JP2010082533A - Mixer - Google Patents

Mixer Download PDF

Info

Publication number
JP2010082533A
JP2010082533A JP2008253905A JP2008253905A JP2010082533A JP 2010082533 A JP2010082533 A JP 2010082533A JP 2008253905 A JP2008253905 A JP 2008253905A JP 2008253905 A JP2008253905 A JP 2008253905A JP 2010082533 A JP2010082533 A JP 2010082533A
Authority
JP
Japan
Prior art keywords
flow path
branch
fluid
branch flow
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008253905A
Other languages
Japanese (ja)
Inventor
Toshihiro Hanada
敏広 花田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP2008253905A priority Critical patent/JP2010082533A/en
Publication of JP2010082533A publication Critical patent/JP2010082533A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact mixer allowing uniform mixing with no unevenness in concentration distribution and temperature distribution in the fluid flow direction, and easy in piping work. <P>SOLUTION: The mixer includes a fluid inlet, a first flow path communicated with the fluid inlet, a liquid chamber communicated with the first flow path, a plurality of branch flow paths communicated with the liquid chamber via respective first communication holes, a joint part where the branch flow paths joint, a second flow path communicated with the joint part, and a fluid outlet communicated with the second flow path. The plurality of the branch flow paths are formed with different inner diameters from each other. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、化学工場、半導体製造分野、食品分野、医療分野、バイオ分野などの各種産業における流体輸送配管に用いられる混合器に関するものであり、特に流体の流れ方向の濃度分布や温度分布をムラなく均一化して混合させることのできる混合器に関するものである。   The present invention relates to a mixer used for fluid transportation piping in various industries such as chemical factories, semiconductor manufacturing fields, food fields, medical fields, and bio fields, and in particular, uneven concentration distribution and temperature distribution in the fluid flow direction. The present invention relates to a mixer that can be uniformly mixed without mixing.

従来、配管内に装着して管内を流れる流体を均一に混合する方法として、図8に示すように捻り羽根状のスタティックミキサーエレメント81を用いたものが一般的であった(例えば、特許文献1参照)。通常、スタティックミキサーエレメント81は、矩形板をその長手軸線周りに180度捻ったものを最小単位部材として、複数の最小単位部材を、捻り方向が交互に異なる方向になるように一体的に直列に結合した構造を有している。このスタティックミキサーエレメント81を管82内に配置し、管82の両端部にメールコネクター83を取り付け、フレアー85を装着して締付ナット84を締め付けることによりスタティックミキサーが形成される。このとき、スタティックミキサーエレメント81の外径が管82の内径にほぼ等しく設計されて、流体が効果的に撹拌されるようになっている。   Conventionally, as a method for uniformly mixing a fluid flowing in a pipe after being mounted in a pipe, a method using a twisted blade-shaped static mixer element 81 as shown in FIG. 8 has been generally used (for example, Patent Document 1). reference). Usually, the static mixer element 81 has a rectangular plate twisted 180 degrees around its longitudinal axis as a minimum unit member, and a plurality of minimum unit members are integrally connected in series so that twist directions are alternately different. It has a combined structure. The static mixer element 81 is disposed in the pipe 82, the mail connector 83 is attached to both ends of the pipe 82, the flare 85 is attached, and the fastening nut 84 is fastened to form a static mixer. At this time, the outer diameter of the static mixer element 81 is designed to be substantially equal to the inner diameter of the pipe 82 so that the fluid is effectively stirred.

しかしながら、前記従来のスタティックミキサーを用いた流体の混合方法は、流れてくる流体を流れに沿って撹拌する構成であるため図9(a)に示すように配管の径方向の濃度分布をムラなく均一化することはできるが、図9(b)に示すように軸方向(流れ方向)の濃度分布をムラなく均一化することはできない。そのため、例えばスタティックミキサーの上流側で水と薬液を混合させて流す時、薬液の混合比が一時的に増加した場合には流路内で部分的に濃度が濃くなった状態でスタティックミキサーを通過する。このとき、径方向で均一化されて水と薬液は撹拌されても、軸方向(流れ方向)においては流路内で部分的に濃度が濃くなった箇所はほとんど希釈されることなく濃くなった状態のまま下流側へ流れてしまう(図9(b)参照)。これにより、半導体洗浄装置、特に半導体ウェハの表面に直接薬液を塗布して各種の処理を行うような装置に接続された場合、濃度の異なる薬液が半導体ウエハの表面に塗布されて不良品の原因となる問題があった。   However, since the fluid mixing method using the conventional static mixer is configured to stir the flowing fluid along the flow, the concentration distribution in the radial direction of the pipe is uniform as shown in FIG. Although it can be made uniform, the concentration distribution in the axial direction (flow direction) cannot be made uniform as shown in FIG. 9B. For this reason, for example, when water and chemicals are mixed and flowed upstream of the static mixer, if the mixing ratio of the chemicals temporarily increases, it passes through the static mixer with the concentration partially increased in the flow path. To do. At this time, even if the water and the chemical solution were homogenized in the radial direction and the water and the chemical solution were stirred, the portion where the concentration was partially increased in the flow path in the axial direction (flow direction) became almost undiluted. It flows to the downstream side in the state (see FIG. 9B). As a result, when connected to a semiconductor cleaning device, especially a device that directly applies chemicals to the surface of a semiconductor wafer and performs various treatments, chemicals with different concentrations are applied to the surface of the semiconductor wafer, causing a defective product. There was a problem.

この軸方向(流れ方向)の濃度分布のムラを回避する方法としては、流路の途中でタンクを設置してタンク内に流体を一旦貯めてタンク内の濃度を均一化させた後で流体を流す方法(図示せず)などが挙げられる。しかしながら、タンクを設置するには広いスペースが必要となり装置が大きくなる問題や、タンクから再び流体を輸送するにはポンプ、配管などが必要となるため、使用する部材の点数が多くなるという問題や、配管ラインを施工するためのコストが発生するという問題があった。また、この方法ではタンク内で流体が滞留する。流体が滞留するとバクテリアの発生原因となり、タンク内で発生したバクテリアが配管ラインに流れ込み、半導体製造ラインにおいては半導体ウエハに付着して不良品の原因となる問題があった。   As a method of avoiding this uneven concentration distribution in the axial direction (flow direction), a tank is installed in the middle of the flow path, the fluid is temporarily stored in the tank, and the concentration in the tank is made uniform. The method of flowing (not shown) etc. are mentioned. However, the installation of the tank requires a large space and the equipment becomes large, and the transport of the fluid from the tank again requires a pump, piping, etc. There was a problem that the cost for constructing the piping line occurred. In this method, fluid stays in the tank. When the fluid stays, bacteria are generated, and the bacteria generated in the tank flow into the piping line, and in the semiconductor manufacturing line, there is a problem that adheres to the semiconductor wafer and causes defective products.

軸方向(流れ方向)の濃度分布のムラを回避する他の方法としては、図10に示すように流路を分岐して流体の希釈を行う分岐希釈装置があった(例えば、特許文献2参照)。この装置は、細管91の中を一定の速度で流れている試料溶液を分析する装置において、流れている試料を複数の流路に分岐する分岐部92を流路の途中に設けることにより試料溶液を分割し、各分岐流路の細管93、94の内径や長さを変化させて検出器95の手前の合流部96で再度合流させ、試料溶液が検出される時間差を利用して希釈するものであった。   As another method for avoiding unevenness in the concentration distribution in the axial direction (flow direction), there is a branch dilution apparatus that dilutes a fluid by branching a flow path as shown in FIG. 10 (see, for example, Patent Document 2). ). This apparatus is an apparatus for analyzing a sample solution flowing through a narrow tube 91 at a constant speed, and a sample solution is provided by providing a branch portion 92 for branching the flowing sample into a plurality of channels in the middle of the channel. , The inner diameters and lengths of the narrow tubes 93 and 94 of each branch flow path are changed, and merged again at the merge section 96 in front of the detector 95, and diluted using the time difference at which the sample solution is detected. Met.

特開2001−205062号公報JP 2001-205062 A 特開平8−146008号公報JP-A-8-146008

しかしながら、図10の従来の分岐希釈装置の技術を流体輸送配管に用いる場合、管路の途中で分岐された長さの異なる管路を設けて再び合流させる配管ラインを設ける必要がある。このため、軸方向(流れ方向)の濃度分布をムラなく流路内で均一化するには分岐した流路を多く設けなくてはならず、その場合には分岐した配管ラインを設けるスペースが大きくなってしまうという問題があった。また、このような配管ラインを施工するには部品点数が多く必要であり煩雑で時間がかかるという問題があった。   However, when the technique of the conventional branch dilution apparatus shown in FIG. 10 is used for the fluid transportation pipe, it is necessary to provide a pipe line that is provided in the middle of the pipe and has a different length and is joined again. For this reason, in order to make the concentration distribution in the axial direction (flow direction) uniform in the flow path without unevenness, it is necessary to provide many branched flow paths, and in that case, a large space is required for providing branched piping lines. There was a problem of becoming. Moreover, in order to construct such a piping line, there is a problem that a large number of parts are required, which is complicated and takes time.

本発明の目的は、以上のような従来技術の問題点に鑑みなされたものであり、流体の流れ方向の濃度分布や温度分布をムラなく均一化して混合でき、コンパクトで配管施工が容易な混合器を提供することである。   The object of the present invention has been made in view of the above-mentioned problems of the prior art, and it is possible to mix the concentration distribution and temperature distribution in the flow direction of the fluid uniformly and evenly, and it is compact and easy to install piping. Is to provide a vessel.

上記課題を解決するための本発明の構成を説明すると、混合器は、流体入口と、該流体入口に連通する第一流路と、該第一流路に連通する液室と、該液室に第一連通孔の各々を介して各々連通する複数の分岐流路と、該分岐流路が合流する合流部と、該合流部に連通する第二流路と、該第二流路に連通する流体出口と、を有し、複数の分岐流路は互いに内径が異なって形成されていることを第1の特徴とする。   The structure of the present invention for solving the above-described problem will be described. The mixer includes a fluid inlet, a first flow path communicating with the fluid inlet, a liquid chamber communicating with the first flow path, and a liquid chamber connected to the liquid chamber. A plurality of branch flow paths communicating with each other through each of the series of through holes, a merge section where the branch flow paths merge, a second flow path communicating with the merge section, and a second flow path communicating with the second flow path The first feature is that the plurality of branch channels have different inner diameters.

一側面に凹部が設けられ、他側面に互いに内径の異なる複数の有底円筒状の分岐流路が設けられ、該凹部底面と該分岐流路底面とを各々連通する前記第一連通孔を有する本体部と、第一流路と、一側面から該第一流路内周面に向かって漸次縮径するテーパ部を有し、該テーパ部が該本体部の凹部と共に液室を形成する第一継手部と、第二流路と、一側面から該第二流路内周面に向かって漸次縮径するテーパ部を有し、該テーパ部が該本体部の分岐流路に連通する合流部を形成する第二継手部とを具備することを第2の特徴とする。   A concave portion is provided on one side surface, and a plurality of bottomed cylindrical branch channels having different inner diameters are provided on the other side surface, and the first series of holes communicating the bottom surface of the recess and the bottom surface of the branch channel are respectively provided. A first channel that has a main body portion, a first flow channel, and a tapered portion that gradually decreases in diameter from one side surface toward the inner peripheral surface of the first flow channel, and the tapered portion forms a liquid chamber together with the concave portion of the main body portion. A joint portion, a second flow path, and a joining portion having a tapered portion that gradually decreases in diameter from one side surface toward the inner peripheral surface of the second flow channel, and the tapered portion communicates with the branch flow channel of the main body portion The second feature is that a second joint portion is formed.

前記本体部と前記第二継手部の間に介在し、前記分岐流路から前記合流部に各々連通する第二連通孔を有する中間継手部をさらに具備することを第3の特徴とする。   A third feature is that the apparatus further comprises an intermediate joint portion that is interposed between the main body portion and the second joint portion and has second communication holes that respectively communicate with the junction portion from the branch flow path.

前記第一連通孔または前記第二連通孔が各々の前記分岐流路の中心軸に対して偏芯した位置に設けられることを第4の特徴とする。   A fourth feature is that the first communication hole or the second communication hole is provided at a position eccentric with respect to a central axis of each of the branch flow paths.

前記本体部の各々の前記第一連通孔および前記中間継手部の各々の前記第二連通孔の少なくともいずれか一方に、該連通孔から前記分岐流路内周面に向かって漸次拡径したテーパ部が設けられることを第5の特徴とする。   The diameter of each of the main body portion and the second joint hole of each of the intermediate joint portions is gradually increased from the communication hole toward the inner peripheral surface of the branch flow path. A fifth feature is that a tapered portion is provided.

前記第一連通孔の各々の開口面積が略同一に形成されることを第6の特徴とする。   The sixth feature is that the opening areas of the first series of through holes are formed substantially the same.

本発明の混合器の本体部1、第一継手部5、第二継手部11、中間継手部26等の各部品の材質は、樹脂製であればポリ塩化ビニル、ポリプロピレン、ポリエチレンなどいずれでも良い。特に流体に腐食性流体を用いる場合は、ポリテトラフルオロエチレン(以下、PTFEと記す)、ポリビニリデンフルオロライド、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合樹脂などのフッ素樹脂であることが好ましく、フッ素樹脂製であれば腐食性流体に用いることができ、また腐食性ガスが透過しても配管部材の腐食の心配がなくなるため好適である。   The material of each part such as the main body portion 1, the first joint portion 5, the second joint portion 11 and the intermediate joint portion 26 of the mixer of the present invention may be any of polyvinyl chloride, polypropylene, polyethylene, etc. as long as it is made of resin. . Particularly when a corrosive fluid is used as the fluid, it is preferably a fluororesin such as polytetrafluoroethylene (hereinafter referred to as PTFE), polyvinylidene fluoride, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin, If it is made of resin, it can be used for a corrosive fluid, and even if a corrosive gas permeates, there is no need to worry about corrosion of the piping member, which is preferable.

本発明は以上のような構造をしており、以下の優れた効果が得られる。
(1)流路内で一時的に薬液の濃度が濃くなったり薄くなったりした状態でも、流体の流れ方向の濃度分布をムラなく均一化して混合でき、濃度の安定した薬液の供給が可能であり、各種分野における薬液濃度の変化による不良の発生を防止できる。
(2)流路内で一時的に流体の温度が高くなったり低くなったりした状態でも、流体の流れ方向の温度分布をムラなく均一化して混合でき、温度の安定した流体の供給が可能であり、給湯器などにおいて温度をより安定させると共に火傷などを防止できる。
(3)混合器を小型化することができ、その設置スペースも必要最小限にすることができる。
(4)配管施工が容易で短時間で行うことができる。
The present invention has the structure as described above, and the following excellent effects can be obtained.
(1) Even when the concentration of the chemical solution is temporarily increased or decreased in the flow path, the concentration distribution in the flow direction of the fluid can be uniformly and evenly mixed, and the chemical solution with a stable concentration can be supplied. Yes, it is possible to prevent the occurrence of defects due to changes in chemical concentration in various fields.
(2) Even when the temperature of the fluid temporarily rises or falls within the flow path, the temperature distribution in the fluid flow direction can be evenly and evenly mixed, and fluid with a stable temperature can be supplied. Yes, it can stabilize the temperature in a water heater or the like and prevent burns.
(3) The mixer can be miniaturized and its installation space can be minimized.
(4) Pipe construction is easy and can be done in a short time.

以下、本発明の実施の形態について図面に示す実施例を参照して説明するが、本発明が本実施例に限定されないことは言うまでもない。図1は本発明の第一の実施形態の混合器を示す配管流路の模式図である。図2は図1のA−A断面図である。図3は図1の混合器を用いて流体の濃度を測定する装置を示す模式図である。図4は図2の混合器の上流側の濃度を測定したグラフである。図5は図2の混合器の下流側の濃度を測定したグラフである。図6は本発明の第二の実施形態の混合器を示す縦断面図である。図7は第二の実施形態の第二連通孔の他のバリエーションを示す縦断面図である。   Hereinafter, embodiments of the present invention will be described with reference to examples shown in the drawings. However, it is needless to say that the present invention is not limited to the examples. FIG. 1 is a schematic diagram of a piping channel showing a mixer according to a first embodiment of the present invention. 2 is a cross-sectional view taken along the line AA in FIG. FIG. 3 is a schematic diagram showing an apparatus for measuring the concentration of fluid using the mixer of FIG. FIG. 4 is a graph obtained by measuring the concentration on the upstream side of the mixer of FIG. FIG. 5 is a graph obtained by measuring the concentration on the downstream side of the mixer of FIG. FIG. 6 is a longitudinal sectional view showing a mixer according to the second embodiment of the present invention. FIG. 7 is a longitudinal sectional view showing another variation of the second communication hole of the second embodiment.

以下、図1、図2を参照して、本発明の第一の実施形態である混合器について説明する。   Hereinafter, with reference to FIG. 1 and FIG. 2, the mixer which is 1st embodiment of this invention is demonstrated.

本体部1はPTFE製であり、円柱状に形成されている。本体部1の一側面には凹部2が設けられ、他側面には互いに内径の異なる10個の有底円筒状の分岐流路3が軸線が平行になるように設けられている。図2より、この分岐流路3a〜3jの内径は、最小の内径の分岐流路3aからほぼ一定の比率で段階的に大きくなるように形成されており、各々の分岐流路3a〜3jの内径は、3a<3b<3c<3d<3e<3f<3g<3h<3i<3jとなっている。また、本体部1には凹部2底面と分岐流路3a〜3j底面とを各々連通する第一連通孔4a〜4jが設けられている。第一連通孔4a〜4jの内径は同径に形成されている。   The main body 1 is made of PTFE and has a cylindrical shape. A concave portion 2 is provided on one side surface of the main body 1, and ten bottomed cylindrical branch channels 3 having different inner diameters are provided on the other side surface so that the axes are parallel to each other. From FIG. 2, the inner diameters of the branch channels 3 a to 3 j are formed so as to increase stepwise from the branch channel 3 a having the smallest inner diameter at a substantially constant ratio. The inner diameter is 3a <3b <3c <3d <3e <3f <3g <3h <3i <3j. The main body 1 is also provided with first through holes 4a to 4j that respectively connect the bottom surface of the recess 2 and the bottom surfaces of the branch channels 3a to 3j. The inner diameters of the first through holes 4a to 4j are the same.

第一継手部5はPTFE製であり、一側面には流体入口6が設けられ、流体入口6に連通する第一流路7と、他側面には第一流路7内周面に向かって漸次縮径するテーパ部8が設けられている。第一継手部5のテーパ部8を有している側の内周面端部には雌ネジ部9が設けられ、本体部1外周面に螺合固定することにより、第一継手部5のテーパ部8と本体部1の凹部2によって液室10を形成している。   The first joint portion 5 is made of PTFE, and is provided with a fluid inlet 6 on one side, and gradually contracts toward the inner peripheral surface of the first channel 7 on the other side and the first channel 7 communicating with the fluid inlet 6. A taper portion 8 having a diameter is provided. A female screw portion 9 is provided at the inner peripheral surface end of the first joint portion 5 on the side having the taper portion 8, and is screwed and fixed to the outer peripheral surface of the main body portion 1. A liquid chamber 10 is formed by the tapered portion 8 and the concave portion 2 of the main body portion 1.

第二継手部11はPTFE製であり、一側面には流体出口12が設けられ、流体出口12に連通する第二流路13と、他側面には第二流路13内周面に向かって漸次縮径するテーパ部14が設けられている。第二継手部11のテーパ部14を有している側の内周面端部には雌ネジ部15が設けられ、本体部1外周面に螺合固定することにより、第二継手部11のテーパ部14内周と本体部1他側面とで本体部1の分岐流路3a〜3jから流入した流体の合流部16を形成している。   The second joint portion 11 is made of PTFE, and is provided with a fluid outlet 12 on one side surface, a second flow path 13 communicating with the fluid outlet 12, and the other side face toward the inner peripheral surface of the second flow path 13. A tapered portion 14 that gradually decreases in diameter is provided. A female threaded portion 15 is provided at an end portion of the inner peripheral surface of the second joint portion 11 on the side having the tapered portion 14, and is screwed and fixed to the outer peripheral surface of the main body portion 1. The inner periphery of the taper portion 14 and the other side surface of the main body portion 1 form a merging portion 16 of the fluid flowing in from the branch flow paths 3a to 3j of the main body portion 1.

次に、本発明の第一の実施形態である混合器の作動について説明する。   Next, the operation of the mixer according to the first embodiment of the present invention will be described.

混合器の上流側で水と薬液を混合させ、一時的に薬液の濃度が濃くなった状態で流した時、流路内で部分的に濃度が濃くなって流れている薬液は、流体入口6から第一流路7に流入して液室10に流れていく。そして、濃度が濃くなった薬液の部分が液室10から液室10に連通している10個の第一連通孔4a〜4jによって分岐されて各々の分岐流路3a〜3jに流入する。第一連通孔4aを通って分岐流路3aに流入した濃度の濃くなった薬液の部分は、分岐流路3a内へ流入しこれを充満して流れた後で合流部16を通って流体出口12へと流れる。次に、第一連通孔4bを通って分岐流路3bに流入した濃度の濃くなった薬液の部分は、分岐流路3b内へ流入しこれを充満して流れた後で合流部16を通って流体出口12へと流れる。このとき分岐流路3bの内径は分岐流路3aの内径より若干大きくなるように設けられているので、濃度の濃くなった薬液の部分は各々の分岐流路3a、3bを充満させるのに時間差が生じ、分岐流路3aより少し遅れて分岐流路3bから濃度の濃くなった薬液の部分が合流部16を通って流体出口12へと流れる。次に、第一連通孔4cを通って分岐流路3cに流入した濃度の濃くなった薬液の部分は、分岐流路3c内へ流入しこれを充満して流れた後で合流部16を通って流体出口12へと流れる。このとき分岐流路3cの内径は分岐流路3bの内径より若干大きくなるように設けられているので、濃度の濃くなった薬液の部分は各々の分岐流路3b、3cを充満させるのに時間差が生じ、分岐流路3bより少し遅れて分岐流路3cから濃度の濃くなった薬液の部分が合流部16を通って流体出口12へと流れる。以下、3a、3b、3cと同様に濃度が濃くなった残りの薬液の部分は3d〜3jを流れて第二流路13を通って流体出口12へと流れていく。   When water and a chemical solution are mixed on the upstream side of the mixer and flowed in a state where the concentration of the chemical solution is temporarily high, the chemical solution that is partially concentrated in the flow path is flown into the fluid inlet 6. Then, it flows into the first flow path 7 and flows into the liquid chamber 10. And the part of the chemical | medical solution with which the density | concentration became deep is branched by the ten 1st through-holes 4a-4j connected to the liquid chamber 10 from the liquid chamber 10, and flows into each branch flow path 3a-3j. The portion of the concentrated chemical solution that has flowed into the branch flow path 3a through the first through-hole 4a flows into the branch flow path 3a, fills it, and then flows through the junction 16 after being filled. It flows to the outlet 12. Next, the portion of the concentrated chemical solution that has flowed into the branch flow path 3b through the first through-hole 4b flows into the branch flow path 3b, fills it, and then flows through the junction 16 Flows through to the fluid outlet 12. At this time, since the inner diameter of the branch flow path 3b is set to be slightly larger than the inner diameter of the branch flow path 3a, the portion of the drug solution having a high concentration has a time difference to fill each branch flow path 3a, 3b. And a portion of the chemical liquid having a high concentration from the branch flow path 3b flows to the fluid outlet 12 through the merging portion 16 with a slight delay from the branch flow path 3a. Next, the portion of the concentrated chemical solution that has flowed into the branch flow path 3c through the first through-hole 4c flows into the branch flow path 3c, fills it, and then flows through the junction 16 Flows through to the fluid outlet 12. At this time, since the inner diameter of the branch flow path 3c is set to be slightly larger than the inner diameter of the branch flow path 3b, the portion of the chemical solution having a high concentration has a time difference to fill each branch flow path 3b, 3c. And a portion of the chemical liquid having a high concentration from the branch flow path 3c flows through the junction 16 to the fluid outlet 12 with a slight delay from the branch flow path 3b. Thereafter, as in 3a, 3b, and 3c, the remaining portion of the chemical solution having a high concentration flows through 3d to 3j and then flows to the fluid outlet 12 through the second flow path 13.

このとき、分岐流路3aを流れる濃度が濃くなった薬液の一部は、他の分岐流路を流れる濃度が濃くなった薬液よりも早く流体出口12から流出し、時間差で分岐流路3b、分岐流路3c、分岐流路3d〜3jの順で濃度が濃くなった薬液の一部ずつが流体出口12から流出していく。つまり、流路内で部分的に濃度が濃くなって流れている薬液は混合器よって時間差で10個に分割されて流れることとなり、濃度の濃くなっていない薬液と各々混ざり合うことで流体の流れ方向の濃度分布をムラなく均一化して混合することができる。このとき各々の第一連通孔4a〜4jの内径が略同一だと、濃度の濃くなった薬液の部分はほぼ10等分に分割されるので、流体の流れ方向の濃度分布をムラなくより均一化して混合することができる。   At this time, a part of the chemical liquid having a high concentration flowing through the branch flow path 3a flows out from the fluid outlet 12 earlier than the chemical liquid having a high concentration flowing through the other branch flow paths, and the branch flow path 3b, A part of the chemical solution whose concentration is increased in order of the branch channel 3c and the branch channels 3d to 3j flows out from the fluid outlet 12. In other words, the chemical liquid that is partially concentrated in the flow path flows in 10 portions by the time difference by the mixer, and flows by being mixed with the chemical liquid that is not concentrated in concentration. The density distribution in the direction can be evenly mixed without any unevenness. At this time, if the inner diameter of each of the first through holes 4a to 4j is substantially the same, the portion of the concentrated chemical solution is divided into approximately 10 equal parts, so that the concentration distribution in the fluid flow direction is more uniform. Can be homogenized and mixed.

なお、図1の本実施形態では分岐流路3a〜3jは一定の比率で内径が段階的に径大になるように設けられているが、各々の分岐流路3a〜3jを流れる流体に付与する時間差を調節するため内径の比率を自由に設定しても良い。また、分岐流路3a〜3jの数も特に限定されない。分岐流路3a〜3jの数は多く設ける方が流体の流れ方向の濃度分布をムラなくより細かく均一化することができる。   In the present embodiment of FIG. 1, the branch flow paths 3a to 3j are provided so that the inner diameter gradually increases at a constant ratio. However, the branch flow paths 3a to 3j are applied to the fluid flowing through the branch flow paths 3a to 3j. The ratio of the inner diameter may be set freely to adjust the time difference. Further, the number of branch flow paths 3a to 3j is not particularly limited. If the number of the branch flow paths 3a to 3j is increased, the concentration distribution in the fluid flow direction can be made more uniform and uniform.

また、本実施形態の混合器は流路の複雑さの割りに加工が比較的容易であり、少ない部品点数で容易に製造や組み立てを行うことができる。また、流路構造が小さくまとめられているため混合器を小型化することができ、配管スペースを取らずに設置することができる。本体部1の各々の分岐流路3a〜3jは内径が段階的に径大になるように、すなわち各々の分岐流路3a〜3jの体積が段階的に大きくなるように設けられていれば、混合器の面間を要望に応じて自由に変化させることができ、設置される機器の状況に合わせて混合器の形状を変化させることができる。また、混合器を配管ラインに接続する際も流体入口6と流体出口12に各々継手等で接続するだけで施工が完了するため、配管施工が容易で短時間で行うことができる。   Further, the mixer of the present embodiment is relatively easy to process for the complexity of the flow path, and can be easily manufactured and assembled with a small number of parts. Moreover, since the flow channel structure is small, the mixer can be miniaturized and can be installed without taking up piping space. If each of the branch flow paths 3a to 3j of the main body 1 is provided so that the inner diameter is increased stepwise, that is, the volume of each of the branch flow paths 3a to 3j is increased stepwise, The space between the mixers can be freely changed as desired, and the shape of the mixer can be changed in accordance with the situation of the equipment to be installed. In addition, when the mixer is connected to the piping line, the construction is completed simply by connecting the fluid inlet 6 and the fluid outlet 12 with a joint or the like, so that the piping construction is easy and can be performed in a short time.

ここで、濃度の濃くなった薬液の部分を混合器で分割して流体の流れ方向の濃度分布がムラなく均一化される作用について説明する。図3に示すように、図1の混合器102の上流側と下流側に濃度計100、101を各々設置して、上流側から純水と薬液を混合して流す装置を作成し、純水と薬液を一定の比率で流している途中で瞬間的に薬液の濃度を濃くした状態(純水に対して薬液の比率を大きくする)にした後で、元の一定の比率で流して濃度分布のムラを生じさせた時の上流側と下流側の濃度を測定すると図4及び図5のようになる。   Here, the operation of dividing the concentration of the chemical solution having a high concentration by the mixer and uniformizing the concentration distribution in the fluid flow direction without unevenness will be described. As shown in FIG. 3, concentration meters 100 and 101 are installed on the upstream side and the downstream side of the mixer 102 in FIG. 1 to create a device for mixing and flowing pure water and chemicals from the upstream side. The concentration of the chemical solution is increased instantaneously (while increasing the ratio of the chemical solution with respect to pure water) in the middle of flowing the chemical solution at a constant ratio, and then the concentration distribution by flowing at the original constant ratio. 4 and 5 are measured when the concentrations on the upstream side and the downstream side when the unevenness is generated are measured.

図4は混合器の上流側に設置した濃度計100のグラフを示すが、ここで横軸は経過時間、縦軸は濃度であり、ある一定時間に濃度が濃くなるような場合では、図のようなピーク(h1)が現れることとなる。図5は混合器の下流側に設置した濃度計101のグラフを示すが、濃度のピークが10個に分散されて、ピーク(h2)の高さは約10分の1になっている。濃度のピーク間の間隔t1は、流体が分岐流路3aを流れる時間と分岐流路3bを流れる時間の時間差に対応しており、同様にt2は流体が分岐流路3bを流れる時間と分岐流路3cを流れる時間の時間差、t3は分岐流路3cと分岐流路3dを流れる時間の時間差、t4は分岐流路3dと分岐流路3eを流れる時間の時間差、t5は分岐流路3eと分岐流路3fを流れる時間の時間差、t6は分岐流路3fと分岐流路3gを流れる時間の時間差、t7は分岐流路3gと分岐流路3hを流れる時間の時間差、t8は流体が分岐流路3hと分岐流路3iを流れる時間の時間差、t9は流体が分岐流路3iと分岐流路3jを流れる時間の時間差に対応している。このとき、分岐流路3a〜3jの各々の内径を変化させることでピーク(h2)の出る間隔t1〜t9を変化させることができ、分岐流路3a〜3jの数をさらに増やすとピーク(h2)の高さは上流側のピーク(h1)に対して分岐流路の数で分割した程度の高さまで抑えることができる。なお、仮に混合器を設置しない場合、図5に示される濃度のピークは流体の流れによって若干低下することはあるがピーク(h1)はほぼ変わらずに流れることになる。   FIG. 4 shows a graph of the densitometer 100 installed on the upstream side of the mixer. Here, the horizontal axis is the elapsed time, the vertical axis is the concentration, and in the case where the concentration increases at a certain time, Such a peak (h1) will appear. FIG. 5 shows a graph of the densitometer 101 installed on the downstream side of the mixer. The concentration peak is dispersed into ten, and the height of the peak (h2) is about 1/10. The interval t1 between the concentration peaks corresponds to the time difference between the time when the fluid flows through the branch flow path 3a and the time when the fluid flows through the branch flow path 3b. Similarly, t2 The time difference between the times flowing through the channel 3c, t3 is the time difference between the times flowing through the branch channel 3c and the branch channel 3d, t4 is the time difference between the times flowing through the branch channel 3d and the branch channel 3e, and t5 is branched from the branch channel 3e. The time difference of the time flowing through the flow path 3f, t6 is the time difference of the time flowing through the branch flow path 3f and the branch flow path 3g, t7 is the time difference between the time flowing through the branch flow path 3g and the branch flow path 3h, and t8 is the flow path where the fluid is branched. 3h corresponds to the time difference between the time for flowing through the branch channel 3i, and t9 corresponds to the time difference between the time for the fluid to flow through the branch channel 3i and the branch channel 3j. At this time, the intervals t1 to t9 at which the peak (h2) appears can be changed by changing the inner diameter of each of the branch channels 3a to 3j, and the peak (h2) when the number of the branch channels 3a to 3j is further increased. ) Can be suppressed to a height that is divided by the number of branch channels with respect to the upstream peak (h1). If the mixer is not installed, the concentration peak shown in FIG. 5 may slightly decrease depending on the fluid flow, but the peak (h1) flows almost unchanged.

なお、本実施形態では濃度分布のムラについて説明しているが、熱湯と冷水を混合した時の温度分布の流れ方向の均一化についても同様の効果を得ることができる。温度分布の均一化を目的として、給湯器などへの利用も可能となり、流路内で部分的に高温となった流体の温度の流れ方向の均一化を行うことでより温度を安定させ、熱湯が流れることによる火傷の防止を行うことができる。また、廃液処理などにおいて、急激な濃度変化があると処理に支障をきたす場合や、ある一定以上の濃度を超えると不具合が発生する場合において、この配管ラインに本発明の螺旋式流体混合器を用いることで流れ方向の濃度の均一化を行うことができ、安定した排液処理を行うことができる。また、流れる流体は気体でも良く、例えば自動車の排気ガスの浄化において、エンジンのスタート時や加速時に急激に排ガス濃度が濃くなる場合、浄化のための触媒の負荷が大きくなって浄化能力の低下が考えられるが、排気ガスの配管ラインに本発明の螺旋式流体混合器を用いることで流れ方向の濃度の均一化を行うことができ、常に安定した排ガス浄化を行うことができる。   In the present embodiment, the unevenness of the concentration distribution is described. However, the same effect can be obtained for the uniform flow direction of the temperature distribution when hot water and cold water are mixed. For the purpose of uniforming the temperature distribution, it can also be used in hot water heaters, etc., and by making the flow direction of the fluid partially heated in the flow path uniform, the temperature becomes more stable, It is possible to prevent burns caused by flowing. In the case of waste liquid treatment, etc., if there is a trouble in treatment if there is a sudden change in concentration, or if a problem occurs if the concentration exceeds a certain level, the spiral fluid mixer of the present invention is applied to this piping line. By using it, the concentration in the flow direction can be made uniform, and a stable drainage treatment can be performed. Also, the flowing fluid may be a gas.For example, in the purification of automobile exhaust gas, if the exhaust gas concentration suddenly increases when the engine starts or accelerates, the load of the catalyst for purification becomes large and the purification capacity decreases. Though conceivable, by using the spiral fluid mixer of the present invention in the exhaust gas piping line, the concentration in the flow direction can be made uniform, and stable exhaust gas purification can always be performed.

次に、図6を参照して、本発明の第二の実施形態である混合器について説明する。本実施形態では、前記第一の実施形態と同じ構成要素については同一符号を付して示す。   Next, the mixer which is 2nd embodiment of this invention is demonstrated with reference to FIG. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals.

本体部21はPTFE製であり、円柱状に形成されている。本体部21の一側面には凹部22が設けられ、他側面には互いに内径の異なる10個の有底円筒状の分岐流路23が軸線が平行になるように設けられている。この分岐流路23の内径は、最小の内径の分岐流路からほぼ一定の割合で段階的に大きくなるように形成されている。また、本体部21には凹部22底面と分岐流路23底面とを各々連通する第一連通孔24が設けられている。また、分岐流路23の内周には第一連通孔24から分岐流路23内周面に向かって漸次拡径したテーパ部25が各々設けられている。   The main body 21 is made of PTFE and is formed in a columnar shape. A concave portion 22 is provided on one side surface of the main body 21, and ten bottomed cylindrical branch channels 23 having different inner diameters are provided on the other side surface so that the axes are parallel to each other. The inner diameter of the branch channel 23 is formed to increase stepwise from the branch channel having the smallest inner diameter at a substantially constant rate. The main body 21 is provided with a first series of through holes 24 for communicating the bottom surface of the recess 22 and the bottom surface of the branch channel 23. Further, a tapered portion 25 having a diameter gradually increased from the first series of through holes 24 toward the inner peripheral surface of the branch channel 23 is provided on the inner periphery of the branch channel 23.

中間継手部26はPTFE製であり、本体部21の分岐流路23に各々連通する第二連通孔27が設けられており、第二連通孔27から各々の分岐流路23内周面に向かって漸次拡径したテーパ部28が設けられている。中間継手部26は本体部21と第二継手部11の間に挟持固定されており、中間継手部26と第二継手部11のテーパ部14とで分岐流路23から第二連通孔27を通って流入した流体の合流部16を形成している。第二の実施形態の他の構成は第一の実施形態と同様なので説明を省略する。   The intermediate joint portion 26 is made of PTFE, and is provided with second communication holes 27 that communicate with the branch flow paths 23 of the main body portion 21, respectively, from the second communication holes 27 toward the inner peripheral surface of each branch flow path 23. A tapered portion 28 having a gradually increased diameter is provided. The intermediate joint part 26 is sandwiched and fixed between the main body part 21 and the second joint part 11, and the second communication hole 27 is connected from the branch flow path 23 between the intermediate joint part 26 and the tapered part 14 of the second joint part 11. A merging portion 16 of the fluid flowing in through is formed. Since the other structure of 2nd Embodiment is the same as that of 1st Embodiment, description is abbreviate | omitted.

次に、本発明の第二の実施形態である混合器の作用について説明する。   Next, the operation of the mixer according to the second embodiment of the present invention will be described.

混合器の上流側で水と薬液を混合させ、一時的に薬液の濃度が濃くなった状態で流した時、流路内で部分的に濃度が濃くなって流れている薬液は、流体入口6から第一流路7に流入して液室に流れていく。濃度が濃くなった薬液の部分が液室10に連通している10個の第一連通孔24によって分岐されて各々の分岐流路23に流入する。分岐流路23に流入した濃度の濃くなった薬液の部分は分岐流路23内を充満させた後で合流部を通って流体出口12へと流れる。このとき、第一連通孔24から分岐流路23に流入する時に薬液はテーパ部25に沿って流れるため、分岐流路23を充満するときには滞留が発生せずにスムーズに流れることができる。また、分岐流路23から第二連通孔27に流入する時にテーパ部28に沿って流れるため流体の滞留が発生せずに薬液が分岐流路23から合流部へ移動する時にスムーズに流れることができる。内径の異なる分岐流路23によって薬液が流れる作用などの第二の実施形態の他の作用は第一の実施形態と同様なので説明を省略する。   When water and a chemical solution are mixed on the upstream side of the mixer and flowed in a state where the concentration of the chemical solution is temporarily high, the chemical solution that is partially concentrated in the flow path is flown into the fluid inlet 6. Then, it flows into the first flow path 7 and flows into the liquid chamber. The portion of the chemical solution having a high concentration is branched by the ten first through holes 24 communicating with the liquid chamber 10 and flows into the respective branch flow paths 23. The portion of the chemical liquid having a high concentration flowing into the branch flow path 23 fills the branch flow path 23 and then flows to the fluid outlet 12 through the junction. At this time, the chemical liquid flows along the taper portion 25 when flowing into the branch flow path 23 from the first through hole 24. Therefore, when the branch flow path 23 is filled, the chemical liquid can flow smoothly without causing a stay. Further, since the fluid flows along the tapered portion 28 when it flows into the second communication hole 27 from the branch flow path 23, the liquid stays smoothly without flowing, and the chemical liquid flows smoothly when moving from the branch flow path 23 to the junction portion. it can. The other actions of the second embodiment such as the action of the chemical liquid flowing through the branch flow passages 23 having different inner diameters are the same as those of the first embodiment, and thus the description thereof is omitted.

ここで第一連通孔24は、各々の通路断面積が略同一に形成されることが望ましい。これは各々の第一連通孔24によって分割される流体の流量が各々一定で流れるため、混合器に流入した流体は第一連通孔24の個数でほぼ等しく分割されて各々時間差をつけて合流して流れるために濃度分布をムラなく均一化することができるため好適である。同様に第二連通孔27の各々の通路断面積が略同一に形成されることが望ましい。これは分割される流体が第二連通孔27で流量が各々一定で合流部16で合流するため、各々時間差をつけて合流して流れる流体の濃度分布をよりムラなく均一化することができるため好適である。また、第二の実施形態では本体部21の各々の第一連通孔24および中間継手部26の各々の第二連通孔27の両方に第一、第二連通孔24、27から分岐流路23内周面に向かって漸次拡径したテーパ部25、28が設けられているが、必要に応じて何れか一方にのみ設けても良い。   Here, as for the 1st through-hole 24, it is desirable that each channel | path cross-sectional area is formed substantially the same. This is because the flow rate of the fluid divided by each of the first through holes 24 is constant, so that the fluid flowing into the mixer is divided approximately equally by the number of the first through holes 24 and each has a time difference. Since it flows by merging, it is preferable because the concentration distribution can be made uniform without unevenness. Similarly, it is desirable that the passage cross-sectional areas of the second communication holes 27 are substantially the same. This is because the fluid to be divided is joined at the joining portion 16 at a constant flow rate in the second communication hole 27, so that the concentration distribution of the fluid that flows by joining each other with a time difference can be made more uniform. Is preferred. Further, in the second embodiment, the first and second communication holes 24 and 27 branch into both the first continuous holes 24 of the main body 21 and the second communication holes 27 of the intermediate joint part 26. 23, taper portions 25 and 28 that gradually increase in diameter toward the inner peripheral surface are provided, but may be provided only on one of them as necessary.

また、図7に示すように第二連通孔32が各々の分岐流路33の中心軸に対して偏芯した位置に設けられても良い。これは、分岐流路33の第一連通孔31の中心軸に対して第二連通孔32の連通する位置をずらすことにより、分岐流路33内での流体の流れに変化をもたらし、分岐流路33の中心軸から離れた位置の流体の流れが中心軸の流れよりも遅くなることを防止し、流体が分岐流路33内をムラ無く流れることができるため好適である。なお、分岐流路33の中心軸に対して偏芯した位置に設けるのは第二連通孔31でも良い。   Further, as shown in FIG. 7, the second communication hole 32 may be provided at a position eccentric with respect to the central axis of each branch flow path 33. This is because the flow of the fluid in the branch channel 33 is changed by shifting the position where the second communication hole 32 communicates with the central axis of the first series hole 31 of the branch channel 33, It is preferable because the flow of the fluid at a position away from the central axis of the flow path 33 is prevented from being slower than the flow of the central axis, and the fluid can flow in the branch flow path 33 without any unevenness. The second communication hole 31 may be provided at a position eccentric with respect to the central axis of the branch flow path 33.

本発明の第一の実施形態の混合器を示す配管流路の模式図である。It is a schematic diagram of the piping flow path which shows the mixer of 1st embodiment of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 図1の混合器を用いて流体の濃度を測定する装置を示す模式図である。It is a schematic diagram which shows the apparatus which measures the density | concentration of the fluid using the mixer of FIG. 図2の混合器の上流側の濃度を測定したグラフである。It is the graph which measured the density | concentration of the upstream of the mixer of FIG. 図2の混合器の下流側の濃度を測定したグラフである。It is the graph which measured the density | concentration of the downstream of the mixer of FIG. 本発明の第二の実施形態の混合器を示す縦断面図である。It is a longitudinal cross-sectional view which shows the mixer of 2nd embodiment of this invention. 第二の実施形態の第二連通孔の他のバリエーションを示す縦断面図である。It is a longitudinal cross-sectional view which shows the other variation of the 2nd communicating hole of 2nd embodiment. 従来のスタティックミキサーを示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional static mixer. 図8のスタティックミキサーの流体の撹拌状態を示す模式図である。It is a schematic diagram which shows the stirring state of the fluid of the static mixer of FIG. 従来の分岐希釈装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional branch dilution apparatus.

符号の説明Explanation of symbols

1 本体部
2 凹部
3,3a〜3j 分岐流路
4 第一連通孔
5 第一継手部
6 流体入口
7 第一流路
8 テーパ部
9 雌ネジ部
10 液室
11 第二継手部
12 流体出口
13 第二流路
14 テーパ部
15 雌ネジ部
16 合流部
21 本体部
22 凹部
23 分岐流路
24 第一連通孔
25 テーパ部
26 中間継手部
27 第二連通孔
28 テーパ部
31 第一連通孔
32 第二連通孔
33 分岐流路
DESCRIPTION OF SYMBOLS 1 Main-body part 2 Concave part 3, 3a-3j Branch flow path 4 1st through-hole 5 1st joint part 6 Fluid inlet 7 1st flow path 8 Tapered part 9 Female thread part 10 Liquid chamber 11 Second joint part 12 Fluid outlet 13 Second flow path 14 Tapered portion 15 Female thread portion 16 Merged portion 21 Body portion 22 Recessed portion 23 Branch flow channel 24 First continuous hole 25 Tapered portion 26 Intermediate joint portion 27 Second communication hole 28 Tapered portion 31 First continuous hole 32 Second communication hole 33 Branch flow path

Claims (6)

流体入口と、
該流体入口に連通する第一流路と、
該第一流路に連通する液室と、
該液室に第一連通孔の各々を介して各々連通する複数の分岐流路と、
該分岐流路が合流する合流部と、
該合流部に連通する第二流路と、
該第二流路に連通する流体出口と、を有し、
複数の分岐流路は互いに内径が異なって形成されていることを特徴とする混合器。
A fluid inlet;
A first flow path communicating with the fluid inlet;
A liquid chamber communicating with the first flow path;
A plurality of branch passages communicating with the liquid chamber via each of the first series of through holes;
A merging section where the branch flow paths merge;
A second flow path communicating with the merge portion;
A fluid outlet communicating with the second flow path,
The mixer characterized in that the plurality of branch flow paths are formed with different inner diameters.
一側面に凹部が設けられ、他側面に互いに内径の異なる複数の有底円筒状の分岐流路が設けられ、該凹部底面と該分岐流路底面とを各々連通する前記第一連通孔を有する本体部と、
第一流路と、一側面から該第一流路内周面に向かって漸次縮径するテーパ部を有し、該テーパ部が該本体部の凹部と共に液室を形成する第一継手部と、
第二流路と、一側面から該第二流路内周面に向かって漸次縮径するテーパ部を有し、該テーパ部が該本体部の分岐流路に連通する合流部を形成する第二継手部とを具備することを特徴とする請求項1記載の混合器。
A concave portion is provided on one side surface, and a plurality of bottomed cylindrical branch channels having different inner diameters are provided on the other side surface, and the first series of holes communicating the bottom surface of the recess and the bottom surface of the branch channel are respectively provided. A main body having,
A first flow path, and a first joint portion having a tapered portion that gradually decreases in diameter from one side surface toward the inner peripheral surface of the first flow channel, and the tapered portion forms a liquid chamber together with the concave portion of the main body portion;
A second flow path and a taper portion that gradually decreases in diameter from one side surface toward the inner peripheral surface of the second flow path, and the taper portion forms a merge portion that communicates with the branch flow path of the main body portion. The mixer according to claim 1, further comprising two joint portions.
前記本体部と前記第二継手部の間に介在し、前記分岐流路から前記合流部に各々連通する第二連通孔を有する中間継手部をさらに具備することを特徴とする請求項1または請求項2に記載の混合器。   The intermediate joint part which has between the said main-body part and the said 2nd joint part, and has a 2nd communicating hole respectively connected from the said branch flow path to the said junction part is further provided. Item 3. The mixer according to Item 2. 前記第一連通孔または前記第二連通孔が各々の前記分岐流路の中心軸に対して偏芯した位置に設けられることを特徴とする請求項3記載の混合器。   The mixer according to claim 3, wherein the first communication hole or the second communication hole is provided at a position eccentric with respect to a central axis of each of the branch flow paths. 前記本体部の各々の前記第一連通孔および前記中間継手部の各々の前記第二連通孔の少なくともいずれか一方に、該連通孔から前記分岐流路内周面に向かって漸次拡径したテーパ部が設けられることを特徴とする請求項3または請求項4に記載の混合器。   The diameter of each of the main body portion and the second joint hole of each of the intermediate joint portions is gradually increased from the communication hole toward the inner peripheral surface of the branch flow path. The mixer according to claim 3 or 4, wherein a tapered portion is provided. 前記第一連通孔の各々の開口面積が略同一に形成されることを特徴とする請求項1乃至請求項5のいずれか1項に記載の混合器。   The mixer according to any one of claims 1 to 5, wherein the opening areas of the first through holes are formed to be substantially the same.
JP2008253905A 2008-09-30 2008-09-30 Mixer Pending JP2010082533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008253905A JP2010082533A (en) 2008-09-30 2008-09-30 Mixer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008253905A JP2010082533A (en) 2008-09-30 2008-09-30 Mixer

Publications (1)

Publication Number Publication Date
JP2010082533A true JP2010082533A (en) 2010-04-15

Family

ID=42247023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008253905A Pending JP2010082533A (en) 2008-09-30 2008-09-30 Mixer

Country Status (1)

Country Link
JP (1) JP2010082533A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505732A (en) * 2011-12-14 2015-02-26 ウオーターズ・テクノロジーズ・コーポレイシヨン Target frequency multipath length mixer
DE102018104840A1 (en) 2018-03-02 2018-04-19 Agilent Technologies Inc. Fluid mixer with non-circular cable cross-section
WO2019050698A1 (en) * 2017-09-06 2019-03-14 Waters Technologies Corporation Fluid mixer
US11185830B2 (en) 2017-09-06 2021-11-30 Waters Technologies Corporation Fluid mixer
CN113769600A (en) * 2021-08-31 2021-12-10 中海石油(中国)有限公司 High-viscosity easy-shearing fluid feeding static mixing device and method
US11555805B2 (en) 2019-08-12 2023-01-17 Waters Technologies Corporation Mixer for chromatography system
US11821882B2 (en) 2020-09-22 2023-11-21 Waters Technologies Corporation Continuous flow mixer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505732A (en) * 2011-12-14 2015-02-26 ウオーターズ・テクノロジーズ・コーポレイシヨン Target frequency multipath length mixer
US9968894B2 (en) 2011-12-14 2018-05-15 Waters Technologies Corporation Targeted frequency multiple path length mixers
WO2019050698A1 (en) * 2017-09-06 2019-03-14 Waters Technologies Corporation Fluid mixer
US11185830B2 (en) 2017-09-06 2021-11-30 Waters Technologies Corporation Fluid mixer
DE102018104840A1 (en) 2018-03-02 2018-04-19 Agilent Technologies Inc. Fluid mixer with non-circular cable cross-section
US11555805B2 (en) 2019-08-12 2023-01-17 Waters Technologies Corporation Mixer for chromatography system
US11821882B2 (en) 2020-09-22 2023-11-21 Waters Technologies Corporation Continuous flow mixer
CN113769600A (en) * 2021-08-31 2021-12-10 中海石油(中国)有限公司 High-viscosity easy-shearing fluid feeding static mixing device and method
CN113769600B (en) * 2021-08-31 2023-12-12 中海石油(中国)有限公司 High-viscosity Yi Jianqie fluid feeding static mixing device and method

Similar Documents

Publication Publication Date Title
JP2010082533A (en) Mixer
US8845178B2 (en) In-line-type fluid mixer
JP5441746B2 (en) Fluid mixer and device using fluid mixer
KR101263412B1 (en) Fluid mixer and device using a fluid mixer
US8551417B2 (en) Reactor and reaction plant
JP2006289250A (en) Micro mixer and fluid mixing method using the same
WO2010119624A1 (en) Tubular flow type reactor
WO2010047167A1 (en) Helical fluid mixer and device using helical fluid mixer
JP4667541B2 (en) Swirl fluid mixer and device using a spiral fluid mixer
JP5484008B2 (en) Static fluid mixer and apparatus using static fluid mixer
JPS62144738A (en) Liquid mixer
WO2013111789A1 (en) Static mixer and device using static mixer
WO2013047393A1 (en) Fluid mixer
JP2011104483A (en) Static-type fluid mixer and device employing the same
WO2011059111A1 (en) Fluid-mixing apparatus
WO2011027570A1 (en) Flow-type tubular reactor
CN211463116U (en) Premixing device and tubular micro-reactor with same
JP2009219957A (en) Gas-liquid mixing system and gas-liquid mixing method
JP5202101B2 (en) Mixing valve and mixing device using the same
JP2014117635A (en) Fluid mixer and apparatus using fluid mixer
JP2014117635A5 (en)
JP2007319813A (en) Micro-reactor
JP7457193B1 (en) Vortex fluid mixer
JP6022899B2 (en) Fluid mixer
US11517862B2 (en) Fluid mising assembly