JPH1142431A - Atomizing method and device therefor - Google Patents

Atomizing method and device therefor

Info

Publication number
JPH1142431A
JPH1142431A JP20057897A JP20057897A JPH1142431A JP H1142431 A JPH1142431 A JP H1142431A JP 20057897 A JP20057897 A JP 20057897A JP 20057897 A JP20057897 A JP 20057897A JP H1142431 A JPH1142431 A JP H1142431A
Authority
JP
Japan
Prior art keywords
flow
block
fluid
atomization
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20057897A
Other languages
Japanese (ja)
Inventor
Fuminori Miyake
文則 三宅
Nobuhiko Tabata
宣彦 田端
Kazutoshi Mitake
一利 三武
Koichi Koyano
晃一 古谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAKUSUI CHEM IND Ltd
JIINASU KK
Original Assignee
HAKUSUI CHEM IND Ltd
JIINASU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAKUSUI CHEM IND Ltd, JIINASU KK filed Critical HAKUSUI CHEM IND Ltd
Priority to JP20057897A priority Critical patent/JPH1142431A/en
Publication of JPH1142431A publication Critical patent/JPH1142431A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device capable of emulsifying, dispersing, pulverizing or the like without excessively increasing a flow rate or pressure by increasing the frequency of divergence, collision and confluence of fluid with a simple structure. SOLUTION: A device is for atomizing a material and discharging it from an outlet side block A4 by introducing a fluid to be treated, in which the material to be atomized is dispersed, at a high speed from an inlet side block A1 into a closed vessel provided with the inlet side block A1 and the outlet side block A4 , after branching the flow to plural through holes X, Y, Z and V, colliding with each other as a high speed flow in the direction to collect them again. Then, after the liquid to be treated fed at the high speed is diffused in the centrifugal direction, changed in the flow direction to the feeding direction from the plural positions of an end part in the diffusion direction to be branched, collided with the wall surface at the tip part of a divergence block A2 , after the liquid rapidly lowering the pressure, flows in the centripetal direction inclined to the feeding direction, the liquid is collided with the wall surface at the tip part, further collected into the center direction and after being collided with the wall surface and being joined at the center position, the liquid is discharged to the same direction as the feeding direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被処理流体を高速
で衝突させて乳化、分散、破砕等を行なうための微粒化
方法および装置に関し、より詳細には、装置内において
被処理流体を衝突・合流させすると共に、送給流路内に
流体圧力の急降下部を形成することによって、被処理流
体中に分散された物質の微粒化を促進できる様にした微
粒化方法および装置に関するもので、この装置は、食
品、医薬、化粧品、化学品などの製造もしくは処理に有
効に活用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an atomizing method and apparatus for emulsifying, dispersing, crushing, etc. by causing a fluid to be treated to collide at a high speed, and more particularly, to a method for atomizing a fluid to be treated in an apparatus. -Along with the merging, by forming a sharp drop portion of the fluid pressure in the supply flow path, the atomization method and device that can promote the atomization of the substance dispersed in the fluid to be processed, This device can be effectively used for manufacturing or treating food, medicine, cosmetics, chemicals, and the like.

【0002】[0002]

【従来の技術】従来、高圧・高速を利用して物質の微粒
化を図る装置は、歴史的に最も古くから採用されている
バルブプレート式と2液衝突式に大別される。バルブプ
レート式は、基本的には高圧から高速に変換された流体
を壁面に衝突させてから装置外部へ排出させるものであ
り、具体的な構成としては、特公昭44−2921号公
報に記載された液体処理装置がある。この種の構成で
は、被処理流体はポンプを介して入口開口から第一均質
化弁組立体へ導入され、弁座と弁との隙間を通過し放射
状に流れて弁本体内壁に衝突することによって微粒化が
行なわれ、更に同じ構成からなる第二段均質化弁組立体
へ導入される様になっている。この構成では、衝突エネ
ルギーは放射状に流れる流体速度のみに左右される。
2. Description of the Related Art Conventionally, devices for atomizing a substance by using high pressure and high speed are roughly classified into a valve plate type and a two-liquid collision type which have been used for the longest time in history. In the valve plate type, basically, a fluid converted from high pressure to high speed is caused to collide with a wall surface and then discharged to the outside of the apparatus. A specific configuration is described in JP-B-44-2921. Liquid treatment equipment. In this type of configuration, the fluid to be treated is introduced into the first homogenizing valve assembly from the inlet opening via the pump, flows radially through the gap between the valve seat and the valve, and collides with the inner wall of the valve body. Atomization is performed and further introduced into a second stage homogenization valve assembly of the same construction. In this configuration, the impact energy depends only on the radially flowing fluid velocity.

【0003】一方、2液衝突式の装置としては、例えば
特開平2−261525号公報に記載された様な乳化装
置が知られている。この装置は、図6および図7(A)
(図6のA−A線方向矢視図),図7(B)(図6のB
−B線方向矢視図)に示す如く被処理流体流路に、硬質
素材からなる2枚のブロック部材60,61を密着配置
し、流入側のブロック部材60には2つの貫通孔60
a,60bを形成すると共に、各貫通孔の出口を溝状通
路60cによって連通させ、またブロック部材60と密
着配置されるブロック部材61には、溝状通路60cと
直交する方向に溝状通路61cを形成すると共に、その
各端部には混合液を排出させるための貫通孔61a,6
1bを形成している。これらのブロック部材60,61
内に被処理流体を高圧・高速で導入することにより、被
処理流体の流れを強制的に対向流として加速させ、2液
の流れを高速で衝突させることによって乳化を行なう様
になっている。
On the other hand, as a two-liquid collision type apparatus, for example, an emulsifying apparatus as described in Japanese Patent Application Laid-Open No. 2-261525 is known. This device is shown in FIGS. 6 and 7 (A).
(Viewed in the direction of the arrows AA in FIG. 6), FIG.
As shown in FIG. 2B), two block members 60 and 61 made of a hard material are disposed in close contact with the fluid passage to be processed, and two through holes 60 are formed in the block member 60 on the inflow side.
a, 60b are formed, the outlets of the through holes are communicated with each other by a groove-like passage 60c, and the block-like member 61 closely attached to the block member 60 is provided with a groove-like passage 61c in a direction orthogonal to the groove-like passage 60c. And through holes 61a, 61 for discharging the mixture at each end thereof.
1b. These block members 60, 61
The flow of the fluid to be treated is introduced at a high pressure and a high speed into the inside thereof, whereby the flow of the fluid to be treated is forcibly accelerated as a counterflow, and the two liquids collide at a high speed to emulsify.

【0004】[0004]

【発明が解決しようとする課題】上記した従来のバルブ
プレート式では、弁座と弁の間の隙間を通過して壁面と
衝突する際に微粒化が行なわれるが、壁面への単独衝突
であるため微粒化する際の衝突が不十分であり、必ずし
も満足のいく微粒化効果は得られ難い。
In the above-described conventional valve plate type, atomization is performed when the gas passes through the gap between the valve seat and the valve and collides with the wall surface. Therefore, the collision at the time of atomization is insufficient, and it is not always possible to obtain a satisfactory atomization effect.

【0005】これに対し2液衝突式では、高圧の被処理
流体を2つの狭い通路に分岐導入することによって高速
流を形成し、該高速流を対向方向から衝突させて微粒化
を図るものであるが、衝突が本質的に1回だけであるた
め矢張り十分な微粒化効果は得られない。そして、実質
的に1回の衝突で高度の微粒化効果を得ようとすると、
被処理流体の圧力や流速を過度に高めなければならず、
圧力や流速を高めるにつれて圧力損失は累乗的に増大し
てエネルギーロスが大きくなるばかりでなく、被処理流
体が衝突する部位の摩耗量も累乗的に増大し、装置寿命
が著しく短縮されるといった問題が生じてくる。
[0005] On the other hand, in the two-liquid collision type, a high-speed flow is formed by branching and introducing a high-pressure fluid to be processed into two narrow passages, and the high-speed flow collides from opposite directions to atomize the fluid. However, since the collision is essentially only once, a sufficient atomization effect cannot be obtained. And, in order to obtain a high degree of atomization effect with substantially one collision,
The pressure and flow velocity of the fluid to be treated must be increased excessively,
As the pressure and flow velocity are increased, the pressure loss increases exponentially, and not only the energy loss increases, but also the wear amount of the portion where the fluid to be treated collides increases exponentially, resulting in a problem that the life of the apparatus is significantly shortened. Will occur.

【0006】本発明はこうした事情に着目してなされた
ものであって、乳化、分散、破砕などの行なわれる流体
の分流、衝突、合流回数を簡単な機構で増大し、流速や
圧力を過度に高めなくとも乳化、分散、破砕などを効率
よく実施することのできる微粒化方法および装置を提供
しようとするものである。また本発明の他の目的は、微
粒化部材の構造を簡素化すると共に、高圧・高速で流さ
れる被処理流体による微粒化部材の局部的な摩耗を抑制
することのできる方法と装置を提供しようとするもので
ある。
The present invention has been made in view of such circumstances, and the number of times of branching, collision, and joining of fluids such as emulsification, dispersion, and crushing is increased by a simple mechanism, and the flow velocity and pressure are excessively increased. An object of the present invention is to provide an atomization method and apparatus capable of efficiently performing emulsification, dispersion, crushing, and the like without increasing the size. Another object of the present invention is to provide a method and an apparatus which can simplify the structure of the atomizing member and suppress local wear of the atomizing member due to the fluid to be processed flowing at high pressure and high speed. It is assumed that.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すること
のできた本発明にかかる微粒化方法は、流路入口と流路
出口を有する密閉容器内に、微粒化すべき物質が分散さ
れた被処理流体を前記流路入口から高速で導入し、その
流れを複数の流路に分岐させた後、再びこれを集合させ
る向きの高速流を形成し衝突させることにより、上記物
質を微粒化して前記流路出口から排出する方法であっ
て、高速で送り込まれる被処理流体を、遠心方向に拡散
させた後、拡散方向端部の複数位置から前記送り込み方
向と略同一方向に流れ方向を変えて分流させ、各分流の
先端部で壁面に衝突させた後、これらを上記送り込み方
向に傾斜した求心方向に流し、その先端部で壁面に衝突
させ、更に中心方向に集中させ中心位置で衝突合流させ
てから前記送り込み方向と同一方向へ排出させるところ
に要旨がある。
According to the present invention, there is provided a method for atomizing, comprising: a treatment vessel in which a substance to be atomized is dispersed in a closed vessel having a flow path inlet and a flow path outlet; The fluid is introduced at a high speed from the inlet of the flow channel, the flow is branched into a plurality of flow channels, and then the high-speed flow is formed and collided with the flow again, whereby the substance is atomized and the flow is reduced. A method of discharging from a road exit, in which a fluid to be processed fed at a high speed is diffused in a centrifugal direction, and then a flow direction is changed from a plurality of positions at ends of the diffusion direction to a flow direction substantially the same as the feeding direction to divide the flow. After colliding with the wall surface at the leading end of each branch, they are caused to flow in the centripetal direction inclined in the feeding direction, collided with the wall surface at the leading end, and further concentrated in the center direction and collided at the center position. Said sending There is subject matter where to discharge the direction the same direction.

【0008】この方法を実施するに当たり、前記各分流
の出口部に腔部を形成して流路面積を急激に拡大し、被
処理流体の圧力を急降下させれば、急激な圧力降下によ
るキャビテーション降下によって微粒化が一段と促進さ
せるので好ましい。
In carrying out this method, a cavity is formed at the outlet of each of the branch streams to rapidly expand the area of the flow path and rapidly decrease the pressure of the fluid to be treated. This further promotes atomization, which is preferable.

【0009】また本発明にかかる微粒化装置は、上記微
粒化法を実施する際に有効に活用できる装置であって、
流路入口と流路出口を有する密閉容器内に、微粒化すべ
き物質が分散された被処理流体を前記流路入口から高速
で導入し、その流れを複数の流路に分岐させた後、再び
これを集合させる向きの高速流を形成し衝突させること
により、上記物質を微粒化して前記流路出口から排出す
る装置であって、中心から略同一半径位置に複数の軸方
向貫通孔Aを有する第1ブロックと、略中心位置に1つ
の軸方向貫通孔Bを有し前記第1ブロックに対して同心
的に密着配置される第2ブロックを備え、該第1ブロッ
クと第2ブロックの間には、前記複数の軸方向貫通孔A
に連続する環状溝が形成されると共に、該環状溝から前
記1つの軸方向貫通孔B方向に向かう傾斜方向環状流路
が形成されているところに要旨が存在する。
Further, the atomization apparatus according to the present invention is an apparatus which can be effectively utilized when performing the above-mentioned atomization method,
In a closed vessel having a flow path inlet and a flow path outlet, a fluid to be atomized, in which a substance to be atomized is dispersed is introduced at a high speed from the flow path inlet, and the flow is branched into a plurality of flow paths. A device for forming and colliding a high-speed flow in a direction in which these are gathered to atomize the substance and discharge it from the outlet of the flow path, and has a plurality of axial through holes A at substantially the same radial position from the center. A first block, a second block having one axial through hole B at a substantially central position and being concentrically disposed in close contact with the first block, and between the first block and the second block; Is the plurality of axial through holes A
The gist lies in that an annular groove is formed which is continuous with the groove, and an inclined annular flow path extending from the annular groove toward the one axial through hole B is formed.

【0010】[0010]

【発明の実施の形態】以下、図面に示した実施形態を参
照しつつ本発明を詳細に説明するが、図示例はもとより
本発明を制限する性質のものではなく、前記あるいは後
記の趣旨に適合し得る範囲で適当に変更を加えて実施す
ることも可能であり、それらはいずれも本発明の技術的
範疇に含まれる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the drawings. However, the present invention is not limited to the illustrated examples and is not intended to limit the present invention. It is also possible to carry out the present invention with appropriate modifications as far as possible, and all of them are included in the technical scope of the present invention.

【0011】図1は、本発明にかかる微粒化方法および
その実施に用いられる微粒化装置を例示する縦断面説明
図であり、この図において微粒化装置Mは、後述する微
粒化ブロック群Aを筒状のケーシング1内に軸心を合わ
せて密着配置したもので、ケーシング1の一方端部に
は、微粒化ブロック群Aの一方端部を押圧するための異
径筒状の押え部材2が配置され、共回りを防ぐための複
数のピン3が、該ケーシング1と押え部材2に嵌設され
ている。
FIG. 1 is an explanatory longitudinal sectional view illustrating an atomizing method according to the present invention and an atomizing apparatus used for carrying out the method. In FIG. 1, an atomizing apparatus M includes an atomizing block group A described later. The cylindrical casing 1 is arranged in close contact with its axis aligned, and at one end of the casing 1, a pressing member 2 of a different diameter for pressing one end of the atomization block group A is provided. A plurality of pins 3 arranged to prevent co-rotation are fitted to the casing 1 and the holding member 2.

【0012】押え部材2の中心には貫通孔2aが設けら
れており、微粒化ブロック群Aの流路入口と連通してお
り、またケーシング1の一方端側外周には雄ねじが形成
され、この雄ねじに袋ナット4が螺合されている。
A through hole 2a is provided at the center of the holding member 2 and communicates with the inlet of the channel of the atomization block group A. A male screw is formed on the outer periphery of one end of the casing 1, A cap nut 4 is screwed into the male screw.

【0013】袋ナット4の開口4aには、上記押え部材
2の筒部2bを挿通できる様に構成され、また開口4a
の内側縁部4bは、押え部材2における筒部2bの環状
裾部2cに当接する様になっており、袋ナット4を締め
つければ、押え部材2をケーシング1の他方端側に向け
て押し込むことができ、それにより微粒化ブロック群A
を内側に押圧できる。
The opening 4a of the cap nut 4 is configured so that the cylindrical portion 2b of the holding member 2 can be inserted therethrough.
The inner edge 4b is adapted to abut the annular skirt 2c of the cylindrical portion 2b of the holding member 2, and when the cap nut 4 is tightened, the holding member 2 is pushed toward the other end of the casing 1. And thereby the atomized block group A
Can be pressed inward.

【0014】また、押え部材2の筒部2bの胴部内壁に
は雌ねじが形成されており、高圧パイプ5を貫通させた
グランドナット6を該筒部2bと螺合させれば、高圧パ
イプ5の先端部5aを、押え部材2の貫通孔2a入口に
密接することができる。なお上記高圧パイプ5や押え部
材2の貫通孔2aは、流路入口側となる。
A female screw is formed on the inner wall of the barrel of the cylindrical portion 2b of the holding member 2. If a gland nut 6 having the high-pressure pipe 5 penetrated therewith is screwed with the cylindrical portion 2b, the high-pressure pipe 5 Can be brought into close contact with the entrance of the through-hole 2a of the holding member 2. The high-pressure pipe 5 and the through-hole 2a of the holding member 2 are located on the flow channel inlet side.

【0015】一方、ケーシング1の他方端部構造は、上
記した一方端部の構造と左右対称に構成されており、一
方端部と実質的に同一構造の押え部材2’、ピン3’、
袋ナット4’、高圧パイプ5’、グランドナット6’が
備えられており、そのうち押え部材2’の貫通孔2a’
と高圧パイプ5’は流路出口側となる。また、図中の符
号7,7’は高圧パイプ5,5’の接続側端部に螺合さ
せるスリーブである。
On the other hand, the other end structure of the casing 1 is configured symmetrically to the above-mentioned one end portion, and has a holding member 2 ', a pin 3', and a substantially same structure as the one end portion.
A cap nut 4 ', a high-pressure pipe 5', and a gland nut 6 'are provided, of which a through hole 2a' of the holding member 2 'is provided.
And the high-pressure pipe 5 'are on the outlet side of the flow path. Reference numerals 7, 7 'in the drawing denote sleeves to be screwed to the connection-side ends of the high-pressure pipes 5, 5'.

【0016】次に、微粒化ブロック群Aの構成を図2を
参照しながら詳述する。図示例において微粒化ブロック
群Aは、入側ブロックA1 、分流ブロックA2、集中ブ
ロックA3 および出側ブロックA4 を同心的に密着配置
して構成され、入側ブロックA1 には軸芯部に貫通孔x
が形成されると共に、該貫通孔xの出側は漸次内径を大
きくして流れを遠心方向に拡散させる漸拡流路x1 が形
成されている。
Next, the configuration of the atomized block group A will be described in detail with reference to FIG. Atomization block group A in the illustrated example, the inlet side block A 1, shunt block A 2, is configured to concentrate the block A 3 and exit side block A 4 and concentrically arranged close, the axis in the entry side block A 1 Through hole x in core
There while being formed, the outlet side of the through hole x is gradually拡流path x 1 to gradually diffuse the flow by increasing the inner diameter in the centrifugal direction is formed.

【0017】また分流ブロックA2 には、前記漸拡流路
1 の最大内径部に略対応する位置に複数の貫通孔yが
形成されると共に、その出口側は鍔付き鍋の縦断面形状
様の2段凹部wが形成されている。なお図示例では、位
置決めリングA5 によって分流ブロックA2 を外周側か
ら位置決めして拘束しているが、これらは一体物として
形成することも勿論可能である。図示例では、4本の貫
通孔yを形成して4つの流路に分流させる例を示した
が、3本あるいは5本以上形成して分流数を変えること
も勿論可能である。
Further the shunt block A 2, said with gradually拡流path plurality of through holes y in a position substantially corresponding to the maximum inner diameter portion of x 1 is formed, longitudinal sectional shape of the outlet-side flanged pot Is formed. Note in the illustrated example, although constrained by positioning the diverter block A 2 from the outer peripheral side by the positioning ring A 5, they can of course be formed in one piece. In the illustrated example, an example is shown in which four through holes y are formed and divided into four flow paths. However, it is of course possible to form three or five or more and change the number of divided flow.

【0018】上記分流ブロックA2 の次に配置される集
中ブロックA3 には、上記分流ブロックA2 の2段凹部
w方向に突出する略台形状突部dが形成されると共に、
軸心部に貫通孔zが形成されている。そして上記分流ブ
ロックA2 と集中ブロックA 3 を密接配置した状態で、
前記貫通孔yの先端側に大容量の環状溝Rが形成される
と共に、上記略台形状突起dの先端側と上記分流ブロッ
クA2 の2段凹部w内面側に狭い隙間が形成される様に
寸法調整されている。その結果、分流ブロックA2 と集
中ブロックA3 を密接配置した状態では、図示する如く
貫通孔yの先端側に略円錐台状突部dを取り巻く様に大
容積の環状溝Rが形成されると共に、該環状溝Rから斜
め後ろ方向に傾斜した求心方向の環状流路Sと、ブロッ
クA2 ,A3 等の軸心に対し略直交する方向の平面状流
路Tが形成されることになる。
Dividing block ATwo Collection placed next to
Middle block AThree In the above, the diversion block ATwo Two-step recess
A substantially trapezoidal projection d that projects in the w direction is formed,
A through hole z is formed in the shaft center. And the above branch
Lock ATwo And concentrated block A Three With the
A large capacity annular groove R is formed at the tip end of the through hole y.
At the same time, the tip side of the substantially trapezoidal protrusion d and the branching block
ATwo So that a narrow gap is formed on the inner surface side of the two-step recess w
The dimensions have been adjusted. As a result, the shunt block ATwo And collection
Middle block AThree In the state where is closely arranged, as shown in the figure,
Large enough to surround the substantially frustoconical projection d on the tip side of the through hole y.
An annular groove R having a volume is formed, and the annular groove R is inclined from the annular groove R.
A centrifugal annular flow path S inclined backward,
ATwo , AThree Flow in a direction substantially perpendicular to the axis
A path T will be formed.

【0019】そして、これら環状溝R、環状流路S、平
面状流路Tの流路面積は、分流ブロックA2 に形成され
る2段凹部wの深さや幅と、集中ブロックA3 に形成さ
れる略台形状突部dの高さや外径等を変えることによっ
て任意に変更できる。また出側ブロックA4 は、前記入
側ブロックA1 と略左右対象に形成されており、漸次内
径を小さくした漸縮流路v1 と貫通孔vが形成されてい
る。
The channel area of the annular groove R, the annular channel S, and the planar channel T is determined by the depth and width of the two-step recess w formed in the branch block A 2 and the central block A 3 . It can be arbitrarily changed by changing the height, the outer diameter, and the like of the substantially trapezoidal projection d. The outlet-side block A 4 is formed before substantially symmetrically and fill side blocks A 1, Utatechijimi channel v 1 and the through hole v which gradually reduce the internal diameter is formed.

【0020】従ってこれらのブロックを軸心方向に連接
し、矢印方向から被処理流体を高圧・高速で送り込む
と、被処理流体は矢印で示す如く、またその流れを概念
的に示す図3の如く、貫通孔xから送り込まれた被処理
流体はその先端部で分流ブロックA2 の対向面に衝突し
た後、漸拡流路x1 で遠心方向に拡散してからその外周
縁側で複数の貫通孔yに分流し、各貫通孔yの出口先端
側で壁面に衝突して衝撃を受けると共に、該出口先端部
に形成された広い環状流路Rで急激な圧力降下を生じ
る。そして該壁面衝突と、急激な動的圧力の変化によっ
て生じるキャビテーション効果、更には上記環状流路R
内で生じる乱流の相加的乃至相乗的作用効果によって、
被処理流体中の物質は著しく微粒化される。
Accordingly, when these blocks are connected in the axial direction and the fluid to be treated is fed at a high pressure and at a high speed from the direction of the arrow, the fluid to be treated is as shown by the arrow and as schematically shown in FIG. , through after treated fluid sent into the hole x is colliding with the facing surface of the diverter block a 2 at its distal end, a plurality of through holes at its outer peripheral edge from diffused in the centrifugal direction gradually at拡流path x 1 In this case, the air flow diverges into the flow path y and collides with the wall surface at the outlet end side of each through-hole y to receive an impact, and a sharp pressure drop occurs in the wide annular flow path R formed at the outlet end. The cavitation effect caused by the wall collision and the rapid change of the dynamic pressure,
Due to the additive or synergistic effects of turbulence generated within
Substances in the fluid to be treated are remarkably atomized.

【0021】その後、広い環状流路Rから斜め後方向に
形成された狭隘な環状流路Sを矢印方向に流れ、平面状
流路Tへの折れ曲がり部で壁面衝突した後、平面状流路
Tを求心方向に流れ、その中心部で360度方向から集
中してくる被処理流体相互の衝突が起こった後、集中ブ
ロックA3 に設けられた貫通孔zを通して下流側へ流れ
る。そして該貫通孔zの出口部では、出側ブロックA4
に設けられた漸縮流路v1 へ放出された時点で、急激な
動的圧力変化によるキャビテーション効果を受けて更に
微粒化されてから貫通孔Vを通して排出される。
After that, a narrow annular flow path S formed obliquely rearward from the wide annular flow path R flows in the direction of the arrow, and collides with the plane flow path T at the bent portion. the flow in the centripetal direction, after which the process fluid mutual collision has occurred coming concentrated from 360 degree direction at a central portion thereof flows through the through-holes z provided in centralized block a 3 to the downstream side. At the exit of the through hole z, the exit block A 4
Once released into the Utatechijimi channel v 1 provided, and is discharged through the through-hole V since the further atomization undergo cavitation effects due to rapid dynamic pressure changes.

【0022】尚、出側ブロックA4 に設けた漸縮流路v
1 は必ずしも必須ではなく、貫通孔vを入側端部まで延
長して形成したものであってもよく、また該出側ブロッ
クA 4 自体を省略し、集中ブロックA3 の貫通孔zを排
出側流路に直接連通させても構わない。また本発明の目
的を達成する上で重要となるのは、微粒化ブロック群A
のうち特に分流ブロックA2 と集中ブロックA3 であ
り、これらのブロックによって分流と衝突、圧力の急降
下によるキャビテーション効果を発揮し得る構成を確保
すればよく、従って入側ブロックA1 や出側ブロックA
4 の具体的構成は図示したものに制限されない。
The outgoing block AFour Reducing channel v provided in
1 Is not essential, and the through hole v extends to the entry side end.
The outlet block may be
A Four Omitting itself, concentrated block AThree The through hole z
It may be directly connected to the outlet channel. In addition, the present invention
What is important in achieving the target is the atomized block group A
Of the diversion block ATwo And concentrated block AThree In
These blocks cause shunting and collision, and a sudden drop in pressure.
Ensuring a configuration that can exhibit the cavitation effect due to the bottom
And therefore the incoming block A1 And exit block A
Four Is not limited to the illustrated one.

【0023】従ってこの微粒化ブロック群Aを、前記図
1に示した様なケーシング1内に配置し、押え部材2,
2’などで両側から押付け密着させた状態で矢印方向に
被処理流体を高圧・高速で流すと、図3に示した様に、
貫通孔x方向から送り込まれてくる被処理流体は、漸拡
流路x1 で遠心方向に拡散してからその外周端部で4個
の貫通孔y,y,……に分流し、その先端から高速で噴
出する被処理流体は集中ブロックA3 の対向面に衝突す
ると共に、大容量の環状溝Rに噴出された時点で急激な
降圧によって生じるキャビテーション効果を受けて微粒
化が促進される。その後、先に説明した様に環状流路S
から平面状流路T方向への曲がり角部で環状流で壁面に
衝突した後、更に平面状流路Tを求心方向へ流れてその
中心部で流体同士の衝突を受け、貫通孔zを通して下流
側に排出される。その間、衝突の度に微粒化が更に促進
され、被処理流体中の物質は著しく微粒化された状態で
排出されていく。
Therefore, the atomized block group A is arranged in the casing 1 as shown in FIG.
When the fluid to be treated is flowed at high pressure and high speed in the direction of the arrow while being pressed and adhered from both sides with 2 'or the like, as shown in FIG.
Target fluid coming sent from the through-hole x direction is gradually flowed at拡流path x 1 at its outer peripheral end portion after diffusing in the centrifugal direction four through holes y, y, a ...... minute, a tip target fluid jetted at high speed from the well as collide with the facing surface of the central block a 3, atomization undergo cavitation effects caused by abrupt step down when it is injected into the annular groove R of the mass is promoted. Thereafter, as described above, the annular flow path S
Collides with the wall surface with an annular flow at the bend in the direction of the planar flow path T, flows further in the planar flow path T in the centripetal direction, receives collisions of fluids at the center thereof, and passes through the through hole z on the downstream side. Is discharged. During that time, atomization is further promoted at each collision, and the substance in the fluid to be treated is discharged in a state of extremely atomized.

【0024】この様に本発明によれば、微粒化ブロック
群A内の流路を流れる過程で、被処理流体の流路壁面へ
の衝突と流体同士の衝突、および急激な圧力降下による
キャビテーション効果を受け、該被処理流体内の物質
(分散質)は著しく微粒化されるのである。
As described above, according to the present invention, in the process of flowing through the flow path in the atomization block group A, the cavitation effect due to the collision of the fluid to be processed with the flow path wall, the collision between the fluids, and the rapid pressure drop. As a result, the substance (dispersoid) in the fluid to be processed is extremely atomized.

【0025】また図2に示した微粒化ブロック群Aに形
成される流体流路は、貫通孔x,y,z,vと、漸拡流
路x1 ,漸縮流路v1 、環状溝R、環状流路S、平面状
流路Tによって構成され、衝突位置が円周方向に分散さ
れるので、従来の細い溝を通して流路を変更しながら流
体の衝突と合流を行なうタイプの微粒化装置に比べる
と、高速流体による流路の局部的な摩耗も抑えられ、全
体としての寿命を延長することができる。しかも各ブロ
ックの設計・加工は、例えば図4に一部破断展開図に示
す如く、旋盤を用いた略円錐台状突部dと2段凹部wの
旋削加工および貫通孔と漸拡または漸縮流路の穿孔加工
だけでよく、加工や寸法精度調整が比較的難しい溝加工
が不要であるから、該微粒化ブロック群A全体としての
加工性や保全も簡素化できる。
The fluid channels formed in the atomization block group A shown in FIG. 2 include through holes x, y, z, v, a gradually expanding channel x 1 , a gradually reducing channel v 1 , and an annular groove. R, an annular flow path S, and a planar flow path T, and the collision positions are dispersed in the circumferential direction. Therefore, atomization of a type in which fluid collision and merging are performed while changing the flow path through a conventional narrow groove. Compared to the device, local wear of the flow path due to the high-speed fluid is also suppressed, and the life as a whole can be extended. In addition, the design and processing of each block is performed, for example, as shown in a partially broken development in FIG. 4, by turning a substantially frustoconical projection d and a two-step recess w using a lathe, and through-hole and gradually expanding or contracting. Since it is only necessary to form a hole in the flow path, and it is not necessary to form a groove in which processing and dimensional accuracy adjustment are relatively difficult, workability and maintenance of the entire atomized block group A can be simplified.

【0026】次に、上記微粒化法または微粒化装置を実
用化する際の周辺の構成について説明すると、たとえば
微細乳液を得る場合は、水系流体と油系流体をそれぞれ
別々に引き込んで合流させることによって混合液を調製
し、該混合液の流量を調整しつつ微粒化装置へ圧送する
ことにより油系流体が微分散した乳液を製造する。ま
た、水等の溶媒に不溶性の固形物粒子を微分散させる場
合は、溶媒に分散すべき固形物粒子を混入させて懸濁液
を調製し、該懸濁液の流量を調整しつつ微粒化装置へ圧
送することにより固形物粒子が微分散したコロイド状の
分散液を製造する。このとき、微粒化後の乳液や微分散
液の安定性を一層高めるため、乳化安定剤や分散安定剤
などを適量混入させることも有効である。
Next, a description will be given of the peripheral configuration when the above-mentioned atomization method or the atomization apparatus is put into practical use. For example, in the case of obtaining a fine emulsion, the water-based fluid and the oil-based fluid are separately drawn and combined. A mixed liquid is prepared by the method described above, and the mixed liquid is adjusted to be supplied to a pulverizer while adjusting a flow rate of the mixed liquid to produce an emulsion in which an oil-based fluid is finely dispersed. When finely dispersing solid particles insoluble in a solvent such as water, a suspension is prepared by mixing solid particles to be dispersed in the solvent, and the suspension is adjusted to obtain fine particles while adjusting the flow rate. A colloidal dispersion in which solid particles are finely dispersed is produced by pumping to a device. At this time, in order to further enhance the stability of the emulsion or fine dispersion after atomization, it is also effective to mix an appropriate amount of an emulsion stabilizer or a dispersion stabilizer.

【0027】また、流体を高速で衝突させると殺菌乃至
滅菌が行なわれることも確認されており、従って本発明
の更に他の利用形態として、被処理流体の微粒化と滅菌
を並行して行なうことも可能であり、従ってこの発明
は、一般化学工業分野で利用する微粒化はもとより、衛
生面から細菌等の混入を避けねばならない食品分野や医
療分野においても極めて有効に活用することができる。
It has also been confirmed that sterilization or sterilization is performed when a fluid is collided at a high speed. Therefore, as another application of the present invention, the atomization and sterilization of a fluid to be treated are performed in parallel. Therefore, the present invention can be very effectively utilized not only in atomization used in the general chemical industry field but also in the food field and the medical field in which contamination of bacteria and the like must be avoided from a hygiene point of view.

【0028】図5は、本発明を微分散乳液の調製に利用
する場合の実施例を示したもので、水系流体を貯留する
ための容器50と油系流体を貯留するための容器51と
を備えており、これらの容器50,51内の各流体を、
弁50a,51aでそれぞれ流量調整しつつ配管52で
合流させ、可変容量ポンプPの吸入口に供給される様に
なっている。可変容量ポンプPでは、例えば混合液を5
0〜150MPa程度に加圧し高圧・高速流として微粒
化装置Mへ導入し、この部分で前述の如く微粒化処理が
行なわれる。
FIG. 5 shows an embodiment in which the present invention is applied to the preparation of a finely dispersed emulsion. A container 50 for storing an aqueous fluid and a container 51 for storing an oil-based fluid are shown. Each fluid in these containers 50, 51
The flow is adjusted by the valves 50a and 51a, respectively, and merged by the pipe 52 to be supplied to the suction port of the variable displacement pump P. In the variable displacement pump P, for example,
The mixture is pressurized to about 0 to 150 MPa and introduced into the atomization device M as a high-pressure, high-speed flow, where the atomization treatment is performed as described above.

【0029】この様な微粒化システムであれば、微粒化
効果に加えて原料流体の混合比率も任意に調節すること
ができ、撹拌設備などを要することなく任意の混合比率
の乳液やコロイド状分散液を容易に得ることができる。
With such an atomizing system, the mixing ratio of the raw material fluid can be arbitrarily adjusted in addition to the atomizing effect, and an emulsion or colloidal dispersion having an arbitrary mixing ratio can be obtained without the need for a stirring device. A liquid can be obtained easily.

【0030】なおこの微粒化法を実施する際に、本発明
の効果を有効に発揮させるには、前記分流、衝突、混合
が行なわれる流路内の被処理流体の流速を80〜460
m/sec程度に制御するのがよい。しかして流速が低
過ぎる場合は、個々の衝突、混合時のエネルギーが不足
するため満足のいく微粒化効果が発揮されにくく、一方
流速が高過ぎる場合は、衝突部位における壁面の摩耗が
著しくなるからである。工業的に実用化する際のより好
ましい流速の下限は150m/sec程度、更に好まし
くは220m/sec程度、より好ましい流速の上限は
330m/sec程度、更に好ましくは270m/se
c程度である。
When the atomization method is carried out, in order to effectively exert the effect of the present invention, the flow rate of the fluid to be treated in the flow channel where the split flow, collision, and mixing are performed is 80 to 460.
It is better to control to about m / sec. However, if the flow velocity is too low, it is difficult to achieve a satisfactory atomization effect due to insufficient energy at the time of individual collision and mixing, while if the flow velocity is too high, the wall of the collision site will be significantly worn. It is. A more preferred lower limit of the flow rate for industrial practical use is about 150 m / sec, more preferably about 220 m / sec, and a more preferred upper limit of the flow rate is about 330 m / sec, more preferably 270 m / sec.
c.

【0031】又、こうした高速流を採用することによっ
て前記衝突部で生じる流路内壁の摩耗を抑えるため、分
流ブロックや集中ブロックの構成素材としてはWCやジ
ルコニア等のセラミックス材や焼結ダイヤモンド、単結
晶ダイヤモンド等の超硬質素材を使用するのがよく、あ
るいは基材をステンレス等の金属によって構成し、摩耗
が最も激しい前記衝突部位の内壁面に前記焼結ダイヤモ
ンドや単結晶ダイヤモンド等の超硬質層を形成すること
によって、耐摩耗性を確保することも有効である。
Further, in order to suppress the abrasion of the inner wall of the flow channel at the collision portion by adopting such a high-speed flow, the diverting block and the concentrating block may be made of ceramic material such as WC or zirconia, sintered diamond, It is preferable to use an ultra-hard material such as crystalline diamond, or the base material is made of a metal such as stainless steel, and an ultra-hard layer such as the sintered diamond or single-crystal diamond is formed on the inner wall surface of the collision site where wear is most severe. It is also effective to secure abrasion resistance by forming.

【0032】ところで本発明では、前述の如く被処理流
体の壁面への衝突と分流、更には圧力の急変によるキャ
ビテーション効果によって、微粒化ブロック群Aにおけ
る微粒化の促進を図っているが、こうした方法に加え
て、該微粒化ブロック群Aからの出側で背圧を調整し、
微粒化ブロック群A部分における微粒化効果を全体的に
コントロールすることも有効である。
In the present invention, as described above, the atomization in the atomization block group A is promoted by the impact of the fluid to be treated on the wall surface, the branching, and the cavitation effect due to the sudden change in pressure. In addition, the back pressure is adjusted on the exit side from the atomization block group A,
It is also effective to totally control the atomization effect in the atomization block group A portion.

【0033】図8はこの様な方法を実施する際に用いら
れる背圧調整装置の代表例を示した概略断面説明図であ
り、前述した様な微粒化装置Mの下流側に配置して当該
微粒化装置における出側圧力を調整し、微粒化ブロック
群A部分で生じる衝突エネルギーあるいは圧力急変によ
るキャビテーション効果の大小を制御する機能を発揮す
る。
FIG. 8 is a schematic sectional view showing a typical example of a back pressure adjusting device used in carrying out such a method. The function of controlling the outlet pressure in the atomization device and controlling the magnitude of the cavitation effect due to the collision energy or the sudden pressure change generated in the atomization block group A portion is exhibited.

【0034】即ちこの背圧調整装置は、内部に円形腔部
が形成されたケーシング20と弁座21、ロッド状の弁
体22および弁体支持部材23によって構成される。そ
してケーシング20の円形腔部内には、微粒化装置Mの
出側流路に連通する流路24が形成されると共に、該流
路24側に弁座21が弁体支持部材23によって円形腔
部の開口部側から押付け固定され、該弁体支持部材23
には、これを貫通してロッド状の弁体22が進退可能に
螺合されている。そして、上記弁体支持部材23には、
前記流路24に対して略直交する方向に貫通孔25が形
成されると共に、ケーシング20には、該貫通孔25に
対応する位置に流体出口孔26が形成されている。
That is, the back pressure adjusting device comprises a casing 20 having a circular cavity formed therein, a valve seat 21, a rod-shaped valve body 22, and a valve body support member 23. In the circular cavity of the casing 20, a flow path 24 communicating with the outlet flow path of the atomizing device M is formed, and a valve seat 21 is provided on the flow path 24 side by the valve body support member 23 by the circular cavity. Of the valve body support member 23.
, A rod-shaped valve body 22 is threadably engaged with the valve body 22 so as to advance and retreat therethrough. And, in the valve body support member 23,
A through hole 25 is formed in a direction substantially perpendicular to the flow path 24, and a fluid outlet hole 26 is formed in the casing 20 at a position corresponding to the through hole 25.

【0035】従って、これらを図示する状態に組み付け
て該弁体22を進退させると、該弁体22と前記弁座2
1間の隙間spを微調整することができ、それにより微
粒化装置Mの排出側流路にかかる背圧を任意に調整する
ことができる。但し図示した構造は、背圧調整機構の一
例を示しただけのものでもとより図示した以外にも、公
知の任意の背圧調整機構を採用することが可能である。
また、上記流体出口26側に微粒化装置Mを接続し、処
理流体を流路24方向へ流しながら背圧調整することも
可能である。
Therefore, when these are assembled in the state shown in the drawing and the valve body 22 is advanced and retracted, the valve body 22 and the valve seat 2 are moved.
The gap sp between the two can be finely adjusted, whereby the back pressure applied to the discharge side flow path of the atomization device M can be arbitrarily adjusted. However, the illustrated structure is not limited to an example of the back pressure adjusting mechanism, and any known back pressure adjusting mechanism other than the illustrated structure can be adopted.
It is also possible to connect the atomizing device M to the fluid outlet 26 side and adjust the back pressure while flowing the processing fluid in the direction of the flow path 24.

【0036】この様に、微粒化装置Mの被処理流体排出
側に背圧調整装置を設けておけば、この部分で背圧を調
整することによって、微粒化装置M内における前述した
様な衝突エネルギーや圧力降下によるキャビテーション
効果の大小をコントロールすることができ、微粒化装置
M自体の微粒化性能を所望に応じて更に微調整すること
が可能となるので、好ましい実施形態として推奨され
る。
As described above, if the back pressure adjusting device is provided on the discharge side of the fluid to be treated of the atomizing device M, the back pressure is adjusted at this portion, so that the collision in the atomizing device M as described above. It is recommended as a preferred embodiment because the magnitude of the cavitation effect due to energy or pressure drop can be controlled, and the atomization performance of the atomizer M itself can be further finely adjusted as desired.

【0037】[0037]

【実施例】次に実施例を挙げて本発明をより具体的に説
明するが、本発明はもとより下記実施例によって制限を
受けるものではない。なお、下記において「部」および
「%」とあるのは、特記しない限り「重量部」および
「重量%」を意味する。
Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited by the following examples. In the following, “parts” and “%” mean “parts by weight” and “% by weight” unless otherwise specified.

【0038】なお比較例として示した撹拌機には、日本
精機製作所社製の「AM−9」、微粒化装置としては、
図6,7に示した様に90゜の角度で位相して密接させ
た十文字流路の交差点で流体を高速衝突させる構成のも
の[N社製]を使用した。また、実施例で用いた微粒化
装置に配置された分流ブロックA2 や集中ブロックA 3
の貫通孔,2段凹部,台形状突部などの各サイズは、図
9に示す通りとした。また、得られた微粒化物の粒径測
定とその評価法は下記の通りとした。 粒径測定法:島津製作所製のレーザー解析式粒度分布測
定装置 SALD-200A 評価法:メジアン径の大小で評価する。
The stirrer shown as a comparative example includes Japan
"AM-9" manufactured by Seiki Seisakusho Co., Ltd.
As shown in FIGS.
A configuration in which the fluid collide at a high speed at the intersection of the cross
[Manufactured by N Company] was used. Also, atomization used in the examples
Dividing block A arranged in the deviceTwo And concentrated block A Three 
The size of each through hole, two-step recess, trapezoidal protrusion, etc.
9. In addition, particle size measurement of the obtained atomized product
And the evaluation method were as follows. Particle size measurement method: Laser analysis type particle size distribution measurement manufactured by Shimadzu Corporation
Measurement device SALD-200A Evaluation method: Evaluate based on the size of median diameter.

【0039】 [乳化実験] (1) 被処理流体:大豆油(関東化学社製) ……10% 大豆製レシチン(関東化学社製)……0.5% 純水 ……89.5% (2) 前処理:大豆油を所定量秤取り、これに大豆レシチンを所定量添加し て大豆油に大豆レシチンを溶解させる。 秤量しておいた純水に上記を加え、卓上型撹拌機(日本精 機社製「AM−9」)にて5,000rpmで1分間予備乳 化させる。予備乳化品のメジアン径:26.72μm [分散・粉砕実験] (1) 試料:酸化亜鉛(白水化学社製の微粒子酸化亜鉛)……30% デモールEP(花王社製) …… 2% 純水 ……68% (2) 前処理:所定量の純水にデモールEPを添加し溶解させる。 上記に酸化亜鉛を加え、15,000rpmで5分間予備 分散させる。予備分散品のメジアン径:0.69μm[Emulsification Experiment] (1) Fluid to be treated: soybean oil (manufactured by Kanto Kagaku Co., Ltd.) 10% soybean lecithin (manufactured by Kanto Kagaku Co., Ltd.) 0.5% pure water 89.5% ( 2) Pretreatment: Weigh a prescribed amount of soybean oil, add a prescribed amount of soybean lecithin, and dissolve soybean lecithin in soybean oil. The above is added to the weighed pure water, and pre-milking is performed for 1 minute at 5,000 rpm using a tabletop stirrer (“AM-9” manufactured by Nippon Seiki Co., Ltd.). Median diameter of the pre-emulsified product: 26.72 μm [Dispersion / crushing experiment] (1) Sample: zinc oxide (fine-particle zinc oxide manufactured by Hakusui Chemical Co., Ltd.) 30% Demol EP (made by Kao Corporation) 2% pure water 68% (2) Pretreatment: Demol EP is added and dissolved in a predetermined amount of pure water. Add zinc oxide to the above and pre-disperse at 15,000 rpm for 5 minutes. Median diameter of the preliminary dispersion: 0.69 μm

【0040】[0040]

【表1】 [Table 1]

【0041】上記乳化実験結果からも明らかである様
に、本発明の微粒化装置を使用すると、従来の撹拌機や
市販の微粒化装置を使用した場合に比べて、優れた微粒
化効果が得られることを確認できる。
As is clear from the results of the above-mentioned emulsification experiments, the use of the atomization apparatus of the present invention provides a superior atomization effect as compared with the case where a conventional stirrer or a commercially available atomization apparatus is used. Can be confirmed.

【0042】[0042]

【表2】 [Table 2]

【0043】上記分散・粉砕実験結果からも明らかであ
る様に、本発明の微粒化装置を使用すると、従来の撹拌
機や市販の微粒化装置を使用した場合に比べて、均質で
優れた微粒化効果が得られることを確認できる。
As is clear from the results of the dispersion and pulverization experiments described above, the use of the atomizing device of the present invention makes it possible to obtain a uniform and excellent fine particle as compared with a conventional stirrer or a commercially available atomizing device. It can be confirmed that the conversion effect can be obtained.

【0044】[0044]

【発明の効果】以上説明した様に本発明によれば、微粒
化すべき物質を含む被処理流体に対し、微粒化のための
エネルギーを複数回の衝突、分流、合流および急激な圧
力降下によるキャビテーション効果によって与えること
ができ、短い処理ラインで微粒化を著しく増進すること
ができる。しかも本発明の装置は、その構成が比較的簡
単で設計および製作が容易である他、設備的にも短尺な
ものでよく、また微粒化が行なわれる装置の主体は前記
分流ブロックと集中ブロックを突き合わせた構成である
から、設備の保全や交換なども容易に行なうことができ
る。
As described above, according to the present invention, the energy for atomization is applied to the fluid containing the substance to be atomized a plurality of times by collision, branching, merging and cavitation due to a rapid pressure drop. The effect can be provided by a short processing line, which can significantly enhance the atomization. In addition, the apparatus of the present invention has a relatively simple structure, is easy to design and manufacture, and may be short in terms of equipment. The apparatus for atomization is mainly composed of the diverting block and the concentrated block. Because of the abutted configuration, maintenance and replacement of the equipment can be easily performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる微粒化方法と装置の1つの実施
形態を示す縦断面説明図である。
FIG. 1 is an explanatory longitudinal sectional view showing one embodiment of an atomizing method and apparatus according to the present invention.

【図2】実施例で採用した微粒化ブロック群Aを例示す
る拡大断面図である。
FIG. 2 is an enlarged cross-sectional view illustrating a atomized block group A adopted in the embodiment.

【図3】図2の微粒化ブロックを用いたときの微粒化機
構を示す説明図である。
FIG. 3 is an explanatory diagram showing an atomization mechanism when the atomization block of FIG. 2 is used.

【図4】図2に示した微粒化ブロック群の一部破断見取
り図である。
FIG. 4 is a partially cutaway sketch of the atomized block group shown in FIG. 2;

【図5】本発明の微粒化装置を組み込んだ微粒化システ
ムを例示する概略説明図である。
FIG. 5 is a schematic explanatory view illustrating an atomization system incorporating the atomization device of the present invention.

【図6】公知の2液衝突式微粒化装置の基本構造を示す
説明図である。
FIG. 6 is an explanatory view showing a basic structure of a known two-liquid collision type atomization device.

【図7】図6におけるA−A線およびB−B線方向矢視
図である。
FIG. 7 is a view in the direction of arrows AA and BB in FIG. 6;

【図8】本発明を実施する際に付設することのできる背
圧調整装置を例示する断面説明図である。
FIG. 8 is a cross-sectional explanatory view illustrating a back pressure adjusting device that can be provided when the present invention is implemented.

【図9】実施例で用いた微粒化ブロック群の寸法を示す
説明図である。
FIG. 9 is an explanatory diagram showing the dimensions of a group of atomized blocks used in the example.

【符号の説明】[Explanation of symbols]

M 微粒化装置 A 微粒化ブロック群 1 ケーシング 2 押え部材 3 ピン 4 袋ナット 5 高圧ポンプ 6 グランドナット A 微粒化ブロック A1 入側ブロック A2 分流ブロック A3 集中ブロック A4 出側ブロック x,y,z,v 貫通孔 w 二段凹部 d 台形状突部 M 微粒化装置 R 環状溝 S 環状流路 T 平面状流路 20 ケーシング 21 弁座 22 ロッド状弁体 23 弁体支持部材 sp スペースM atomizer A atomized blocks 1 casing 2 pressing member 3 pin 4 bags nut 5 the high-pressure pump 6 gland nut A atomization block A 1 inlet side block A 2 shunt block A 3 concentration Block A 4 egress block x, y , Z, v Through hole w Two-step recess d Trapezoidal protrusion M Atomizer R Annular groove S Annular flow path T Planar flow path 20 Casing 21 Valve seat 22 Rod-shaped valve element 23 Valve element support member sp Space

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三武 一利 東京都板橋区小豆沢1丁目7番14号 株式 会社ジーナス内 (72)発明者 古谷野 晃一 東京都板橋区小豆沢1丁目7番14号 株式 会社ジーナス内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kazutoshi Mitake 1-7-14 Shodosawa, Itabashi-ku, Tokyo Stock inside Genus Inc. (72) Inventor Koichi Furutano 1-7-14, Shozuzawa, Itabashi-ku, Tokyo Stock Inside the company Genus

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 流路入口と流路出口を有する密閉容器内
に、微粒化すべき物質が分散された被処理流体を前記流
路入口から高速で導入し、その流れを複数の流路に分岐
させた後、再びこれを集合させる向きの高速流を形成し
衝突させることにより、上記物質を微粒化して前記流路
出口から排出する方法であって、高速で送り込まれる被
処理流体を、遠心方向に拡散させた後、拡散方向端部の
複数位置から前記送り込み方向と略同一方向に流れ方向
を変えて分流させ、各分流の先端部で壁面に衝突させた
後、これらを上記送り込み方向に傾斜した求心方向に流
し、その先端部で壁面に衝突させ、更に中心方向に集中
させ中心位置で衝突合流させてから前記送り込み方向と
同一方向へ排出させることを特徴とする微粒化方法。
1. A process target fluid in which a substance to be atomized is dispersed is introduced at a high speed from a flow channel inlet into a closed vessel having a flow channel inlet and a flow channel outlet, and the flow is branched into a plurality of flow channels. Then, by forming a high-speed flow in a direction to collect them again and causing collision, the material is atomized and discharged from the outlet of the flow path. After having been diffused, the flow direction is changed from a plurality of positions at the ends in the diffusion direction in the same direction as the feeding direction to diverge the flow, and the tip of each divergence collides against the wall surface, and these are inclined in the feeding direction. The atomization method is characterized in that the particles are caused to flow in the centripetal direction, collide with the wall surface at the leading end thereof, are further concentrated in the central direction, collide and merge at the central position, and then are discharged in the same direction as the feeding direction.
【請求項2】 前記各分流の出口部に腔部を形成し、被
処理流体の圧力を急降下させることにより、上記物質の
微粒化を促進する請求項1記載の微粒化方法。
2. The atomization method according to claim 1, wherein a cavity is formed at an outlet of each of the branch streams, and the pressure of the fluid to be treated is rapidly reduced to promote the atomization of the substance.
【請求項3】 流路入口と流路出口を有する密閉容器内
に、微粒化すべき物質が分散された被処理流体を前記流
路入口から高速で導入し、その流れを複数の流路に分岐
させた後、再びこれを集合させる向きの高速流を形成し
衝突させることにより、上記物質を微粒化して前記流路
出口から排出する装置であって、中心から略同一半径位
置に複数の軸方向貫通孔Aを有する第1ブロックと、略
中心位置に1つの軸方向貫通孔Bを有し前記第1ブロッ
クに対して同心的に密着配置される第2ブロックを備
え、該第1ブロックと第2ブロックの間には、前記複数
の軸方向貫通孔Aに連続する環状溝が形成されると共
に、該環状溝から前記1つの軸方向貫通孔B方向に向か
う傾斜方向環状流路が形成されていることを特徴とする
微粒化装置。
3. A fluid to be treated, in which a substance to be atomized is dispersed, is introduced at a high speed from a flow channel inlet into a closed container having a flow channel inlet and a flow channel outlet, and the flow is branched into a plurality of flow channels. A device for forming a high-speed flow in a direction to collect the particles again and causing the particles to collide, thereby atomizing the substance and discharging the substance from the outlet of the flow path. A first block having a through-hole A, and a second block having one axial through-hole B substantially at the center and closely disposed concentrically with the first block; Between the two blocks, an annular groove continuous to the plurality of axial through holes A is formed, and an inclined annular flow path from the annular groove toward the one axial through hole B is formed. Atomizing device, characterized in that:
JP20057897A 1997-07-25 1997-07-25 Atomizing method and device therefor Withdrawn JPH1142431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20057897A JPH1142431A (en) 1997-07-25 1997-07-25 Atomizing method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20057897A JPH1142431A (en) 1997-07-25 1997-07-25 Atomizing method and device therefor

Publications (1)

Publication Number Publication Date
JPH1142431A true JPH1142431A (en) 1999-02-16

Family

ID=16426674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20057897A Withdrawn JPH1142431A (en) 1997-07-25 1997-07-25 Atomizing method and device therefor

Country Status (1)

Country Link
JP (1) JPH1142431A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260569A (en) * 2006-03-28 2007-10-11 Fujifilm Corp Fluid mixing device and fluid mixing method
JP2008163142A (en) * 2006-12-27 2008-07-17 Toyo Tire & Rubber Co Ltd Preparation of rubber-filler composite
JP2008230074A (en) * 2007-03-20 2008-10-02 Toyo Tire & Rubber Co Ltd Manufacturing method of rubber-filler composite
JP2008284524A (en) * 2007-05-21 2008-11-27 Sugino Mach Ltd Atomizing apparatus
JP2008284525A (en) * 2007-05-21 2008-11-27 Sugino Mach Ltd Atomizing apparatus
EP2033706A2 (en) 2007-09-06 2009-03-11 Hitachi Plant Technologies, Ltd. An emulsification apparatus
JP2009154132A (en) * 2007-12-27 2009-07-16 Tomihisa Naito Pulverizer
WO2010074158A1 (en) * 2008-12-24 2010-07-01 ナノマイザー・プライベート・リミテッド Soymilk and method for producing soymilk
JP2010247080A (en) * 2009-04-16 2010-11-04 Nippon Kankyo Hozen Kk Mixer for emulsion combustion and mixed liquid supply system for emulsion combustion
JP2011056456A (en) * 2009-09-14 2011-03-24 National Institute Of Advanced Industrial Science & Technology Method for producing bio-nanofiber

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260569A (en) * 2006-03-28 2007-10-11 Fujifilm Corp Fluid mixing device and fluid mixing method
JP2008163142A (en) * 2006-12-27 2008-07-17 Toyo Tire & Rubber Co Ltd Preparation of rubber-filler composite
JP2008230074A (en) * 2007-03-20 2008-10-02 Toyo Tire & Rubber Co Ltd Manufacturing method of rubber-filler composite
JP2008284524A (en) * 2007-05-21 2008-11-27 Sugino Mach Ltd Atomizing apparatus
JP2008284525A (en) * 2007-05-21 2008-11-27 Sugino Mach Ltd Atomizing apparatus
EP2033706A2 (en) 2007-09-06 2009-03-11 Hitachi Plant Technologies, Ltd. An emulsification apparatus
JP2009154132A (en) * 2007-12-27 2009-07-16 Tomihisa Naito Pulverizer
WO2010074158A1 (en) * 2008-12-24 2010-07-01 ナノマイザー・プライベート・リミテッド Soymilk and method for producing soymilk
JP2010148373A (en) * 2008-12-24 2010-07-08 Nanomaizaa Kk Soymilk and method for producing the same
JP2010247080A (en) * 2009-04-16 2010-11-04 Nippon Kankyo Hozen Kk Mixer for emulsion combustion and mixed liquid supply system for emulsion combustion
TWI391613B (en) * 2009-04-16 2013-04-01 Japan Environmental Preservation Co Ltd A mixture of emulsion combustion and a mixed liquid supply system for emulsion combustion
JP2011056456A (en) * 2009-09-14 2011-03-24 National Institute Of Advanced Industrial Science & Technology Method for producing bio-nanofiber

Similar Documents

Publication Publication Date Title
US6443610B1 (en) Processing product components
US7207712B2 (en) Device and method for creating hydrodynamic cavitation in fluids
US5984519A (en) Fine particle producing devices
US5460449A (en) In-line mixer for dispersions
US5018317A (en) Abrasive water jet cutting apparatus
CN102105215A (en) Apparatuses for mixing liquids by producing shear and/or caviation
US7708453B2 (en) Device for creating hydrodynamic cavitation in fluids
EP1249270A2 (en) Forming emulsions
JPH1142431A (en) Atomizing method and device therefor
JPH1142428A (en) Atomization
JP3296954B2 (en) Atomization device and atomization method
US5762687A (en) Process and device for dissolving a quantity of gas in a flowing liquid quantity
JPH1142430A (en) Atomizer
JPH1142429A (en) Method and device for atomization
JPH10180066A (en) Atomizing method and device therefor
KR102557241B1 (en) Ultra-fine bubble maker and ultra-fine bubble water manufacturing device
JP3149372B2 (en) Multi-point collision type atomizer
JP2002001080A (en) Device for atomizing substance
JP3149375B2 (en) Atomization method and apparatus
JPH1142432A (en) Method and device for atomization
US20240198300A1 (en) Device and method for dispersing gases into liquids
JP3167913B2 (en) Atomization device and atomization method
JP3682585B2 (en) Nozzle, nozzle assembly, and diffusion method
JPH10180065A (en) Atomizing method and device therefor
CN202762376U (en) Emulsifying cavity device relevant to high pressure homogeneous emulsifying device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041005