることがより好ましく、L1/D1≧1とするのがさらに好ましい。   In general, in order for the fluid flowing through the holes to reach a steady turbulent state, a certain amount of time is required, and in this case, a certain amount of hole length is required. In order to reach a turbulent flow state, it is said that the hole length / hole diameter must be about 40 (published by Sangyo Mizusana and Fumio Kanno, “Transport Phenomenon”, page 56). Therefore, if the ratio of the hole length L1 to the hole diameter D1 is 40 or less, that is, L1 / D1 ≦ 40, even if the Reynolds number Re is in the turbulent flow region (Re> 3000), the mixing pores In FIG. 22, high speed mixing can be performed by laminar flow mixing without developing turbulent flow. In consideration of the fact that if L1 / D1 is larger than necessary, the pressure loss increases and the load of the liquid feeding system increases, L1 / D1 ≦ 40 is preferable, and L1 / D1 ≦ 20. More preferably, it is more preferable that L1 / D1 ≦ 10. On the other hand, from the viewpoint of pressure strength, the hole length L1 is more preferably ½ or more of the hole diameter D1, that is, L1 / D1 ≧ 0.5, and more preferably L1 / D1 ≧ 1.

流体流通管10から流出して流体溜め領域21に溜められた複数種の流体は、最終的には混合用細孔22により層流混合される。このとき、より高速な混合性能を得るためには、流体溜め領域21での複数種の流体の混在状態が、各流体の微小なセグメントで構成されていればよい。従って、流体流路11の数はより多いことが好ましい。具体的には、例えば、二重管構造であって、大径管12の内側で且つ小径管13の外側の部分の流体流路11に第1の流体が流通され、小径管13に第2の流体が流通される場合、小径管13が1本であるときよりも複数本であるときの方がより高速な混合性能を得ることができる。この場合、小径管13の本数が、例えば、2〜50本であるのがよく、3〜20本がより好ましい。   A plurality of kinds of fluids flowing out from the fluid circulation pipe 10 and stored in the fluid reservoir region 21 are finally mixed in a laminar flow by the mixing pores 22. At this time, in order to obtain higher speed mixing performance, the mixed state of a plurality of types of fluids in the fluid reservoir region 21 only needs to be composed of minute segments of each fluid. Therefore, it is preferable that the number of fluid flow paths 11 is larger. Specifically, for example, in a double pipe structure, the first fluid is circulated through the fluid flow path 11 inside the large diameter pipe 12 and outside the small diameter pipe 13, and the second fluid is passed through the small diameter pipe 13. When the fluid is circulated, it is possible to obtain a faster mixing performance when there are a plurality of small-diameter pipes 13 than when there is one small-diameter pipe 13. In this case, the number of small-diameter pipes 13 is, for example, preferably 2 to 50, and more preferably 3 to 20.

以上の構成のマイクロミキサー100によれば、流体流通管10から流出した複数種の流体を流体混合部20により形成された流体溜め領域21に混在状態に溜め、その流体溜め領域21に溜められた複数種の流体を流体混合部20の混合用細孔22に流通させることにより、それらを層流混合させることができる。つまり、配管経路に設けられた構造により混合操作を行う構成の簡単なものであるが、それによってマイクロミキサーに特有の層流混合による高速混合を行うことができる。しかも、混合用細孔22でのみでしか圧力損失が生じないので、全体として圧力損失を小さく抑えることができ、そのため、従来のマイクロミキサーに比較して単位時間当たりの流量を多くすることができる。   According to the micromixer 100 configured as described above, a plurality of types of fluids flowing out from the fluid circulation pipe 10 are stored in a mixed state in the fluid storage region 21 formed by the fluid mixing unit 20 and stored in the fluid storage region 21. By flowing a plurality of types of fluids through the mixing pores 22 of the fluid mixing unit 20, they can be mixed in a laminar flow. In other words, although the configuration is such that the mixing operation is performed by the structure provided in the piping path, it is possible to perform high-speed mixing by laminar mixing unique to the micromixer. In addition, since the pressure loss occurs only at the mixing pores 22, the pressure loss can be suppressed as a whole, so that the flow rate per unit time can be increased as compared with the conventional micromixer. .

以下、本発明に係るマイクロミキサーの具体的構成について詳細に説明する。   Hereinafter, a specific configuration of the micromixer according to the present invention will be described in detail.

(実施形態1)
図2は、本発明の実施形態1に係る流体混合システムAを示す。図3及び4は、マイクロミキサー100の縦断面を示す。図5及び6は、その横断面を示す。
(Embodiment 1)
FIG. 2 shows a fluid mixing system A according to Embodiment 1 of the present invention. 3 and 4 show a longitudinal section of the micromixer 100. 5 and 6 show the cross section.

この流体混合システムAは、2種の流体の混合に用いられるものであり、マイクロミキサー100と流体供給系等の付帯部とで構成されている。   The fluid mixing system A is used for mixing two kinds of fluids, and includes a micromixer 100 and an accompanying part such as a fluid supply system.

マイクロミキサー100は、配管経路に設けられた流体流通管10とその流体流出側に連続して設けられた流体混合部20とを備えている。   The micromixer 100 includes a fluid circulation pipe 10 provided in a piping path and a fluid mixing unit 20 provided continuously on the fluid outflow side.

流体流通管10は、大径管12とそれに導入されて挿通された1本の小径管13とにより二重管構造に構成されている。これにより、流体流通管10は、大径管12の内側で且つ小径管13の外側の部分の第1流体流路11aと小径管13の内側の第2流体流路11bとの2つの流体流路が管内部に相互に並行に延びて長さ方向に沿って構成されている。このように、大径管12の内側で且つ小径管13の外側の部分が第1流体流路11aに構成されていることで、管内を流体流路として最大限に活用することができる。   The fluid flow pipe 10 is configured in a double pipe structure by a large diameter pipe 12 and a single small diameter pipe 13 introduced and inserted therethrough. As a result, the fluid flow pipe 10 has two fluid flows, the first fluid flow path 11 a inside the large diameter pipe 12 and the outside of the small diameter pipe 13, and the second fluid flow path 11 b inside the small diameter pipe 13. The passages extend in parallel to each other inside the pipe and are configured along the length direction. Thus, the inside of the large-diameter pipe 12 and the outside of the small-diameter pipe 13 are configured as the first fluid flow path 11a, so that the inside of the pipe can be utilized to the maximum as a fluid flow path.

流体流通管10は、大径管12及び小径管13が既存の外径の異なる2種の管であればよく、特別な加工を必要とせずに容易に得ることができる。   The fluid flow pipe 10 may be obtained easily without requiring special processing, as long pipe 12 and small pipe 13 may be existing two types of pipes having different outer diameters.

大径管12及び小径管13は、それらの材質が特に限定されるものではなく、例えば、金属や樹脂等で形成されている。   The material of the large diameter pipe 12 and the small diameter pipe 13 is not particularly limited, and is formed of, for example, metal or resin.

大径管12及び小径管13は、図5に示すように、外形及び孔のいずれの横断面形状も円形に形成されている。また、大径管12及び小径管13は、図4に示すように、長さ方向に沿って同一形状に形成されている。但し、大径管12及び小径管13の外形及び孔のいずれの横断面形状も、特にこれに限定されるものではなく、例えば、半円形、楕円形、半楕円形、正方形、長方形、台形、平行四辺形、星形、不定形等に形成されていてもよく、また、長さ方向に沿って必ずしも同一形状に形成されていなくてもよい。   As shown in FIG. 5, the large-diameter tube 12 and the small-diameter tube 13 are formed in a circular shape in both the outer shape and the cross-sectional shape of the hole. Moreover, the large diameter tube 12 and the small diameter tube 13 are formed in the same shape along the length direction, as shown in FIG. However, neither the outer shape of the large-diameter pipe 12 and the small-diameter pipe 13 nor the cross-sectional shape of the hole is particularly limited to this. It may be formed in a parallelogram, star shape, indefinite shape, or the like, and may not necessarily be formed in the same shape along the length direction.

大径管12は、例えば、外径が4〜32mm、好ましくは5〜15mmであり、孔径(内径)が3〜30mm、好ましくは4〜12mmである。小径管13は、例えば、外径が0.5〜5mm、好ましくは1〜3.5mmであり、孔径(内径)が0.2〜3mm、好ましくは0.5〜2mmである。   The large diameter tube 12 has, for example, an outer diameter of 4 to 32 mm, preferably 5 to 15 mm, and a hole diameter (inner diameter) of 3 to 30 mm, preferably 4 to 12 mm. The small diameter tube 13 has, for example, an outer diameter of 0.5 to 5 mm, preferably 1 to 3.5 mm, and a hole diameter (inner diameter) of 0.2 to 3 mm, preferably 0.5 to 2 mm.

流体混合部20は、筒状に形成された流通管取付部材24と有底筒状に形成された混合部本体部材25とを有する。流通管取付部材24は、一方の端部が流通管挿通部24aに構成されていると共に他方の端部の内周に雌ねじが形成されている。混合部本体部材25は、開口端部の外周に雄ねじが形成されていると共に閉口端部の底面に流体を層流混合させるための混合用細孔22とそれに連続した回収管接続孔23とが貫通して形成されている。流体混合部20は、流通管取付部材24の雌ねじに混合部本体部材25の雄ねじが螺合して一体に構成されている。このように、混合部本体部材25が流体流通管10に固定された流通管取付部材24に着脱可能となっているので、マイクロミキサー100を容易に分解してメンテナンスを施すことができる。   The fluid mixing unit 20 includes a flow pipe mounting member 24 formed in a cylindrical shape and a mixing unit main body member 25 formed in a bottomed cylindrical shape. One end of the flow pipe mounting member 24 is configured as a flow pipe insertion portion 24a, and a female screw is formed on the inner periphery of the other end. The mixing unit body member 25 has a male screw formed on the outer periphery of the opening end, and has a mixing pore 22 for laminating fluid on the bottom surface of the closed end and a collection pipe connecting hole 23 continuous therewith. It is formed through. The fluid mixing unit 20 is integrally formed by screwing the male screw of the mixing unit main body member 25 into the female screw of the flow pipe mounting member 24. Thus, since the mixing unit main body member 25 can be attached to and detached from the flow tube mounting member 24 fixed to the fluid flow tube 10, the micromixer 100 can be easily disassembled for maintenance.

流体混合部20は、流通管取付部材24の流通管挿通部24aから挿通された流体流通管10の端部に流通管取付部材24により外嵌め固定され、混合部本体部材25の内周面に流体流通管10の管端外周が当接することにより筒状孔の内部領域が形成されている。この内部領域は、流体流通管10から流出した流体が溜まる流体溜め領域21を構成している。   The fluid mixing unit 20 is externally fitted and fixed to the end of the fluid flow tube 10 inserted from the flow tube insertion part 24 a of the flow tube mounting member 24 by the flow tube mounting member 24, and is attached to the inner peripheral surface of the mixing unit main body member 25. An inner region of the cylindrical hole is formed by abutting the outer periphery of the pipe end of the fluid circulation pipe 10. This internal region constitutes a fluid reservoir region 21 in which the fluid flowing out from the fluid circulation pipe 10 is accumulated.

流体混合部20は、その材質が特に限定されるものではなく、例えば、金属や樹脂等で形成されている。   The material of the fluid mixing unit 20 is not particularly limited, and is made of, for example, metal or resin.

流体混合部20により形成される流体溜め領域21は、図3及び4に示すように、流体流通管10の管端に対峙し且つ混合用細孔22が穿孔された縦壁25aにより仕切られた円筒孔形状に形成されている。但し、流体溜め領域21の形状は、特にこれに限定されるものではなく、例えば、流体流通管10の管端に対峙してテーパ状に先細って先端で混合用細孔22に連続した円錐孔形状に形成されていてもよい。   As shown in FIGS. 3 and 4, the fluid reservoir region 21 formed by the fluid mixing unit 20 is partitioned by a vertical wall 25 a facing the pipe end of the fluid circulation pipe 10 and having a mixing pore 22 drilled. It is formed in a cylindrical hole shape. However, the shape of the fluid reservoir region 21 is not particularly limited to this, and for example, a conical taper confronting the tube end of the fluid circulation tube 10 and continuing to the mixing pore 22 at the tip. It may be formed in a hole shape.

流体溜め領域21は、その内径D2が、例えば、3〜30mmであり、好ましくは4〜12mmである。また、流体流通管10の管端(流体流出端)から混合用細孔22までの距離L2が、例えば、0.3〜20mmであり、好ましくは1.0〜5.0mmである。   The fluid reservoir region 21 has an inner diameter D2 of, for example, 3 to 30 mm, preferably 4 to 12 mm. Moreover, the distance L2 from the pipe end (fluid outflow end) of the fluid circulation pipe 10 to the mixing pore 22 is, for example, 0.3 to 20 mm, and preferably 1.0 to 5.0 mm.

混合用細孔22は、図3及び4に示すように、穿孔方向が流体流通管10からの流体流出方向に沿った方向に延びるように形成されている。また、混合用細孔22は、図3、4及び6に示すように、流体中心位置(流体流通管10の軸線位置)に対応して形成されている。但し、混合用細孔22は、特にこれらに限定されるものではなく、穿孔方向が流体流通管10からの流体流出方向に対して直交する方向に延びるように側壁に形成されていてもよく、また、流体中心から偏心した位置に対応して形成されていてもよい。   As shown in FIGS. 3 and 4, the mixing pores 22 are formed so that the perforation direction extends in the direction along the fluid outflow direction from the fluid circulation pipe 10. Further, the mixing pores 22 are formed corresponding to the fluid center position (the axial position of the fluid flow pipe 10), as shown in FIGS. However, the mixing pores 22 are not particularly limited to these, and may be formed in the side wall so that the perforation direction extends in a direction perpendicular to the fluid outflow direction from the fluid circulation pipe 10, Moreover, you may form corresponding to the position eccentric from the fluid center.

混合用細孔22は、図6に示すように、その横断面外郭形状が円形に形成されている。また、混合用細孔22は、図4に示すように、長さ方向に沿って同一形状に形成されている。但し、混合用細孔22は、特にこれらに限定されるものではなく、横断面外郭形状が、例えば、半円形、楕円形、半楕円形、正方形、長方形、台形、平行四辺形、星形、不定形等に形成されていてもよく、また、長さ方向に沿って必ずしも同一形状に形成されていなくてもよい。   As shown in FIG. 6, the mixing pores 22 have a circular outer cross-sectional shape. Moreover, the mixing pores 22 are formed in the same shape along the length direction, as shown in FIG. However, the mixing pores 22 are not particularly limited to these, and the outer shape of the cross section is, for example, semicircular, elliptical, semielliptical, square, rectangular, trapezoidal, parallelogram, star, It may be formed in an indefinite shape or the like, and may not necessarily be formed in the same shape along the length direction.

混合用細孔22は、良好な層流混合性を得るには、その孔径D1が0.1〜1.0mm、或いは、その孔面積S1が0.008〜0.8mm2であるのが好ましい。また、孔径D1については、0.2mm以上、0.5mm以下であるのがより好ましく、孔面積S1については、0.030mm2以上、0.200mm2以下であるのがより好ましい。 The mixing pores 22 preferably have a pore diameter D1 of 0.1 to 1.0 mm or a pore area S1 of 0.008 to 0.8 mm 2 in order to obtain good laminar mixing properties. . Further, the hole diameter D1 is more preferably 0.2 mm or more and 0.5 mm or less, and the hole area S1 is more preferably 0.030 mm 2 or more and 0.200 mm 2 or less.

また、混合用細孔22は、孔長さL1の孔径D1に対する比が40以下、つまり、L1/D1≦40であるのが好ましい。また、L1/D1≦20であるのがより好ましく、L1/D1≦10であるのがさらに好ましい。さらに、L1/D1≧0.5であるのがより好ましく、L1/D1≧1であるのがさらに好ましい。   The mixing pores 22 preferably have a ratio of the hole length L1 to the hole diameter D1 of 40 or less, that is, L1 / D1 ≦ 40. Further, L1 / D1 ≦ 20 is more preferable, and L1 / D1 ≦ 10 is even more preferable. Further, L1 / D1 ≧ 0.5 is more preferable, and L1 / D1 ≧ 1 is further preferable.

流体流通管10の大径管12には、第1原料貯槽31aから延びた第1原料供給管32aが接続されている。第1原料供給管32aには、第1原料流体を流通させる第1ポンプ33a、第1原料流体の流量を検知する第1流量計34a及び第1流体原料の夾雑物を除去する第1フィルタ35aが上流側から順に介設されており、第1流量計34aと第1フィルタ35aとの間の部分に第1原料流体の圧力を検知する第1圧力計36aが取り付けられている。第1ポンプ33a、第1流量計34a及び第1圧力計36aのそれぞれは、流量コントローラ37に電気的に接続されている。   A first raw material supply pipe 32 a extending from the first raw material storage tank 31 a is connected to the large diameter pipe 12 of the fluid circulation pipe 10. The first raw material supply pipe 32a has a first pump 33a for circulating the first raw material fluid, a first flow meter 34a for detecting the flow rate of the first raw material fluid, and a first filter 35a for removing contaminants of the first fluid raw material. Are interposed in order from the upstream side, and a first pressure gauge 36a for detecting the pressure of the first raw material fluid is attached to a portion between the first flow meter 34a and the first filter 35a. Each of the first pump 33a, the first flow meter 34a, and the first pressure gauge 36a is electrically connected to the flow controller 37.

流体流通管10の小径管13には、第2原料貯槽31bから延びた第2原料供給管32bが接続されている。第2原料供給管32bには、第2原料流体を流通させる第2ポンプ33b、第2原料流体の流量を検知する第2流量計34b及び第2流体原料の夾雑物を除去する第2フィルタ35bが上流側から順に介設されており、第2流量計34bと第2フィルタ35bとの間の部分に第2原料流体の圧力を検知する第2圧力計36bが取り付けられている。第2ポンプ33b、第2流量計34b及び第2圧力計36bのそれぞれは、流量コントローラ37に電気的に接続されている。   A second raw material supply pipe 32b extending from the second raw material storage tank 31b is connected to the small diameter pipe 13 of the fluid circulation pipe 10. In the second raw material supply pipe 32b, a second pump 33b for circulating the second raw material fluid, a second flow meter 34b for detecting the flow rate of the second raw material fluid, and a second filter 35b for removing contaminants of the second fluid raw material. Are installed in order from the upstream side, and a second pressure gauge 36b for detecting the pressure of the second raw material fluid is attached to a portion between the second flow meter 34b and the second filter 35b. Each of the second pump 33b, the second flow meter 34b, and the second pressure gauge 36b is electrically connected to the flow controller 37.

流量コントローラ37は、第1原料流体の設定流量及び設定圧力の入力が可能に構成されていると共に演算素子が組み込まれており、第1原料流体の設定流量情報、第1流量計34aで検知された流量情報及び第1圧力計36aで検知された圧力情報に基づいて第1ポンプ33aを運転制御する。同様に、流量コントローラ37は、第2原料流体の設定流量及び設定圧力の入力も可能に構成されており、第2原料流体の設定流量情報、第2流量計34bで検知された流量情報及び第2圧力計36bで検知された圧力情報に基づいて第2ポンプ33bを運転制御する。   The flow rate controller 37 is configured to be capable of inputting the set flow rate and set pressure of the first raw material fluid and incorporates an arithmetic element, and is detected by the set flow rate information of the first raw material fluid and the first flow meter 34a. The first pump 33a is controlled based on the flow rate information and the pressure information detected by the first pressure gauge 36a. Similarly, the flow rate controller 37 is configured to be able to input the set flow rate and set pressure of the second raw material fluid, and the set flow rate information of the second raw material fluid, the flow rate information detected by the second flow meter 34b and the first flow rate information. The operation of the second pump 33b is controlled based on the pressure information detected by the two pressure gauges 36b.

流体混合部20からは混合流体回収管38が延びて回収槽39に接続されている。   A mixed fluid recovery pipe 38 extends from the fluid mixing unit 20 and is connected to a recovery tank 39.

混合流体回収管38は、例えば、外径が1〜20mm、好ましくは1.5〜15mmであり、孔径(内径)が0.3〜15mm、好ましくは0.5〜10mmである。また、混合流体回収管38は、孔径(内径)がD2以上であることが望ましい。   The mixed fluid recovery pipe 38 has, for example, an outer diameter of 1 to 20 mm, preferably 1.5 to 15 mm, and a hole diameter (inner diameter) of 0.3 to 15 mm, preferably 0.5 to 10 mm. Further, the mixed fluid recovery pipe 38 desirably has a hole diameter (inner diameter) of D2 or more.

次に、この流体混合システムAの動作について説明する。   Next, the operation of the fluid mixing system A will be described.

流体混合システムAが稼働すると、第1ポンプ33aは、第1原料流体を、第1原料貯槽31aから第1原料供給管32aを介し、第1流量計34a及び第1フィルタ35aを順に経由させて流体流通管10の大径管12の第1流体流路11aに継続的に供給する。第1流量計34aは、検知した第1原料流体の流量情報を流量コントローラ37に送る。また、第1圧力計36aは、検知した第1圧力計36aの圧力情報を流量コントローラ37に送る。ここで、第1原料流体は、特に限定されるものではなく、気相、液相、気液混合相、乳化相、固液混合相(スラリー)など固相状態以外の流動性を保持する性状のものであればよい。   When the fluid mixing system A is operated, the first pump 33a passes the first raw material fluid from the first raw material storage tank 31a through the first raw material supply pipe 32a, through the first flow meter 34a and the first filter 35a in this order. The fluid flow pipe 10 is continuously supplied to the first fluid flow path 11a of the large diameter pipe 12. The first flow meter 34 a sends the detected flow rate information of the first raw material fluid to the flow rate controller 37. Further, the first pressure gauge 36 a sends the detected pressure information of the first pressure gauge 36 a to the flow rate controller 37. Here, the first raw material fluid is not particularly limited, and has properties such as a gas phase, a liquid phase, a gas-liquid mixed phase, an emulsified phase, and a solid-liquid mixed phase (slurry) that maintain fluidity other than the solid phase. If it is a thing.

第2ポンプ33bは、第2原料流体を、第2原料貯槽31bから第2原料供給管32bを介し、第2流量計34b及び第2フィルタ35bを順に経由させて流体流通管10の小径管13の第2流体流路11bに継続的に供給する。第2流量計34bは、検知した第2原料流体の流量情報を流量コントローラ37に送る。また、第2圧力計36bは、検知した第2圧力計36bの圧力情報を流量コントローラ37に送る。ここで、第2原料流体も、特に限定されるものではなく、気相、液相、気液混合相、乳化相、固液混合相(スラリー)など固相状態以外の流動性を保持する性状のものであればよい。   The second pump 33b passes the second raw material fluid from the second raw material storage tank 31b through the second raw material supply pipe 32b, and then sequentially passes through the second flow meter 34b and the second filter 35b, so that the small diameter pipe 13 of the fluid circulation pipe 10 is obtained. The second fluid flow path 11b is continuously supplied. The second flow meter 34 b sends the detected flow rate information of the second raw material fluid to the flow rate controller 37. Further, the second pressure gauge 36 b sends the detected pressure information of the second pressure gauge 36 b to the flow rate controller 37. Here, the second raw material fluid is not particularly limited, and has properties such as a gas phase, a liquid phase, a gas-liquid mixed phase, an emulsified phase, and a solid-liquid mixed phase (slurry) that maintain fluidity other than the solid phase. If it is a thing.

流量コントローラ37は、第1原料流体の設定流量情報及び設定圧力情報、並びに、第1流量計34aで検知された流量情報及び第1圧力計36aで検知された圧力情報に基づいて、第1原料流体の設定流量及び設定圧力がそれぞれ維持されるように第1ポンプ33aを運転制御する。それと共に、流量コントローラ37は、第2原料流体の設定流量情報及び設定圧力情報、並びに、第2流量計34bで検知された流量情報及び第2圧力計36bで検知された圧力情報に基づいて、第2原料流体の設定流量及び設定圧力がそれぞれ維持されるように第2ポンプ33bを運転制御する。   Based on the set flow rate information and set pressure information of the first raw material fluid, the flow rate information detected by the first flow meter 34a and the pressure information detected by the first pressure meter 36a, the flow rate controller 37 The first pump 33a is operated and controlled such that the set flow rate and set pressure of the fluid are maintained. At the same time, the flow rate controller 37 is based on the set flow rate information and set pressure information of the second raw material fluid, and the flow rate information detected by the second flow meter 34b and the pressure information detected by the second pressure meter 36b. The second pump 33b is operated and controlled such that the set flow rate and set pressure of the second raw material fluid are maintained.

流体流通管10では、第1原料流体が第1流体流路11aを流通すると共に、第2原料流体が第2流体流路11bを流通する。   In the fluid circulation pipe 10, the first raw material fluid flows through the first fluid channel 11a, and the second raw material fluid flows through the second fluid channel 11b.

流体混合部20では、流体流通管10から流出した2種の流体、つまり、第1及び第2原料流体が混在状態で流体溜め領域21に溜まり、それらの混在状態の第1及び第2原料流体が混合用細孔22を流通して、混合時間が例えば0.001〜0.01秒で層流混合される。このとき、流体溜め領域21では、第1及び第2原料流体が合流時に乱れを生じ次いで、混合用細孔22において、それが混合用細孔22への縮流及び混合用細孔22内での剪断により引き延ばされて微細な流体セグメントとなり、分子拡散による混合速度が一気に増大して混合が瞬時に完結する。混合用細孔22の流通した後の混合流体は、流量が例えば2〜40L/hで混合流体回収管38を介して回収槽39に回収される。なお、第1及び第2原料流体の混合に伴って、触媒反応、イオン交換反応、電気化学反応、ラジカル反応、超臨界反応等が起こってもよい。   In the fluid mixing unit 20, two types of fluids flowing out from the fluid circulation pipe 10, that is, the first and second raw material fluids are accumulated in the fluid reservoir region 21 in a mixed state, and the mixed first and second raw material fluids are collected. Circulates through the mixing pores 22 and laminar mixing is performed in a mixing time of, for example, 0.001 to 0.01 seconds. At this time, in the fluid reservoir region 21, the first and second raw material fluids are disturbed at the time of merging, and then in the mixing pores 22, they are contracted into the mixing pores 22 and in the mixing pores 22. The mixture is stretched by shearing into a fine fluid segment, and the mixing speed by molecular diffusion is increased at once, and the mixing is completed instantaneously. The mixed fluid after flowing through the mixing pores 22 is recovered in the recovery tank 39 through the mixed fluid recovery pipe 38 at a flow rate of 2 to 40 L / h, for example. In addition, a catalytic reaction, an ion exchange reaction, an electrochemical reaction, a radical reaction, a supercritical reaction, etc. may occur with the mixing of the first and second raw material fluids.

以上のような構成のマイクロミキサー100は、配管経路に設けられた構造により混合操作を行う簡単な構成であるが、それによってマイクロミキサーに特有の層流混合による高速混合を行うことができる。しかも、混合用細孔22でのみでしか圧力損失が生じないので、全体として圧力損失を小さく抑えることができ、そのため、従来のマイクロミキサー(流量0.01〜1.00L/h)に比較して単位時間当たりの流量を多くすることができる。   The micromixer 100 having the above-described configuration is a simple configuration in which the mixing operation is performed by the structure provided in the piping path, and thereby, high-speed mixing by laminar flow mixing specific to the micromixer can be performed. In addition, since pressure loss occurs only at the mixing pores 22, the pressure loss as a whole can be suppressed to a low level. Therefore, compared with a conventional micromixer (flow rate 0.01 to 1.00 L / h). The flow rate per unit time can be increased.

また、流体流通管10の管端から混合用細孔22までの距離L2が十分に小さければ、流体溜め領域21で急激な縮流が生じるので、より短い時間で第1及び第2原料流体の混合を行うことができる。そのため、このマイクロミキサー100は、粒径の大きな粒子の生成による流路閉塞が抑制されるので、微粒子合成に特に好適に用いられる。   Further, if the distance L2 from the pipe end of the fluid circulation pipe 10 to the mixing pore 22 is sufficiently small, a sudden contraction flow occurs in the fluid reservoir region 21, so that the first and second raw material fluids can be produced in a shorter time. Mixing can be performed. Therefore, the micromixer 100 is particularly preferably used for fine particle synthesis because the blockage of the flow path due to the generation of particles having a large particle diameter is suppressed.

(実施形態2)
図7は、本発明の実施形態2に係る流体混合システムを示す。図8は、マイクロミキサー100の縦断面を示す。図9は、その横断面を示す。なお、実施形態1のものと同一名称の部分は同一符号で示す。
(Embodiment 2)
FIG. 7 shows a fluid mixing system according to Embodiment 2 of the present invention. FIG. 8 shows a longitudinal section of the micromixer 100. FIG. 9 shows the cross section. In addition, the part of the same name as the thing of Embodiment 1 is shown with the same code | symbol.

この流体混合システムAは、最大8種の流体の混合に用いられるものであり、マイクロミキサー100と流体供給系等の付帯部とで構成されている。   This fluid mixing system A is used for mixing a maximum of eight kinds of fluids, and includes a micromixer 100 and an incidental part such as a fluid supply system.

このマイクロミキサー100では、流体流通管10は、大径管12とそれに導入されて挿通された7本の小径管13とにより二重管構造に構成されている。これにより、流体流通管10は、大径管12の内側で且つ小径管13の外側の部分の第1流体流路11aと小径管13の内側の7個の第2〜第8流体流路11b〜11hとの合計8個の流体流路が管内部に相互に並行に延びて長さ方向に沿って構成されている。   In this micromixer 100, the fluid circulation pipe 10 is configured in a double pipe structure by a large diameter pipe 12 and seven small diameter pipes 13 introduced and inserted therethrough. Thereby, the fluid circulation pipe 10 includes the first fluid flow path 11a inside the large diameter pipe 12 and the outside of the small diameter pipe 13, and the seven second to eighth fluid flow paths 11b inside the small diameter pipe 13. A total of eight fluid flow paths of ˜11h extend in parallel to each other inside the pipe and are configured along the length direction.

流体流通管10の小径管13は、図8に示すように、7本である。また、小径管13は、図8に示すように、全てが同一寸法のものである。但し、小径管13は、特にこれに限定されるものではなく、本数が、例えば、2〜50本であっても(より好ましくは3〜20本)、また、流体混合比等を考慮して異なる寸法のものが混在されていてもよい。   As shown in FIG. 8, there are seven small-diameter pipes 13 of the fluid circulation pipe 10. Moreover, as shown in FIG. 8, all the small diameter pipes 13 have the same dimensions. However, the small-diameter pipe 13 is not particularly limited to this. Even if the number of the small-diameter pipes 13 is, for example, 2 to 50 (more preferably 3 to 20), the fluid mixing ratio and the like are taken into consideration. The thing of a different dimension may be mixed.

流体流通管10の大径管12には、第1原料貯槽31aから延びた第1原料供給管32aが接続されている。第1原料供給管32aには、第1原料流体を流通させる第1ポンプ33a、第1原料流体の流量を検知する第1流量計34a及び第1流体原料の夾雑物を除去する第1フィルタ35aが上流側から順に介設されており、第1流量計34aと第1フィルタ35aとの間の部分に第1原料流体の圧力を検知する第1圧力計36aが取り付けられている。第1ポンプ33a、第1流量計34a及び第1圧力計36aのそれぞれは、流量コントローラ37に電気的に接続されている。   A first raw material supply pipe 32 a extending from the first raw material storage tank 31 a is connected to the large diameter pipe 12 of the fluid circulation pipe 10. The first raw material supply pipe 32a has a first pump 33a for circulating the first raw material fluid, a first flow meter 34a for detecting the flow rate of the first raw material fluid, and a first filter 35a for removing contaminants of the first fluid raw material. Are interposed in order from the upstream side, and a first pressure gauge 36a for detecting the pressure of the first raw material fluid is attached to a portion between the first flow meter 34a and the first filter 35a. Each of the first pump 33a, the first flow meter 34a, and the first pressure gauge 36a is electrically connected to the flow controller 37.

流体流通管10の7本の小径管13には、それぞれ番号が対応するように、第2〜第8原料貯槽31b〜31hから延びた第2〜第8原料供給管32b〜32hが接続されている。第2〜第8原料供給管32b〜32hには、第2〜第8原料流体を流通させる第2〜第8ポンプ33b〜33h、第2〜第8原料流体の流量を検知する第2〜第8流量計34b〜34h及び第2〜第8流体原料の夾雑物を除去する第2〜第8フィルタ35b〜35hが上流側から順に介設されており、第2〜第8流量計34b〜34hと第2〜第8フィルタ35b〜35hとの間の部分に第2〜第8原料流体の圧力を検知する第2〜第8圧力計36b〜36hが取り付けられている。第2〜第8ポンプ33b〜33h、第2〜第8流量計34b〜34h及び第2〜第8圧力計36b〜36hのそれぞれは、流量コントローラ37に電気的に接続されている(図示せず)。   Second to eighth raw material supply pipes 32b to 32h extending from the second to eighth raw material storage tanks 31b to 31h are connected to the seven small diameter pipes 13 of the fluid circulation pipe 10 so that the numbers correspond to each other. Yes. In the second to eighth raw material supply pipes 32b to 32h, the second to eighth pumps 33b to 33h for circulating the second to eighth raw material fluids, the second to eighth raw material fluids for detecting the flow rates of the second to eighth raw material fluids. Eight flow meters 34b to 34h and second to eighth filters 35b to 35h for removing contaminants of the second to eighth fluid raw materials are provided in order from the upstream side, and the second to eighth flow meters 34b to 34h. The second to eighth pressure gauges 36b to 36h for detecting the pressure of the second to eighth raw material fluids are attached to a portion between the second and eighth filters 35b to 35h. Each of the second to eighth pumps 33b to 33h, the second to eighth flow meters 34b to 34h, and the second to eighth pressure gauges 36b to 36h are electrically connected to the flow rate controller 37 (not shown). ).

流量コントローラ37は、第1原料流体の設定流量及び設定圧力の入力が可能に構成されていると共に演算素子が組み込まれており、第1原料流体の設定流量情報、第1流量計34aで検知された流量情報及び第1圧力計36aで検知された圧力情報に基づいて第1ポンプ33aを運転制御する。同様に、流量コントローラ37は、それぞれ番号が対応するように、第2〜第8原料流体の設定流量及び設定圧力の入力も可能に構成されており、第2〜第8原料流体の設定流量情報、第2〜第8流量計34b〜34hで検知された流量情報及び第2〜第8圧力計36b〜36hで検知された圧力情報に基づいて第2〜第8ポンプ33b〜33hを運転制御する。   The flow rate controller 37 is configured to be capable of inputting the set flow rate and set pressure of the first raw material fluid and incorporates an arithmetic element, and is detected by the set flow rate information of the first raw material fluid and the first flow meter 34a. The first pump 33a is controlled based on the flow rate information and the pressure information detected by the first pressure gauge 36a. Similarly, the flow rate controller 37 is configured to be capable of inputting the set flow rate and set pressure of the second to eighth raw material fluids so that the numbers correspond to each other, and the set flow rate information of the second to eighth raw material fluids. The second to eighth pumps 33b to 33h are controlled based on the flow information detected by the second to eighth flow meters 34b to 34h and the pressure information detected by the second to eighth pressure meters 36b to 36h. .

その他の構成は実施形態1に係るマイクロミキサー100と同一である。   Other configurations are the same as those of the micromixer 100 according to the first embodiment.

次に、この流体混合システムAの動作について説明する。   Next, the operation of the fluid mixing system A will be described.

流体混合システムAが稼働すると、第1ポンプ33aは、第1原料流体を、第1原料貯槽31aから第1原料供給管32aを介し、第1流量計34a及び第1フィルタ35aを順に経由させて流体流通管10の大径管12の第1流体流路11aに継続的に供給する。第1流量計34aは、検知した第1原料流体の流量情報を流量コントローラ37に送る。また、第1圧力計36aは、検知した第1圧力計36aの圧力情報を流量コントローラ37に送る。   When the fluid mixing system A is operated, the first pump 33a passes the first raw material fluid from the first raw material storage tank 31a through the first raw material supply pipe 32a, through the first flow meter 34a and the first filter 35a in this order. The fluid flow pipe 10 is continuously supplied to the first fluid flow path 11a of the large diameter pipe 12. The first flow meter 34 a sends the detected flow rate information of the first raw material fluid to the flow rate controller 37. Further, the first pressure gauge 36 a sends the detected pressure information of the first pressure gauge 36 a to the flow rate controller 37.

第2〜第8ポンプ33b〜33hは、それぞれ番号が対応するように、第2〜第8原料流体を、第2〜第8原料貯槽31b〜31hから第2〜第8原料供給管32b〜32hを介し、第2〜第8流量計34b〜34h及び第2〜第8フィルタ35b〜35hを順に経由させて流体流通管10の小径管13の第2〜第8流体流路11b〜11hに継続的に供給する。第2〜第8流量計34b〜34hは、検知した第2〜第8原料流体の流量情報を流量コントローラ37に送る。また、第2〜第8圧力計36b〜36hは、検知した第2〜第8圧力計36b〜36hの圧力情報を流量コントローラ37に送る。   The second to eighth pumps 33b to 33h send the second to eighth raw material fluids from the second to eighth raw material storage tanks 31b to 31h to the second to eighth raw material supply pipes 32b to 32h so that the numbers correspond to each other. Through the second to eighth flow meters 34b to 34h and the second to eighth filters 35b to 35h in order to continue to the second to eighth fluid flow paths 11b to 11h of the small diameter pipe 13 of the fluid circulation pipe 10. To supply. The second to eighth flow meters 34 b to 34 h send the detected flow rate information of the second to eighth raw material fluids to the flow controller 37. The second to eighth pressure gauges 36 b to 36 h send the detected pressure information of the second to eighth pressure gauges 36 b to 36 h to the flow rate controller 37.

流量コントローラ37は、第1原料流体の設定流量情報及び設定圧力情報、並びに、第1流量計34aで検知された流量情報及び第1圧力計36aで検知された圧力情報に基づいて、第1原料流体の設定流量及び設定圧力がそれぞれ維持されるように第1ポンプ33aを運転制御する。それと共に、流量コントローラ37は、それぞれ番号が対応するように、第2〜第8原料流体の設定流量情報及び設定圧力情報、並びに、第2〜第8流量計34b〜34hで検知された流量情報及び第2〜第8圧力計36b〜36hで検知された圧力情報に基づいて、第2〜第8原料流体の設定流量及び設定圧力がそれぞれ維持されるように第2〜第8ポンプ33b〜33hを運転制御する。   Based on the set flow rate information and set pressure information of the first raw material fluid, the flow rate information detected by the first flow meter 34a and the pressure information detected by the first pressure meter 36a, the flow rate controller 37 The first pump 33a is operated and controlled such that the set flow rate and set pressure of the fluid are maintained. At the same time, the flow rate controller 37 sets the flow rate information detected by the second to eighth flow meters 34b to 34h, and the flow rate information detected by the second to eighth flow meters 34b to 34h. Based on the pressure information detected by the second to eighth pressure gauges 36b to 36h, the second to eighth pumps 33b to 33h are maintained so that the set flow rate and the set pressure of the second to eighth raw material fluids are maintained, respectively. To control the operation.

流体流通管10では、第1〜第8原料流体がそれぞれ番号が対応した第1〜第8流体流路11a〜11hを流通する。   In the fluid circulation pipe 10, the first to eighth raw material fluids circulate through the first to eighth fluid flow paths 11a to 11h corresponding to the numbers, respectively.

流体混合部20では、流体流通管10から流出した8種の流体、つまり、第1〜第8原料流体が混在状態で流体溜め領域21に溜まり、それらの混在状態の第1〜第8原料流体が混合用細孔22を流通して、混合時間が例えば0.001〜0.01秒で層流混合される。このとき、流体溜め領域21では、第1〜第8原料流体が合流時に乱れを生じ、次いで、混合用細孔22において、それが混合用細孔22への縮流及び混合用細孔22内での剪断により引き延ばされて微細な流体セグメントとなり、分子拡散による混合速度が一気に増大して混合が瞬時に完結する。ここで、第2〜第8原料流体を同種の流体とした場合、実施形態1と同様に2種類の原料流体の混合となるが、本実施形態では実施形態1に比べて小径管13の本数が多いので、流体溜め領域21での2種類の流体の混在状態が実施形態1の場合よりも微小なセグメントで構成され、より高速な混合性能を得ることができる。   In the fluid mixing unit 20, eight types of fluids flowing out from the fluid circulation pipe 10, that is, the first to eighth raw material fluids are accumulated in the fluid reservoir region 21 in a mixed state, and the mixed first to eighth raw material fluids are collected. Circulates through the mixing pores 22 and laminar mixing is performed in a mixing time of, for example, 0.001 to 0.01 seconds. At this time, in the fluid reservoir region 21, the first to eighth raw material fluids are disturbed at the time of merging, and then in the mixing pores 22, they are contracted into the mixing pores 22 and inside the mixing pores 22. The mixture is stretched by shearing into a fine fluid segment, and the mixing speed by molecular diffusion is increased at once, and the mixing is completed instantaneously. Here, when the second to eighth raw material fluids are the same kind of fluid, the two kinds of raw material fluids are mixed as in the first embodiment, but in this embodiment, the number of small-diameter tubes 13 is smaller than that in the first embodiment. Therefore, the mixed state of the two types of fluids in the fluid reservoir region 21 is composed of smaller segments than in the case of the first embodiment, and higher speed mixing performance can be obtained.

以上のような構成のマイクロミキサー100は、最大8種類までの原料流体を層流混合させることができる。そのため、このマイクロミキサー100は、多相系の混合や乳化に特に好適に用いられる。   The micromixer 100 having the above configuration can laminate up to eight kinds of raw material fluids. Therefore, the micromixer 100 is particularly preferably used for multiphase mixing and emulsification.

その他の作用効果は、実施形態1に係るマイクロミキサー100と同一である。   Other functions and effects are the same as those of the micromixer 100 according to the first embodiment.

(その他の実施形態)
上記実施形態1及び2では、単一のマイクロミキサー100を有する構成としたが、特にこれに限定されるものではなく、図10(a)に示すように、一対のマイクロミキサー100を有し、それらから流出する混合流体を合流する構成としても、図10(b)に示すように、さらに多くのマイクロミキサー100を有し、それらから流出する混合流体を合流する構成としてもよい。
(Other embodiments)
In the first and second embodiments, the single micromixer 100 is provided. However, the present invention is not particularly limited thereto, and as illustrated in FIG. Even when the mixed fluids flowing out from them are combined, as shown in FIG. 10B, it is also possible to have more micromixers 100 and combine the mixed fluids flowing out from them.

(試験装置)
小径管の本数が5本である上記実施形態2と同タイプのマイクロミキサーを用いた。
(Test equipment)
A micromixer of the same type as that of the second embodiment in which the number of small diameter tubes is five was used.

大径管は、孔径(内径)が4.4mm、小径管は、外径1.6mm及び孔径(内径)0.8mmであった。流体混合部は、混合用細孔(円形孔)の孔径が0.3mm及び孔長さが0.8mmであった。混合流体回収管は、孔径(内径)が0.8mmであった。   The large diameter tube had a hole diameter (inner diameter) of 4.4 mm, and the small diameter tube had an outer diameter of 1.6 mm and a hole diameter (inner diameter) of 0.8 mm. In the fluid mixing part, the pore diameter of the mixing pores (circular holes) was 0.3 mm and the hole length was 0.8 mm. The mixed fluid recovery tube had a hole diameter (inner diameter) of 0.8 mm.

(試験方法)
大径管に、4.6L/hの流速で且つ0.5MPaの送液圧で界面活性剤の水溶液を流通させると共に、5本の小径管に、全体として1.6L/hの流速で且つ0.5MPaの送液圧でステアリルアルコール(炭素鎖18の脂肪族アルコール)の5mass%エタノール溶液を均等に流通させた。
(Test method)
The aqueous solution of the surfactant was circulated through the large-diameter pipe at a flow rate of 4.6 L / h and a delivery pressure of 0.5 MPa, and at a flow rate of 1.6 L / h as a whole in five small-diameter pipes. A 5 mass% ethanol solution of stearyl alcohol (aliphatic alcohol of carbon chain 18) was uniformly circulated at a liquid feeding pressure of 0.5 MPa.

そして、流体混合部でそれらが混合されて析出した微粒子からなるスラリー状の流体を回収した。   And the fluid of the slurry which consists of microparticles | fine-particles which were mixed and deposited in the fluid mixing part was collect | recovered.

回収したスラリー状の流体をレーザ回折/散乱式粒度分布測定装置(株式会社 堀場製作所社製 LA−910)を用いて粒径測定を行った。   The recovered slurry-like fluid was subjected to particle size measurement using a laser diffraction / scattering particle size distribution analyzer (LA-910, manufactured by Horiba, Ltd.).

比較対象例として、試験管内で同組成の溶液同士を攪拌混合して(混合時間およそ1秒)析出したスラリー状の流体についても粒径測定を行った。   As a comparative example, particle size measurement was also performed on a slurry-like fluid deposited by stirring and mixing solutions having the same composition in a test tube (mixing time: approximately 1 second).

(試験結果)
マイクロミキサーで混合して得られたスラリー状の流体では体積基準平均径が0.6μmで且つその分布がシャープなものであった。一方、試験管内での混合で得られたスラリー状の流体では体積基準平均径が62μmで且つその分布がブロードなものであった。これは、マイクロリアクターでは、混合初期から微小なセグメントに分かれて非常に多くの核が発生するのに対し、試験管内での混合では、流体塊を段階的に微小化させるために均一に混合される前に核が発生して核の発生数に限界があることに起因するものであると考えられる。
(Test results)
The slurry-like fluid obtained by mixing with a micromixer had a volume-based average diameter of 0.6 μm and a sharp distribution. On the other hand, the slurry-like fluid obtained by mixing in the test tube had a volume-based average diameter of 62 μm and a broad distribution. This is because in a microreactor, very many nuclei are generated by dividing into small segments from the beginning of mixing, whereas in a test tube, mixing is performed uniformly in order to reduce the fluid mass in stages. This is thought to be due to the fact that the number of nuclei generated is limited and the number of nuclei generated is limited.

本発明は、マイクロミキサー及びそれを用いた流体混合方法について有用である。   The present invention is useful for a micromixer and a fluid mixing method using the micromixer.

本発明の実施形態に係るマイクロミキサーの模式的な縦断面図である。It is a typical longitudinal section of a micromixer concerning an embodiment of the present invention. 本発明の実施形態1の流体混合システムの構成を示す図である。It is a figure which shows the structure of the fluid mixing system of Embodiment 1 of this invention. 本発明の実施形態1に係るマイクロミキサーの縦断面図である。It is a longitudinal cross-sectional view of the micromixer which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係るマイクロミキサーの模式的な縦断面図である。It is a typical longitudinal section of the micromixer concerning Embodiment 1 of the present invention. 図4におけるV−V断面図である。It is VV sectional drawing in FIG. 図4におけるVI−VI断面図である。It is VI-VI sectional drawing in FIG. 本発明の実施形態2の流体混合システムの構成を示す図である。It is a figure which shows the structure of the fluid mixing system of Embodiment 2 of this invention. 本発明の実施形態2に係るマイクロミキサーの模式的な縦断面図である。It is a typical longitudinal cross-sectional view of the micromixer which concerns on Embodiment 2 of this invention. 図8におけるIX−IX断面図である。It is IX-IX sectional drawing in FIG. その他の実施形態の流体混合システムの要部構成を示す図である。It is a figure which shows the principal part structure of the fluid mixing system of other embodiment.

符号の説明Explanation of symbols

100 マイクロミキサー
10 流体流通管
11 流体流路
12 大径管
13 小径管
20 流体混合部
21 流体溜め領域
22 混合用細孔
DESCRIPTION OF SYMBOLS 100 Micromixer 10 Fluid distribution pipe 11 Fluid flow path 12 Large diameter pipe 13 Small diameter pipe 20 Fluid mixing part 21 Fluid reservoir area 22 Fine pore for mixing

Claims (7)

管内部に相互に並行に延びる複数の流体流路が長さ方向に沿って構成された流体流通管と、
上記流体流通管の流体流出側に連続して設けられ、該流体流通管から流出した複数種の流体を混在状態に溜めるための流体溜め領域を形成すると共に、それらの複数種の流体を流通させて層流混合させるための混合用細孔が穿孔された流体混合部と、
を備えたマイクロミキサー。
A fluid circulation pipe in which a plurality of fluid flow paths extending in parallel with each other inside the pipe are configured along the length direction;
It is provided continuously on the fluid outflow side of the fluid circulation pipe, and forms a fluid reservoir region for collecting a plurality of types of fluid flowing out from the fluid circulation pipe in a mixed state, and distributes the plurality of types of fluid. A fluid mixing part having mixing pores for laminar mixing.
A micromixer equipped with.
上記混合用細孔は、その孔径が0.1〜1.0mmである、請求項1に記載のマイクロミキサー。   The micromixer according to claim 1, wherein the mixing pore has a pore diameter of 0.1 to 1.0 mm. 上記混合用細孔は、その孔面積が0.008〜0.8mm2である、請求項1に記載のマイクロミキサー。 The micromixer according to claim 1, wherein the pores for mixing have a pore area of 0.008 to 0.8 mm 2 . 上記混合用細孔は、その孔長さの孔径に対する比が40以下である、請求項1に記載のマイクロミキサー。   The micromixer according to claim 1, wherein the mixing pore has a ratio of a pore length to a pore diameter of 40 or less. 上記流体流通管は、大径管と該大径管に挿通された小径管とにより構成された二重管構造に構成されている、請求項1に記載のマイクロミキサー。   2. The micromixer according to claim 1, wherein the fluid circulation pipe is configured in a double pipe structure including a large-diameter pipe and a small-diameter pipe inserted through the large-diameter pipe. 上記流体流通管は、上記大径管の内側で且つ上記小径管の外側の部分が流体流路に構成されている、請求項5に記載のマイクロミキサー。   The micromixer according to claim 5, wherein the fluid circulation pipe is configured such that a portion inside the large-diameter pipe and outside the small-diameter pipe is a fluid flow path. 管内部に相互に並行に延びる複数の流体流路が長さ方向に沿って構成された流体流通管と、該流体流通管の流体流出側に連続して設けられ且つ流体溜め領域を形成すると共に混合用細孔が穿孔された流体混合部と、を備えたマイクロミキサーを用いた流体混合方法であって、
上記流体流通管から流出した複数種の流体を上記流体混合部により形成された流体溜め領域に混在状態に溜め、該流体溜め領域に溜められた複数種の流体を層流混合させるように上記流体混合部の上記混合用細孔に流通させる、流体混合方法。
A fluid circulation pipe having a plurality of fluid flow paths extending in parallel with each other inside the pipe along the length direction, and continuously provided on the fluid outflow side of the fluid circulation pipe and forming a fluid reservoir region A fluid mixing method using a micromixer provided with a fluid mixing portion having pores for mixing,
A plurality of types of fluids flowing out from the fluid circulation pipe are stored in a mixed state in a fluid storage region formed by the fluid mixing unit, and the plurality of types of fluid stored in the fluid storage region are laminar mixed. A fluid mixing method for flowing through the mixing pores in the mixing section.
JP2005112650A 2005-04-08 2005-04-08 Micro mixer and fluid mixing method using the same Pending JP2006289250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005112650A JP2006289250A (en) 2005-04-08 2005-04-08 Micro mixer and fluid mixing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005112650A JP2006289250A (en) 2005-04-08 2005-04-08 Micro mixer and fluid mixing method using the same

Publications (1)

Publication Number Publication Date
JP2006289250A true JP2006289250A (en) 2006-10-26

Family

ID=37410430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005112650A Pending JP2006289250A (en) 2005-04-08 2005-04-08 Micro mixer and fluid mixing method using the same

Country Status (1)

Country Link
JP (1) JP2006289250A (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114755A1 (en) * 2007-03-16 2008-09-25 National University Corporation Okayama University Micromixer
JP2009208074A (en) * 2008-02-08 2009-09-17 Kao Corp Manufacturing method of fine particle dispersion liquid
JP2010012364A (en) * 2007-03-16 2010-01-21 Okayama Univ Micromixer
JP2010012363A (en) * 2007-03-16 2010-01-21 Okayama Univ Micromixer
JP2010142725A (en) * 2008-12-18 2010-07-01 Kao Corp Method for producing oil droplet dispersion
JP2013508156A (en) * 2009-10-27 2013-03-07 プレジデント アンド フェロウズ オブ ハーバード カレッジ Droplet generation technology
US9017948B2 (en) 2007-03-07 2015-04-28 President And Fellows Of Harvard College Assays and other reactions involving droplets
US9388465B2 (en) 2013-02-08 2016-07-12 10X Genomics, Inc. Polynucleotide barcode generation
US9410201B2 (en) 2012-12-14 2016-08-09 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9689024B2 (en) 2012-08-14 2017-06-27 10X Genomics, Inc. Methods for droplet-based sample preparation
US9694361B2 (en) 2014-04-10 2017-07-04 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9797010B2 (en) 2007-12-21 2017-10-24 President And Fellows Of Harvard College Systems and methods for nucleic acid sequencing
US9824068B2 (en) 2013-12-16 2017-11-21 10X Genomics, Inc. Methods and apparatus for sorting data
US9951386B2 (en) 2014-06-26 2018-04-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9975122B2 (en) 2014-11-05 2018-05-22 10X Genomics, Inc. Instrument systems for integrated sample processing
US10011872B1 (en) 2016-12-22 2018-07-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10221442B2 (en) 2012-08-14 2019-03-05 10X Genomics, Inc. Compositions and methods for sample processing
US10221436B2 (en) 2015-01-12 2019-03-05 10X Genomics, Inc. Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
US10273541B2 (en) 2012-08-14 2019-04-30 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10287623B2 (en) 2014-10-29 2019-05-14 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequencing
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10395758B2 (en) 2013-08-30 2019-08-27 10X Genomics, Inc. Sequencing methods
US10400235B2 (en) 2017-05-26 2019-09-03 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US10400280B2 (en) 2012-08-14 2019-09-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10428326B2 (en) 2017-01-30 2019-10-01 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
US10457977B2 (en) 2008-12-19 2019-10-29 President And Fellows Of Harvard College Particle-assisted nucleic acid sequencing
US10471016B2 (en) 2013-11-08 2019-11-12 President And Fellows Of Harvard College Microparticles, methods for their preparation and use
US10533221B2 (en) 2012-12-14 2020-01-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10650912B2 (en) 2015-01-13 2020-05-12 10X Genomics, Inc. Systems and methods for visualizing structural variation and phasing information
US10697000B2 (en) 2015-02-24 2020-06-30 10X Genomics, Inc. Partition processing methods and systems
US10745742B2 (en) 2017-11-15 2020-08-18 10X Genomics, Inc. Functionalized gel beads
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10774370B2 (en) 2015-12-04 2020-09-15 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
US10839939B2 (en) 2014-06-26 2020-11-17 10X Genomics, Inc. Processes and systems for nucleic acid sequence assembly
US10854315B2 (en) 2015-02-09 2020-12-01 10X Genomics, Inc. Systems and methods for determining structural variation and phasing using variant call data
US11081208B2 (en) 2016-02-11 2021-08-03 10X Genomics, Inc. Systems, methods, and media for de novo assembly of whole genome sequence data
US11084036B2 (en) 2016-05-13 2021-08-10 10X Genomics, Inc. Microfluidic systems and methods of use
US11123297B2 (en) 2015-10-13 2021-09-21 President And Fellows Of Harvard College Systems and methods for making and using gel microspheres
US11155881B2 (en) 2018-04-06 2021-10-26 10X Genomics, Inc. Systems and methods for quality control in single cell processing
US11274343B2 (en) 2015-02-24 2022-03-15 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequence coverage
US11401550B2 (en) 2008-09-19 2022-08-02 President And Fellows Of Harvard College Creation of libraries of droplets and related species
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
US11629344B2 (en) 2014-06-26 2023-04-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11773389B2 (en) 2017-05-26 2023-10-03 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US11898206B2 (en) 2017-05-19 2024-02-13 10X Genomics, Inc. Systems and methods for clonotype screening

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292274A (en) * 2001-04-02 2002-10-08 Mitsubishi Chemicals Corp Flow type fine reaction passage, reaction apparatus and reaction method
WO2004002627A2 (en) * 2002-06-28 2004-01-08 President And Fellows Of Harvard College Method and apparatus for fluid dispersion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292274A (en) * 2001-04-02 2002-10-08 Mitsubishi Chemicals Corp Flow type fine reaction passage, reaction apparatus and reaction method
WO2004002627A2 (en) * 2002-06-28 2004-01-08 President And Fellows Of Harvard College Method and apparatus for fluid dispersion

Cited By (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10941430B2 (en) 2007-03-07 2021-03-09 President And Fellows Of Harvard College Assays and other reactions involving droplets
US9017948B2 (en) 2007-03-07 2015-04-28 President And Fellows Of Harvard College Assays and other reactions involving droplets
US10221437B2 (en) 2007-03-07 2019-03-05 President And Fellows Of Harvard College Assays and other reactions involving droplets
US10508294B2 (en) 2007-03-07 2019-12-17 President And Fellows Of Harvard College Assays and other reactions involving droplets
US10683524B2 (en) 2007-03-07 2020-06-16 President And Fellows Of Harvard College Assays and other reactions involving droplets
US9850526B2 (en) 2007-03-07 2017-12-26 President And Fellows Of Harvard College Assays and other reactions involving droplets
US9816121B2 (en) 2007-03-07 2017-11-14 President And Fellows Of Harvard College Assays and other reactions involving droplets
US9029085B2 (en) 2007-03-07 2015-05-12 President And Fellows Of Harvard College Assays and other reactions involving droplets
US10738337B2 (en) 2007-03-07 2020-08-11 President And Fellows Of Harvard College Assays and other reactions involving droplets
US9068210B2 (en) 2007-03-07 2015-06-30 President And Fellows Of Harvard College Assay and other reactions involving droplets
JP2010012363A (en) * 2007-03-16 2010-01-21 Okayama Univ Micromixer
JP2010012364A (en) * 2007-03-16 2010-01-21 Okayama Univ Micromixer
WO2008114755A1 (en) * 2007-03-16 2008-09-25 National University Corporation Okayama University Micromixer
US9797010B2 (en) 2007-12-21 2017-10-24 President And Fellows Of Harvard College Systems and methods for nucleic acid sequencing
US10633701B2 (en) 2007-12-21 2020-04-28 President And Fellows Of Harvard College Systems and methods for nucleic acid sequencing
JP2009208074A (en) * 2008-02-08 2009-09-17 Kao Corp Manufacturing method of fine particle dispersion liquid
US11401550B2 (en) 2008-09-19 2022-08-02 President And Fellows Of Harvard College Creation of libraries of droplets and related species
JP2010142725A (en) * 2008-12-18 2010-07-01 Kao Corp Method for producing oil droplet dispersion
US10457977B2 (en) 2008-12-19 2019-10-29 President And Fellows Of Harvard College Particle-assisted nucleic acid sequencing
US11000849B2 (en) 2009-10-27 2021-05-11 President And Fellows Of Harvard College Droplet creation techniques
US9056289B2 (en) 2009-10-27 2015-06-16 President And Fellows Of Harvard College Droplet creation techniques
US9839911B2 (en) 2009-10-27 2017-12-12 President And Fellows Of Harvard College Droplet creation techniques
JP2013508156A (en) * 2009-10-27 2013-03-07 プレジデント アンド フェロウズ オブ ハーバード カレッジ Droplet generation technology
US11021749B2 (en) 2012-08-14 2021-06-01 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10752950B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11035002B2 (en) 2012-08-14 2021-06-15 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11078522B2 (en) 2012-08-14 2021-08-03 10X Genomics, Inc. Capsule array devices and methods of use
US10053723B2 (en) 2012-08-14 2018-08-21 10X Genomics, Inc. Capsule array devices and methods of use
US10669583B2 (en) 2012-08-14 2020-06-02 10X Genomics, Inc. Method and systems for processing polynucleotides
US9695468B2 (en) 2012-08-14 2017-07-04 10X Genomics, Inc. Methods for droplet-based sample preparation
US10626458B2 (en) 2012-08-14 2020-04-21 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10597718B2 (en) 2012-08-14 2020-03-24 10X Genomics, Inc. Methods and systems for sample processing polynucleotides
US10584381B2 (en) 2012-08-14 2020-03-10 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9689024B2 (en) 2012-08-14 2017-06-27 10X Genomics, Inc. Methods for droplet-based sample preparation
US11359239B2 (en) 2012-08-14 2022-06-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10221442B2 (en) 2012-08-14 2019-03-05 10X Genomics, Inc. Compositions and methods for sample processing
US11441179B2 (en) 2012-08-14 2022-09-13 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
US10450607B2 (en) 2012-08-14 2019-10-22 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10400280B2 (en) 2012-08-14 2019-09-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10273541B2 (en) 2012-08-14 2019-04-30 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10533221B2 (en) 2012-12-14 2020-01-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11473138B2 (en) 2012-12-14 2022-10-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9567631B2 (en) 2012-12-14 2017-02-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9410201B2 (en) 2012-12-14 2016-08-09 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10612090B2 (en) 2012-12-14 2020-04-07 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11421274B2 (en) 2012-12-14 2022-08-23 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10227648B2 (en) 2012-12-14 2019-03-12 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10253364B2 (en) 2012-12-14 2019-04-09 10X Genomics, Inc. Method and systems for processing polynucleotides
US9856530B2 (en) 2012-12-14 2018-01-02 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10676789B2 (en) 2012-12-14 2020-06-09 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9388465B2 (en) 2013-02-08 2016-07-12 10X Genomics, Inc. Polynucleotide barcode generation
US10150963B2 (en) 2013-02-08 2018-12-11 10X Genomics, Inc. Partitioning and processing of analytes and other species
US11193121B2 (en) 2013-02-08 2021-12-07 10X Genomics, Inc. Partitioning and processing of analytes and other species
US10150964B2 (en) 2013-02-08 2018-12-11 10X Genomics, Inc. Partitioning and processing of analytes and other species
US9644204B2 (en) 2013-02-08 2017-05-09 10X Genomics, Inc. Partitioning and processing of analytes and other species
US10395758B2 (en) 2013-08-30 2019-08-27 10X Genomics, Inc. Sequencing methods
US10471016B2 (en) 2013-11-08 2019-11-12 President And Fellows Of Harvard College Microparticles, methods for their preparation and use
US9824068B2 (en) 2013-12-16 2017-11-21 10X Genomics, Inc. Methods and apparatus for sorting data
US10071377B2 (en) 2014-04-10 2018-09-11 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US12005454B2 (en) 2014-04-10 2024-06-11 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US10150117B2 (en) 2014-04-10 2018-12-11 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US10343166B2 (en) 2014-04-10 2019-07-09 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US9694361B2 (en) 2014-04-10 2017-07-04 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US10137449B2 (en) 2014-04-10 2018-11-27 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US10030267B2 (en) 2014-06-26 2018-07-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10480028B2 (en) 2014-06-26 2019-11-19 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10337061B2 (en) 2014-06-26 2019-07-02 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10041116B2 (en) 2014-06-26 2018-08-07 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11133084B2 (en) 2014-06-26 2021-09-28 10X Genomics, Inc. Systems and methods for nucleic acid sequence assembly
US11713457B2 (en) 2014-06-26 2023-08-01 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11629344B2 (en) 2014-06-26 2023-04-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10344329B2 (en) 2014-06-26 2019-07-09 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10457986B2 (en) 2014-06-26 2019-10-29 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10760124B2 (en) 2014-06-26 2020-09-01 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9951386B2 (en) 2014-06-26 2018-04-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10839939B2 (en) 2014-06-26 2020-11-17 10X Genomics, Inc. Processes and systems for nucleic acid sequence assembly
US10208343B2 (en) 2014-06-26 2019-02-19 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10287623B2 (en) 2014-10-29 2019-05-14 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequencing
US11739368B2 (en) 2014-10-29 2023-08-29 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequencing
US11135584B2 (en) 2014-11-05 2021-10-05 10X Genomics, Inc. Instrument systems for integrated sample processing
US9975122B2 (en) 2014-11-05 2018-05-22 10X Genomics, Inc. Instrument systems for integrated sample processing
US10245587B2 (en) 2014-11-05 2019-04-02 10X Genomics, Inc. Instrument systems for integrated sample processing
US10221436B2 (en) 2015-01-12 2019-03-05 10X Genomics, Inc. Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
US10557158B2 (en) 2015-01-12 2020-02-11 10X Genomics, Inc. Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
US11414688B2 (en) 2015-01-12 2022-08-16 10X Genomics, Inc. Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
US10650912B2 (en) 2015-01-13 2020-05-12 10X Genomics, Inc. Systems and methods for visualizing structural variation and phasing information
US10854315B2 (en) 2015-02-09 2020-12-01 10X Genomics, Inc. Systems and methods for determining structural variation and phasing using variant call data
US10697000B2 (en) 2015-02-24 2020-06-30 10X Genomics, Inc. Partition processing methods and systems
US11603554B2 (en) 2015-02-24 2023-03-14 10X Genomics, Inc. Partition processing methods and systems
US11274343B2 (en) 2015-02-24 2022-03-15 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequence coverage
US11123297B2 (en) 2015-10-13 2021-09-21 President And Fellows Of Harvard College Systems and methods for making and using gel microspheres
US11624085B2 (en) 2015-12-04 2023-04-11 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
US11873528B2 (en) 2015-12-04 2024-01-16 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
US10774370B2 (en) 2015-12-04 2020-09-15 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
US11473125B2 (en) 2015-12-04 2022-10-18 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
US11081208B2 (en) 2016-02-11 2021-08-03 10X Genomics, Inc. Systems, methods, and media for de novo assembly of whole genome sequence data
US11084036B2 (en) 2016-05-13 2021-08-10 10X Genomics, Inc. Microfluidic systems and methods of use
US11180805B2 (en) 2016-12-22 2021-11-23 10X Genomics, Inc Methods and systems for processing polynucleotides
US10480029B2 (en) 2016-12-22 2019-11-19 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10323278B2 (en) 2016-12-22 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10011872B1 (en) 2016-12-22 2018-07-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10793905B2 (en) 2016-12-22 2020-10-06 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10858702B2 (en) 2016-12-22 2020-12-08 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11193122B2 (en) 2017-01-30 2021-12-07 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
US10428326B2 (en) 2017-01-30 2019-10-01 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
US11898206B2 (en) 2017-05-19 2024-02-13 10X Genomics, Inc. Systems and methods for clonotype screening
US11773389B2 (en) 2017-05-26 2023-10-03 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US11155810B2 (en) 2017-05-26 2021-10-26 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US11198866B2 (en) 2017-05-26 2021-12-14 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US10927370B2 (en) 2017-05-26 2021-02-23 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US10844372B2 (en) 2017-05-26 2020-11-24 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US10400235B2 (en) 2017-05-26 2019-09-03 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US10745742B2 (en) 2017-11-15 2020-08-18 10X Genomics, Inc. Functionalized gel beads
US10876147B2 (en) 2017-11-15 2020-12-29 10X Genomics, Inc. Functionalized gel beads
US11884962B2 (en) 2017-11-15 2024-01-30 10X Genomics, Inc. Functionalized gel beads
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
US11155881B2 (en) 2018-04-06 2021-10-26 10X Genomics, Inc. Systems and methods for quality control in single cell processing

Similar Documents

Publication Publication Date Title
JP2006289250A (en) Micro mixer and fluid mixing method using the same
JP2020114585A (en) Process intensified microfluidic device
Li et al. Intensification of liquid–liquid two‐phase mass transfer in a capillary microreactor system
US20090031923A1 (en) Fluid-processing device and fluid-processing method
Jani et al. Geometrical influence on mixing in helical porous membrane microcontactors
JP2004081924A (en) Micro-emulsifier and emulsification method
Tan et al. Surfactant‐free microdispersion process of gas in organic solvents in microfluidic devices
JP2011147932A (en) Fluid-mixing device
JP4777383B2 (en) Microreactor
JP2004330008A (en) Micro-channel apparatus
Kakavandi et al. Liquid–liquid two-phase mass transfer in T-type micromixers with different junctions and cylindrical pits
EP2033706B1 (en) An emulsification apparatus
CN112752868A (en) Electrochemical flow reactor
Al-Amshawee et al. Electrodialysis desalination: The impact of solution flowrate (or Reynolds number) on fluid dynamics throughout membrane spacers
JP2010082533A (en) Mixer
Zheng et al. Bubble generation rules in microfluidic devices with microsieve array as dispersion medium
Zhang et al. Hydrodynamics and liquid–liquid mass transfer in gas–liquid–liquid three-phase flow in a cross microchannel
EP2140930A1 (en) Micromixer
CN210814758U (en) Multi-runner three-phase eddy static mixer
JP2019042628A (en) Gas-liquid mixer
CN107551967B (en) Microchannel device for microreactors
CN111229069A (en) Efficient liquid drop generating device
Chen et al. Controllable generation of multi-row bubbly flow in coupled microstructures and its boosting of photocatalytic decarboxylative carbonylation
Luo et al. Experimental investigations of liquid-liquid dispersion in a novel helical tube reactor
JP2010247071A (en) Fluid mixer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110621