JP2010142725A - Method for producing oil droplet dispersion - Google Patents

Method for producing oil droplet dispersion Download PDF

Info

Publication number
JP2010142725A
JP2010142725A JP2008322237A JP2008322237A JP2010142725A JP 2010142725 A JP2010142725 A JP 2010142725A JP 2008322237 A JP2008322237 A JP 2008322237A JP 2008322237 A JP2008322237 A JP 2008322237A JP 2010142725 A JP2010142725 A JP 2010142725A
Authority
JP
Japan
Prior art keywords
component
oil
oil droplet
aqueous
droplet dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008322237A
Other languages
Japanese (ja)
Other versions
JP5241467B2 (en
Inventor
Kazuo Matsuyama
一雄 松山
Koji Mine
浩二 峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2008322237A priority Critical patent/JP5241467B2/en
Publication of JP2010142725A publication Critical patent/JP2010142725A/en
Application granted granted Critical
Publication of JP5241467B2 publication Critical patent/JP5241467B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an oil droplet dispersion having an oil droplet volume average particle size of 100-1,000 μm in high productivity by a stable operation. <P>SOLUTION: The method for producing the oil droplet dispersion includes a step in which a liquid oily component is combined with a flowing aqueous component made of a polymer aqueous solution with a viscosity of 10-200 mPa s to make the surroundings be covered with the aqueous component, and a step of obtaining the oil droplet dispersion having an oil droplet volume average particle size of 100-1,000 μm by circulating the combined aqueous and oily components through a microchannel 22. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は油滴分散液の製造方法に関する。   The present invention relates to a method for producing an oil droplet dispersion.

油滴の体積平均粒径が100μm以上である油滴分散液を化粧料等に用いる場合、油滴が視認されるために油滴径分布の単分散性が高いことが要求される。この要求を満足する油滴分散液の製造方法としてマイクロ流路を利用する方法が提案されている。   When an oil droplet dispersion having a volume average particle size of oil droplets of 100 μm or more is used in cosmetics or the like, it is required that the oil droplet diameter distribution has a high monodispersity in order to visually recognize the oil droplets. As a method for producing an oil droplet dispersion satisfying this requirement, a method using a microchannel has been proposed.

特許文献1及び2には、交差するように設けられた一対のマイクロ流路の一方に水性成分及び他方に油性成分をそれぞれ流通させ、それらの交差部において水性成分に油性成分を分散させる油滴分散液の製造方法が開示されている。   Patent Documents 1 and 2 disclose oil droplets in which an aqueous component and an oily component are circulated in one of a pair of microchannels provided so as to cross each other and the oily component is dispersed in the aqueous component at the intersection. A method for producing a dispersion is disclosed.

非特許文献1には、同心軸状に設けられた外側管及び内側管の前者に油性成分及び後者に水性成分をそれぞれ流通させると共にそれらを合流させ、それを特殊な方法で作製したPDMS(ポリジメチルシロキサン)製の装置のマイクロ流路(オリフィス)に流通させる水滴分散液の製造方法が開示されている。
国際公開2002/068104号パンフレット 特開2004−122107号公報 Shoji Takeuchi et al., Advanced Materials 2005, 17, No.8, 1067-1072
Non-Patent Document 1 discloses that a PDMS (polyester) produced by a special method is prepared by circulating an oil component and an aqueous component in the former of an outer tube and an inner tube provided concentrically, respectively, and merging them together. A method for producing a water droplet dispersion to be circulated through a microchannel (orifice) of an apparatus made of (dimethylsiloxane) is disclosed.
International Publication 2002/068104 Pamphlet JP 2004-122107 A Shoji Takeuchi et al., Advanced Materials 2005, 17, No. 8, 1067-1072

しかしながら、特許文献1及び2に開示された方法では、油性成分がマイクロ流路の壁面に接触した状態で油滴を生成するため、長時間継続して行うと壁面が油性成分で濡れやすくなり、その結果、油滴径の制御が困難になることがある。   However, in the methods disclosed in Patent Documents 1 and 2, oil droplets are generated in a state where the oil component is in contact with the wall surface of the microchannel, so that the wall surface is likely to get wet with the oil component if performed continuously for a long time, As a result, it may be difficult to control the oil droplet diameter.

また、非特許文献1に開示された方法は、ヘキサデカンからなる油性成分で周囲が覆われるように水性成分を合流させたものであり、さらにこの油性成分の粘度が低いので、安定操作の観点から少流量で運転を行う必要があり、高い生産性を得ることができない。   In addition, the method disclosed in Non-Patent Document 1 is a method in which aqueous components are merged so that the periphery is covered with an oil component composed of hexadecane, and since the viscosity of the oil component is low, from the viewpoint of stable operation. It is necessary to operate with a small flow rate, and high productivity cannot be obtained.

従って、安定操作と高い生産性とを両立するためには、マイクロ流路を多数並設しなければならず、この場合、装置コストの高さやメンテナンスの煩雑さといった問題が懸念される。   Therefore, in order to achieve both stable operation and high productivity, a large number of microchannels must be provided side by side. In this case, there are concerns about problems such as high apparatus costs and complicated maintenance.

本発明の目的は、油滴の体積平均粒径が100〜1000μmである油滴分散液を、安定操作で、しかも高い生産性で製造することができる方法を提供することである。   An object of the present invention is to provide a method capable of producing an oil droplet dispersion having a volume average particle diameter of oil droplets of 100 to 1000 μm with stable operation and high productivity.

本発明の油滴分散液の製造方法は、
粘度が10〜200mPa・sである高分子水溶液からなる流動する水性成分に、該水性成分で周囲が覆われるように液体の油性成分を合流させるステップと、
上記水性成分及び上記油性成分の合流体をマイクロ流路に流通させることにより油滴の体積平均粒径が100〜1000μmである油滴分散液を得るステップと、
を備える。
The method for producing the oil droplet dispersion of the present invention comprises:
A step of merging a liquid oily component with a flowing aqueous component comprising a polymer aqueous solution having a viscosity of 10 to 200 mPa · s so that the periphery is covered with the aqueous component;
Obtaining an oil droplet dispersion in which the volume average particle diameter of the oil droplets is 100 to 1000 μm by circulating a combined fluid of the aqueous component and the oil component in the microchannel;
Is provided.

本発明によれば、水性成分の粘度が10〜200mPa・sであるため、界面張力に基づく自発的な油滴生成が可能であると共に、油滴同士の衝突等による油滴の合一や対流渦の発生に起因する高剪断力が作用することによる油滴の微細化が抑制され、また、油性成分の周囲が水性成分で覆われた合流体をマイクロ流路に流通させるため、油性成分がマイクロ流路の壁面に接触しないので、流量が多くても安定した油滴の生成が可能である。つまり、油滴の体積平均粒径が100〜1000μmである油滴分散液を、安定操作で、しかも高い生産性で製造することができる。   According to the present invention, since the viscosity of the aqueous component is 10 to 200 mPa · s, it is possible to spontaneously generate oil droplets based on the interfacial tension, and the coalescence and convection of oil droplets due to collisions between oil droplets and the like. Oil droplets are prevented from being refined due to the action of high shearing force due to the generation of vortices, and the oily component is circulated through the microfluidic channel through a combined fluid in which the periphery of the oily component is covered with an aqueous component. Since it does not contact the wall surface of the microchannel, stable oil droplets can be generated even if the flow rate is large. That is, an oil droplet dispersion having a volume average particle diameter of oil droplets of 100 to 1000 μm can be produced with stable operation and high productivity.

以下、実施形態について説明する。   Hereinafter, embodiments will be described.

(油滴分散液の製造システムA)
図1は、油滴分散液の製造システムAを示す。
(Production system A for oil droplet dispersion)
FIG. 1 shows a manufacturing system A for an oil droplet dispersion.

この油滴分散液の製造システムAは、マイクロミキサー100と液供給系等の付帯部とで構成されている。   This oil droplet dispersion manufacturing system A is composed of a micromixer 100 and an accompanying part such as a liquid supply system.

マイクロミキサー100は、一対の液流入部101及び単一の液流出部102を有する。   The micromixer 100 includes a pair of liquid inflow portions 101 and a single liquid outflow portion 102.

一対の液流入部101の一方には、水性成分を貯蔵するための第1貯槽31aから延びた第1供給管32aが接続されている。第1供給管32aには、水性成分を流通させるための第1ポンプ33a、水性成分の流量を検知するための第1流量計34a及び水性成分の夾雑物を除去するための第1フィルタ35aが上流側から順に介設されており、第1流量計34aと第1フィルタ35aとの間の部分に水性成分の圧力を検知するための第1圧力計36aが取り付けられている。第1ポンプ33a、第1流量計34a及び第1圧力計36aのそれぞれは、流量コントローラ37に電気的に接続されている。   One of the pair of liquid inflow portions 101 is connected to a first supply pipe 32a extending from the first storage tank 31a for storing an aqueous component. The first supply pipe 32a includes a first pump 33a for circulating the aqueous component, a first flow meter 34a for detecting the flow rate of the aqueous component, and a first filter 35a for removing contaminants of the aqueous component. A first pressure gauge 36a for detecting the pressure of the aqueous component is attached to a portion between the first flow meter 34a and the first filter 35a in order from the upstream side. Each of the first pump 33a, the first flow meter 34a, and the first pressure gauge 36a is electrically connected to the flow controller 37.

一対の液流入部101の他方には、油性成分を貯蔵するための第2貯槽31bから延びた第2供給管32bが接続されている。第2供給管32bには、油性成分を流通させるための第2ポンプ33b、油性成分の流量を検知するための第2流量計34b及び油性成分の夾雑物を除去するための第2フィルタ35bが上流側から順に介設されており、第2流量計34bと第2フィルタ35bとの間の部分に油性成分の圧力を検知するための第2圧力計36bが取り付けられている。第2ポンプ33b、第2流量計34b及び第2圧力計36bのそれぞれは、流量コントローラ37に電気的に接続されている。   A second supply pipe 32b extending from the second storage tank 31b for storing the oil component is connected to the other of the pair of liquid inflow portions 101. The second supply pipe 32b has a second pump 33b for circulating the oil component, a second flow meter 34b for detecting the flow rate of the oil component, and a second filter 35b for removing contaminants of the oil component. A second pressure gauge 36b for detecting the pressure of the oil component is attached to a portion between the second flow meter 34b and the second filter 35b. Each of the second pump 33b, the second flow meter 34b, and the second pressure gauge 36b is electrically connected to the flow controller 37.

流量コントローラ37は、水性成分の設定流量及び設定圧力の入力が可能に構成されていると共に演算素子が組み込まれており、水性成分の設定流量情報、第1流量計34aで検知された流量情報及び第1圧力計36aで検知された圧力情報に基づいて第1ポンプ33aを運転制御するように構成されている。同様に、流量コントローラ37は、油性成分の設定流量及び設定圧力の入力も可能に構成されており、油性成分の設定流量情報、第2流量計34bで検知された流量情報及び第2圧力計36bで検知された圧力情報に基づいて第2ポンプ33bを運転制御するように構成されている。   The flow rate controller 37 is configured to be capable of inputting the set flow rate and set pressure of the aqueous component and incorporates an arithmetic element, and includes the set flow rate information of the aqueous component, the flow rate information detected by the first flow meter 34a, and The first pump 33a is configured to control the operation based on pressure information detected by the first pressure gauge 36a. Similarly, the flow controller 37 is configured to be able to input a set flow rate and a set pressure of the oil component, and the set flow information of the oil component, the flow information detected by the second flow meter 34b, and the second pressure meter 36b. The second pump 33b is configured to control the operation based on the pressure information detected in step (b).

マイクロミキサー100の液流出部102は製品貯層38に繋がっている。製品貯層38には熱交換器や温調ジャケット等の冷却手段が設けられていてもよい。   The liquid outflow portion 102 of the micromixer 100 is connected to the product reservoir 38. The product reservoir 38 may be provided with cooling means such as a heat exchanger and a temperature control jacket.

図2(a)〜(c)は、マイクロミキサー100の具体的構成の一例を示す。   2A to 2C show an example of a specific configuration of the micromixer 100. FIG.

このマイクロミキサー100は、配管の一部分を構成するように設けられた液流通管10とその液流出側に連続して設けられた液合流分散部20とを備えている。   The micromixer 100 includes a liquid circulation pipe 10 provided so as to constitute a part of a pipe and a liquid merging / dispersing portion 20 provided continuously on the liquid outflow side.

液流通管10は、大径管12とそれに同心状に導入・挿通された1本の小径管13との二重管構造に構成されている。この液流通管10では、大径管12の内側で且つ小径管13の外側の部分の水性成分流路11aと小径管13の内側の部分の油性成分流路11bとの2つの液流路が管内部に相互に並行に延びて長さ方向に沿うように構成されている。そして、大径管12の流入部が一方の液流入部101に構成され、液流通管10の外部に露出した小径管13の流入部が他方の液流入部101に構成されている。二重管構造の液流通管10を有するこのようなマイクロミキサー100は、装置構成が簡易であり、分解洗浄によるメンテナンスも容易である。   The liquid flow pipe 10 is configured in a double pipe structure of a large diameter pipe 12 and a single small diameter pipe 13 that is introduced and inserted concentrically therewith. In this liquid circulation pipe 10, there are two liquid flow paths, an aqueous component flow path 11 a inside the large diameter pipe 12 and outside the small diameter pipe 13, and an oil component flow path 11 b inside the small diameter pipe 13. It is comprised so that it may extend in parallel mutually inside a pipe | tube and it follows a length direction. The inflow portion of the large diameter pipe 12 is configured as one liquid inflow portion 101, and the inflow portion of the small diameter tube 13 exposed to the outside of the liquid circulation tube 10 is configured as the other liquid inflow portion 101. Such a micromixer 100 having the liquid flow pipe 10 having a double-pipe structure has a simple apparatus configuration and is easy to maintain by disassembly and cleaning.

大径管12及び小径管13のそれぞれは、その流路断面形状が円形に形成されている。但し、特にこれに限定されるものでなく、例えば、半円形、楕円形、半楕円形、正方形、長方形、台形、平行四辺形、星形、不定形等であってもよい。大径管12は、内径D1が例えば3〜12mmであり、小径管13は、内径D2が例えば1〜5mmである。   Each of the large-diameter pipe 12 and the small-diameter pipe 13 has a circular channel cross-sectional shape. However, it is not particularly limited to this, and may be, for example, a semicircular shape, an elliptical shape, a semielliptical shape, a square shape, a rectangular shape, a trapezoidal shape, a parallelogram shape, a star shape, an indefinite shape, or the like. The large diameter tube 12 has an inner diameter D1 of, for example, 3 to 12 mm, and the small diameter tube 13 has an inner diameter D2 of, for example, 1 to 5 mm.

液合流分散部20は、液流通管10の液流出端に連続した内部領域を形成しており、この内部領域が液合流部21を構成している。液合流部21は、液流動方向の長さL1が例えば0.5〜5mmであり、容量が例えば0.001〜4mLである。   The liquid merging / dispersing part 20 forms an internal region continuous with the liquid outflow end of the liquid circulation pipe 10, and this internal region constitutes the liquid merging part 21. The liquid junction 21 has a length L1 in the liquid flow direction of, for example, 0.5 to 5 mm, and a capacity of, for example, 0.001 to 4 mL.

液合流分散部20には、液合流部21に連続して設けられたマイクロ流路22が穿孔されており、また、マイクロ流路22に連続して流路拡大部23が設けられている。そして、この流路拡大部23が液流出部102に構成されている。ここで、本出願において「マイクロ流路」とは、流路の各箇所における水力相当直径dの最小値が0.05mm以上1mm以下である流路をいう。   In the liquid merging / dispersing part 20, a micro flow path 22 provided continuously to the liquid merging part 21 is perforated, and a flow path expanding part 23 is provided continuously to the micro flow path 22. The flow passage expanding portion 23 is configured in the liquid outflow portion 102. Here, in the present application, the “micro channel” refers to a channel whose minimum value of the hydraulic equivalent diameter d at each location of the channel is 0.05 mm or more and 1 mm or less.

液合流部21におけるマイクロ流路22に連続する部分は、図3(a)に示すように流路径が不連続に縮小した構成であってもよく、また、図3(b)に示すように流路径がベンチュリ管状に連続的に縮小した構成であってもよい。後者の場合、その部分の長さL2は例えば1〜30mmである。   The portion continuing to the micro flow path 22 in the liquid confluence portion 21 may have a configuration in which the flow path diameter is discontinuously reduced as shown in FIG. 3A, and as shown in FIG. 3B. The flow path diameter may be continuously reduced to a Venturi tube. In the latter case, the length L2 of the portion is, for example, 1 to 30 mm.

マイクロ流路22は、その流路断面形状が円形に形成されている。但し、特にこれに限定されるものでなく、例えば、半円形、楕円形、半楕円形、正方形、長方形、台形、平行四辺形、星形、不定形等であってもよい。   The microchannel 22 has a circular channel cross-sectional shape. However, it is not particularly limited to this, and may be, for example, a semicircular shape, an elliptical shape, a semielliptical shape, a square shape, a rectangular shape, a trapezoidal shape, a parallelogram shape, a star shape, an indefinite shape, or the like.

マイクロ流路22は、水力相当直径dが0.3〜1.0mm、或いは、流路面積sが0.05〜1.0mmであるのが好ましく、流路面積sが0.05〜0.6mmであるのが更に好ましい。また、マイクロ流路22は、流路長さlが0.6〜150mmであるのが好ましい。さらに、マイクロ流路22は、流路内で安定な層流を得ることができるという観点から、流路長さ/水力相当直径(l/d)が3〜500が好ましく、30〜300であることがさらに好ましい。 The micro channel 22 preferably has a hydraulic equivalent diameter d of 0.3 to 1.0 mm, or a channel area s of 0.05 to 1.0 mm 2 , and the channel area s of 0.05 to 0. More preferably, it is 6 mm 2 . The microchannel 22 preferably has a channel length l of 0.6 to 150 mm. Further, in the microchannel 22, from the viewpoint that a stable laminar flow can be obtained in the channel, the channel length / hydraulic equivalent diameter (l / d) is preferably 3 to 500, and preferably 30 to 300. More preferably.

マイクロ流路22は、その材質については、安定な油滴の生成を行う観点から、油性成分に濡れにくい物性を有するものが好ましい。具体的には、PTFE(ポリテトラフルオロエチレン)やPFA(テトラフルオロエチレンとパーフルオロアルコキシエチレンの共重合体)などのフッ素樹脂や、ステンレスやガラスなどの水との接触角が90°以下の材質が挙げられる。これらのうち、得られる液滴の粒径の単分散性の観点から、ガラスを用いることがさらに好ましい。   As for the material of the micro flow path 22, those having physical properties that are difficult to wet with oil components are preferable from the viewpoint of generating stable oil droplets. Specifically, materials with a contact angle of 90 ° or less with fluorine resin such as PTFE (polytetrafluoroethylene) and PFA (copolymer of tetrafluoroethylene and perfluoroalkoxyethylene), and water such as stainless steel and glass. Is mentioned. Among these, it is more preferable to use glass from the viewpoint of monodispersity of the particle diameter of the obtained droplet.

マイクロ流路22は、水性成分流路11a及び油性成分流路11bの延びる方向と同一方向に延びるように形成されている。但し、特にこれに限定されるものでなく、それらの延びる方向と異なる方向に延びるように形成されていてもよい。マイクロ流路22は、横方向に延びるように形成されていてもよく、また、上下方向に延びるように形成されていてもよく、さらに、斜め方向に延びるように形成されていてもよい。なお、上下方向又は斜め方向に延びるように形成されたマイクロ流路22は、液流動の向きが上から下向きであってもよく、また、下から上向きであってもよい。   The micro channel 22 is formed to extend in the same direction as the direction in which the aqueous component channel 11a and the oil component channel 11b extend. However, it is not particularly limited to this, and it may be formed to extend in a direction different from the extending direction thereof. The microchannel 22 may be formed so as to extend in the lateral direction, may be formed so as to extend in the vertical direction, and may be formed so as to extend in an oblique direction. Note that the microchannel 22 formed so as to extend in the up-down direction or the oblique direction may have a liquid flow direction from top to bottom, or from bottom to top.

流路拡大部23は、その流路断面形状が円形に形成されている。但し、特にこれに限定されるものでなく、例えば、半円形、楕円形、半楕円形、正方形、長方形、台形、平行四辺形、星形、不定形等であってもよい。流路拡大部23は、内径D3が例えば1.5〜12mmである、或いは、開放系である。   The channel expanding portion 23 has a circular channel cross-sectional shape. However, it is not particularly limited to this, and may be, for example, a semicircular shape, an elliptical shape, a semielliptical shape, a square shape, a rectangular shape, a trapezoidal shape, a parallelogram shape, a star shape, an indefinite shape, or the like. The flow path expanding portion 23 has an inner diameter D3 of, for example, 1.5 to 12 mm, or is an open system.

流路拡大部23におけるマイクロ流路22から連続する部分は、図4(a)に示すように流路径が不連続に拡大した構成であってもよく、また、図4(b)に示すように流路径がベンチュリ管状に連続的に拡大した構成であってもよく、さらに、図4(c)に示すように鉛直下向きに延びるマイクロ流路22が開放された流路拡大部23に連続した構成であってもよい。図4(b)に示す構成の場合、その部分の長さL3は例えば20mm以下である。   The portion extending from the micro flow path 22 in the flow path expanding section 23 may have a configuration in which the flow path diameter is discontinuously expanded as shown in FIG. 4A, and as shown in FIG. 4B. The channel diameter may be continuously expanded into a venturi shape, and further, as shown in FIG. 4 (c), the microchannel 22 extending vertically downward is continuous with the channel expanding section 23 opened. It may be a configuration. In the case of the configuration shown in FIG. 4B, the length L3 of the portion is, for example, 20 mm or less.

流路拡大部23には、製品貯層38に向かって延びる回収管が接続されていてもよく、また、その回収管にアルカリ添加手段が設けられていてもよい。   A recovery pipe extending toward the product reservoir 38 may be connected to the flow path expanding portion 23, and an alkali addition means may be provided in the recovery pipe.

なお、この例では、小径管13が1本である構成としたが、図5(a)及び(b)に示すように小径管13が複数本である構成であってもよい。   In addition, in this example, it was set as the structure with one small diameter pipe | tube 13, However, As shown to Fig.5 (a) and (b), the structure with a plurality of small diameter pipes 13 may be sufficient.

(油滴分散液の製造方法)
次に、この油滴分散液の製造システムAを用いた油滴分散液の製造方法について説明する。
(Method for producing oil droplet dispersion)
Next, an oil droplet dispersion manufacturing method using the oil droplet dispersion manufacturing system A will be described.

この油滴分散液の製造方法は、粘度が10〜200mPa・sである高分子水溶液からなる流動する水性成分に、水性成分で周囲が覆われるように液体の油性成分を合流させ、その合流体をマイクロ流路22に流通させることにより油滴の体積平均粒径が100〜1000μmである油滴分散液を得るものである。   This method for producing an oil droplet dispersion is such that a liquid oily component is joined to a flowing aqueous component composed of a polymer aqueous solution having a viscosity of 10 to 200 mPa · s so that the periphery is covered with the aqueous component. Is circulated through the microchannel 22 to obtain an oil droplet dispersion having a volume average particle diameter of oil droplets of 100 to 1000 μm.

<水性成分及び油性成分>
水性成分は、粘度が10〜200mPa・sである、好ましくは20〜100mPa・sである高分子水溶液である。粘度は、B型粘度計を用いて回転数60r/mの条件で測定されるものである(参照 JIS Z8803、K7117−1等)。水性成分がこのような粘度範囲であることにより、界面張力に基づく自発的な油滴生成が可能であると共に、油滴同士の衝突等による油滴の合一や対流渦の発生に起因する高剪断力が作用することによる油滴の微細化が抑制され、安定した油滴の生成が可能となる。
<Aqueous component and oil component>
The aqueous component is a polymer aqueous solution having a viscosity of 10 to 200 mPa · s, preferably 20 to 100 mPa · s. The viscosity is measured using a B-type viscometer under the condition of a rotational speed of 60 r / m (see JIS Z8803, K7117-1, etc.). When the aqueous component is in such a viscosity range, spontaneous oil droplet generation based on interfacial tension is possible, and high oil concentration due to oil droplet coalescence and convection vortex generation due to collision between oil droplets or the like is possible. The refinement of oil droplets due to the action of shearing force is suppressed, and stable oil droplets can be generated.

ここで、水性成分に含まれる水溶性高分子は、合成高分子であってもよく、また、天然高分子であってもよい。かかる水溶性高分子としては、水への溶解の容易さ、粘度調整の容易さ、及び必要に応じて製品の粘度を高める処理の施しやすさの観点から、カルボキシル基を有するものが好ましく、カルボキシル基を有するアクリル系高分子やアルギン酸ナトリウム、カルボキシルメチルセルロースなどの多糖類等が挙げられる。アクリル系高分子としては、例えば、(アクリル酸/アクリル酸アルキル(C10−30))共重合体(例えば、日光ケミカルズ社製 商品名:CARBOPOL)、アクリル酸・メタクリル酸アルキル共重合体(例えば、日光ケミカルズ社製 商品名:PEMULEN)、アクリル酸系共重合体(例えば、ローム&ハース社製 商品名:ACULYN)等が挙げられる。これらの中でも、得られる油滴分散液のpHを調整することにより容易に増粘安定化を図ることができるという観点からカルボキシル基を有するアクリル系高分子が好ましく、アクリル酸・メタクリル酸アルキル共重合体(例えば、日光ケミカルズ社製 商品名:PEMULEN)が最も好ましい。水溶性高分子は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。   Here, the water-soluble polymer contained in the aqueous component may be a synthetic polymer or a natural polymer. As such a water-soluble polymer, those having a carboxyl group are preferable from the viewpoint of ease of dissolution in water, ease of viscosity adjustment, and ease of treatment to increase the viscosity of the product as necessary. Examples thereof include acrylic polymers having a group, polysaccharides such as sodium alginate and carboxymethyl cellulose. Examples of the acrylic polymer include (acrylic acid / alkyl acrylate (C10-30)) copolymer (for example, trade name: CARBOPOL manufactured by Nikko Chemicals), acrylic acid / alkyl methacrylate copolymer (for example, A product name: PEMULEN manufactured by Nikko Chemicals Co., Ltd., an acrylic acid copolymer (for example, product name: ACULYN manufactured by Rohm & Haas), and the like. Among these, an acrylic polymer having a carboxyl group is preferable from the viewpoint that thickening and stabilization can be easily achieved by adjusting the pH of the obtained oil droplet dispersion, and acrylic acid / alkyl methacrylate copolymer is preferable. The combination (for example, trade name: PEMULEN manufactured by Nikko Chemicals) is most preferable. The water-soluble polymer may be composed of a single species or a plurality of species.

水溶性高分子の濃度は上記の水性成分の粘度が実現されるのであれば特に限定されないが、例えば0.02〜5質量%である。   Although the density | concentration of water-soluble polymer will not be specifically limited if the viscosity of said aqueous component is implement | achieved, For example, it is 0.02-5 mass%.

水は、例えば、イオン交換水、蒸留水等である。   The water is, for example, ion exchange water, distilled water or the like.

水性成分には、粘度や界面張力に悪影響を与えない範囲で、水との混和性のある有機溶剤、防腐剤、塩類、界面活性剤、その他有効成分が含まれていてもよい。   The aqueous component may contain an organic solvent miscible with water, preservatives, salts, surfactants, and other active ingredients as long as the viscosity and interfacial tension are not adversely affected.

油性成分は、水と混じりあわない液体である。なお、油性成分は、常温固体のものであってもよく、その場合、操作時に温度を融点以上とすることにより液体として扱う。   The oily component is a liquid that does not mix with water. The oily component may be a solid at room temperature, and in that case, the oily component is handled as a liquid by setting the temperature to the melting point or higher during operation.

油性成分は、水との界面張力が10mN/m以上であり、粘度が40mPa・s以下である物性を有するものが好ましい。かかる油性成分としては、具体的には、常温液体のものでは、ジメチコーン、環状シリコーン、スクワラン、植物油、エステル油等が挙げられ、常温固体のものでは、パーム油、牛脂、炭素数14〜22の高級アルコール、セレシンなどの鉱物油等が挙げられる。油性成分は、単一種で構成されていてもよく、また、複数種の混合物で構成されていてもよい。   The oil component preferably has physical properties such that the interfacial tension with water is 10 mN / m or more and the viscosity is 40 mPa · s or less. Specific examples of such an oil component include dimethicone, cyclic silicone, squalane, vegetable oil, ester oil and the like for liquids at room temperature, and palm oil, beef tallow and carbon numbers of 14 to 22 for solids at room temperature. Examples include mineral oils such as higher alcohols and ceresin. The oil component may be composed of a single species or a mixture of a plurality of species.

油性成分には、その他に親油性界面活性剤や有機溶剤が含まれていてもよい。   In addition, the oil component may contain a lipophilic surfactant or an organic solvent.

<油滴分散液の製造>
上記の油滴分散液の製造システムAを稼働させると、第1ポンプ33aは、水性成分を、第1貯槽31aから第1供給管32aを介し、第1流量計34a及び第1フィルタ35aを順に経由させてマイクロミキサー100の一方の液流入部101に継続的に供給する。第1流量計34aは、検知した水性成分の流量情報を流量コントローラ37に送る。また、第1圧力計36aは、検知した第1圧力計36aの圧力情報を流量コントローラ37に送る。
<Manufacture of oil droplet dispersion>
When the manufacturing system A for the oil droplet dispersion is operated, the first pump 33a moves the first flow meter 34a and the first filter 35a in order from the first storage tank 31a through the first supply pipe 32a. Then, the liquid is continuously supplied to one liquid inflow portion 101 of the micromixer 100. The first flow meter 34 a sends the detected flow rate information of the aqueous component to the flow rate controller 37. Further, the first pressure gauge 36 a sends the detected pressure information of the first pressure gauge 36 a to the flow rate controller 37.

第2ポンプ33bは、油性成分を、第2貯槽31bから第2供給管32bを介し、第2流量計34b及び第2フィルタ35bを順に経由させてマイクロミキサー100の一方の液流入部101に継続的に供給する。第2流量計34bは、検知した油性成分の流量情報を流量コントローラ37に送る。また、第2圧力計36bは、検知した第2圧力計36bの圧力情報を流量コントローラ37に送る。   The second pump 33b continues the oil component from the second storage tank 31b through the second supply pipe 32b to the one liquid inflow portion 101 of the micromixer 100 through the second flow meter 34b and the second filter 35b in order. To supply. The second flow meter 34 b sends the detected flow rate information of the oil component to the flow controller 37. Further, the second pressure gauge 36 b sends the detected pressure information of the second pressure gauge 36 b to the flow rate controller 37.

続いて、流量コントローラ37は、水性成分の設定流量情報及び設定圧力情報、並びに、第1流量計34aで検知された流量情報及び第1圧力計36aで検知された圧力情報に基づいて、水性成分の設定流量及び設定圧力がそれぞれ維持されるように第1ポンプ33aを運転制御する。それと共に、流量コントローラ37は、油性成分の設定流量情報及び設定圧力情報、並びに、第2流量計34bで検知された流量情報及び第2圧力計36bで検知された圧力情報に基づいて、油性成分の設定流量及び設定圧力がそれぞれ維持されるように第2ポンプ33bを運転制御する。   Subsequently, the flow rate controller 37 sets the aqueous component based on the set flow rate information and the set pressure information of the aqueous component, the flow rate information detected by the first flow meter 34a, and the pressure information detected by the first pressure meter 36a. The first pump 33a is operated and controlled such that the set flow rate and the set pressure are maintained. At the same time, the flow controller 37 sets the oil component based on the set flow information and set pressure information of the oil component, and the flow information detected by the second flow meter 34b and the pressure information detected by the second pressure meter 36b. The second pump 33b is operated and controlled so that the set flow rate and the set pressure are maintained.

マイクロミキサー100では、水性成分流路11aを流通した水性成分と油性成分流路11bを流通した油性成分とが、液合流部21において、水性成分で周囲が覆われるように油性成分が合流した後、それらの合流体がマイクロ流路22に流入し、そして、マイクロ流路22において、その合流体が層流状態に流通して流路拡大部23に流出する。   In the micromixer 100, after the aqueous component that has flowed through the aqueous component flow channel 11a and the oily component that has flowed through the oily component flow channel 11b have joined the oily component so that the periphery is covered with the aqueous component in the liquid merging portion 21. These combined fluids flow into the microchannel 22, and in the microchannel 22, the combined fluid flows in a laminar flow state and flows out to the channel expanding portion 23.

ここで、水性成分の温度については、例えば5〜95℃とすることが好ましい。油性成分の温度については、油性成分が液体状態となる温度であって、例えば5〜95℃とすることが好ましい。このとき、必要に応じて油滴分散液の製造システムA全体を加温してもよい。   Here, about the temperature of an aqueous component, it is preferable to set it as 5-95 degreeC, for example. The temperature of the oil component is a temperature at which the oil component is in a liquid state, and is preferably set to, for example, 5 to 95 ° C. At this time, the entire oil droplet dispersion production system A may be heated as necessary.

水性成分及び油性成分のそれぞれの圧力設定については、送液の圧力が例えば0.005〜0.5MPaとなるようにすることが好ましい。   About each pressure setting of an aqueous component and an oil-based component, it is preferable to make it the pressure of liquid feeding become 0.005-0.5 Mpa, for example.

水性成分及び油性成分のそれぞれの流量設定については、生産性及び流動安定性の観点から、マイクロ流路22を流通する水性成分及び油性成分の合計流量を0.2〜20L/hとすることが好ましく、0.3〜8L/hとすることがより好ましい。また、水性成分に対する油性成分の体積比については、好ましい油滴の体積平均粒径及び粒径分布を得ることができるという観点から、油性成分/水性成分=1/99〜40/60とすることが好ましく、3/97〜20/80とすることがより好ましい。   Regarding the respective flow rate settings of the aqueous component and the oil component, the total flow rate of the aqueous component and the oil component flowing through the micro flow path 22 is set to 0.2 to 20 L / h from the viewpoint of productivity and flow stability. Preferably, it is more preferable to set it as 0.3-8 L / h. In addition, the volume ratio of the oil component to the aqueous component is preferably set to oil component / aqueous component = 1/99 to 40/60 from the viewpoint of obtaining a preferable volume average particle size and particle size distribution of the oil droplets. Is preferable, and 3/97 to 20/80 is more preferable.

そして、マイクロミキサー100の液流出部102である流路拡大部23からは油滴の体積平均粒径が100〜1000μm(好ましくは100〜600μm)である油滴分散液が流出し、それが製品貯層38に回収される。   An oil droplet dispersion liquid having a volume average particle diameter of oil droplets of 100 to 1000 μm (preferably 100 to 600 μm) flows out from the flow path expanding portion 23 which is the liquid outflow portion 102 of the micromixer 100, which is the product. It is collected in the reservoir 38.

このとき、必要に応じて液流出部102から流出した油滴分散液を冷却してもよい。また、得られた油滴分散液の分散安定性を高めるために油滴分散液を増粘させてもよい。かかる粘度調製操作は、例えば、流路拡大部23から製品貯層38に向かって延びる回収管或いは製品貯層38において、水性成分に含まれる水溶性高分子としてカルボキシル基を有するアクリル系高分子を用いた場合には、水酸化ナトリウム水溶液などを添加してpH調整を行うことにより、また、水溶性高分子としてアルギン酸ナトリウムを用いた場合には、炭酸亜鉛水溶液などの多価金属塩を添加することにより行うことができる。   At this time, the oil droplet dispersion liquid flowing out from the liquid outflow portion 102 may be cooled as necessary. Further, the oil droplet dispersion may be thickened in order to improve the dispersion stability of the obtained oil droplet dispersion. Such viscosity adjusting operation is performed, for example, by using an acrylic polymer having a carboxyl group as a water-soluble polymer contained in the aqueous component in a recovery tube or product reservoir 38 extending from the flow path expanding portion 23 toward the product reservoir 38. When used, adjust the pH by adding an aqueous sodium hydroxide solution, or add a polyvalent metal salt such as an aqueous zinc carbonate solution when sodium alginate is used as the water-soluble polymer. Can be done.

以下に、各種構成の油滴分散液を製造して行った試験評価について説明する。なお、その概要を表1にも示す。   Below, the test evaluation which manufactured and manufactured the oil-drop dispersion liquid of various structures is demonstrated. The outline is also shown in Table 1.

Figure 2010142725
Figure 2010142725

(油滴分散液の製造)
<実施例1>
図6(a)に示すような二重管構造を有するSUS316製のマイクロミキサー100を備えた図1に示すのと同様の構成の油滴分散液の製造システムAを用いた。なお、第1及び第2ポンプ33a、33bとして、ギアポンプ(Zenith社製)を用いた。
(Manufacture of oil droplet dispersion)
<Example 1>
An oil droplet dispersion manufacturing system A having the same configuration as that shown in FIG. 1 equipped with a micromixer 100 made of SUS316 having a double tube structure as shown in FIG. 6A was used. Note that gear pumps (manufactured by Zenith) were used as the first and second pumps 33a and 33b.

マイクロミキサー100は、液流通管10において、大径管12の内径D1が4.4mmであり、小径管13の外径が3.2mm及び内径D2が1.6mmである。マイクロミキサー100は、液合流分散部20において、液合流部21におけるマイクロ流路22に連続する部分が、流路径が不連続に縮小した構成を有し、また、流路拡大部23におけるマイクロ流路22から連続する部分も、流路径が不連続に拡大した構成を有する。マイクロ流路22は、流路断面形状が円形に形成されており、内径dが0.5mm(流路面積sが0.20mm)、流路長さlが30mm、流路長さ/内径(l/d)が60である。また、流路拡大部23は、流路断面形状が円形に形成されており、内径D3が4.4mmである。 In the liquid mixer 10, the micromixer 100 has an inner diameter D1 of the large diameter pipe 12 of 4.4 mm, an outer diameter of the small diameter pipe 13 of 3.2 mm, and an inner diameter D2 of 1.6 mm. The micromixer 100 has a configuration in which the portion of the liquid merging / dispersing part 20 that is continuous with the micro flow path 22 in the liquid merging part 21 has a structure in which the diameter of the flow path is discontinuously reduced. The portion continuing from the path 22 also has a configuration in which the flow path diameter is discontinuously enlarged. The microchannel 22 has a circular channel cross-sectional shape, an inner diameter d of 0.5 mm (a channel area s of 0.20 mm 2 ), a channel length l of 30 mm, and a channel length / inner diameter. (L / d) is 60. Moreover, the flow path expansion part 23 is formed in a circular cross section of the flow path, and the inner diameter D3 is 4.4 mm.

第1貯槽31aに、アクリル酸・メタクリル酸アルキル共重合体(日光ケミカルズ社製 商品名:PEMULEN TR-2)の0.11質量%高分子水溶液を水性成分として調製準備した。この高分子水溶液は、B型粘度計を用いて回転数60r/mの条件で測定した粘度が40mPa・sであった。また、第2貯槽31bに、スクワランを油性成分として準備した。このとき、水性成分及び油性成分をそれぞれ20℃に調温した。   A 0.11 mass% aqueous polymer solution of acrylic acid / alkyl methacrylate copolymer (trade name: PEMULEN TR-2 manufactured by Nikko Chemicals Co., Ltd.) was prepared and prepared as an aqueous component in the first storage tank 31a. This aqueous polymer solution had a viscosity of 40 mPa · s measured using a B-type viscometer under the condition of a rotational speed of 60 r / m. In addition, squalane was prepared as an oil component in the second storage tank 31b. At this time, the temperature of each of the aqueous component and the oily component was adjusted to 20 ° C.

そして、20℃に調温したマイクロミキサー100に対し、上記水性成分及び油性成分を、体積割合(油性成分/水性成分)=12/88並びにマイクロ流路22を流通する水性成分及び油性成分の合計流量が2.0L/hとなるように供給した。   And with respect to the micromixer 100 temperature-controlled at 20 degreeC, the said aqueous component and oil-based component are the sum of the volume ratio (oil-based component / aqueous component) = 12/88 and the water-based component and oil-based component which distribute | circulate the microchannel It supplied so that a flow volume might be 2.0 L / h.

マイクロミキサー100から回収された油滴分散液をサンプル瓶に採取した後、これに0.5M水酸化カリウムを滴下してpH7.0に調製することにより増粘安定化させた油滴分散液を実施例1とした。   After collecting the oil droplet dispersion recovered from the micromixer 100 in a sample bottle, 0.5M potassium hydroxide was added dropwise thereto to adjust the pH to 7.0, thereby increasing the viscosity of the oil droplet dispersion. Example 1 was adopted.

<実施例2>
マイクロミキサー100のマイクロ流路22の流路長さlが100mm、及び流路長さ/内径(l/d)が200である点を除いて実施例1と同様にして得られた油滴分散液を実施例2とした。
<Example 2>
Oil droplet dispersion obtained in the same manner as in Example 1 except that the channel length l of the microchannel 22 of the micromixer 100 is 100 mm and the channel length / inner diameter (l / d) is 200. The liquid was designated as Example 2.

<実施例3>
マイクロミキサー100のマイクロ流路22が流路断面形状が円形に形成されており、その内径dが0.5mm(流路面積sが0.20mm)、流路長さlが2mm、及び流路長さ/内径(l/d)が4である図6(b)に示すようなオリフィス状に形成されている点、並びにマイクロミキサー100に対し、上記水性成分及び油性成分を、マイクロ流路22を流通する水性成分及び油性成分の合計流量が3.0L/hとなるように供給した点を除いて実施例1と同様にして得られた油滴分散液を実施例3とした。
<Example 3>
The microchannel 22 of the micromixer 100 has a circular channel cross-sectional shape, an inner diameter d of 0.5 mm (a channel area s of 0.20 mm 2 ), a channel length l of 2 mm, and a flow The point formed in the shape of an orifice as shown in FIG. 6B where the path length / inner diameter (l / d) is 4, and the micro-flux 100 are mixed with the aqueous component and the oil component. The oil droplet dispersion liquid obtained in the same manner as in Example 1 except that the total flow rate of the aqueous component and the oily component flowing through No. 22 was supplied to 3.0 L / h was defined as Example 3.

<実施例4>
マイクロミキサー100に対し、上記水性成分及び油性成分を、マイクロ流路22を流通する水性成分及び油性成分の合計流量が6.0L/hとなるように供給した点を除いて実施例3と同様にして得られた油滴分散液を実施例4とした。
<Example 4>
The same as Example 3 except that the aqueous component and the oily component were supplied to the micromixer 100 so that the total flow rate of the aqueous component and the oily component flowing through the microchannel 22 was 6.0 L / h. The oil droplet dispersion obtained in this manner was designated as Example 4.

<実施例5>
マイクロミキサー100のマイクロ流路22がガラス製であって、その流路拡大部23の内径D3が6.0mmである点を除いて実施例1と同様にして得られた油滴分散液を実施例5とした。なお、流路拡大部23は、マイクロ流路22に続いて接続された透明ビニールホースにより構成した。
<Example 5>
The oil droplet dispersion obtained in the same manner as in Example 1 was carried out except that the microchannel 22 of the micromixer 100 was made of glass and the inner diameter D3 of the channel enlarged portion 23 was 6.0 mm. Example 5 was adopted. In addition, the flow path expansion part 23 was comprised with the transparent vinyl hose connected following the micro flow path 22. FIG.

<実施例6>
マイクロミキサー100のマイクロ流路22の流路長さlが100mm、及び流路長さ/内径(l/d)が200である点を除いて実施例5と同様にして得られた油滴分散液を実施例6とした。
<Example 6>
Oil droplet dispersion obtained in the same manner as in Example 5 except that the channel length l of the microchannel 22 of the micromixer 100 is 100 mm and the channel length / inner diameter (l / d) is 200. The liquid was designated as Example 6.

<実施例7>
マイクロミキサー100に対し、上記水性成分及び油性成分を、マイクロ流路22を流通する水性成分及び油性成分の合計流量が3.0L/hとなるように供給した点を除いて実施例6と同様にして得られた油滴分散液を実施例7とした。
<Example 7>
The same as Example 6 except that the aqueous component and the oil component were supplied to the micromixer 100 so that the total flow rate of the aqueous component and the oil component flowing through the micro flow path 22 was 3.0 L / h. The oil droplet dispersion obtained in this manner was used as Example 7.

<実施例8>
マイクロミキサー100のマイクロ流路22が図6(c)に示すように鉛直下向きに延びて解放された流路拡大部23に連続した構成である点を除いて実施例7と同様にして得られた油滴分散液を実施例8とした。
<Example 8>
The microchannel 22 of the micromixer 100 is obtained in the same manner as in Example 7 except that the microchannel 22 has a configuration that is continuous with the channel expanding portion 23 that extends vertically downward and is released as shown in FIG. The oil droplet dispersion was designated as Example 8.

<実施例9>
マイクロミキサー100のマイクロ流路22の最細部の内径が0.34mmである図6(d)に示すようなベンチュリ管状に形成され(液合流部21におけるマイクロ流路22に連続的に流路が縮小する部分の長さL2が24mm、マイクロ流路22の長さが40mm、及び流路拡大部23におけるマイクロ流路22から連続的に流路が拡大する部分の長さL3が16mm)、そして、流路拡大部23の内径D3が4.0mmである点を除いて実施例7と同様にして得られた油滴分散液を実施例9とした。
<Example 9>
The microflow channel 22 of the micromixer 100 is formed in a venturi tube shape as shown in FIG. 6D in which the innermost diameter of the microflow channel 22 is 0.34 mm (a continuous flow channel is formed in the micro flow channel 22 in the liquid junction 21. The length L2 of the portion to be reduced is 24 mm, the length of the microchannel 22 is 40 mm, and the length L3 of the portion where the channel continuously expands from the microchannel 22 in the channel expanding portion 23 is 16 mm), and An oil droplet dispersion liquid obtained in the same manner as in Example 7 except that the inner diameter D3 of the flow path expanding portion 23 is 4.0 mm was defined as Example 9.

<実施例10>
マイクロミキサー100のマイクロ流路22がポリテトラフルオロエチレン(PTFE)製である点を除いて実施例2と同様にして得られた油滴分散液を実施例10とした。
<Example 10>
An oil droplet dispersion liquid obtained in the same manner as in Example 2 except that the microchannel 22 of the micromixer 100 is made of polytetrafluoroethylene (PTFE) was used as Example 10.

<実施例11>
マイクロミキサー100のマイクロ流路22の内径dが0.8mm(流路面積sが0.50mm)、流路長さlが50mm、及び流路長さ/内径(l/d)が62.5である点、水性成分として、アクリル酸系共重合体(ローム&ハース社製 商品名:ACULYN 22)の0.6質量%高分子水溶液に0.5M水酸化カリウムを滴下してpH6.4に調製したものであって、粘度が27mPa・sのものを用いた点、並びにマイクロミキサー100に対し、上記水性成分及び油性成分を、体積割合(油性成分/水性成分)=6/94並びにマイクロ流路22を流通する水性成分及び油性成分の合計流量が0.5L/hとなるように供給した点を除いて実施例1と同様にして得られた油滴分散液を実施例11とした。
<Example 11>
The inner diameter d of the microchannel 22 of the micromixer 100 is 0.8 mm (the channel area s is 0.50 mm 2 ), the channel length l is 50 mm, and the channel length / inner diameter (l / d) is 62. As an aqueous component, 0.5M potassium hydroxide was added dropwise to a 0.6% by mass polymer aqueous solution of an acrylic acid copolymer (trade name: ACULYN 22 manufactured by Rohm & Haas Co., Ltd.) as an aqueous component, and the pH 6.4 The above-mentioned aqueous component and oily component were added to the micromixer 100 in terms of the volume ratio (oil component / aqueous component) = 6/94 and micro. An oil droplet dispersion obtained in the same manner as in Example 1 except that the total flow rate of the aqueous component and the oily component flowing through the flow path 22 was 0.5 L / h was used as Example 11. .

<実施例12>
水性成分として、アクリル酸・メタクリル酸アルキル共重合体(日光ケミカルズ社製 商品名:PEMULEN TR-2)の0.15質量%高分子水溶液であって、粘度が92mPa・sのものを用いた点、並びにマイクロミキサー100に対し、上記水性成分及び油性成分を、マイクロ流路22を流通する水性成分及び油性成分の合計流量が2.0L/hとなるように供給した点を除いて実施例11と同様にして得られた油滴分散液を実施例12とした。
<Example 12>
As an aqueous component, a 0.15% by mass aqueous polymer solution of acrylic acid / alkyl methacrylate copolymer (trade name: PEMULEN TR-2 manufactured by Nikko Chemicals Co., Ltd.) having a viscosity of 92 mPa · s was used. Example 11 except that the aqueous component and the oily component were supplied to the micromixer 100 so that the total flow rate of the aqueous component and the oily component flowing through the microchannel 22 was 2.0 L / h. An oil droplet dispersion obtained in the same manner as in Example 12 was designated as Example 12.

<実施例13>
マイクロミキサー100のマイクロ流路22が流路断面形状が円形に形成されており、その内径dが0.3mm(流路面積sが0.07mm)、流路長さlが1mm、及び流路長さ/内径(l/d)が3.3である図6(b)に示すようなオリフィス状に形成されており、その流路拡大部23の内径D3が1.6mmである点、並びにマイクロミキサー100に対し、上記水性成分及び油性成分を、マイクロ流路22を流通する水性成分及び油性成分の合計流量が0.5L/hとなるように供給した点を除いて実施例12と同様にして得られた油滴分散液を実施例13とした。
<Example 13>
The microchannel 22 of the micromixer 100 has a circular channel cross-sectional shape, an inner diameter d of 0.3 mm (a channel area s is 0.07 mm 2 ), a channel length l of 1 mm, and a flow The path length / inner diameter (l / d) is formed in an orifice shape as shown in FIG. 6B with 3.3, and the inner diameter D3 of the flow path expanding portion 23 is 1.6 mm. In addition, Example 12 except that the aqueous component and the oil component were supplied to the micromixer 100 so that the total flow rate of the aqueous component and the oil component flowing through the microchannel 22 was 0.5 L / h. An oil droplet dispersion liquid obtained in the same manner was designated as Example 13.

<比較例1>
水性成分として粘度1mPa・sの水を用い、サンプル瓶への採取の後にpH調製を行わなかった点を除いて実施例6の場合と同様の操作を行ったところ、サンプル瓶に採取するまでに既にほとんどの油滴が合一し、サンプル瓶への採取後には油水分離した。
<Comparative Example 1>
When water having a viscosity of 1 mPa · s was used as an aqueous component and the pH was not adjusted after collection into a sample bottle, the same operation as in Example 6 was performed. Almost all of the oil droplets were already united, and oil and water were separated after collection into the sample bottle.

<比較例2>
水性成分として、アクリル酸・メタクリル酸アルキル共重合体(日光ケミカルズ社製 商品名:PEMULEN TR-2)の0.11質量%高分子水溶液に0.5M水酸化カリウムを滴下して粘度が300mPa・sとなるように調整したものを用いたことを除いて比較例1と同様の操作を行ったところ、大部分の油性成分は液滴とならずに油水分離した状態であった。
<Comparative example 2>
As an aqueous component, 0.5M potassium hydroxide was added dropwise to a 0.11% by mass polymer aqueous solution of an acrylic acid / alkyl methacrylate copolymer (trade name: PEMULEN TR-2, manufactured by Nikko Chemicals), and the viscosity was 300 mPa · When the same operation as in Comparative Example 1 was carried out except that a material adjusted so as to be s was used, most of the oily components were not separated into droplets but were separated from oil and water.

(試験評価方法)
<油滴の体積平均粒径>
実施例1〜13のそれぞれについて、レーザ回折/散乱式粒度分布測定装置(株式会社堀場製作所社製 LA−910)を用いて油滴の体積平均粒径、および面積平均粒径を求めた。
(Test evaluation method)
<Volume average particle size of oil droplets>
About each of Examples 1-13, the volume average particle diameter and area average particle diameter of the oil droplet were calculated | required using the laser diffraction / scattering type particle size distribution measuring apparatus (LA-910 by Horiba Ltd.).

<分散度>
実施例1〜13のそれぞれについて、体積平均粒径と面積平均粒径の比(体積平均粒径÷面積平均粒径)を計算することにより分散度を求めた。
<Dispersity>
For each of Examples 1 to 13, the degree of dispersion was determined by calculating the ratio of the volume average particle diameter to the area average particle diameter (volume average particle diameter ÷ area average particle diameter).

(試験評価結果)
表1に試験結果を示す。
(Test evaluation results)
Table 1 shows the test results.

油滴の体積平均粒径は、実施例1が387μm、実施例2が368μm、実施例3が313μm、実施例4が131μm、実施例5が433μm、実施例6が405μm、実施例7が349μm、実施例8が390μm、実施例9が169μm、実施例10が399μm、実施例11が162μm、実施例12が252μm、実施例13が282μmであった。   The volume average particle size of the oil droplets is 387 μm in Example 1, 368 μm in Example 2, 313 μm in Example 3, 131 μm in Example 4, 433 μm in Example 5, 405 μm in Example 6, 405 μm in Example 7, and 349 μm in Example 7. Example 8 was 390 μm, Example 9 was 169 μm, Example 10 was 399 μm, Example 11 was 162 μm, Example 12 was 252 μm, and Example 13 was 282 μm.

分散度は、実施例1が1.59、実施例2が1.58、実施例3が1.66、実施例4が2.12、実施例5が1.33、実施例6が1.21、実施例7が1.32、実施例8が1.17、実施例9が1.61、実施例10が1.46、実施例11が1.33、実施例12が1.37、実施例13が1.42であった。   The dispersity is 1.59 in Example 1, 1.58 in Example 2, 1.66 in Example 3, 2.12 in Example 4, 1.33 in Example 5, 1. 21, Example 7 is 1.32, Example 8 is 1.17, Example 9 is 1.61, Example 10 is 1.46, Example 11 is 1.33, Example 12 is 1.37, Example 13 was 1.42.

本発明は、化粧料等に使用される油滴分散液の製造方法について有用である。   The present invention is useful for a method for producing an oil droplet dispersion used in cosmetics and the like.

油滴分散液の製造システムの構成を示す図である。It is a figure which shows the structure of the manufacturing system of an oil droplet dispersion liquid. マイクロミキサーを示す(a)縦断面図、(b)図2(a)におけるIIB-IIB横断面図及び(c)図2(a)におけるIIC-IIC横断面図である。It is (a) longitudinal cross-sectional view which shows a micromixer, (b) IIB-IIB cross-sectional view in Fig.2 (a), (c) IIC-IIC cross-sectional view in Fig.2 (a). (a)及び(b)は液合流部の上流側部分の縦断面図である。(A) And (b) is a longitudinal cross-sectional view of the upstream part of a liquid confluence | merging part. (a)〜(c)は液合流部の下流側部分の縦断面図である。(A)-(c) is a longitudinal cross-sectional view of the downstream part of a liquid confluence | merging part. マイクロミキサーの変形例を示す(a)縦断面図及び(b)図5(a)におけるVB-VB横断面図である。It is the (A) longitudinal cross-sectional view which shows the modification of a micromixer, and (b) VB-VB cross-sectional view in Fig.5 (a). (a)〜(d)は実施例で用いたマイクロミキサーの構成を示す図である。(A)-(d) is a figure which shows the structure of the micromixer used in the Example.

符号の説明Explanation of symbols

22 マイクロ流路 22 Microchannel

Claims (3)

粘度が10〜200mPa・sである高分子水溶液からなる流動する水性成分に、該水性成分で周囲が覆われるように液体の油性成分を合流させるステップと、
上記水性成分及び上記油性成分の合流体をマイクロ流路に流通させることにより油滴の体積平均粒径が100〜1000μmである油滴分散液を得るステップと、
を備えた油滴分散液の製造方法。
A step of merging a liquid oily component with a flowing aqueous component comprising a polymer aqueous solution having a viscosity of 10 to 200 mPa · s so that the periphery is covered with the aqueous component;
Obtaining an oil droplet dispersion in which the volume average particle diameter of the oil droplets is 100 to 1000 μm by circulating a combined fluid of the aqueous component and the oil component in the microchannel;
A method for producing an oil droplet dispersion comprising:
上記マイクロ流路の流路面積は0.05〜1mmであり、且つ該マイクロ流路を流通する上記水性成分及び上記油性成分の合計流量を0.2〜20L/hとする請求項1に記載された油滴分散液の製造方法。 The flow path area of the microchannel is 0.05 to 1 mm 2 , and the total flow rate of the aqueous component and the oil component flowing through the microchannel is 0.2 to 20 L / h. A method for producing the described oil droplet dispersion. 上記高分子水溶液に含まれる高分子がカルボキシル基を有する請求項1又は2に記載された油滴分散液の製造方法。   The method for producing an oil droplet dispersion according to claim 1, wherein the polymer contained in the aqueous polymer solution has a carboxyl group.
JP2008322237A 2008-12-18 2008-12-18 Method for producing oil droplet dispersion Expired - Fee Related JP5241467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008322237A JP5241467B2 (en) 2008-12-18 2008-12-18 Method for producing oil droplet dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008322237A JP5241467B2 (en) 2008-12-18 2008-12-18 Method for producing oil droplet dispersion

Publications (2)

Publication Number Publication Date
JP2010142725A true JP2010142725A (en) 2010-07-01
JP5241467B2 JP5241467B2 (en) 2013-07-17

Family

ID=42563711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008322237A Expired - Fee Related JP5241467B2 (en) 2008-12-18 2008-12-18 Method for producing oil droplet dispersion

Country Status (1)

Country Link
JP (1) JP5241467B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098273A (en) * 2009-11-05 2011-05-19 Kao Corp Method of thickening liquid
JP2015205266A (en) * 2014-04-10 2015-11-19 花王株式会社 Method for producing fluid dispersion
JP2020525269A (en) * 2017-07-04 2020-08-27 ユニヴェルシテ・リブレ・ドゥ・ブリュッセル Droplet and/or bubble generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289250A (en) * 2005-04-08 2006-10-26 Kao Corp Micro mixer and fluid mixing method using the same
JP2008037842A (en) * 2006-08-10 2008-02-21 Kao Corp Method for producing ceramide microparticle dispersion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289250A (en) * 2005-04-08 2006-10-26 Kao Corp Micro mixer and fluid mixing method using the same
JP2008037842A (en) * 2006-08-10 2008-02-21 Kao Corp Method for producing ceramide microparticle dispersion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098273A (en) * 2009-11-05 2011-05-19 Kao Corp Method of thickening liquid
JP2015205266A (en) * 2014-04-10 2015-11-19 花王株式会社 Method for producing fluid dispersion
JP2019209330A (en) * 2014-04-10 2019-12-12 花王株式会社 Process for preparation of dispersion liquid
JP2020525269A (en) * 2017-07-04 2020-08-27 ユニヴェルシテ・リブレ・ドゥ・ブリュッセル Droplet and/or bubble generator
US11918961B2 (en) 2017-07-04 2024-03-05 Universite Libre De Bruxelles Droplet and/or bubble generator

Also Published As

Publication number Publication date
JP5241467B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
Qian et al. A comprehensive review on liquid–liquid two-phase flow in microchannel: Flow pattern and mass transfer
Fu et al. Flow patterns of liquid–liquid two-phase flow in non-Newtonian fluids in rectangular microchannels
Kobayashi et al. Effects of type and physical properties of oil phase on oil-in-water emulsion droplet formation in straight-through microchannel emulsification, experimental and CFD studies
Zaloha et al. Characteristics of liquid slugs in gas–liquid Taylor flow in microchannels
Yu et al. Experiment and lattice Boltzmann simulation of two-phase gas–liquid flows in microchannels
Xu et al. Formation of monodisperse microbubbles in a microfluidic device
Rebrov Two-phase flow regimes in microchannels
Parhizkar et al. Effect of operating conditions and liquid physical properties on the size of monodisperse microbubbles produced in a capillary embedded T-junction device
Li et al. Experimental study on volumetric mass transfer coefficient of CO2 absorption into MEA aqueous solution in a rectangular microchannel reactor
JP2006289250A (en) Micro mixer and fluid mixing method using the same
JP2011147932A (en) Fluid-mixing device
Wu et al. Visualization study of emulsion droplet formation in a coflowing microchannel
JP5241467B2 (en) Method for producing oil droplet dispersion
Jin et al. Visualization of droplet merging in microchannels using micro-PIV
Tan et al. Surfactant‐free microdispersion process of gas in organic solvents in microfluidic devices
JP5086583B2 (en) Method for producing ceramide fine particle dispersion
JP6842518B2 (en) Dispersion liquid manufacturing method
Li et al. Investigation on droplet dynamic snap-off process in a short, abrupt constriction
Wang et al. Formation mechanism and criterion of tail satellite droplets for moving droplet in microchannel
Paiboon et al. Hydrodynamic control of droplet formation in narrowing jet and tip streaming regime using microfluidic flow-focusing
Liu et al. Distribution of liquid–liquid two-phase flow in branching T-junction microchannels
Wu et al. Splitting behaviors of droplets in fractal tree-shaped microchannels
JP5548429B2 (en) Liquid thickening method
Liu et al. Effects of geometric configuration on droplet generation in Y-junctions and anti-Y-junctions microchannels
Liu et al. Gas–liquid–liquid slug flow and mass transfer in hydrophilic and hydrophobic microreactors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110906

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5241467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees