WO2008029525A1 - Process and equipment for mass production of liquid containing gas dissolved therein by continuous pressure flowing method - Google Patents

Process and equipment for mass production of liquid containing gas dissolved therein by continuous pressure flowing method Download PDF

Info

Publication number
WO2008029525A1
WO2008029525A1 PCT/JP2007/054606 JP2007054606W WO2008029525A1 WO 2008029525 A1 WO2008029525 A1 WO 2008029525A1 JP 2007054606 W JP2007054606 W JP 2007054606W WO 2008029525 A1 WO2008029525 A1 WO 2008029525A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
dissolved
pressurized
reactor
Prior art date
Application number
PCT/JP2007/054606
Other languages
French (fr)
Japanese (ja)
Inventor
Wataru Murota
Original Assignee
Ohta, Shigeo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohta, Shigeo filed Critical Ohta, Shigeo
Publication of WO2008029525A1 publication Critical patent/WO2008029525A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/54Mixing with gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/2319Methods of introducing gases into liquid media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2326Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles adding the flowing main component by suction means, e.g. using an ejector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3121Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31242Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow the main flow being injected in the central area of the venturi, creating an aspiration in the circumferential part of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4314Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor with helical baffles
    • B01F25/43141Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor with helical baffles composed of consecutive sections of helical formed elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants

Definitions

  • the present invention relates to a method for producing a gas-dissolved liquid containing a large amount of gas such as hydrogen and a production apparatus thereof suitable for mass production.
  • both the above-mentioned open-flow manufacturing method for mass production and the closed-system high-pressure holding production method that keeps the gas pressure at a high pressure in the closed system have drawbacks, and dissolved a large amount of gas. It is difficult to produce a large amount of liquid.
  • the closed-system high-pressure holding manufacturing method needs to produce a gas-dissolved liquid completely in a closed system, whereas in the open-system flow-type manufacturing method, the liquid must be in contact with air at atmospheric pressure. Therefore, it was difficult to maintain a high pressure, and it was difficult to establish a method for producing a gas-dissolved liquid having the advantages of both methods.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-56632
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2005-29694 Disclosure of Invention
  • An object of the present invention is to provide a method and an apparatus for producing a liquid in which a gas such as hydrogen containing a supersaturated state is dissolved.
  • the present inventors diligently studied a method for producing a gas-dissolved liquid that has the advantages of the above-described open-type flow-through production method and the closed-system high-pressure holding production method that keeps the gas pressure high in a closed system.
  • the inventors of the present application dissolved a gas in a liquid under high pressure by a closed system high pressure holding manufacturing method.
  • the manufacturing equipment must be placed in a closed system so that it does not come into contact with the atmosphere.
  • the pressure is high because of the open system.
  • the present inventors have further studied, and when the gas is mixed with the liquid and flows in the apparatus as a gas-liquid mixed phase flow, the action of the reactor unit is obtained by using a means called a reactor unit that inhibits the flow of the liquid. As a result, it was found that the pressure was maintained and the gas was efficiently dissolved in the liquid, and the present invention was completed.
  • the present invention is as follows.
  • Pressurizing means provided in the middle of the liquid circulation pipe, pressurizing means for pressurizing the raw material liquid to circulate through the circulation pipe;
  • At least one gas-liquid mixing part provided in the middle of the liquid circulation pipe, which is connected to the gas container via the gas supply pipe and is used for mixing the gas from the gas container with the liquid Liquid mixing section,
  • At least one reactor unit provided downstream of the gas-liquid mixing unit in the middle of the liquid circulation pipe, maintaining the pressure of the gas mixed liquid mixed in the gas-liquid mixing unit, A reactor section that promotes dissolution,
  • a continuous pressurized flow type gas-dissolving liquid manufacturing apparatus for continuously manufacturing a gas-dissolving liquid while pressurizing the liquid in a liquid circulation pipe.
  • the reactor part has a structure that partially obstructs the flow of liquid selected from the group consisting of a fin structure, a notch structure, a protrusion structure, a plasting structure, and a groove structure, [3] Pressurized flow type gas dissolution liquid production equipment.
  • the reactor unit is a static mixer, any one of [1] to [4].
  • the continuous pressurized flow type gas dissolved liquid production apparatus is a static mixer, any one of [1] to [4].
  • the pressurizing means is a pressurizing pump, [;! ]
  • the continuous pressurized flow type gas-dissolving liquid production apparatus according to any one of [6] to [6].
  • [1 2] Continuously pressurized flow-type gas-dissolved liquid production according to any one of [1] to [11], which has a plurality of gas-liquid mixing units and reactor units, and can dissolve a plurality of gases. apparatus.
  • the liquid is selected from the group consisting of water, mineral water, tea, coffee, soft drink, juice, gel drink, cosmetics, shampoo and physiological saline
  • the gas is a group consisting of hydrogen gas, oxygen gas and ozone gas
  • the continuous pressurized flow type gas-dissolved liquid producing apparatus according to any one of [1] to [12], wherein the gas-containing liquid producing apparatus comprises any one of the gas selected from:
  • a method for producing a gas-dissolved liquid by continuously dissolving a gas in a pressurized liquid flowing in a pipeline including the following steps (1) to (3):
  • the pressurized liquid flowing through the liquid circulation pipe is pressurized by supplying a pressurized gas to the gas-liquid mixing section provided in the middle of the liquid pipe.
  • the method for producing a gas-dissolved liquid by continuously dissolving the gas in the pressurized liquid flowing in the pipe line which is a step of mixing the pressurized gas with the liquid.
  • the obtained gas mixed liquid is passed through a reactor section provided in the middle of the liquid circulation pipe and downstream of the gas-liquid mixing section.
  • the process of dissolving the gas in the liquid by maintaining the pressurized state of the gas mixture liquid.
  • the gas is continuously dissolved in the pressurized liquid flowing in the pipe line of [14] or [15].
  • the gas-liquid mixing part in the step (1) is an agitator, and by continuously dissolving the gas in the pressurized liquid flowing through the pipe line of [15] or [16], Gas dissolution A method for producing a liquid.
  • the reactor part in the step (2) has a structure that partially obstructs the flow of a liquid selected from the group consisting of a fin structure, a notch structure, a protrusion structure, a blast processing structure, and a groove structure.
  • the reactor in the step (2) is a static mixer, and by continuously dissolving the gas in the pressurized liquid flowing in any of the pipes of [16] to [19], A method for producing a gas-dissolved liquid.
  • the pressurized liquid in the step (1) is pressurized by a pressure pump, and the gas is continuously dissolved in the pressurized liquid flowing through the pipe line of any one of [16] to [20]
  • a method for producing a gas-dissolved liquid is provided.
  • Gas selected from the group consisting of water, mineral water, tea, coffee, soft drinks, juice and physiological saline, and gas selected from the group consisting of hydrogen gas, oxygen gas and ozone gas A method for producing a gas-dissolved liquid by continuously dissolving a gas in a pressurized liquid flowing through the pipe line of any one of [14] to [24].
  • FIG. 1A is a diagram showing an example of a continuous pressurized flow type gas-dissolved liquid production apparatus of the present invention.
  • FIG. 1B is a diagram showing an example of a continuous pressurized flow type gas-dissolved liquid production apparatus of the present invention.
  • FIG. 1C is a view showing an example of a continuous pressurized flow type gas-dissolved liquid production apparatus of the present invention.
  • FIG. 2 is a cross-sectional view of an ejector used as a gas-liquid mixing part of the continuous pressurized flow type gas-dissolved liquid production apparatus of the present invention.
  • FIG. 3 is a view showing an example of a gas-liquid mixing unit of the continuous pressurized flow type gas-dissolved liquid production apparatus of the present invention.
  • FIG. 4 shows an example of the gas-liquid mixing part of the continuous pressurized flow type gas-dissolved liquid production apparatus of the present invention.
  • Fig. 5 is a diagram showing a static mixer used as a reactor part of the continuous pressurized flow type gas dissolved liquid production apparatus of the present invention
  • Fig. 5A is a cross-sectional view of the static mixer
  • Fig. 5B is a right twist element
  • Fig. 5 C is a view of Fig. 5 B rotated 90 °
  • Fig. 5 D is a front view of the left twist element
  • Fig. 5 E is a view of Fig. 5 D rotated 90 °.
  • FIG. 5F is a diagram showing an element provided with a protruding structure.
  • FIG. 6 is a diagram showing an example of a continuous pressurized flow type gas dissolving liquid production apparatus of the present invention capable of dissolving a plurality of gases in a liquid.
  • FIG. 7 is a diagram showing an example of a continuous pressurized flow type gas dissolving liquid production apparatus of the present invention capable of dissolving a plurality of gases in a liquid.
  • FIG. 8 is a view showing the continuous pressurized flow type gas dissolved liquid production apparatus of the present invention used in Example 1.
  • FIG. ' is a view showing the continuous pressurized flow type gas dissolved liquid production apparatus of the present invention used in Example 1.
  • FIG. 9 is a flowchart showing the continuous pressurized flow type gas-dissolved liquid production apparatus of the present invention used in Example 4.
  • Liquid distribution tube Liquid recovery pipe
  • a gas maintained at a high pressure is mixed with a liquid flowing through a thin tube, and a gas mixed liquid in which the gas is mixed flows.
  • gas-dissolved liquid refers to the state in which gas is dispersed in the liquid to form a uniform phase
  • gas-mixed liquid refers to the state in which liquid and gas are mixed. Also called.
  • the gas-mixed liquid flows in the narrow tube, it becomes a gas-liquid mixed-phase flow in which gas bubbles exist in the liquid.
  • the gas-dissolved liquid and the gas-mixed liquid are not strictly distinguished from each other.
  • the gas-dissolved liquid When the gas-dissolved liquid is produced using the apparatus of the present invention, the gas is mixed with the liquid to form the gas-mixed liquid.
  • the combined liquid is converted into a gas-dissolved liquid through a part of the reactor, but part of the gas is dissolved in the liquid even in the gas mixed liquid state, and part of the gas is degassed from the liquid even in the gas-dissolved liquid state. It can be present in the liquid in the form of bubbles.
  • the gas state when the gas is mixed with the liquid, the gas state may be distinguished from the gas-dissolved liquid or the gas-mixed liquid depending on which is superior.
  • the gas-dissolved liquid may be referred to as a gas-dissolved liquid.
  • the narrow pipe line through which the liquid flows has a gas-liquid mixing part and a part of the reactor in the middle of the pipe line.
  • the gas-liquid mixing section, the narrow tube and the reactor section are connected with the gas-liquid mixing section located upstream of the reactor part so that the liquid flows through the liquid. Flows through the part and the reactor part.
  • upstream and downstream are referred to as upstream or downstream on the basis of the direction of the flow of the liquid flowing through the conduit of the flow-type device.
  • the liquid flows from the raw material container through the narrow tube to the gas dissolved liquid receiver.
  • the raw material liquid is a liquid that is intended to dissolve a gas and is a liquid before the gas is dissolved.
  • the gas While the liquid flows from the raw material liquid container to the gas-dissolved liquid receiver, the gas is mixed in a state where pressure is applied to the liquid flowing through the narrow tube by the gas-liquid mixing section. However, at this time, the gas is not sufficiently dissolved in the liquid, and the gas and the liquid are mixed in the state where the gas bubbles exist in the liquid, that is, in the state of the gas mixed liquid.
  • the gas mixture liquid flows toward the reactor section in the narrow tube, and the pressure of the gas mixture liquid is maintained in the pipe line upstream of the reactor section or in the reactor section by the action of the reactor section. As a result, a large amount of gas is dissolved in the liquid by the action of pressure.
  • the bubble size of the gas mixed in the liquid in the state of bubbles is reduced, the contact area between the gas and the liquid is increased, and the gas is more easily dissolved in the liquid.
  • the gas-containing liquid in which the gas is dissolved is gradually depressurized in the reactor and exits the reactor. Enter the receiver through the narrow tube.
  • the thin tube is made of a tube that can withstand high pressure
  • the thin tube that can withstand high pressure is preferably a tube made of a pressure resistant material such as iron, stainless steel, or resin. .
  • the gas-liquid mixing unit is configured such that the pipe line of the thin tube through which the liquid flows and the pipe to which the gas is supplied merge.
  • the gas flowing in the narrow tube is continuously supplied in a pressurized state.
  • the gas may be supplied from a high-pressure cylinder containing gas.
  • the gas-liquid mixing part may have any form as long as the gas is mixed with the liquid. For example, a pipe that feeds pressurized gas is connected to the side of a thin tube through which liquid flows, and an air supply port is provided in the connection, and gas is injected and mixed from the air supply port into the liquid flowing through the thin tube. This should be done.
  • the pipe that feeds the gas branches into a T-shape or a substantially T-shape with respect to the thin tube through which the liquid flows.
  • the air supply port may be provided on the side wall of the thin tube, or may be inserted and opened in the liquid flowing through the thin tube.
  • an apparatus having an ejector structure can be used.
  • An ejector is a device that draws gas in a depressurized state by providing a bottleneck in a part of the liquid flow path and increasing the flow velocity in that part.
  • the branch pipe is connected to the main pipe in a T shape, and the liquid flowing through the main pipe is decompressed in the bottleneck, and the gas in the non-pressure branch pipe is drawn into the liquid. If fine bubbles are generated by the ejector, the contact surface between the liquid and the gas becomes large and the gas can be easily dissolved.
  • pressure is applied to the liquid before it flows into the reactor section downstream of the gas-liquid mixing section.
  • pressure is applied to the liquid and it flows in the pipe of the narrow tube.
  • pressure may be applied to the inside of the container for supplying the raw material liquid, and the pressure may cause the liquid to flow through the narrow tube, or a pump, compressor, booster, etc. may be provided in the middle of the narrow tube. By these, pressure may be applied to the liquid so that it flows in the narrow tube.
  • the raw material liquid may be placed in a pressurized container and the liquid may be flowed by pressure.
  • tap water may be used as the raw material liquid and the supply pressure of tap water may be used.
  • a pressure pump for example, a vortex pump (cascade pump) is used.
  • a vortex pump is a pump that discharges liquid while increasing the pressure while rotating a disk with a groove in a narrow casing to cause a strong vortex in the liquid and making the inner circumference of the casing approximately one round.
  • a thin tube can be allowed to flow under pressure. If a liquid is flowed under pressure, the flow rate will exceed a certain speed. '
  • the pump is located upstream of the reactor, and may be located either downstream or upstream of the gas-liquid mixing section.
  • a vortex pump is used as the pump, it is preferably installed downstream of the gas-liquid mixing section.
  • liquid flow pipe which is a liquid supply pipe through which liquid flows upstream of the pump
  • gas supply pipe to which gas is supplied
  • gas supplied at high pressure is supplied to the liquid flowing through the narrow pipe by the action of the pump.
  • the liquid in which the gas is mixed by the gas-liquid mixing part flows through the narrow tube and travels toward the reactor part.
  • the reactor section works as a pressure maintaining part.
  • the pressure of the liquid mixed with the gas is maintained high, the gas can be dissolved in a large amount in the liquid.
  • the reactor section increases the friction between the liquid flowing inside and the reactor section, or resists the flow of the liquid in which the gas is mixed, thereby inhibiting the rapid flow of the liquid.
  • the pressure in the upstream of the reactor part and Z or the pressure inside the reactor part can be maintained.
  • a part of the reactor is, for example, a thin tube having a plurality of fin structures inside. It may also be a narrow tube having a bottleneck.
  • the reactor part of the present invention also functions as a part for increasing the contact area between the gas and the liquid.
  • a static mixer is fisted as an example of the reactor unit.
  • a static mixer has a plurality of elements (eg, 8 and 16) in an elongated tubular housing.
  • This element is a rectangular metal flat plate with a 180 ° right twist (see Figure 5B and Figure 5C) or a left twist ( Figure 5).
  • Fig. 5 B and Fig. 5 D are front views of the right and left twist elements, respectively.
  • Fig. 5 C and Fig. 5 E are the elements shown in Fig. 5 B and Fig. 5 C, respectively.
  • a static mixer is created by combining these elements as many times as necessary.
  • the size of each element of the static mixer is, for example, about 1.5 cm in length and about 1 cm in width. Use the same number of right and left twist combinations.
  • the 8-element static mixer is about 18 cm long, and the 32-element type is about 54 cm long.
  • fins may be provided on the static mixer elements.
  • the protrusion may be a small protrusion or a wholesale protrusion.
  • turbulence is generated by the protrusions and fins, the bubble size of the gas mixed in the liquid is reduced, the contact area between the gas and the liquid is increased, and the gas dissolution efficiency is improved.
  • the surface of the static mixer element may be processed so as to increase the friction with the liquid. For example, the element surface is roughened by plast processing, and the element surface is grooved.
  • the gas is continuously dissolved in the liquid while the liquid flows from the raw material liquid container to the gas dissolution liquid receiver.
  • at least the gas dissolving liquid receiver may be in contact with the atmosphere.
  • the device of the present invention is not completely closed from the atmosphere and is open to the atmosphere. Therefore, it can be said that the apparatus of the present invention is an open system apparatus.
  • the pressure gradually decreases from the liquid introduction path to the liquid lead-out path inside the reactor section. In this way, by gradually reducing the pressure, the sudden It is possible to prevent the disappearance of intense supersaturated gas. Therefore, the gas is maintained in a supersaturated state in the gas-dissolved liquid recovered through the reactor through the narrow tube.
  • the apparatus of the present invention can keep a gas composed of a single atom such as hydrogen that is hard to be bubbled and hardly dissolved in a liquid in a supersaturated state for a long time, so that a gas that is difficult to be bubbled such as hydrogen is dissolved in a liquid. Suitable for At this time, if the contact is made at a low temperature, the gas can be dissolved at a high concentration.
  • the gas-liquid mixing unit and the reactor unit may be connected via a thin tube, or the reactor unit may be directly connected downstream of the gas-liquid mixing unit.
  • a valve is installed in the middle of the narrow pipe as necessary to prevent the flowing liquid from flowing backward. .
  • the inner diameter of the narrow tube is 0.2-5 cm, preferably 0.5-2 cm, depending on the amount of the gas-dissolved liquid to be produced.
  • the inner diameter of the reactor is 0.2 to 5 cm, preferably 0.5 to 2 cm, depending on the amount of the gas-dissolved liquid to be produced.
  • the ratio of the tube inner diameter to the length of the reactor section is 1:10 to 200, preferably 1:20 to 100.
  • the pressure applied to the gas mixed with the liquid flowing in the narrow tube is 1 to 20 atmospheres, preferably 2 to 10 atmospheres, and more preferably 3 to 5 atmospheres.
  • the gas is supplied in a high-pressure cylinder, but the high-pressure cylinder is usually under a pressure of several tens to several hundreds of atmospheres. Therefore, when supplying gas from a high-pressure cylinder, a pressure reducing valve is provided between the high-pressure cylinder and the gas-liquid mixing unit, and the pressure of the gas supplied to the gas-liquid mixing unit is reduced to the above pressure.
  • the pressure applied to the liquid flowing in the narrow tube is 3 to 5 atm in the reactor introduction path, and the pressure is maintained upstream of the reactor section and / or in the vicinity of the reactor section introduction path.
  • the pressure applied to the liquid gradually decreases.
  • the pressure applied to the gas is about 1 to less than 2 atmospheres, preferably about 1 atmosphere, which is almost the same as the atmospheric pressure.
  • the flow rate of liquid flowing through the narrow tube of this device depends on the amount of gas dissolved liquid to be manufactured and the amount of gas dissolved liquid to be produced, but when using a reactor with an inner diameter of 1.1 cm, it is preferably 5 to 80 L / min. Is 10-40L / min.
  • the flow rate of gas supplied to the gas-liquid mixing section is 0.2-5. L / min, preferably 0.5-2 L / min.
  • the apparatus of the present invention pressure is applied when the gas and the liquid are in contact with each other, and the gas is dissolved in a short time, so that the flow rate of the liquid can be increased. Since the liquid flow rate can be increased, the gas flow rate can be adjusted accordingly. For example, if a liquid is flowed at a flow rate of 40 L / min to produce a gas-dissolved liquid, about 2.5 tons of gas-dissolved liquid can be produced per hour. In order to achieve this production efficiency in a closed system high pressure holding manufacturing method using a closed pressurized tank, a huge tank or a large number of tanks are required.
  • the continuous pressurized flow type gas-dissolved liquid production apparatus of the present invention can produce a gas-dissolved liquid much more efficiently and inexpensively than conventional methods.
  • the continuous pressurized flow type gas-dissolved liquid production apparatus of the present invention may include only one set of the gas-liquid mixing unit and the reactor unit, or may include a plurality of sets. When only one set is provided, one type of gas can be dissolved and contained in the liquid, and when multiple sets are provided, a plurality of gases can be dissolved and contained in the liquid.
  • the conditions such as the pressure of each gas and liquid are the same as in the above-described apparatus that dissolves one kind of gas in a liquid. It is.
  • Examples of the liquid that dissolves gas using the apparatus of the present invention include general aqueous beverages such as mineral water, fruit juice and fruit beverages, coffee beverages, oolong tea beverages, green tea beverages, tea beverages, and barley tea beverages.
  • Examples include tea drinks, vegetable drinks, sports drinks, soft drinks, gel drinks, cosmetics, shampoos, and physiological saline.
  • Examples of the gas dissolved in the liquid include hydrogen gas, oxygen gas, ozone gas, and the like, but hydrogen gas is preferable.
  • hydrogen when hydrogen is used, hydrogen is about 1 atmosphere of hydrogen at 1 atmosphere and room temperature
  • the gas-containing liquid of the present invention contains 10 mL or more, preferably 15 mL or more, particularly preferably 17.5 mL or more of hydrogen molecules per 1 L of water.
  • the gas-dissolved liquid of the present invention contains 0.1 ppm or more, 0.5 ppm or more, preferably 1 ppm or more, more preferably 1.5 ppm or more.
  • the gas dissolution of the present invention The liquid contains hydrogen of not less than 0. ImM, preferably not less than 0.4 mM, more preferably not less than 0.6 mM, particularly preferably not less than 0.8 mM.
  • the apparatus of the present invention a large amount of hydrogen-dissolved water in which hydrogen is dissolved in a supersaturated state can be obtained. If the dissolved hydrogen concentration is 1.52 PP m or more, or 1.5 mg / L or more, it is considered that hydrogen is dissolved due to supersaturation.
  • the gas ⁇ -containing liquid of the present invention contains 0.2 mg or more, preferably 10 mg or more, more preferably 40 mg or more per 1 L of water. When coexisting with hydrogen, 0.2 mg or more, preferably 2 mg or more, more preferably 10 mg or more is contained per liter of water.
  • the pH of the gas-dissolved liquid is 3 to 11, and the redox potential is ⁇ 50 mV or less.
  • the gas-dissolved liquid obtained by using the apparatus of the present invention is preferably stored in a container made of a material that cannot transmit gas such as aluminum.
  • a container made of a material that cannot transmit gas such as aluminum. Examples of such containers include an aluminum bouch and an aluminum can.
  • the gas-dissolved liquid produced using the apparatus of the present invention is used as drinking water or soft drinks.
  • drinking water and soft drinks in which hydrogen is dissolved drinking water and soft drinks in which oxygen is dissolved
  • drinking water and soft drinks in which hydrogen and oxygen are dissolved It becomes drinking water and soft drinks.
  • the gas-dissolved liquid produced using the apparatus of the present invention includes cosmetics in which gas is dissolved, pharmaceuticals in which gas is dissolved, for example, cosmetics and pharmaceuticals in which hydrogen is dissolved, cosmetics in which oxygen is dissolved, and Used as pharmaceuticals and cosmetics and pharmaceuticals in which hydrogen and oxygen are dissolved, specifically, for example, pharmaceuticals such as infusion containing hydrogen and oxygen simultaneously.
  • the gas-dissolved liquid produced using the apparatus of the present invention is used as a cleaning liquid in which a gas is dissolved.
  • a cleaning liquid for example, when hydrogen is dissolved in pure water, a liquid having a large reducing power is formed. It can be used for washing.
  • gas-dissolved liquid produced using the apparatus of the present invention can also be used for storing gas.
  • the apparatus of the present invention is used as a tap water faucet.
  • gas-dissolved tap water can be easily produced at home.
  • the raw material liquid is pressurized by the supply pressure of tap water.
  • this continuous pressurized flow type gas-containing liquid production apparatus 100 includes a gas-liquid mixing unit 35 and a reactor unit 70.
  • a gas inlet 41 is provided in the pipe 40 shown in FIG. 3, and one of the pipes 40 shown in FIG. And a part having a gas permeable membrane or a polynomial gas permeable plate 42 at the part.
  • the reactor unit 70 is located downstream of the gas-liquid mixing unit 35, and the gas-liquid mixing unit and a part of the reactor may be directly connected or connected via a thin tube as shown in Fig. 1. A. May be.
  • FIG. 2 shows the structure of the ejector 50.
  • the ejector 50 has a nozzle inlet 52, a diffusion chamber 53, and an inner diameter that tapers and extends from the liquid inlet 51 and the liquid inlet 51.
  • a diffuser portion 54, an outlet channel with a uniform inner diameter communicating with the diffuser portion 54, and a gas introduction channel 56 connected with the diffusion chamber 53 are provided.
  • the inside of the diffusion chamber 53 becomes negative pressure, so the gas introduction passage 5 6 Since the gas is sucked from the gas and mixed sufficiently in the diffuser section 54, the sucked gas can be efficiently absorbed into the liquid.
  • the flow rate of the liquid can be increased, a large amount of gas can be absorbed in a large amount of liquid while being small in size.
  • a static mixer may be provided downstream of the gas-liquid mixing section.
  • an ejector 50 is used as a gas-liquid mixing unit, and a static mixer 60 that is a reactor unit is directly connected.
  • This static mixer 60 has an elongated tubular housing as shown in FIG. A plurality of elements 6 2 (for example, 8, 16 or 32 elements) are arranged in the group 61, and this element 6 2 is a 180 ° right twist of a square metal plate (Fig. 5). B and Fig. 5C) or a left twist (see Fig. 5D and Fig. 5E).
  • FIGS. 5B and 5D are front views of the right twist element and the left twist element, respectively, and FIGS. 5C and 5E rotate the elements shown in FIGS. 5B and 5C by 90 °, respectively. It is a figure of a state.
  • the static mixer 60 is created by appropriately combining these elements 62 as many as required.
  • the length of each element of the static mixer is about 1.5 cm and the width is about 1 cm, for example. Use the same number of right and left twist combinations.
  • the 8-element type static mixer is about 18 cm long, and the 32-element type is about 54 cm long.
  • 1A is a device for dissolving one kind of gas in a liquid, comprising only one set of a gas-liquid mixing unit and a reactor unit. Yes.
  • the container 2 1 containing the raw material liquid 2 2 and the liquid introduction path 3 6 B of the gas-liquid mixing part 3 5 are connected to the liquid flow tubule (liquid supply pipe) 2 4 via the pressure pump 2 3. Yes.
  • the gas cylinder 25, which is a pressurized gas supply source, and the gas introduction path 37B of the gas-liquid mixing unit 35 are connected via a pressure reducing valve 26, a pressure gauge 27 and a flow meter (not shown).
  • Gas supply piping 28 is connected.
  • the liquid lead-out path 3 8 B of the gas-liquid mixing section 35 is maintained at normal pressure via the liquid circulation capillary (gas dissolved liquid recovery pipe) 29, the reactor section 70, and the stop valve 30. It is connected to the upper part of the receiver 31 for gas dissolved liquid.
  • the pressurizing pump 23 may be located downstream of the gas-liquid mixing unit and upstream of a part of the reactor.
  • the gas-dissolved liquid production apparatus 100 is operated as follows to produce a predetermined gas-dissolved liquid 32. That is, the raw material liquid 2 2 in the container 21 is pressurized to a predetermined pressure, for example, 1 to 10 atmospheres by the pressurizing pump 2 3, and the liquid introduction path of the gas-liquid mixing unit 3 5
  • the gas in the gas cylinder 25 is adjusted to a predetermined pressure, for example, 3 to 5 atm by the pressure reducing valve 26, and is supplied to the gas-liquid mixing unit 35 by the gas supply pipe 28. Supplied to gas inlet path 3 7 B.
  • the gas mixed liquid that has exited from the liquid lead-out path 3 8 B of the gas-liquid mixing unit 35 is directed to the reactor unit 70.
  • the gas mixture liquid has already been pressurized, and the pressure is maintained by the action of the reactor section, and enters the reactor section introduction path 7 1 B in a pressurized state. For this reason, the gas is dissolved in the liquid in the reactor section.
  • the liquid is gradually depressurized in the reactor section, and a gas-dissolved liquid with a pressure close to normal pressure comes out from the outlet of the reactor part, and a liquid flow tube (gas-dissolved liquid recovery pipe) 29 and a stop valve 30 After that, it is led to the upper part of the receiver 31 maintained at almost normal pressure.
  • the receiver 31 a part of the gas dissolved in the obtained gas-dissolved liquid 3 2 is vaporized, but a large amount of gas remains in the gas-dissolved liquid 3 2 in a supersaturated state. The vaporized gas is released into the atmosphere.
  • the receiver 31 may be sealed to prevent entry of dust in the atmosphere, but it is not pressurized and is maintained at almost normal pressure.
  • Fig. 1B shows a device with a pressure pump 23 located downstream of the gas-liquid mixing section.
  • the gas mixed liquid mixed in the gas-liquid mixing unit 35 is directed to the reactor unit 70 in a pressurized state by the action of the pressurizing pump.
  • the pressurizing pump for example, a vortex pump may be used.
  • FIG. 1C shows an apparatus having an ejector 50 as a gas-liquid mixing section and a static mixer 60 connected directly to the ejector 50.
  • FIGS. 6 and 7 show an apparatus for producing a gas-dissolved liquid in which two kinds of gases are dissolved.
  • the apparatus shown in FIG. 6 has two gas-liquid mixing sections and two reactor sections, and the gas in the first gas cylinder 15 is in the first gas-liquid mixing section 35 A and the first recycle section.
  • Actor unit 7 Dissolved in liquid 1 1 by OA and once stored in liquid receiver 2 1 in which the gas in the first gas cylinder is dissolved.
  • the gas in the second gas cylinder 25 is converted into a liquid in which the gas in the first gas cylinder is dissolved by the second gas-liquid mixing section 35 B and the second reactor section 70 B.
  • a liquid 32 which is dissolved and dissolves two kinds of gases is obtained.
  • the gas-dissolved liquid manufacturing apparatus 10 0 1 shown in FIG. 6 obtains a gas-dissolved liquid in a pressurized state at the first gas-liquid mixing unit 35 A, and then returns to normal pressure to dissolve normal-pressure gas. A liquid is obtained, and this gas-dissolved liquid at normal pressure is again returned to a predetermined pressure, for example, 1 to 10 gas by the pressure pump 23. Pressurize the pressure and supply it to the second gas-liquid mixing part 3 5 B via the second gas-dissolved liquid supply pipe 24, but omit the step of decompression friend pressurization at this part. Is also possible. An example in which the steps of depressurization and pressurization are omitted is shown in FIG. In the apparatus shown in FIG.
  • a set of two gas-liquid mixing sections and a reactor section are connected in series, and the gas in the first gas cylinder 15 is the first gas-liquid mixing section 3 5 A and first reactor part 7 OA dissolves in liquid 11 and the obtained gas-dissolved liquid is sent to the second gas-liquid mixing part 3 5 B as it is, and the second gas-liquid mixing part 3 5 B and the second reactor section 70 B dissolve the gas in the second gas cylinder into the liquid in which the gas in the first gas cylinder is dissolved, and dissolve the two types of gas. Liquid 3 2 is obtained.
  • the first reactor section 7 OA liquid derivation Connect the line 7 2 A and the liquid inlet 3 5 B of the second gas-liquid mixing section 3 5 B by the flow rate control valve 3 3 and the first gas-dissolved liquid supply pipe 3 4, The gas-liquid mixing section 3 5 of the mi and the first reactor section 70 A
  • the pressurized first gas-dissolved liquid obtained at the pressure of the first gas-dissolved liquid supply pipe 3 via the flow control valve 3 3 4 is only supplied directly to the liquid introduction path 36B of the second gas-liquid mixing section 35B, and the other configurations are substantially the same.
  • the flow rate adjusting valve 33 may not be provided, but the first gas-dissolved liquid in a pressurized state is given a slight pressure loss at this portion, and the liquid introduction path of the second gas-liquid mixing unit 35 B It is preferable to supply to 3 6 B because the flow rate is stabilized and control is facilitated. '
  • oxygen gas may be used as the first gas and hydrogen gas may be used as the second gas.
  • tap water is used as the raw material liquid, and water from the tap is used.
  • the raw water supply pipe 2 4 was passed.
  • the supply pressure of tap water was about 1.5 to 2 atmospheres.
  • a stainless steel pipe (11 mm in diameter) was used as the thin tube, a stainless steel T-shaped joint was used as the gas-liquid mixing part, and hydrogen gas was supplied to the joint from a hydrogen cylinder.
  • the pressure of the hydrogen gas supplied to the gas-liquid mixing section was 0 ⁇ 4 MPa (megapascal) (about 4 atm).
  • a static mixer 32-fin static mixer with 32 elements was connected to the gas-liquid mixing section.
  • FIG. 8 shows the configuration of each part of the equipment used.
  • 1 to 6 are joints (fine tubes) or parts for connecting thin tubes, and 4 corresponds to the gas-liquid mixing part.
  • 7 is an electromagnetic valve
  • 8 is a flow switch
  • 9 is a valve
  • 10 is a static mixer.
  • 1 1 and 1 2 are electrical components. .
  • the flow rate of water flowing through the pipe of the device is 4, 6, 8 or 10 L / min, and the flow rate of hydrogen gas supplied to the gas-liquid mixing section is 0.1, 0.4, 0.6, 0.8. It was 1 ⁇ 10L / min.
  • the hydrogen-dissolved water that came out of the narrow tube through the static mixer was collected and the hydrogen concentration was measured.
  • the results are shown in Table 1.
  • the unit of hydrogen concentration is ppm.
  • the amount of dissolved hydrogen increases as the water flow rate increases and the hydrogen flow rate increases.
  • the amount of dissolved hydrogen increases when a static mixer with 32 elements is used than when a static mixer with 8 elements is used.
  • a static mixer in which the surface of the element is plasted (the blasting is roughened with sandpaper)
  • a static mixer in which the surface of the element is processed into a wholesale shape metal A static mixer (with a dent on the surface with a drill) was used.
  • Table 2 The results are shown in Table 2. As shown in Table 2, a processed static mixer was used. In this case, the amount of dissolved hydrogen is larger than when a raw static mixer is used. By plasting the elemecito of the static mixer, the friction between water and the inside of the reactor increases, and the pressure in the reactor increases. In addition, if the element is processed into a wholesale shape, or if a dent is formed, water flow in the reactor will be disturbed, and the water pressure in the reactor will increase. This result shows that the gas dissolution efficiency is increased by keeping the pressure of the liquid near the reactor section and / or the upstream reactor section entrance.
  • Example 3 the tap water of the Tokyo person
  • 5 Chuo-ku (redox potential +420 mV, pH 7.2) was used as raw water, and the production equipment 1 0 1 shown in FIG. Thus, oxygen and hydrogen-dissolved water were produced.
  • the static mixer was not used as a comparative example, and the comparative example was combined with an 8-element type static mixer as a reactor part.
  • Example 3-2 was also used in which a 32-element static mixer was also used as a reactor part in the same comparative example.
  • Example 3-1 and Example 3-2 were all made the same, and oxygen and hydrogen dissolved water were used.
  • Table 3 summarizes the manufacturing conditions and measurement results. Oxidation reduction potential, oxygen dissolution amount, hydrogen dissolution amount, and pH were measured at room temperature using a 0PR measuring instrument, oxygen amount measuring instrument, hydrogen measuring instrument, and pH meter manufactured by Toa DKK ( The same applies to the following).
  • Example 3-2 when a reactor unit using 32 elements is used, a supersaturated or almost saturated solution can be produced regardless of the type of gas, whether oxygen or hydrogen. Therefore, it was shown that sufficient pressure was maintained for a sufficient period of time to dissolve the reactor into a supersaturated state.
  • the saturated concentrations of oxygen and hydrogen are approximately 42 mg / L and 1.5 mg / L, respectively.
  • Ejectors 50A and 50B were used, and no static mixer was used.
  • the comparative example shows a small amount of dissolved oxygen and a small amount of dissolved hydrogen, indicating that the presence of the reactor is important for the amount of dissolved gas. ing.
  • oxygen and hydrogen are more dissolved in the 3 2 element than in the 8 element. This indicates that a larger number of elements is advantageous for gas dissolution because the pressure is kept high.
  • the results when using a 64 element static mixer were the same as when using a 32 element static mixer, indicating that 32 elements are sufficient. . _
  • FIG. 9 shows a flowchart of the manufacturing equipment.
  • the manufacturing apparatus of FIG. 9 is an embodiment of the apparatus shown in FIG. 1B. Nitrogen gas is used to discharge the liquid in the tank, not the gas dissolved in the liquid.
  • This valve When replacing the addition route ⁇ This valve is used to supply hydrogen gas during production, and it opens and closes automatically. .
  • Tank hydrogen replacement ⁇ Filling path This valve is used to supply hydrogen gas when hydrogen is replaced, and opens and closes automatically.
  • Addition path replacement ⁇ Valve for releasing gas when draining, etc., and automatically opens and closes.
  • This valve is used to supply nitrogen gas for forced drainage, and it opens and closes automatically.
  • HAV52 Hydrogen dissolved water supply solenoid valve
  • This valve is used to send hydrogen-dissolved water to the filling machine and automatically opens and closes. It also automatically opens and closes during filling route hydrogen replacement and CIP cleaning.
  • Pulp that opens and closes automatically during forced drainage and drains. During CIP cleaning, it operates simultaneously with the set temperature check.
  • This pulp automatically opens and closes when draining into the HTA2 tank.
  • Mainly HTA1 tank 'Pulp that opens and closes automatically when draining in the HPU01 pump.
  • the liquid inlet of this vortex pump is a gas-liquid mixing section, and gas is mixed with the liquid.
  • This tank is mainly used for adjusting the hydrogen gas pressure.
  • This tank mainly stores products sent from HPU01.
  • the pressure in the tank is equivalent to atmospheric pressure.
  • This switch is used to control the water supply and drainage of the tank, and is controlled by three switches, H, M, and L.
  • Temperature sensor (Dynamic 1) This is a part for measuring the temperature of hot water supplied to the HTA3 tank during CIP.
  • This valve is used to adjust the pressure inside the HTA2 tank and opens when the pressure inside the HTA2 tank exceeds the set value.
  • Liquid and hydrogen gas are brought into gas-liquid contact under pressure to dissolve hydrogen gas in the gas.
  • the device stops when it reaches OOOppm.
  • the raw material liquid container 21 in FIG. 1B is connected to the part indicated by water.
  • the vortex pump shown by HPU01 corresponds to the pressurizing pump 23 in Fig. 1B, and the gas-liquid mixing section 35 in Fig. 1B exists immediately upstream of the vortex pump, and hydrogen gas is mixed with water. Is done.
  • the part shown by the reactor in the apparatus shown in FIG. 8 is the reactor part 7 in FIG. 1B.
  • the hydrogen-dissolved water exiting from the reactor section passes through a thin tube and is stored in a tank H T A 3 corresponding to the gas-dissolved liquid receiver 31 in FIG. 1B.
  • the device shown in Fig. 9 can produce hydrogen-dissolved water in which hydrogen is dissolved in a supersaturated state even when water is flowed at a flow rate of 20 L / min using a reactor with an internal diameter of 1.1 cm.
  • the production speed of hydrogen-dissolved water was 1.2 tons / hour.
  • a gas-dissolved liquid in which a plurality of gases are dissolved can be manufactured by mixing a plurality of gases at the same time or by partially connecting the apparatus.

Abstract

The invention provides a process and equipment for producing a liquid containing a gas (such as hydrogen) dissolved therein in a supersaturated state or the like. Equipment of continuous pressure flowing type for producing a liquid containing a gas dissolved therein, which comprises a pipe for flowing a raw material liquid to a receiver for a liquid containing a gas dissolved therein, a pressurizing means provided at a site of the pipe for pressurizing the raw material liquid and thereby flowing it through the pipe, at least one gas-liquid mixing section provided at another site of the pipe in a state connected to a gas container through a gas feed pipe for mixing the liquid with a gas fed from the gas container, and at least one reactor section provided at another site of the pipe on the downstream side of the gas-liquid mixing section for keeping the pressure of the gas-liquid mixture formed in the gas-liquid mixing section and accelerating the dissolution of the gas in the liquid and in which a liquid containing a gas dissolved therein is continuously produced by flowing a liquid through the pipe under pressurizing.

Description

連続加圧流通式による気体溶解液体の大量製造法とその製造装置 技術分野  Mass production method of gas-dissolved liquid by continuous pressurized flow system and its production equipment
本発明は、 大量生産に向いた、 水素等の気体を多く含有する気体溶解液体の製 造方法及びその製造装置に関する。 明  The present invention relates to a method for producing a gas-dissolved liquid containing a large amount of gas such as hydrogen and a production apparatus thereof suitable for mass production. Light
背景技術 Background art
 Rice field
酸素や水素を含む水が人体の健康増進に効果があるとされ、 酸素や水素を多量 に液体に溶解含有させた液体を製造する方法が報告されている (特許文献 1〜3 を参照)。  Water containing oxygen and hydrogen is considered to be effective in promoting human health, and a method for producing a liquid in which a large amount of oxygen or hydrogen is dissolved in the liquid has been reported (see Patent Documents 1 to 3).
気体を水等の液体に溶解させる方法とレて、 大気 ^下で微細気泡気体を液体に 接触させることにより液体に気体を溶解させる方法がある (気泡式溶解法)。気体 を液体と接触させると気体は液体に溶解する。 この際、 接触面積を大きくすると 溶解する速度は速くなる。 しかし、 溶解する気体の量は飽和状態の一定量までで あり、 それ以上溶解させることはできない。 また、 大気圧下で気体と既に気体を 溶解させた液体を接触させると接触した当該気体の分圧のみになるので、 液体に すでに溶解していた気体は脱気されてしまうので連続的に複数の気体を溶解させ ることはできない。  There is a method of dissolving a gas in a liquid such as water, and a method of dissolving a gas in a liquid by bringing a fine bubble gas into contact with the liquid under the atmosphere (bubble dissolution method). When a gas is brought into contact with a liquid, the gas dissolves in the liquid. At this time, if the contact area is increased, the dissolution rate increases. However, the amount of gas to be dissolved is limited to a certain amount in a saturated state and cannot be dissolved further. In addition, when the gas and the liquid in which the gas has already been dissolved are brought into contact with each other at atmospheric pressure, only the partial pressure of the gas in contact with the gas will be depleted. This gas cannot be dissolved.
これに対して、 気体を高圧下で溶液と接触させる方法がある (閉鎖系高圧保持 製造法)。 この方法において、気体はヘンリーの法則に従って溶液に溶ける。 さら に、 このとき液体を霧状にする力 又は気体の気泡を小さくすることで溶解にか かる時間を短くすることができる。 閉鎖系で気体を液体と接触させる場合、 複数 の気体の分圧を一定以上に保つことで複数の気体を同時に溶解できる。 しかし、 高圧を保っためには密閉容器内で気体と溶液を接触させる必要がある。 このよう に密閉された容器内で気体を接触させて気体含有液体を製造するためには、溶解、 回収の段階をく り返さなくてはならないため、 大量製造のためには密閉容器を大 型化する必要が有り、 しかも耐圧容器を用いなくてはならないので装置も高価と なる。 従って、 大量製造には不向きである。 また、 高圧下から急激に大気圧に移 行させる場合、 ほとんどの場合、 突沸 ίこよって過飽和状態の気体が一瞬に放出さ れてしまう。 On the other hand, there is a method in which a gas is brought into contact with a solution under high pressure (closed system high pressure holding manufacturing method). In this method, the gas dissolves in the solution according to Henry's law. Furthermore, at this time, the time required for dissolution can be shortened by reducing the force of atomizing the liquid or reducing the gas bubbles. When contacting gas with liquid in a closed system, multiple gases can be dissolved simultaneously by keeping the partial pressure of multiple gases at a certain level or higher. However, in order to maintain a high pressure, it is necessary to bring the gas and the solution into contact in an airtight container. In order to produce a gas-containing liquid by contacting gas in such a sealed container, the dissolution and recovery steps must be repeated. And the equipment is expensive because a pressure vessel must be used. Become. Therefore, it is not suitable for mass production. Also, when the pressure is suddenly changed from high pressure to atmospheric pressure, in most cases, the supersaturated gas is released instantly due to bumping.
一方、 耐圧細管内に液体を一方の端から連続的に注入し、 管内で気体と液体を 接触させる連続流通系による気体含有液体の製造もある (開放系流通式製造法)。 しかし、 連続流通系の少なくとも一端は大気圧下の空気と接触するので、 連続流 通系は開放系であり、 連続流通系内を高圧に保つことができない。 従って、 大気 圧の気体を液体に接触させたよりも多量に気体を溶解させることができない。 以上のように、 大量製造のための上記の開放系流通式製造法と閉鎖系内で気体 の圧力を高圧に保つ閉鎖系高圧保持製造法はいずれも欠点を有し、 気体を多量に 溶解した液体を大量に製造することは困難である。 また、 閉鎖系高圧保持製造法 では、 完全に閉鎖系で気体溶解液体を製造する必要があるのに対し、 開放系流通 式製造法では、 液体は大気圧の空気と接虫せざるを#ないので、 高圧を保持する のは困難であり、 両方法の利点を併せ持つ気体溶解液体の製造方法の確立は困難 であった。  On the other hand, there is also a production of a gas-containing liquid by a continuous flow system in which a liquid is continuously injected from one end into a pressure-resistant thin tube and the gas and the liquid are brought into contact with each other in the tube (open flow-type production method). However, since at least one end of the continuous flow system comes into contact with air under atmospheric pressure, the continuous flow system is an open system, and the inside of the continuous flow system cannot be maintained at a high pressure. Therefore, a larger amount of gas cannot be dissolved than when atmospheric pressure gas is brought into contact with the liquid. As described above, both the above-mentioned open-flow manufacturing method for mass production and the closed-system high-pressure holding production method that keeps the gas pressure at a high pressure in the closed system have drawbacks, and dissolved a large amount of gas. It is difficult to produce a large amount of liquid. In addition, the closed-system high-pressure holding manufacturing method needs to produce a gas-dissolved liquid completely in a closed system, whereas in the open-system flow-type manufacturing method, the liquid must be in contact with air at atmospheric pressure. Therefore, it was difficult to maintain a high pressure, and it was difficult to establish a method for producing a gas-dissolved liquid having the advantages of both methods.
さらに、 電気分解により水素又は酸素を液体に溶解させる方法がある。 しかし ながら、 この方法においては、 液体は電解質を含まなければならず、 この方法も 大量製造には不向きである。 '  Furthermore, there is a method of dissolving hydrogen or oxygen in a liquid by electrolysis. However, in this method, the liquid must contain an electrolyte, which is also unsuitable for mass production. '
特許文献 1 特開平 8-56632号公報  Patent Document 1 Japanese Patent Application Laid-Open No. 8-56632
特許文献 2 特開 2002-172317号公報  Patent Document 2 JP 2002-172317 A
特許文献 3 特開 2005- 296 94号公報 発明の開示 .  Patent Document 3 Japanese Unexamined Patent Publication No. 2005-29694 Disclosure of Invention
本発明は、 過飽和状態を含む水素等の気体を溶解した液体を製造する方法及び 製造する装置の提供を目的とする。  An object of the present invention is to provide a method and an apparatus for producing a liquid in which a gas such as hydrogen containing a supersaturated state is dissolved.
本発明者らは、 上記の開放系流通式製造法と閉鎖系で気体の圧力を高圧に保つ 閉鎖系高圧保持製造法の利点を併せ持つ気体溶解液体の製造方法について鋭意検 討を行なった。  The present inventors diligently studied a method for producing a gas-dissolved liquid that has the advantages of the above-described open-type flow-through production method and the closed-system high-pressure holding production method that keeps the gas pressure high in a closed system.
本願発明者らは、 閉鎖系高圧保持製造法により液体に気体を高圧下で溶解させ る際には、 製造装置を閉鎖系に置き、 大気と接触させないようにしなければなら ない一方で、 開放系流通式製造法により液体に気体を溶解させる際には、 開放系 であるが故に高圧に保つことができないという矛盾の解決について検討を行なつ た。 The inventors of the present application dissolved a gas in a liquid under high pressure by a closed system high pressure holding manufacturing method. The manufacturing equipment must be placed in a closed system so that it does not come into contact with the atmosphere. On the other hand, when a gas is dissolved in a liquid by an open-type flow-through manufacturing method, the pressure is high because of the open system. We examined the resolution of the contradiction that it was not possible to maintain the current level.
その結果、 管路を流れている加圧状態の液体に対して直接加圧状態の酸素又は 水素等の気体を接触させることにより、 気体が液体に効率的に迅速に溶解するこ とを見出した。 すなわち、 気体が液体に混合し、 気泡の状態で液体と共存してい るときに、 圧力をかけ、 その圧力を維持するようにすることにより、 閉鎖されて いない流通式の装置でも液体を流しつつ、 連続的に液体に多量の気体を溶解させ ることができることを見出した。 .  As a result, it was found that by bringing a gas such as oxygen or hydrogen under pressure directly into contact with a liquid under pressure flowing through a pipeline, the gas is efficiently and rapidly dissolved in the liquid. . That is, when a gas is mixed with a liquid and coexists with the liquid in the form of bubbles, a pressure is applied and the pressure is maintained, so that the liquid can flow even in an unclosed flow-type device. It has been found that a large amount of gas can be continuously dissolved in a liquid. .
本発明者等は、 さらに検討を行い、 気体を液体に混合させ、 気液混相流として 装置中を流れるときに、 リアクター部と呼ぶ液体の流通を阻害する手段を用いる ことにより、 リアクター部の作用により.圧力が維持—され、 気体が効率的に液体に 溶解することを見出し、 本発明を完成させるに至った。  The present inventors have further studied, and when the gas is mixed with the liquid and flows in the apparatus as a gas-liquid mixed phase flow, the action of the reactor unit is obtained by using a means called a reactor unit that inhibits the flow of the liquid. As a result, it was found that the pressure was maintained and the gas was efficiently dissolved in the liquid, and the present invention was completed.
すなわち、 本発明は以下の通りである。  That is, the present invention is as follows.
[ 1 ] 液体が流通する管路であって、 原料液体を気体溶解液体受器まで流通させ る液体流通管路、  [1] A liquid flow line through which a liquid flows, the liquid flowing through the raw material liquid to a gas-dissolved liquid receiver,
該液体流通管路の途中に設けられた加圧手段であって、 原料液体を加圧して前 記流通管路を流通させるための加圧手段、  Pressurizing means provided in the middle of the liquid circulation pipe, pressurizing means for pressurizing the raw material liquid to circulate through the circulation pipe;
該液体流通管路の途中に設けられた少なくとも 1つの気液混合部であって、 気 体供給配管を介して気体容器と違結し、 気体容器からの気体を液体に混合するた めの気液混合部、  At least one gas-liquid mixing part provided in the middle of the liquid circulation pipe, which is connected to the gas container via the gas supply pipe and is used for mixing the gas from the gas container with the liquid Liquid mixing section,
前記液体流通管路の途中の前記気液混合部の下流に設けられた少なくとも 1つ のリアクター部であって、 気液混合部で混合した気体混合液体の圧力を維持し、 気体の液体への溶解を促進させるリアクター部、  At least one reactor unit provided downstream of the gas-liquid mixing unit in the middle of the liquid circulation pipe, maintaining the pressure of the gas mixed liquid mixed in the gas-liquid mixing unit, A reactor section that promotes dissolution,
を含む、 液体を液体流通管路中を流通させ、 加圧しながら連続的に気体溶解液体 を製造する連続加圧流通式気体溶解液体製造装置。 A continuous pressurized flow type gas-dissolving liquid manufacturing apparatus for continuously manufacturing a gas-dissolving liquid while pressurizing the liquid in a liquid circulation pipe.
[ 2 ] リアクター部において、 リアクター内を流通する液体にかかる圧力を徐々 に低下させる、 [ 1 ]の連続加圧流通式気体溶解液体製造装置。 [3] リアクター部が液体の流通を部分的に阻害する構造を有するものである、 [ 1 ]又は [ 2 ]の連続加圧流通式気体溶解液体製造装置。 [2] The continuous pressurized flow type gas-dissolving liquid production apparatus according to [1], wherein in the reactor section, the pressure applied to the liquid flowing through the reactor is gradually reduced. [3] The continuous pressurized flow type gas-dissolved liquid production apparatus according to [1] or [2], wherein the reactor part has a structure that partially obstructs the flow of the liquid.
[4] リアクター部がフィン構造、 切込み構造、 突起構造、 プラスト加工処理構 造及ぴ溝構造からなる群から選択される液体の流通を部分的に阻害する構造を有 する、 [ 3 ]の連続加圧流通式気体溶解液体製造装置。  [4] The reactor part has a structure that partially obstructs the flow of liquid selected from the group consisting of a fin structure, a notch structure, a protrusion structure, a plasting structure, and a groove structure, [3] Pressurized flow type gas dissolution liquid production equipment.
[5] リアクター部がスタティックミキサである、 [1 ]〜[4]のいずれかの.連続 加圧流通式気体溶解液体製造装置。  [5] The reactor unit is a static mixer, any one of [1] to [4]. The continuous pressurized flow type gas dissolved liquid production apparatus.
[6] 気液混合部がェジ工クタである、 [1]〜[5]のいずれかの連続加圧流通式 気体溶解液体製造装置。  [6] The continuous pressurized flow type gas-dissolved liquid production apparatus according to any one of [1] to [5], wherein the gas-liquid mixing unit is an edger.
[7] 加圧手段が加圧ポンプである、 [;!]〜 [6]のいずれかの連続加圧流通式気 体溶解液体製造装置。  [7] The pressurizing means is a pressurizing pump, [;! ] The continuous pressurized flow type gas-dissolving liquid production apparatus according to any one of [6] to [6].
[8] 加圧ポンプが渦流ポンプであり、 気液混合部の下流かつリアクター部の上 流に設けられた、 [ 7 ]の連続加圧流通式.気体溶解液体製造装置。  [8] The continuous pressurized flow type gas dissolved liquid production apparatus according to [7], wherein the pressurizing pump is a vortex pump, and is provided downstream of the gas-liquid mixing unit and upstream of the reactor unit.
[9] 気液混合部とリアクター部が直接違結している、 [1 ]〜[8]のいずれかの 連続加圧流通式気体溶解液体製造装置。 [9] The continuous pressurized flow type gas-dissolved liquid production apparatus according to any one of [1] to [8], wherein the gas-liquid mixing unit and the reactor unit are directly connected.
[1 0] リアクター部の管内径に対する長さの比が 10 以上である、 [1]〜[9] のいずれかの連続加圧流通式気体溶解液体製造装置。  [1 0] The continuous pressurized flow gas dissolved liquid production apparatus according to any one of [1] to [9], wherein the ratio of the length of the reactor section to the inner diameter of the tube is 10 or more.
111 ] 原料液体又は気体溶解液体の少なくとも一方にかかる圧力が大気圧と 同等であり、 開放系である、 [1]〜[1 0]のいずれかの連続加圧流通式気体溶解 液体製造装置。  111] The continuous pressurized flow type gas dissolving liquid production apparatus according to any one of [1] to [10], wherein the pressure applied to at least one of the raw material liquid and the gas dissolving liquid is equal to the atmospheric pressure and is an open system.
[1 2] 気液混合部とリアクター部の組を複数有し、 複数の気体を溶解させるこ とができる、 [1]〜[1 1]のいずれかの連続加圧流通式気体溶解液体製造装置。  [1 2] Continuously pressurized flow-type gas-dissolved liquid production according to any one of [1] to [11], which has a plurality of gas-liquid mixing units and reactor units, and can dissolve a plurality of gases. apparatus.
[1 3] 液体が水、 ミネラルウォーター、 茶、 コーヒー、 清涼飲料、 ジュース、 ゲル状飲料、 化粧品、 シャンプー及び生理食塩水からなる群から選択され、 気体 が水素ガス、 酸素ガス及びオゾンガスからなる群から選択される気体を含む気体 である、 [1]〜[1 2]のいずれかの連続加圧流通式気体溶解液体製造装置。  [1 3] The liquid is selected from the group consisting of water, mineral water, tea, coffee, soft drink, juice, gel drink, cosmetics, shampoo and physiological saline, and the gas is a group consisting of hydrogen gas, oxygen gas and ozone gas The continuous pressurized flow type gas-dissolved liquid producing apparatus according to any one of [1] to [12], wherein the gas-containing liquid producing apparatus comprises any one of the gas selected from:
[14] 以下の (1) 〜 (3) の工程を含む、 管路内を流通する加圧液体に連続 的に気体を溶解させることにより、 気体溶解液体を製造する方法:  [14] A method for producing a gas-dissolved liquid by continuously dissolving a gas in a pressurized liquid flowing in a pipeline, including the following steps (1) to (3):
(1) 液体流通管路を流れている加圧した液体に加圧した気体を混合する工程、 (2) 得られた気体混合液体の加圧状態を維持することにより気体を液体に溶 解する工程、 及び ' (1) a step of mixing the pressurized gas with the pressurized liquid flowing through the liquid circulation line; (2) A step of dissolving the gas in the liquid by maintaining the pressurized state of the obtained gas mixed liquid, and
(3) 気体が溶解した液体を常圧に戻して、 気体溶解液体を回収する工程。  (3) A step of returning the gas-dissolved liquid to normal pressure and recovering the gas-dissolved liquid.
[1 5] (1) の工程が液体流通管路を流れている加圧液体に液体管路の途中に 設けられた気液混合部に加圧気体を供給するこ'とにより、 加圧した液体に加圧し た気体を混合する工程である、 [14]の管路内を流通する加圧液体に連続的に気 体を溶解させることにより、 気体溶解液体を製造する方法。 [1 5] In the step (1), the pressurized liquid flowing through the liquid circulation pipe is pressurized by supplying a pressurized gas to the gas-liquid mixing section provided in the middle of the liquid pipe. [14] The method for producing a gas-dissolved liquid by continuously dissolving the gas in the pressurized liquid flowing in the pipe line, which is a step of mixing the pressurized gas with the liquid.
[16] (2) の工程が、 得られた気体混合液体を、液体流通管路の途中であつ て前記気液混合部の下流に設けられたリアクター部を通し、 該リアクター部の作 用により、 気体混合液体の加圧状態を維.持することにより気体を液体に溶解する 工程である、 [14]又は [1 5]の管路内を流通する加圧液体に連続的に気体を溶 解させることにより、 気体溶解液体を製造する方法。  [16] In the step (2), the obtained gas mixed liquid is passed through a reactor section provided in the middle of the liquid circulation pipe and downstream of the gas-liquid mixing section. The process of dissolving the gas in the liquid by maintaining the pressurized state of the gas mixture liquid. The gas is continuously dissolved in the pressurized liquid flowing in the pipe line of [14] or [15]. A method for producing a gas-dissolved liquid by deciphering.
[1 7] (1)の工程における気液混合部がェジエタ'タである、 [1 5]又は [16] の管路内を流通する加圧液体に連続的に気体を溶解させることにより、 気体溶解 液体を製造する方法。  [1 7] The gas-liquid mixing part in the step (1) is an agitator, and by continuously dissolving the gas in the pressurized liquid flowing through the pipe line of [15] or [16], Gas dissolution A method for producing a liquid.
[18] (2) の工程におけるリアクター部が液体の流通を部分的に阻害する構 造を有するものである、 [1 5]〜[17]のいずれかの管路内を流通する加圧液体 に連続的に気体を溶解させることにより、 気体溶解液体を製造する方法。  [18] The pressurized liquid flowing in the pipe line of any one of [15] to [17], wherein the reactor part in the step (2) has a structure that partially obstructs the flow of the liquid A method for producing a gas-dissolved liquid by continuously dissolving a gas.
[1 9] (2) の工程におけるリアクター部がフィン構造、 切込み構造、 突起構 造、 ブラスト加工処理構造及び溝構造からなる群から選択される液体の流通を部 分的に阻害する構造を有する、 ['18]の管路內を流通する加圧液体に連続的に気 体を溶解させることにより、 気体溶解液体を製造する方法。 [1 9] The reactor part in the step (2) has a structure that partially obstructs the flow of a liquid selected from the group consisting of a fin structure, a notch structure, a protrusion structure, a blast processing structure, and a groove structure. [19] A method for producing a gas-dissolved liquid by dissolving a gas continuously in a pressurized liquid flowing through a pipe line of ['18].
[20] (2)の工程におけるリアクター部がスタティックミキサである、 [1 6] 〜[19]のいずれかの管路内を流通する加圧液体に連続的に気体を溶解させるこ とにより、 気体溶解液体を製造する方法。  [20] The reactor in the step (2) is a static mixer, and by continuously dissolving the gas in the pressurized liquid flowing in any of the pipes of [16] to [19], A method for producing a gas-dissolved liquid.
[21] (1) の工程における加圧液体が加圧ポンプにより加圧される、 [16] 〜[20]のいずれかの管路内を流通する加圧液体に連続的に気体を溶解させるこ とにより、 気体溶解液体を製造する方法。  [21] The pressurized liquid in the step (1) is pressurized by a pressure pump, and the gas is continuously dissolved in the pressurized liquid flowing through the pipe line of any one of [16] to [20] Thus, a method for producing a gas-dissolved liquid.
[22] リアクター部において、 リアクター内を流通する液体にかかる圧力を 徐々に低下させ、 気体を溶解させた液体を常圧に戻す、 [1 6]〜[21]のいずれ かの管路内を流通する加圧液体に連続的に気体を溶解させることにより、 気体溶 解液体を製造する方法。 [22] In the reactor section, the pressure applied to the liquid flowing through the reactor By gradually lowering and returning the liquid in which the gas is dissolved to normal pressure, the gas is continuously dissolved in the pressurized liquid flowing through the pipe line of any one of [16] to [21]. A method for producing a dissolved liquid.
[23] 気液混合部とリアクター部の組を複数有し、 複数の気体を溶解させるこ とができる、 [1 6:]〜 [22]のいずれかの管路内を流通する加圧液体に連続的に 気体を溶解させることにより、 気体溶解液体を製造する方法。  [23] Pressurized liquid flowing through the pipe line of any one of [16:] to [22], having a plurality of gas-liquid mixing parts and reactor parts, and capable of dissolving a plurality of gases A method for producing a gas-dissolving liquid by continuously dissolving a gas.
[24] 気体溶解液体において、気体が液体に過飽和状態で溶解している、 [1 4] 〜[23]のいずれかの管路内を流通する加圧液体に連続的に気体を溶解させるこ とにより、 気体溶解液体を製造する方法。 [24] In the gas-dissolving liquid, the gas is dissolved in a supersaturated state in the liquid, and the gas is continuously dissolved in the pressurized liquid flowing in the pipe line of any one of [14] to [23]. A method for producing a gas-dissolved liquid.
[25] 液体が水、 ミネラルウォーター.、 茶、 コーヒー、 清涼飲料、 ジュース及 ぴ生理食塩水からなる群から選択され、 気体が水素ガス、 酸素ガス及ぴオゾンガ スからなる群から選択される気体を含む気体である、 [ 14]〜[24]のいずれか の管路內を流通する加圧液体に連続的に気体を溶解きせることにより、 気体溶解 液体を製造する方法。  [25] Gas selected from the group consisting of water, mineral water, tea, coffee, soft drinks, juice and physiological saline, and gas selected from the group consisting of hydrogen gas, oxygen gas and ozone gas A method for producing a gas-dissolved liquid by continuously dissolving a gas in a pressurized liquid flowing through the pipe line of any one of [14] to [24].
本明細書は本願の優先権の基礎である日本国特許出願 2006- 240723号の明細書 および/または図面に記載される内容を包含する。 図面の簡単な説明  This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2006-240723, which is the basis of the priority of the present application. Brief Description of Drawings
図 1 Aは、 本発明の連続加圧流通式気体溶解液体製造装置の一例を示す図であ る。  FIG. 1A is a diagram showing an example of a continuous pressurized flow type gas-dissolved liquid production apparatus of the present invention.
図 1 Bは、 本発明の連続加圧流通式気体溶解液体製造装置の一例を示す図であ る。  FIG. 1B is a diagram showing an example of a continuous pressurized flow type gas-dissolved liquid production apparatus of the present invention.
図 1 Cは、 本発明の連続加圧流通式気体溶解液体製造装置の一例を示す図であ る。  FIG. 1C is a view showing an example of a continuous pressurized flow type gas-dissolved liquid production apparatus of the present invention.
図 2は、 本発明の連続加圧流通式気体溶解液体製造装置の気液混合部として用 いるェジェクタの横断面図である。  FIG. 2 is a cross-sectional view of an ejector used as a gas-liquid mixing part of the continuous pressurized flow type gas-dissolved liquid production apparatus of the present invention.
図 3は、 本発明の連続加圧流通式気体溶解液体製造装置の気液混合部の一例を 示す図である。  FIG. 3 is a view showing an example of a gas-liquid mixing unit of the continuous pressurized flow type gas-dissolved liquid production apparatus of the present invention.
図 4は、 本発明の連続加圧流通式気体溶解液体製造装置の気液混合部の一例を 示す図である。 Fig. 4 shows an example of the gas-liquid mixing part of the continuous pressurized flow type gas-dissolved liquid production apparatus of the present invention. FIG.
図 5は、 本発明の連続加圧流通式気体溶解液体製造装置のリアクター部として 用いるスタティックミキサを示す図であり、 図 5 Aはスタティックミキサの横断 面図であり、 図 5 Bは右ひねりエレメントの正面図であり、 図 5 Cは図 5 Bを 90° 回転させた図であり、 図 5 Dは左ひねりエレメントの正面図であり、 図 5 E は図 5 Dを 90° 回転させた図であり、図 5 Fは突起構造を設けたエレメントを示 す図である。  Fig. 5 is a diagram showing a static mixer used as a reactor part of the continuous pressurized flow type gas dissolved liquid production apparatus of the present invention, Fig. 5A is a cross-sectional view of the static mixer, and Fig. 5B is a right twist element. Fig. 5 C is a view of Fig. 5 B rotated 90 °, Fig. 5 D is a front view of the left twist element, and Fig. 5 E is a view of Fig. 5 D rotated 90 °. FIG. 5F is a diagram showing an element provided with a protruding structure.
.図 6は、 複数の気体を液体に溶解し得る、 本発明の連続加圧流通式気体溶解液 体製造装置の一例を示す図である。  FIG. 6 is a diagram showing an example of a continuous pressurized flow type gas dissolving liquid production apparatus of the present invention capable of dissolving a plurality of gases in a liquid.
図 7は、 複数の気体を液体に溶解し得る、 本発明の連続加圧流通式気体溶解液 体製造装置の一例を示す図である。  FIG. 7 is a diagram showing an example of a continuous pressurized flow type gas dissolving liquid production apparatus of the present invention capable of dissolving a plurality of gases in a liquid.
図 8は、 実施例 1で使用した本発明の連続加圧流通式気体溶解液体製造装置を 示す図である。 '  FIG. 8 is a view showing the continuous pressurized flow type gas dissolved liquid production apparatus of the present invention used in Example 1. FIG. '
図 9は、 実施例 4で使用した本発明の連続加圧流通式気体溶解液体製造装置を 示すフローチヤ一ト図である。  FIG. 9 is a flowchart showing the continuous pressurized flow type gas-dissolved liquid production apparatus of the present invention used in Example 4.
符号の説明 Explanation of symbols
1 1 原料液体  1 1 Raw material liquid
1 2 原料液体容器  1 2 Raw material liquid container
1 3 加圧ポンプ  1 3 Pressure pump
1 4 液体流通細管 (液体供給酡管)  1 4 Liquid distribution tubule (liquid supply pipe)
1 5 気体ボンべ  1 5 Gas cylinder
1 6 ノくノレブ  1 6 Noku Norev
1 7 圧力計  1 7 Pressure gauge
1 8 気体供給配管  1 8 Gas supply piping
1 9 液体流通細管 (液体回収配管)  1 9 Liquid distribution tube (Liquid recovery pipe)
2 0 バルブ  2 0 Valve
2 1 原料液体容器 (気体溶解液体受器)  2 1 Raw material liquid container (Gas dissolved liquid receiver)
2 2 原料液体 (気体溶解液体) 23 加圧ポンプ 2 2 Raw material liquid (gas dissolved liquid) 23 Pressure pump
24 液体流通細管 (液体供給配管) '  24 Liquid distribution tubule (Liquid supply pipe) ''
25 気体ボンべ  25 Gas cylinder
26 バルブ  26 Valve
27 圧力計  27 Pressure gauge
28 気体供給配管  28 Gas supply piping
29 液体流通細管 (気体溶解液体回収配管)  29 Liquid flow tube (Gas dissolved liquid recovery pipe)
30 バルブ  30 valves
3 1 気体溶解液体受器  3 1 Gas dissolved liquid receiver
32 気体溶解液体  32 Gas dissolved liquid
3 5 A、 35 B 気液混合部  3 5 A, 35 B Gas-liquid mixing section
36 A、 36 B 気液混合部の液体導入路  36 A, 36 B Liquid inlet for gas-liquid mixing section
3 7A、 3 7 B 気液混合部の気体導入珞 "  3 7A, 3 7 B Gas introduction to gas-liquid mixing section
3 8A、 38 B 気液混合部の気体混合液体導出路  3 8A, 38 B Gas mixture liquid outlet
50、 50 A、 50 B ェジェクタ  50, 50 A, 50 B ejectors
5 1 B ェジヱクタの液体導入路  5 1 B Liquid inlet of projector
55 B ェジ クタの液体導出路  55 B ejector liquid outlet
56 B ェジヱクタの気体導入路  56 B Gas supply path of ejector
60 B スタティックミキサ  60 B static mixer
70 A、 70 B リアクター部  70 A, 70 B reactor section
7 1 A、 7 I B リアクター部導入路  7 1 A, 7 I B Reactor inlet
72A、 72 B リアクター部導出路 72A, 72 B Reactor section outlet
1 00、 1 00'、 100''、 1 0 1、 1 02 連続加圧流通式気体溶解液体製造  1 00, 1 00 ', 100' ', 1 0 1, 1 02 Manufacture of continuous pressurized flow type gas dissolved liquid
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の装置を用いた気体溶解液体の製造方法においては、 細管の管路中を流 通する液体に、 高圧に維持した気体を混合させ、 気体が混合した気体混合液体が 流通する管路内の圧力を維持することにより、 気体と液体を加圧状態で充分に接 触させ、 多量の気体を液体に溶解含有させる。' ここで、 気体溶解液体とは、 気体 が液体中に分散し均一な相を形成している状態をいい、 気体混合液体とは、 液体 と気体が混在している状態をいい、 気液混相ともいう。 気体混合液体が細管中を 流れるとき、 液体中に気体の気泡が存在した気液混相流となる。 ただし、 気体溶 解液体と気体混合液体は厳密に区別されるもの'ではなく、 本発明の装置を用いて 気体溶解液体を製造する場合、 気体を液体に混合し、 気体混合液体とし、 気体混 合液体をリアクタ一部を通して気体溶解液体とするが、 気体混合液体の状態でも 気体の一部は液体に溶解しており、 気体溶解液体の状態でも、 気体の一部は液体 から脱気され、 気泡の状態で液体中に存在し得る。 本発明においては、 気体が液 体と混在しているときに、 気体の状態と.して、 どちらが優位かにより、 気体溶解 液体か、 気体混合液体を区別すればよい。 なお、 本発明において、 気体溶解液体 を気体溶存液体ということもある。 In the method for producing a gas-dissolved liquid using the apparatus of the present invention, a gas maintained at a high pressure is mixed with a liquid flowing through a thin tube, and a gas mixed liquid in which the gas is mixed flows. By maintaining the pressure of Touch and dissolve a large amount of gas in the liquid. 'Here, gas-dissolved liquid refers to the state in which gas is dispersed in the liquid to form a uniform phase, and gas-mixed liquid refers to the state in which liquid and gas are mixed. Also called. When the gas-mixed liquid flows in the narrow tube, it becomes a gas-liquid mixed-phase flow in which gas bubbles exist in the liquid. However, the gas-dissolved liquid and the gas-mixed liquid are not strictly distinguished from each other. When the gas-dissolved liquid is produced using the apparatus of the present invention, the gas is mixed with the liquid to form the gas-mixed liquid. The combined liquid is converted into a gas-dissolved liquid through a part of the reactor, but part of the gas is dissolved in the liquid even in the gas mixed liquid state, and part of the gas is degassed from the liquid even in the gas-dissolved liquid state. It can be present in the liquid in the form of bubbles. In the present invention, when the gas is mixed with the liquid, the gas state may be distinguished from the gas-dissolved liquid or the gas-mixed liquid depending on which is superior. In the present invention, the gas-dissolved liquid may be referred to as a gas-dissolved liquid.
液体が流通する細管の管路は、 気液混合部とリア タ一部を管路の途中に有す る。 気液混合部、 細管及びリアクター部は互いに液体が流通するように、 気液混 合部がリアクタ一部の上流に位置した状態で連結しており、 液体は細管の管路内 を気液混合部及ぴリアクター部を通って流れる。 本発明において、 上流、 下流と は流通式装置の管路を流れる液体の流れの方向を基準にして上流又は下流という。 液体は原料 体容器から細管を通って気体溶解液体の受器に流れる。 ここで、 原料液体とは、 気体を溶解させようとする液体であって、 気体を溶解させる前の 液体をいう。 液体が原料液体容器から気体溶解液体の受器に流れる間に、 気液混 合部により、 細管中を流通する液体に圧力をかけた状態で気体が混合される。 し かしながら、 この時点では気体は液体に十分に溶解せず、 液体中に気体の気泡が 存在した状態、 すなわち気体混合液体の状態で気体と液体が混合されている。 気 体混合液体は細管中のリアクター部に向かって流れ、リアクター部の作用により、 リアクター部の上流の管路内又はリアクター部内で気体混合液体の圧力が維持さ れる。 その結果、 圧力の作用で気体が液体に多量に溶解する。 また、 リアクター 部の作用により、 液体中に気泡の状態で混合している気体の気泡サイズが小さく なり、 気体と液体の接触面積が増大し、 気体はより液体に溶解しやすくなる。 気 体を溶解した気体含有液体はリアクター内で徐々に減圧され、 リアクターを出て 細管を通って受器に入る。 The narrow pipe line through which the liquid flows has a gas-liquid mixing part and a part of the reactor in the middle of the pipe line. The gas-liquid mixing section, the narrow tube and the reactor section are connected with the gas-liquid mixing section located upstream of the reactor part so that the liquid flows through the liquid. Flows through the part and the reactor part. In the present invention, upstream and downstream are referred to as upstream or downstream on the basis of the direction of the flow of the liquid flowing through the conduit of the flow-type device. The liquid flows from the raw material container through the narrow tube to the gas dissolved liquid receiver. Here, the raw material liquid is a liquid that is intended to dissolve a gas and is a liquid before the gas is dissolved. While the liquid flows from the raw material liquid container to the gas-dissolved liquid receiver, the gas is mixed in a state where pressure is applied to the liquid flowing through the narrow tube by the gas-liquid mixing section. However, at this time, the gas is not sufficiently dissolved in the liquid, and the gas and the liquid are mixed in the state where the gas bubbles exist in the liquid, that is, in the state of the gas mixed liquid. The gas mixture liquid flows toward the reactor section in the narrow tube, and the pressure of the gas mixture liquid is maintained in the pipe line upstream of the reactor section or in the reactor section by the action of the reactor section. As a result, a large amount of gas is dissolved in the liquid by the action of pressure. Also, due to the action of the reactor section, the bubble size of the gas mixed in the liquid in the state of bubbles is reduced, the contact area between the gas and the liquid is increased, and the gas is more easily dissolved in the liquid. The gas-containing liquid in which the gas is dissolved is gradually depressurized in the reactor and exits the reactor. Enter the receiver through the narrow tube.
細管は、 高圧に耐えられる管からなり、 高圧に耐えられる細管は、 鉄、 ステン レス、 樹脂等の耐圧性材料でできた細管が好ましい。。  The thin tube is made of a tube that can withstand high pressure, and the thin tube that can withstand high pressure is preferably a tube made of a pressure resistant material such as iron, stainless steel, or resin. .
気液混合部は、 液体が流れる細管の管路と気体が供給される配管が合流するよ うに構成されている。 細管を流れる液体に気体'が加圧した状態で連続的に供給さ れる。 気体は気体を入れた高圧ボンベから供給すればよい。 気液混合部は気体が 液体と混合されるのならば、 どのような形態を有していてもよい。 例えば、 液体 が流れる細管の側部に加圧した気体を送り込む配管を連結し、 該連結部に送気口 を設け送気口から気体が細管中を流通している液体中に注入混合されるようにす ればよい。 この場合、 液体が流れる細管に対して、 気体を送気する配管は T字型 又は略 T字型に分岐する。 送気口は、 細管の側壁に設けてもよいし、 細管の管路 内を流通する液体中に挿入開口させてもよい。 このような気液混合部として、 例 えばェジェクタ構造をもった装置を用いることがで'きる。 ェジェクタとは、 液の 流通路の一部に隘路を設け、 その部分の流速を速くすることにより減圧状態とし て気体を引き込むための装置である。 ェジェクタは、 主管に支管を T字型状に連 結し、 主管を流れる液体が隘路において減圧状態になり、 無圧状態の支管の気体 が液体に引き込まれる。 ェジェクタにより細かい気泡が生じるようにすれば液体 と気体の接触面が大きくなり気体の溶解は容易になる。  The gas-liquid mixing unit is configured such that the pipe line of the thin tube through which the liquid flows and the pipe to which the gas is supplied merge. The gas flowing in the narrow tube is continuously supplied in a pressurized state. The gas may be supplied from a high-pressure cylinder containing gas. The gas-liquid mixing part may have any form as long as the gas is mixed with the liquid. For example, a pipe that feeds pressurized gas is connected to the side of a thin tube through which liquid flows, and an air supply port is provided in the connection, and gas is injected and mixed from the air supply port into the liquid flowing through the thin tube. This should be done. In this case, the pipe that feeds the gas branches into a T-shape or a substantially T-shape with respect to the thin tube through which the liquid flows. The air supply port may be provided on the side wall of the thin tube, or may be inserted and opened in the liquid flowing through the thin tube. As such a gas-liquid mixing section, for example, an apparatus having an ejector structure can be used. An ejector is a device that draws gas in a depressurized state by providing a bottleneck in a part of the liquid flow path and increasing the flow velocity in that part. In the ejector, the branch pipe is connected to the main pipe in a T shape, and the liquid flowing through the main pipe is decompressed in the bottleneck, and the gas in the non-pressure branch pipe is drawn into the liquid. If fine bubbles are generated by the ejector, the contact surface between the liquid and the gas becomes large and the gas can be easily dissolved.
ここで重要なのは、 気液混合部の下流のリアクター部に流入する前には、 液体 に高圧がかけられていることである。 その為には、 例えば、 液体に圧力をかけて 細管の管路内を流せばよい。 こめ際、 原料液体を供給するための容器内部に圧力 をかけて、 その圧力により液体が細管を流れるようにしてもよいし、 細管の管路 の途中にポンプ、 コンプレッサ、 ブースタ一等を設けてこれらにより液体に圧力 をかけて細管中を流れるようにしてもよい。 液体に圧力をかける場合、 例えば、 原料液体を加圧容器にいれて圧力により液体を流してもよい。 また、 原料液体と して水道水を用い、 水道水の供給圧力を利用してもよい。 ポンプを用いる場合、 加圧ポンプ、 例えば、 渦流ポンプ (カスケードポンプ) が用いられる。 渦流ボン プとは、狭いケーシング内で溝のある円盤が回転して液体に激しい渦流を起こし、 ケーシング内周を約 1周させる間に圧力を高めて吐出するポンプであり、 液体を 圧力をかけた状態で細管を流すことができる。 圧力をかけて液体を流せば一定の 速度以上の流速になる。 ' What is important here is that high pressure is applied to the liquid before it flows into the reactor section downstream of the gas-liquid mixing section. For that purpose, for example, pressure is applied to the liquid and it flows in the pipe of the narrow tube. At the time of filling, pressure may be applied to the inside of the container for supplying the raw material liquid, and the pressure may cause the liquid to flow through the narrow tube, or a pump, compressor, booster, etc. may be provided in the middle of the narrow tube. By these, pressure may be applied to the liquid so that it flows in the narrow tube. When pressure is applied to the liquid, for example, the raw material liquid may be placed in a pressurized container and the liquid may be flowed by pressure. Alternatively, tap water may be used as the raw material liquid and the supply pressure of tap water may be used. When using a pump, a pressure pump, for example, a vortex pump (cascade pump) is used. A vortex pump is a pump that discharges liquid while increasing the pressure while rotating a disk with a groove in a narrow casing to cause a strong vortex in the liquid and making the inner circumference of the casing approximately one round. A thin tube can be allowed to flow under pressure. If a liquid is flowed under pressure, the flow rate will exceed a certain speed. '
ポンプは、 リアクターの上流に位置し、 気液混合部の下流、 上流のいずれに位 置してもよい。 ポンプとして、 渦流ポンプを用いる場合、 好ましくは、 気液混合 部の下流に設置する。 '  The pump is located upstream of the reactor, and may be located either downstream or upstream of the gas-liquid mixing section. When a vortex pump is used as the pump, it is preferably installed downstream of the gas-liquid mixing section. '
例えば、 ポンプの上流で液体が流れる液体供給配管である液体流通細管と気体 が供給される気体供給配管を合流させることにより、 ポンプの作用により細管中 を流れる液体に、 高圧で供給される気体が混合される。  For example, by combining a liquid flow pipe, which is a liquid supply pipe through which liquid flows upstream of the pump, and a gas supply pipe, to which gas is supplied, gas supplied at high pressure is supplied to the liquid flowing through the narrow pipe by the action of the pump. Mixed.
気液混合部により気体が混合した液体は、細管を流れてリアクター部に向かう。 リアクター部の作用により、 気体が混合した液体の圧力は急激に減圧されるこ とはなく維持される。 すなわち、 リアクター部は、 圧力維持部として働く。 気体 を混合した液体の圧力が高く維持されることにより、 気体は液体に多量に溶解さ れることが可能になる。 リアクター部は > 特定の構¾又は材質によって、 中を流 れる液体とリアクター部内部の摩擦を大きく し、 または気体が混合した液体の流 れの抵抗となり該液体の速やかな流れを阻害する。 この結果、 リアクター部の上 流及び Z又はリアクター部内部における圧力を維持することができる。 リアクタ 一部は、 例えば、 複数のフィン (ひれ) 構造を内部に有する細管である。 また、 隘路を有する細管であってもよい。  The liquid in which the gas is mixed by the gas-liquid mixing part flows through the narrow tube and travels toward the reactor part. By the action of the reactor section, the pressure of the liquid mixed with gas is maintained without being rapidly reduced. That is, the reactor part works as a pressure maintaining part. When the pressure of the liquid mixed with the gas is maintained high, the gas can be dissolved in a large amount in the liquid. Depending on the specific structure or material, the reactor section increases the friction between the liquid flowing inside and the reactor section, or resists the flow of the liquid in which the gas is mixed, thereby inhibiting the rapid flow of the liquid. As a result, the pressure in the upstream of the reactor part and Z or the pressure inside the reactor part can be maintained. A part of the reactor is, for example, a thin tube having a plurality of fin structures inside. It may also be a narrow tube having a bottleneck.
また、 リアクターにより気体を混合 ·した液体が攪拌され、 気体と液体の接触面 積が大きくなり、 気体の溶解の効率が高くなる。 さらに、 圧力をかけ攪拌される ことにより、気体の気泡がより小'さくなり、気体と液体の接触面積が大きくなり、 気体の溶解効率が高くなる。 この点で、 本発明のリアクター部は、 気体と液体の 接触面積を大きくするための部分としても作用する。  In addition, the liquid in which the gas is mixed is stirred by the reactor, the contact area between the gas and the liquid increases, and the gas dissolution efficiency increases. Furthermore, by applying pressure and stirring, the gas bubbles become smaller, the contact area between the gas and the liquid increases, and the gas dissolution efficiency increases. In this respect, the reactor part of the present invention also functions as a part for increasing the contact area between the gas and the liquid.
リアクター部においては、 液体を構成する分子、 気体分子の接触により摩擦を 生じるので、 液体を高速で流せばより高圧となる。  In the reactor section, friction occurs due to the contact of the molecules and gas molecules that make up the liquid, so the higher the flow of the liquid, the higher the pressure.
リアクター部の一例としてスタティックミキサが拳げられる。 スタティックミ キサを使用すると液体と気体との接触時間を長くすることができるため、 より気 体の液体への溶解効率を向上させることができる。 スタティックミキサは、 図 5 に示すように、 細長い管状ハウジング内に複数個のエレメント (例えば 8個、 16 個又は 32個) を配置したものであり、 このエレメントは、長方形状の金属製の平 板を 180° 右ひねり (図 5 B及び図 5 C参照) したもの、 又は左ひねりしたもの (図 5 D及ぴ図 5 E参照) からなる。 なお、 図 5 B及ぴ図 5 Dはそれぞれ右ひね りエレメント及び左ひねりエレメントの正面図であり、 図 5 C及ぴ図 5 Eはそれ ぞれ図 5 B及ぴ図 5 Cに示したエレメントを 90° 回転させた状態の図である。ス タティックミキサは、 これらのエレメントを必要とされる数だけ適宜に組み合わ せて作成される。 スタティックミキサの各エレメントのサイズは、 例えば長さ約 1. 5cm,幅は約 1cmであり、右ひねりのものと左ひねりのものとを同数組み合わせ て用いる。この場合、 8エレメント型スタティックミキサは長さが約 18cmであり、 32エレメント型の場合は長さが約 54cmである。 A static mixer is fisted as an example of the reactor unit. When a static mixer is used, the contact time between the liquid and the gas can be extended, so that the dissolution efficiency of the gas in the liquid can be further improved. As shown in Fig. 5, a static mixer has a plurality of elements (eg, 8 and 16) in an elongated tubular housing. This element is a rectangular metal flat plate with a 180 ° right twist (see Figure 5B and Figure 5C) or a left twist (Figure 5). D and Fig. 5 E)). Fig. 5 B and Fig. 5 D are front views of the right and left twist elements, respectively. Fig. 5 C and Fig. 5 E are the elements shown in Fig. 5 B and Fig. 5 C, respectively. It is a figure of the state which rotated 90 degrees. A static mixer is created by combining these elements as many times as necessary. The size of each element of the static mixer is, for example, about 1.5 cm in length and about 1 cm in width. Use the same number of right and left twist combinations. In this case, the 8-element static mixer is about 18 cm long, and the 32-element type is about 54 cm long.
スタティックミキサのエレメントには、 図 5 F に示すように突起ゃフィンを設 けてもよレ、。 このような、 突起やフィンやくぼみを設けることにより、 スタティ ックミキサ中を流れる液体の流れが阻害され、 液体 圧力がかかり、 気体の溶解 量が増加する。 突起は小さな凸でもよいし、 卸金状の突起でもよい。 また、 突起 やフィンにより乱流が発生し、 液体に混合されている気体の気泡サイズが小さく なり、 気体と液体の接触面積が増大し、 気体の溶解効率が向上する。 また、 スタ テイツクミキサのエレメントの表面を液体との摩擦が大きくなるように加工して もよい。 例えば、 プラスト加工処理によりエレメント表面を粗くすること、 エレ メント表面に溝加工を施すことなどが挙げられる。  As shown in Fig. 5F, fins may be provided on the static mixer elements. By providing such protrusions, fins, and indentations, the flow of liquid flowing in the static mixer is hindered, liquid pressure is applied, and the amount of gas dissolved increases. The protrusion may be a small protrusion or a wholesale protrusion. Also, turbulence is generated by the protrusions and fins, the bubble size of the gas mixed in the liquid is reduced, the contact area between the gas and the liquid is increased, and the gas dissolution efficiency is improved. Further, the surface of the static mixer element may be processed so as to increase the friction with the liquid. For example, the element surface is roughened by plast processing, and the element surface is grooved.
本発明の装置は、液体が原料液体容器から、気体溶解液体受器まで流れる間に、 気体が連続的に液体に溶解される。 本発明の装置において、 少なくとも気体溶解 液体受器は、 大気と接触していてもよい。 また、 大気と接触してなくても、 気体 溶解液体受器には圧力をかける必要はなく、 気体溶解液体はほぼ大気圧と同程度 の圧力がかかっている。 この点で、 本発明の装置は、 完全に大気から閉鎖されて おらず、 大気に対して開放されているといえる。 従って、 本発明の装置は、 開放 系の装置であるといえる。  In the apparatus of the present invention, the gas is continuously dissolved in the liquid while the liquid flows from the raw material liquid container to the gas dissolution liquid receiver. In the apparatus of the present invention, at least the gas dissolving liquid receiver may be in contact with the atmosphere. Moreover, even if it is not in contact with the atmosphere, it is not necessary to apply pressure to the gas-dissolved liquid receiver, and the gas-dissolved liquid is almost at atmospheric pressure. In this respect, it can be said that the device of the present invention is not completely closed from the atmosphere and is open to the atmosphere. Therefore, it can be said that the apparatus of the present invention is an open system apparatus.
リアクター部の液体導出路部分は、 圧力をかけていない気体溶解液体受器に連 結しているので、リアクター部内部において、液体導入路から液体導出路まで徐々 に圧力は低下する。 このように徐々に圧力を低下させることにより突沸による急 激な過飽和気体の消失をふせぐことが可能となる。 したがって、 リアクターを通 つて細管を介し回収された気体溶解液体では気体が過飽和状態に保たれる。 Since the liquid lead-out path portion of the reactor section is connected to a gas-dissolved liquid receiver that is not under pressure, the pressure gradually decreases from the liquid introduction path to the liquid lead-out path inside the reactor section. In this way, by gradually reducing the pressure, the sudden It is possible to prevent the disappearance of intense supersaturated gas. Therefore, the gas is maintained in a supersaturated state in the gas-dissolved liquid recovered through the reactor through the narrow tube.
特に、 本発明の装置は、 気泡になりにくく液体に溶解しにくい水素などの単原 子からなる気体を過飽和状態に長く保つことができるので、 水素等の気泡になり にくい気体を液体に溶解させるのに適している。 この際、 低温で接触させるとさ らに気体を高濃度に溶解することができる。  In particular, the apparatus of the present invention can keep a gas composed of a single atom such as hydrogen that is hard to be bubbled and hardly dissolved in a liquid in a supersaturated state for a long time, so that a gas that is difficult to be bubbled such as hydrogen is dissolved in a liquid. Suitable for At this time, if the contact is made at a low temperature, the gas can be dissolved at a high concentration.
気液混合部とリアクター部は、 細管を介して連結していてもよいし、 気液混合 部の下流に直接リアクター部が違結していてもよい。  The gas-liquid mixing unit and the reactor unit may be connected via a thin tube, or the reactor unit may be directly connected downstream of the gas-liquid mixing unit.
細管の管路の途中には、 必要に応じてバルブを設置し、 流通する液体が逆流し ないようにする。 .  A valve is installed in the middle of the narrow pipe as necessary to prevent the flowing liquid from flowing backward. .
細管の内径は、製造しょうとする気体溶解液体の量にもよるが、 0. 2〜5 cm、好 ましくは 0. 5〜2 cmである。 また、 リアクター部の内径も同様に、 製造しようと する気体溶解液体の量にもよるが、 0. 2〜5 cm、好ましくは 0. 5〜2 cmである。 さ らに、 リアクター部の管内径と長さの比は、 1 : 10〜200好ましくは 1 : 20〜100 である。  The inner diameter of the narrow tube is 0.2-5 cm, preferably 0.5-2 cm, depending on the amount of the gas-dissolved liquid to be produced. Similarly, the inner diameter of the reactor is 0.2 to 5 cm, preferably 0.5 to 2 cm, depending on the amount of the gas-dissolved liquid to be produced. Furthermore, the ratio of the tube inner diameter to the length of the reactor section is 1:10 to 200, preferably 1:20 to 100.
細管内を流れる液体に混合させる気体にかける圧力は、 1〜20気圧、 好ましく は 2〜10気圧、 さらに好ましくは 3〜5気圧である。 気体は高圧のボンベに入つ たものを供給するが、高圧ボンべは通常数十から数百気圧の圧力がかかっている。 従って、 高圧ボンベから気体を供給する場合、 高圧ボンベと気液混合部の間に減 圧バルブを設け、 気液混合部に供給される気体の圧力を上記圧力に減圧する。 また、 細管内を流れる液体にかかる圧力は、 リアクター部導入路において、 3 〜 5気圧であり、 リアクター部の上流及び/又はリアクター部導入路付近でその 圧力が維持される。 また、 上記のように、 液体がリアクター部内を流れるときに 液体にかかる圧力は徐々に低下する。 リアクター部導出路において、 気体にかか る圧力は 1気圧から 2気圧未満程度であり、 好ましくは大気圧とほぼ同じ約 1気 圧である。  The pressure applied to the gas mixed with the liquid flowing in the narrow tube is 1 to 20 atmospheres, preferably 2 to 10 atmospheres, and more preferably 3 to 5 atmospheres. The gas is supplied in a high-pressure cylinder, but the high-pressure cylinder is usually under a pressure of several tens to several hundreds of atmospheres. Therefore, when supplying gas from a high-pressure cylinder, a pressure reducing valve is provided between the high-pressure cylinder and the gas-liquid mixing unit, and the pressure of the gas supplied to the gas-liquid mixing unit is reduced to the above pressure. The pressure applied to the liquid flowing in the narrow tube is 3 to 5 atm in the reactor introduction path, and the pressure is maintained upstream of the reactor section and / or in the vicinity of the reactor section introduction path. Moreover, as described above, when the liquid flows in the reactor section, the pressure applied to the liquid gradually decreases. In the reactor lead-out path, the pressure applied to the gas is about 1 to less than 2 atmospheres, preferably about 1 atmosphere, which is almost the same as the atmospheric pressure.
また、 本装置の細管中を流す液体の流量は、 細管の経や製造しょうとする気体 溶解液体の量にもよるが、 内径 1. 1cmのリアクターを使う時は 5〜80L/分、 好ま しくは 10〜40L/分である。 また、 気液混合部に供給する気体の流量は、 0. 2〜5 L/分、 好ましくは 0. 5〜2 L/分である。 常圧で気体を液体に溶解させる場合、 気 体と液体が接触している時間が長いほど、 溶解量は大きくなる。 従って、 常圧で 溶解させる場合には、 液体の流量が小さいほうが好ましい。 一方、 本発明の装置 においては、 気体と液体が接触しているときに圧力がかかり、 かつ短時間で気体 を溶解させるので、 液体の流量を大きくするこ'とができる。 液体の流量を大きく できるので、気体の流量もそれに見合う大きさに調節することができる。例えば、 40L/分の流速で液体を流し、 気体溶解液体を製造すれば、 1時間に約 2. 5 トンの 気体溶解液体を製造することができる。 従来の閉鎖した加圧タンクを用いた閉鎖 系高圧保持製造法でこの製造効率を達成使用とした場合、 巨大なタンク又は多数 のタンクが必要になる。 本発明の連続加圧流通式の気体溶解液体製造装置は、 従 来法に比べはるかに効率よく、かつ安価に気体溶解液体を製造することができる。 本発明の連続加圧流通式の気体溶解液体製造装置は、 上記の気液混合部及びリ アクター部を 1組だけ備えていてもよい.し、 複数組檐えていてもよい。 1組だけ 備えている場合は、 1種類の気体を液体に溶解含有させることができ、 複数組備 えている場合は、 複数の気体を液体に溶解含有させることができる。 複数組の気 液混合部及びリアクター部を備え複数の気体を液体に溶解させる装置において、 各気体及び液体の圧力等の条件は、 上記の 1種類の気体を液体に溶解させる装置 の場合と同様である。 In addition, the flow rate of liquid flowing through the narrow tube of this device depends on the amount of gas dissolved liquid to be manufactured and the amount of gas dissolved liquid to be produced, but when using a reactor with an inner diameter of 1.1 cm, it is preferably 5 to 80 L / min. Is 10-40L / min. The flow rate of gas supplied to the gas-liquid mixing section is 0.2-5. L / min, preferably 0.5-2 L / min. When a gas is dissolved in a liquid at normal pressure, the dissolved amount increases as the time during which the gas and the liquid are in contact with each other is longer. Therefore, when dissolving at normal pressure, a smaller liquid flow rate is preferred. On the other hand, in the apparatus of the present invention, pressure is applied when the gas and the liquid are in contact with each other, and the gas is dissolved in a short time, so that the flow rate of the liquid can be increased. Since the liquid flow rate can be increased, the gas flow rate can be adjusted accordingly. For example, if a liquid is flowed at a flow rate of 40 L / min to produce a gas-dissolved liquid, about 2.5 tons of gas-dissolved liquid can be produced per hour. In order to achieve this production efficiency in a closed system high pressure holding manufacturing method using a closed pressurized tank, a huge tank or a large number of tanks are required. The continuous pressurized flow type gas-dissolved liquid production apparatus of the present invention can produce a gas-dissolved liquid much more efficiently and inexpensively than conventional methods. The continuous pressurized flow type gas-dissolved liquid production apparatus of the present invention may include only one set of the gas-liquid mixing unit and the reactor unit, or may include a plurality of sets. When only one set is provided, one type of gas can be dissolved and contained in the liquid, and when multiple sets are provided, a plurality of gases can be dissolved and contained in the liquid. In an apparatus that includes a plurality of gas-liquid mixing sections and reactor sections and dissolves a plurality of gases in a liquid, the conditions such as the pressure of each gas and liquid are the same as in the above-described apparatus that dissolves one kind of gas in a liquid. It is.
本発明の装置を用いて気体を溶解ざせる液体としては、 一般的な水性飲料品、 例えば、 ミネラルウォーター、 果汁 ·果実飲料、 コーヒー飲料、 烏龍茶飲料、 緑 茶飲料、紅茶飲料、麦茶飲料などの茶飲料、野菜飲料、 スポーツ飲料、清涼飲料、 ゲル状飲料、 化粧品、 シャンプー、 生理食塩水等が挙げられる。  Examples of the liquid that dissolves gas using the apparatus of the present invention include general aqueous beverages such as mineral water, fruit juice and fruit beverages, coffee beverages, oolong tea beverages, green tea beverages, tea beverages, and barley tea beverages. Examples include tea drinks, vegetable drinks, sports drinks, soft drinks, gel drinks, cosmetics, shampoos, and physiological saline.
液体に溶解させる気体としては、 水素ガス、 酸素ガス、 オゾンガス等が挙げら れるが、 水素ガスが好ましい。  Examples of the gas dissolved in the liquid include hydrogen gas, oxygen gas, ozone gas, and the like, but hydrogen gas is preferable.
例えば、 水素を用いた場合、 水素 1気圧、 室温条件で水素は水 1 L 当たり約 For example, when hydrogen is used, hydrogen is about 1 atmosphere of hydrogen at 1 atmosphere and room temperature
17. 5mL溶存し得る (約 1. 6Ppm、約 0. 8mM)。 本発明の気体含有液体は、 水 1 L当た り、 10mL以上、 好ましくは 15mL以上、 特に好ましくは 17. 5mL以上の水素分子を 含む。 また、 本発明の気体溶解液体は、 0. lppm以上、 0. 5ppm以上、 好ましくは 1 ppm以上、 さらに好ましくは 1. 5ppm以上の水素を含む。 また、 本発明の気体溶解 液体は、 0. ImM以上、 好ましくは 0. 4mM以上、 さらに好ましくは 0. 6mM以上、 特 に好ましくは 0. 8mM以上の水素を含む。'さらに、 本発明の装置を用いることによ り、 過飽和状態で水素が溶解した水素溶解水を大量に得ることができる。 溶解水 素濃度が 1. 52PPm以上、 又は 1. 5mg/L以上の場合、 過飽和で水素が溶解している とレヽう。 - また、 酸素を単独で溶解させる場合、 本発明の気体 ^含有液体は、 水 1 L 当.たり 0. 2mg以上、 好ましくは 10mg以上、 さらに好ましくは 40mg以上含む。 水素と共 存させる場合は水 1 Lあたり 0. 2mg以上、 好ましくは 2mg以上、 さらに好ましく は 10mg以上含む。 17. 5 mL can be dissolved (about 1.6 P pm, about 0.8 mM). The gas-containing liquid of the present invention contains 10 mL or more, preferably 15 mL or more, particularly preferably 17.5 mL or more of hydrogen molecules per 1 L of water. In addition, the gas-dissolved liquid of the present invention contains 0.1 ppm or more, 0.5 ppm or more, preferably 1 ppm or more, more preferably 1.5 ppm or more. In addition, the gas dissolution of the present invention The liquid contains hydrogen of not less than 0. ImM, preferably not less than 0.4 mM, more preferably not less than 0.6 mM, particularly preferably not less than 0.8 mM. Furthermore, by using the apparatus of the present invention, a large amount of hydrogen-dissolved water in which hydrogen is dissolved in a supersaturated state can be obtained. If the dissolved hydrogen concentration is 1.52 PP m or more, or 1.5 mg / L or more, it is considered that hydrogen is dissolved due to supersaturation. -Further, when oxygen is dissolved alone, the gas ^ -containing liquid of the present invention contains 0.2 mg or more, preferably 10 mg or more, more preferably 40 mg or more per 1 L of water. When coexisting with hydrogen, 0.2 mg or more, preferably 2 mg or more, more preferably 10 mg or more is contained per liter of water.
また、 水素又は水素と酸素を溶解させた場合、 気体溶解液体の pHは 3〜11で あり、 酸化還元電位は- 50mV以下である。  When hydrogen or hydrogen and oxygen are dissolved, the pH of the gas-dissolved liquid is 3 to 11, and the redox potential is −50 mV or less.
本発明の装置を用いて得られた気体溶解液体は、 好ましくはアルミニウム等の 気体を透過できない素材でできた容器中.に保存するのが好ましい。 このような容 器として例えばアルミバウチやアルミ缶が挙げられる。  The gas-dissolved liquid obtained by using the apparatus of the present invention is preferably stored in a container made of a material that cannot transmit gas such as aluminum. Examples of such containers include an aluminum bouch and an aluminum can.
本発明の装置を用いて製造された気体溶解液体は、 飲用水や清涼飲料水として 用いられる。 例えば、 水素を溶解させた飲用水及び清涼飲料水、 酸素を溶解させ た飲用水及ぴ清涼飲料水、 並びに水素及ぴ酸素を溶解させた飲用水及ぴ清涼飲料 水は健康を増進させる機能性飲料水及び清涼飲料水となる。  The gas-dissolved liquid produced using the apparatus of the present invention is used as drinking water or soft drinks. For example, drinking water and soft drinks in which hydrogen is dissolved, drinking water and soft drinks in which oxygen is dissolved, and drinking water and soft drinks in which hydrogen and oxygen are dissolved It becomes drinking water and soft drinks.
また、 本発明の装置を用いて製造された気体溶解液体は、 気体を溶解させた化 粧品、 気体を溶解させた医薬品、 例えば、 水素を溶解させた化粧品及び医薬品、 酸素を溶解させた化粧品及び医薬品、 並びに水素及び酸素を溶解させた化粧品及 ぴ医薬品として用いられ、 具体的には、 例えば、 水素と酸素を同時に含有する輸 液などの医薬品がある。  In addition, the gas-dissolved liquid produced using the apparatus of the present invention includes cosmetics in which gas is dissolved, pharmaceuticals in which gas is dissolved, for example, cosmetics and pharmaceuticals in which hydrogen is dissolved, cosmetics in which oxygen is dissolved, and Used as pharmaceuticals and cosmetics and pharmaceuticals in which hydrogen and oxygen are dissolved, specifically, for example, pharmaceuticals such as infusion containing hydrogen and oxygen simultaneously.
さらに、 本発明の装置を用いて製造された気体溶解液体は、 気体を溶解させた 洗浄液として用いられ、 例えば、 純水に水素を溶解させると大きな還元力を有す る液体ができるので、 半導体などの洗浄に用い得る。  Furthermore, the gas-dissolved liquid produced using the apparatus of the present invention is used as a cleaning liquid in which a gas is dissolved. For example, when hydrogen is dissolved in pure water, a liquid having a large reducing power is formed. It can be used for washing.
さらに、 本発明の装置を用いて製造された気体溶解液体は、 気体を保存するた めにも用いることができる。  Furthermore, the gas-dissolved liquid produced using the apparatus of the present invention can also be used for storing gas.
さらに、 原料液体として水道水を用いた場合、 本発明の装置を水道水の蛇口に 連結することにより、 家庭で容易に気体溶解水道水を製造することができる。 こ の場合、 水道水の供給圧力により原料液体が加圧される。 Furthermore, when tap water is used as the raw material liquid, the apparatus of the present invention is used as a tap water faucet. By connecting, gas-dissolved tap water can be easily produced at home. In this case, the raw material liquid is pressurized by the supply pressure of tap water.
本発明の連続加圧流通式の気体溶解液体製造装置の一例を図 1〜図 5を用いて 説明する。 図 1 A に示すように、 この連続加圧流通式気体含有液体製造装置 1 0 0は、 気液混合部 3 5とリアクター部 7 0を備えている。  An example of the continuous pressurized flow type gas dissolved liquid production apparatus of the present invention will be described with reference to FIGS. As shown in FIG. 1A, this continuous pressurized flow type gas-containing liquid production apparatus 100 includes a gas-liquid mixing unit 35 and a reactor unit 70.
気液混合部 3 5としては、 図 2に示すェジェクタ 5 0の他、 図 3に示す管路 4 0内に気体の注入口 4 1を設けたもの、 図 4に示す管路 4 0の一部に気体透過膜 又は多項性気体透過板 4 2を設けたものが挙げられる。  As the gas-liquid mixing unit 35, in addition to the ejector 50 shown in FIG. 2, a gas inlet 41 is provided in the pipe 40 shown in FIG. 3, and one of the pipes 40 shown in FIG. And a part having a gas permeable membrane or a polynomial gas permeable plate 42 at the part.
リアクター部 7 0は、 気液混合部 3 5の下流に位置し、 気液混合部とリアクタ 一部は直接連結していてもよいし、 図 1. Aに示すように細管を介して連結してい てもよい。  The reactor unit 70 is located downstream of the gas-liquid mixing unit 35, and the gas-liquid mixing unit and a part of the reactor may be directly connected or connected via a thin tube as shown in Fig. 1. A. May be.
ェジェクタ 5 0の構 を図 2に示す。 ェジェクタ 5 0は、 液体導入路 5 1、 液 体導入路 5 1から内径が先細になって伸.びているノ'ズル部 5 2、 拡散室 5 3、 内 径が先太になって伸びているディフューザ部 5 4、 このディフユ一ザ部 5 4に連 通する均一な内径の出口流路及び拡散室 5 3に連なる気体導入路 5 6を備えてい る。 このェジェクタ 5 0においては、 液体が液体導入路 5 1から導入されてノズ ル 5 2からイブユーザ部 5 4へ噴射されると、 拡散室 5 3内が負圧となるため、 気体導入路 5 6から気体が吸引され、 ディフューザ部 5 4で十分に混合されるた め、 吸引された気体を液体中に効率よく吸収させることができる。 また、 液体の 流量を大きくすることができるために、 小型でありながら大量の液体中に多量の 気体を吸収させることができるものである。  Figure 2 shows the structure of the ejector 50. The ejector 50 has a nozzle inlet 52, a diffusion chamber 53, and an inner diameter that tapers and extends from the liquid inlet 51 and the liquid inlet 51. A diffuser portion 54, an outlet channel with a uniform inner diameter communicating with the diffuser portion 54, and a gas introduction channel 56 connected with the diffusion chamber 53 are provided. In this ejector 50, when the liquid is introduced from the liquid introduction passage 51 and injected from the nozzle 52 to the eve user section 54, the inside of the diffusion chamber 53 becomes negative pressure, so the gas introduction passage 5 6 Since the gas is sucked from the gas and mixed sufficiently in the diffuser section 54, the sucked gas can be efficiently absorbed into the liquid. In addition, since the flow rate of the liquid can be increased, a large amount of gas can be absorbed in a large amount of liquid while being small in size.
リアクター部としては、 気液混合部の下流にスタティックミキサを備えていて もよい。 例えば、 図 1 Cにおいて、 気液混合部としてェジェクタ 5 0を用い、 リ アクター部であるスタティックミキサ 6 0が直接連結している。  As the reactor section, a static mixer may be provided downstream of the gas-liquid mixing section. For example, in FIG. 1C, an ejector 50 is used as a gas-liquid mixing unit, and a static mixer 60 that is a reactor unit is directly connected.
スタティックミキサを使用'すると液体と気体との接触時間を長くすることがで きるため、 より気体の吸収効率を向上させることができる。 また、 スタティック ミキサを用いた場合、 管内を流通する液体の速度が一時的に低下し、 その結果、 気液混合部における液体の圧力が高まり、 気体の液体への溶解がより効率的にな る。 このスタティックミキサ 6 0は、 図 5 Αに示すように、 細長い管状ハウジン グ 6 1内に複数個のエレメント 6 2 (例えば 8個、 16個又は 32個) を配置した ものであり、 このエレメント 6 2は、 方形状の金属製の平板を 180° 右ひねり (図 5 B及ぴ図 5 C参照) したもの、 又は左ひねりしたもの (図 5 D及び図 5 E 参照) からなる。 なお、 図 5 B及び図 5 Dはそれぞれ右ひねりエレメント及び左 ひねりエレメントの正面図であり、 図 5 C及び囪 5 Eはそれぞれ図 5 B及び図 5 Cに示したエレメントを 90° 回転させた状態の図である。 そして、 このスタティ ックミキサ 6 0は、 これらのエレメント 6 2を必要とされる数だけ適宜に組み合 わせて作成される。スタティックミキサの各エレメントの長さは例えば約 1. 5cm, 幅は約 1cmであり、 右ひねりのものと左ひねりのものとを同数組み合わせて用い る。 8エレメント型スタティックミキサは長さが約 18cmであり、 32エレメント型 の場合は長さが約 54cmである。 If a static mixer is used, the contact time between the liquid and the gas can be extended, so that the gas absorption efficiency can be further improved. In addition, when a static mixer is used, the speed of the liquid flowing through the pipe temporarily decreases, and as a result, the pressure of the liquid in the gas-liquid mixing section increases, and the dissolution of the gas into the liquid becomes more efficient. . This static mixer 60 has an elongated tubular housing as shown in FIG. A plurality of elements 6 2 (for example, 8, 16 or 32 elements) are arranged in the group 61, and this element 6 2 is a 180 ° right twist of a square metal plate (Fig. 5). B and Fig. 5C) or a left twist (see Fig. 5D and Fig. 5E). 5B and 5D are front views of the right twist element and the left twist element, respectively, and FIGS. 5C and 5E rotate the elements shown in FIGS. 5B and 5C by 90 °, respectively. It is a figure of a state. The static mixer 60 is created by appropriately combining these elements 62 as many as required. The length of each element of the static mixer is about 1.5 cm and the width is about 1 cm, for example. Use the same number of right and left twist combinations. The 8-element type static mixer is about 18 cm long, and the 32-element type is about 54 cm long.
図 1 Aに示す連続加圧流通式の気体溶解液体製造装置 1 0 0は、 液体に 1種類 の気体を溶解させるための装置であり、 気液混合部 ¾ぴリアクター部を 1組だけ 備えている。  1A is a device for dissolving one kind of gas in a liquid, comprising only one set of a gas-liquid mixing unit and a reactor unit. Yes.
原料液体 2 2が入れられた容器 2 1と気液混合部 3 5の液体導入路 3 6 Bとは、 加圧ポンプ 2 3を介して液体流通細管 (液体供給配管) 2 4が接続されている。 また、 加圧気体供給源である気体ボンべ 2 5と気液混合部 3 5の気体導入路 3 7 Bとは、 減圧バルブ 2 6、 圧力計 2 7及び流量計 (図示せず) を介して気体供給 配管 2 8が接続されている。 さらに、 気液混合部 3 5の液体導出路 3 8 Bは、 液 体流通細管 (気体溶解液体回収配管) 2 9、 リアクター部 7 0及ぴスト プパル ブ 3 0を介して常圧に維持され 気体溶解液体の受器 3 1の上部に連通させられ ている。  The container 2 1 containing the raw material liquid 2 2 and the liquid introduction path 3 6 B of the gas-liquid mixing part 3 5 are connected to the liquid flow tubule (liquid supply pipe) 2 4 via the pressure pump 2 3. Yes. Further, the gas cylinder 25, which is a pressurized gas supply source, and the gas introduction path 37B of the gas-liquid mixing unit 35 are connected via a pressure reducing valve 26, a pressure gauge 27 and a flow meter (not shown). Gas supply piping 28 is connected. Further, the liquid lead-out path 3 8 B of the gas-liquid mixing section 35 is maintained at normal pressure via the liquid circulation capillary (gas dissolved liquid recovery pipe) 29, the reactor section 70, and the stop valve 30. It is connected to the upper part of the receiver 31 for gas dissolved liquid.
加圧ポンプ 2 3は、 図 1 Bに示すように気液混合部の下流であって、 リアクタ 一部の上流に位置していてもよい。  As shown in FIG. 1B, the pressurizing pump 23 may be located downstream of the gas-liquid mixing unit and upstream of a part of the reactor.
この気体溶解液体の製造装置 1 0 0は、 次のように操作されて所定の気体溶解 液体 3 2が製造される。 すなわち、 容器 2 1内の原料液体 2 2は加圧ポンプ 2 3 により所定の圧力、 例えば 1〜; 10気圧に加圧されて気液混合部 3 5の液体導入路 The gas-dissolved liquid production apparatus 100 is operated as follows to produce a predetermined gas-dissolved liquid 32. That is, the raw material liquid 2 2 in the container 21 is pressurized to a predetermined pressure, for example, 1 to 10 atmospheres by the pressurizing pump 2 3, and the liquid introduction path of the gas-liquid mixing unit 3 5
3 6 Bへ供給され、 また、 気体ボンべ 2 5内の気体は、 減圧バルブ 2 6で所定の 圧力、 例えば 3〜5気圧に調整されて気体供給配管 2 8により気液混合部 3 5の 気体導入路 3 7 Bに供給される。 3 6 B, and the gas in the gas cylinder 25 is adjusted to a predetermined pressure, for example, 3 to 5 atm by the pressure reducing valve 26, and is supplied to the gas-liquid mixing unit 35 by the gas supply pipe 28. Supplied to gas inlet path 3 7 B.
気液混合部 3 5の液体導出路 3 8 Bから出た気体混合液体は、 リアクター部 7 0に向かう。 気体混合液体は、 既に加圧されており、 その圧力はリアクター部の 作用によ.り維持され、 加圧された状態でリアクター部導入路 7 1 Bに入る。 この ため、 リアクター部において気体が液体に溶解する。液体は、 リアクター部で徐々 に減圧され、ほぼ常圧に近い圧力の気体溶解液体がリアクタ一部導出口から出て、 液体流通細管 (気体溶解液体回収配管) 2 9及ぴストップバルブ 3 0を経て、 ほ ぼ常圧に維持された受器 3 1の上部に導かれる。 この受器 3 1においては、 得ら れた気体溶解液体 3 2中に溶けていた気体の一部は気化するが、 多量の気体が過 飽和状態で気体溶解液体 3 2中に残存しており、 気化した気体は大気中に放出さ れる。 受器 3 1は、 大気中の塵等の進入を防ぐために密閉されていてもよいが、 圧力をかけることはなく、 ほぼ常圧に維持される。  The gas mixed liquid that has exited from the liquid lead-out path 3 8 B of the gas-liquid mixing unit 35 is directed to the reactor unit 70. The gas mixture liquid has already been pressurized, and the pressure is maintained by the action of the reactor section, and enters the reactor section introduction path 7 1 B in a pressurized state. For this reason, the gas is dissolved in the liquid in the reactor section. The liquid is gradually depressurized in the reactor section, and a gas-dissolved liquid with a pressure close to normal pressure comes out from the outlet of the reactor part, and a liquid flow tube (gas-dissolved liquid recovery pipe) 29 and a stop valve 30 After that, it is led to the upper part of the receiver 31 maintained at almost normal pressure. In this receiver 31, a part of the gas dissolved in the obtained gas-dissolved liquid 3 2 is vaporized, but a large amount of gas remains in the gas-dissolved liquid 3 2 in a supersaturated state. The vaporized gas is released into the atmosphere. The receiver 31 may be sealed to prevent entry of dust in the atmosphere, but it is not pressurized and is maintained at almost normal pressure.
図 1 Bは、 気液混合部の下流に加圧ポ.ンプ 2 3が 置している装置を示す。 こ の場合、 気液混合部 3 5で混合した気体混合液体は加圧ポンプの作用で、 加圧さ れた状態でリアクター部 7 0に向かう。 加圧ポンプとしては、 例えば渦流ポンプ を用いればよい。  Fig. 1B shows a device with a pressure pump 23 located downstream of the gas-liquid mixing section. In this case, the gas mixed liquid mixed in the gas-liquid mixing unit 35 is directed to the reactor unit 70 in a pressurized state by the action of the pressurizing pump. As the pressurizing pump, for example, a vortex pump may be used.
図 1 Cは、 気液混合部としてェジェクタ 5 0を有し、 さらにスタティックミキ サ 6 0がェジェクタ 5 0に直接連結している装置を示す。  FIG. 1C shows an apparatus having an ejector 50 as a gas-liquid mixing section and a static mixer 60 connected directly to the ejector 50.
さらに、 図 6及び図 7は、 2種類の気体を溶解した気体溶解液体を製造する装 置を示す。 図 6に示す装置においては、 2つの気液混合部と 2つのリアクター部 を有し、 第 1の気体ボンべ 1 5中の気体は第 1の気液混合部 3 5 A及び第 1のリ アクター部 7 O Aにより液体 1 1に溶解され、 一旦第 1の気体ボンべ中の気体を 溶解した液体の受器 2 1に貯められる。 次いで、 第 2の気体ボンべ 2 5中の気体 は第 2の気液混合部 3 5 B及び第 2のリアクター部 7 0 Bにより、 第 1の気体ボ ンべ中の気体を溶解した液体にさらに溶解され、 2種類の気体を溶解する液体 3 2が得ら; る。  Further, FIGS. 6 and 7 show an apparatus for producing a gas-dissolved liquid in which two kinds of gases are dissolved. The apparatus shown in FIG. 6 has two gas-liquid mixing sections and two reactor sections, and the gas in the first gas cylinder 15 is in the first gas-liquid mixing section 35 A and the first recycle section. Actor unit 7 Dissolved in liquid 1 1 by OA and once stored in liquid receiver 2 1 in which the gas in the first gas cylinder is dissolved. Next, the gas in the second gas cylinder 25 is converted into a liquid in which the gas in the first gas cylinder is dissolved by the second gas-liquid mixing section 35 B and the second reactor section 70 B. Furthermore, a liquid 32 which is dissolved and dissolves two kinds of gases is obtained.
図 6に示した気体溶解液体の製造装置 1 0 1は、 第 1の気液混合部 3 5 Aで一 旦加圧状態の気体溶解液体を得た後に常圧に戻して常圧の気体溶解液体を得、 こ の常圧の気体溶解液体を加圧ポンプ 2 3により再度所定の圧力、例えば 1〜: 10気 圧に加圧して、 第 2の気体溶解液体供給配管 2 4を介して第 2の気液混合部 3 5 Bに供給されるが、 この部分での減圧友び加圧という工程は省略することも可能 である。 この減圧及び加圧という工程を省略した例を図 7に示す。 図 7に示す装 置においては、 2つの気液混合部とリアクター部の組が直列で連通しており、 第 1の気体ボンべ 1 5中の気体は、 第 1の気液混合部 3 5 A及ぴ第 1のリアクター 部 7 O Aにより、 液体 1 1に溶解され、 得られた気体溶解液体は、 そのまま第 2 の気液混合部 3 5 Bに送られ、 第 2の気液混合部 3 5 B及ぴ第 2のリアクター部 7 0 Bにより、 第 1の気体ボンべ中の気体を溶解した液体に、 さらに第 2の気体 ボンべ中の気体が溶解され、 2種類の気体を溶解する液体 3 2が得られる。 図 7 に示した気体溶解液体の製造装置 1 0 2.が図 6に示した気体含有液体の製造装置 1 0 1と構成が相違している点は、 第 1のリアクター部 7 O Aの液体導出路 7 2 Aと第 2の気液混合部 3 5 Bの液体導入路 3 6 Bとの間を流量調節バルブ 3 3及 び第 1の気体溶解液体供給配管 3 4によ.り接続し、 m iの気液混合部 3 5 A及び 第 1のリアクター部 7 0 Aで得られた加圧状態の第 1の気体溶解液体を流量調節 バルブ 3 3を介して第 1の気体溶解液体供給配管 3 4により第 2の気液混合部 3 5 Bの液体導入路 3 6 Bへ直接供給している点のみであり、 その他の構成は実質 的に同一である。 The gas-dissolved liquid manufacturing apparatus 10 0 1 shown in FIG. 6 obtains a gas-dissolved liquid in a pressurized state at the first gas-liquid mixing unit 35 A, and then returns to normal pressure to dissolve normal-pressure gas. A liquid is obtained, and this gas-dissolved liquid at normal pressure is again returned to a predetermined pressure, for example, 1 to 10 gas by the pressure pump 23. Pressurize the pressure and supply it to the second gas-liquid mixing part 3 5 B via the second gas-dissolved liquid supply pipe 24, but omit the step of decompression friend pressurization at this part. Is also possible. An example in which the steps of depressurization and pressurization are omitted is shown in FIG. In the apparatus shown in FIG. 7, a set of two gas-liquid mixing sections and a reactor section are connected in series, and the gas in the first gas cylinder 15 is the first gas-liquid mixing section 3 5 A and first reactor part 7 OA dissolves in liquid 11 and the obtained gas-dissolved liquid is sent to the second gas-liquid mixing part 3 5 B as it is, and the second gas-liquid mixing part 3 5 B and the second reactor section 70 B dissolve the gas in the second gas cylinder into the liquid in which the gas in the first gas cylinder is dissolved, and dissolve the two types of gas. Liquid 3 2 is obtained. The difference between the gas-dissolved liquid manufacturing apparatus 1 0 2. shown in Fig. 7 and the gas-containing liquid manufacturing apparatus 1 0 1 shown in Fig. 6 is that the first reactor section 7 OA liquid derivation Connect the line 7 2 A and the liquid inlet 3 5 B of the second gas-liquid mixing section 3 5 B by the flow rate control valve 3 3 and the first gas-dissolved liquid supply pipe 3 4, The gas-liquid mixing section 3 5 of the mi and the first reactor section 70 A The pressurized first gas-dissolved liquid obtained at the pressure of the first gas-dissolved liquid supply pipe 3 via the flow control valve 3 3 4 is only supplied directly to the liquid introduction path 36B of the second gas-liquid mixing section 35B, and the other configurations are substantially the same.
この場合、 流量調節バルブ 3 3はなくてもよいが、 この部分で僅かに圧力損失 を与えて加圧状態の第 1の気体溶解液体を第 2の気液混合部 3 5 Bの液体導入路 3 6 Bに供給するようにすると、 流量が安定化するために制御を行い易くなるの で好ましい。 '  In this case, the flow rate adjusting valve 33 may not be provided, but the first gas-dissolved liquid in a pressurized state is given a slight pressure loss at this portion, and the liquid introduction path of the second gas-liquid mixing unit 35 B It is preferable to supply to 3 6 B because the flow rate is stabilized and control is facilitated. '
図 6及ぴ図 7の装置においては、 例えば第 1の気体として酸素ガスを用い、 第 2の気体として水素ガスを用いればよい。  In the apparatus shown in FIGS. 6 and 7, for example, oxygen gas may be used as the first gas and hydrogen gas may be used as the second gas.
以下、 本発明の具体例を実施例を用いて詳細に説明するが、 以下の実施例は本 発明をこれに限定することを意図するものではなく、 本発明は特許請求の範囲に 示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得 るものである。  Hereinafter, specific examples of the present invention will be described in detail using examples. However, the following examples are not intended to limit the present invention, and the present invention is not limited to the technology described in the claims. It can be equally applied to various changes made without departing from the idea.
実施例 1 水素溶解水の製造 Example 1 Production of hydrogen-dissolved water
図 1 Aに記載の装置において、 原料液体として水道水を用い、 水道からの水を 原料水供給配管 2 4に通した。 水道水の供給圧力は 1. 5〜2気圧程度であった。 細管としてステンレス製のパイプ (内 11mm) を用い、 気液混合部としてステ ンレス製の T字型継手を用い、 該継手部分に水素ボンベから配管し水素ガスを供 給するようにした。 気液混合部に供給する水素ガスの圧力は 0· 4MPa (メガパス カル) (約 4気圧) であった。 気液混合部にスタティックミキサ (エレメントを 32個有する 32フィンのスタティックミキサ、) を連結した。 スタティックミキサ としては、エレメント (フィン)を 32個有するスタティックミキサ(ノリタケ社、 T8 - 32R- 4PT、 サイズ:管内径 llmm X長さ 540mm) 及ぴエレメント (フィン) を 8 個有するスタティックミキサ (ノリタケ社、 CSM - 12- 1、 サイズ:管内径 llmmX長 さ 162mm) を用いた。 図 8に用いた装置の各パーツ構成を示す。 図中、 1〜6は 継手 (細管) 又は細管連結用部品であり、 4が気液混合部に該当する。 7は電磁 バルブ、 8はフロースィッチ、 9はバルブであり、 1 0がスタティックミキサで ある。 1 1及び 1 2は電装部品である。 . ' In the device shown in Fig. 1 A, tap water is used as the raw material liquid, and water from the tap is used. The raw water supply pipe 2 4 was passed. The supply pressure of tap water was about 1.5 to 2 atmospheres. A stainless steel pipe (11 mm in diameter) was used as the thin tube, a stainless steel T-shaped joint was used as the gas-liquid mixing part, and hydrogen gas was supplied to the joint from a hydrogen cylinder. The pressure of the hydrogen gas supplied to the gas-liquid mixing section was 0 · 4 MPa (megapascal) (about 4 atm). A static mixer (32-fin static mixer with 32 elements) was connected to the gas-liquid mixing section. As a static mixer, a static mixer with 32 elements (fins) (Noritake, T8-32R-4PT, size: tube inner diameter llmm X length 540mm) and a static mixer with 8 elements (fins) (Noritake) CSM-12-1, size: tube inner diameter llmmX length 162mm). Figure 8 shows the configuration of each part of the equipment used. In the figure, 1 to 6 are joints (fine tubes) or parts for connecting thin tubes, and 4 corresponds to the gas-liquid mixing part. 7 is an electromagnetic valve, 8 is a flow switch, 9 is a valve, and 10 is a static mixer. 1 1 and 1 2 are electrical components. .
装置の管路を流れる水の流量を、 4、 6、 8又は 10L/分とし、 気液混合部に供 給する水素ガスの流量を 0. 1、 0. 4、 0. 6、 0. 8及ぴ 1· 0L/分とした。 スタティック ミキサを通って細管より出てきた水素溶解水を採取し、 水素濃度を測定した。 結果を表 1に示す。 表 1中、 水素濃度の単位は、 ppm である。 表 1に示すよう に、水流量が大きく、かつ水素流量が大きいほど、溶解水素量は増加する。また、 エレメント数 8個のスタティックミキサを用いた場合より、エレメント数 32個の スタティックミキサを用いた場合の方が、 溶解水素量は増加する。 特にエレメン ト数 32個のスタティ ックミキサ'を用い、 水流量を 8 L/分、 水素流量を 0. 8L/分と した場合、過飽和で水素が溶解した水素溶解水が得られた。水流量が大きいほど、 リアクター部での水の圧力は大きくなる。 さらに、 スタティックミキサのエレメ ント数が大きいほど、 リアクター部での水の流通障害が起こり、 リアクター部の 水の圧力が大きくなる。 この結果は、 リアクター部での液体の圧力は過飽和状態 にまで気体を溶解するに十分な期間、 十分に高く維持できることを示している。 また、 水流速度が速いほど水と水素の接触時間は短くなるはずであるので、 接触 時間よりも圧力を高く維持することによって気体の溶解量を増加させることがで きることを示す。 表 1 The flow rate of water flowing through the pipe of the device is 4, 6, 8 or 10 L / min, and the flow rate of hydrogen gas supplied to the gas-liquid mixing section is 0.1, 0.4, 0.6, 0.8. It was 1 · 10L / min. The hydrogen-dissolved water that came out of the narrow tube through the static mixer was collected and the hydrogen concentration was measured. The results are shown in Table 1. In Table 1, the unit of hydrogen concentration is ppm. As shown in Table 1, the amount of dissolved hydrogen increases as the water flow rate increases and the hydrogen flow rate increases. In addition, the amount of dissolved hydrogen increases when a static mixer with 32 elements is used than when a static mixer with 8 elements is used. In particular, when a static mixer with 32 elements was used and the water flow rate was 8 L / min and the hydrogen flow rate was 0.8 L / min, hydrogen-dissolved water in which hydrogen was dissolved in supersaturation was obtained. The greater the water flow rate, the greater the water pressure in the reactor section. Furthermore, the larger the number of elements in the static mixer, the more obstructed the water flow in the reactor section, and the greater the water pressure in the reactor section. This result shows that the pressure of the liquid in the reactor can be kept high enough for a period of time sufficient to dissolve the gas up to the supersaturated state. Also, the faster the water flow rate, the shorter the contact time between water and hydrogen, indicating that the amount of dissolved gas can be increased by maintaining the pressure higher than the contact time. table 1
スタティックミキサー溶 水素量測定実験'  Static mixer dissolved hydrogen measurement experiment
1 . スタティックミキサーのフィン数: 3 2 1. Number of fins for static mixer: 3 2
条件 水素圧: 0. 4MPa  Condition Hydrogen pressure: 0.4 MPa
単 : pm  Single: pm
Figure imgf000023_0001
Figure imgf000023_0001
2 . スタティックミキサーのフィン数: 8 2. Static mixer fins: 8
条件 水素圧: 0. 4MPa - 単 1 : ppm  Conditions Hydrogen pressure: 0.4 MPa-Single 1: ppm
Figure imgf000023_0002
Figure imgf000023_0002
実施例 2 水素水の製造 Example 2 Production of hydrogen water
リアクター部を変更しての製造 ' Manufacturing by changing the reactor section ''
実施例 1と同様の方法で水素溶解水の製造を行なった。 この際、エレメント (フ イン) の数が 8のスタティックミキサを用いた。  In the same manner as in Example 1, hydrogen-dissolved water was produced. In this case, a static mixer with 8 elements (fins) was used.
この際、 エレメントを加工しないスタティックミキサの他、 エレメントの表面 をプラスト加工したスタティックミキサ (ブラスト加工はサンドペーパーで表面 を粗面にした)、エレメントの表面を卸金状に加工したスタティックミキサ(金属 やすりで表面を卸し金状にした)、及ぴエレメントの表面にくぼみをつけたスタテ イツクミキサ (ドリルで表面にクボミをつけた) を用いた。  At this time, in addition to a static mixer that does not process the element, a static mixer in which the surface of the element is plasted (the blasting is roughened with sandpaper), a static mixer in which the surface of the element is processed into a wholesale shape (metal A static mixer (with a dent on the surface with a drill) was used.
結果を表 2に示す。 表 2に示すように、 加工したスタティックミキサを用いた 場合の方が、 未加工のスタティックミキサを用いた場合よりも溶解水素量が大き くなる。 スタティックミキサのエレメシトをプラスト処理することにより、 水と リアクター部内部の摩擦が大きくなり、リアクター部での圧力が増加する。また、 エレメントを卸金状に加工し、 またはくぼみをつけることにより、 リアクター部 での水の流通障害が起こり、リアクター部の水め圧力が大きくなる。この結果は、 リアクター部及び/又はその上流のリアクター部入り口付近での液体の圧力.を高 く維持することにより気体の溶解効率が増加することを示す。 The results are shown in Table 2. As shown in Table 2, a processed static mixer was used. In this case, the amount of dissolved hydrogen is larger than when a raw static mixer is used. By plasting the elemecito of the static mixer, the friction between water and the inside of the reactor increases, and the pressure in the reactor increases. In addition, if the element is processed into a wholesale shape, or if a dent is formed, water flow in the reactor will be disturbed, and the water pressure in the reactor will increase. This result shows that the gas dissolution efficiency is increased by keeping the pressure of the liquid near the reactor section and / or the upstream reactor section entrance.
表 2 スタティックミキサー (フィン数 8 ) を使用した溶存水素量測定結果  Table 2 Measurement results of dissolved hydrogen using static mixer (8 fins)
条件:水素圧: 0. 4MPa  Condition: Hydrogen pressure: 0.4 MPa
1 . 未加工のスタティックミキサー  1. Raw static mixer
Figure imgf000024_0001
Figure imgf000024_0001
2 . フィンの表面をブラスト加工したスタティックミキサ- 単 : p m 2. Static mixer with blasted fin surface-single: p m
Figure imgf000024_0002
Figure imgf000024_0002
4 . フ ンの にくぼみ スタテ ックミキサ- 4. Dimples in the fan Static mixer
Figure imgf000024_0003
実施例 3 水素及び酸素溶解水の製造
Figure imgf000024_0003
Example 3 Production of hydrogen and oxygen dissolved water
実施例 3としては、 原水として東京者 |5中央区の水道水 (酸化還元電位 +420mV、 pH=7. 2) を使用し、 図 6に示した製造装置 1 0 1を使用して以下のようにして酸 素及ぴ水素溶解水を製造した。まず、ェジェクタ 5 O A及び 5 0 Bのみを使用し、 スタティックミキサを使用しなかったものを比較例とし、 比較例のものにリアク ター部として 8エレメント型スタティックミキサを併用したものを実施例 3— 1 とし、同じく比較例のものにリアクター部として 32エレメント型スタティックミ キサを併用したものを実施例 3— 2とした。  As Example 3, the tap water of the Tokyo person | 5 Chuo-ku (redox potential +420 mV, pH = 7.2) was used as raw water, and the production equipment 1 0 1 shown in FIG. Thus, oxygen and hydrogen-dissolved water were produced. First, only the ejectors 5 OA and 50 B were used and the static mixer was not used as a comparative example, and the comparative example was combined with an 8-element type static mixer as a reactor part. Example 3-2 was also used in which a 32-element static mixer was also used as a reactor part in the same comparative example.
そして、比較例、実施例 3— 1及び実施例 3— 2における原水流量、原水圧力、 酸素溶解水流量、 酸素圧力、 酸素溶解水圧力、 水素圧力を全て同じにして酸素及 ぴ水素溶解水を製造した。 各製造条件及び測定結果をまとめて表 3に示す。 酸化 還元電位、 酸素溶解量、 水素溶解量及び pHの測定は、 東亜 DKK製 0PR計測器、 酸 素量計測器、 水素量計測器及び pH計を用い、 測定は べて室温下で行った (以下 においても同様である)。  Then, the raw water flow rate, raw water pressure, oxygen dissolved water flow rate, oxygen pressure, oxygen dissolved water pressure, and hydrogen pressure in Comparative Example, Example 3-1 and Example 3-2 were all made the same, and oxygen and hydrogen dissolved water were used. Manufactured. Table 3 summarizes the manufacturing conditions and measurement results. Oxidation reduction potential, oxygen dissolution amount, hydrogen dissolution amount, and pH were measured at room temperature using a 0PR measuring instrument, oxygen amount measuring instrument, hydrogen measuring instrument, and pH meter manufactured by Toa DKK ( The same applies to the following).
表 3  Table 3
Figure imgf000025_0001
表 3に示された結果から以下のことがわかる。 (1)実施例 3— 2に示されたように 32エレメントを用いたリアクター部を用いる と酸素でも水素でも気体の種類によらず過飽和状態の溶液あるいはほぼ飽和状態 の溶液を製造することができたので、 リアクター内は過飽和状態にまで溶解する ために十分な圧力が十分な期間維持されていることが示された。 なお、 酸素と水 素の飽和濃度はそれぞれ約 42mg/L、 1. 5mg/Lである。
Figure imgf000025_0001
The results shown in Table 3 indicate the following. (1) As shown in Example 3-2, when a reactor unit using 32 elements is used, a supersaturated or almost saturated solution can be produced regardless of the type of gas, whether oxygen or hydrogen. Therefore, it was shown that sufficient pressure was maintained for a sufficient period of time to dissolve the reactor into a supersaturated state. The saturated concentrations of oxygen and hydrogen are approximately 42 mg / L and 1.5 mg / L, respectively.
(2)ェジェクタ 50A及び 50Bを使用し、スタティックミキサを使用しなかった.比較 例のものは酸素溶解量、 水素溶解量ともに少なく、 リアクター部の存在が気体溶 解量に重要であることを示している。 また、 8エレメントよりも 3 2エレメント の方が酸素も水素も多く溶解している。 このことは、 エレメントの数が多い方が 圧力を高く維持し気体の溶解には有利であることを示している。 なお、 6 4エレ メントのスタティックミキサを使用した場合の結果は 3 2エレメントのスタティ ックミキサを使用した場合と同じであったので、 3 2エレメントで十分であるこ とが示された。 . _ (2) Ejectors 50A and 50B were used, and no static mixer was used.The comparative example shows a small amount of dissolved oxygen and a small amount of dissolved hydrogen, indicating that the presence of the reactor is important for the amount of dissolved gas. ing. In addition, oxygen and hydrogen are more dissolved in the 3 2 element than in the 8 element. This indicates that a larger number of elements is advantageous for gas dissolution because the pressure is kept high. The results when using a 64 element static mixer were the same as when using a 32 element static mixer, indicating that 32 elements are sufficient. . _
(3)実施例 3— 1と 3— 2で示されたように酸素溶解水に連続して水素を溶解さ せた場合、 酸素を残存させることが可能であることが示された。  (3) As shown in Examples 3-1 and 3-2, when hydrogen was continuously dissolved in oxygen-dissolved water, it was shown that oxygen could be left.
(4)酸素溶解量が 2. 2mg/Lあるいは 3. 2mg/L存在していても、 0RP (酸化還元電位) が _485mV あるいは- 566mV のように優れた還元性を有する中性の水素及ぴ酸素溶 解水が得られることが示された。  (4) Even if oxygen dissolved amount is 2.2 mg / L or 3.2 mg / L, neutral hydrogen and 0RP (oxidation-reduction potential) has excellent reducing properties such as _485mV or -566mV. It was shown that oxygen-dissolved water can be obtained.
なお、 実施例 3— 1及ぴ 3— 2のいずれにおいても原水に酸素を溶解させて得 られた酸素溶解水の酸化還元電位が低下しているが、 この現象は原水中に含まれ ていた塩素が揮発したことから生じたものと推定される。  In both Examples 3-1 and 3-2, the redox potential of the oxygen-dissolved water obtained by dissolving oxygen in the raw water decreased, but this phenomenon was included in the raw water. It is presumed to have arisen from the volatilization of chlorine.
実施例 4 水素溶解水製造用プラントの製造 Example 4 Production of hydrogen-dissolved water production plant
大量に水素溶解水を得る目的で、 大量処理用の水素溶解水製造用プラントを設 計、 製造した。 図 9に製造装置のフローチャート図を示す。 図 9の製造装置は、 図 1 Bに示す装置の一実施態様である。 なお、 窒素ガスは、 液体に溶解させるガ スではなく、 タンク内の液体を排出するときに用いられる。  In order to obtain a large amount of hydrogen-dissolved water, a plant for producing hydrogen-dissolved water for large-scale treatment was designed and manufactured. Fig. 9 shows a flowchart of the manufacturing equipment. The manufacturing apparatus of FIG. 9 is an embodiment of the apparatus shown in FIG. 1B. Nitrogen gas is used to discharge the liquid in the tank, not the gas dissolved in the liquid.
各部分の説明は以下のとおりである。  The description of each part is as follows.
(01)水素供給パルプ (HHV11)  (01) Hydrogen supply pulp (HHV11)
運転開始前にバルブを開き、 生産開始準備をするための部分であり、 水素溶解 水製造終了後はバルブを手動にて閉じる。 This is the part for opening the valve before the start of operation and preparing for the start of production. After the water production is finished, close the valve manually.
(02)水素ガスレギュレーター (腿 12) '  (02) Hydrogen gas regulator (thigh 12) ''
水素ボンベより供給される水素ガス圧を微調整するための部分であり、 通常 0. 25MPaで供給されるガスを任意の圧力まで減圧する。  This is a part for finely adjusting the pressure of the hydrogen gas supplied from the hydrogen cylinder, and the pressure of the gas normally supplied at 0.25 MPa is reduced to an arbitrary pressure.
(03)水素ガス流量計 (HHV13、 HF01) '  (03) Hydrogen gas flow meter (HHV13, HF01) '
水素ガスボンベより供給される水素ガス流量を微調整するための部分であ.る。 This is a part for finely adjusting the flow rate of hydrogen gas supplied from a hydrogen gas cylinder.
(04)ガス抜きバルブ (HHV14) . (04) Gas vent valve (HHV14).
手動でタンク内のガスを放出するための部分であり、 通常は OFF設定となる。 This is a part for manually releasing the gas in the tank, and is normally set to OFF.
(05)窒素供給パルプ (HHV15) (05) Nitrogen supply pulp (HHV15)
強制排水時に使用する窒素ガスを供給.する為のバルブである。  It is a valve for supplying nitrogen gas used for forced drainage.
(06)水素ガス電磁バルブ (HAV11)  (06) Hydrogen gas solenoid valve (HAV11)
添加経路置換時 ·製造時に水素ガスを供給する為のバルブであり、 自動的に開 閉する。 . '  When replacing the addition route · This valve is used to supply hydrogen gas during production, and it opens and closes automatically. .
(07)水素ガス電磁バルブ (HAV12)  (07) Hydrogen gas solenoid valve (HAV12)
タンク水素置換時 ·充填経路水素置換時に水素ガスを供給する為のバルブであ り、 自動的に開閉する。  Tank hydrogen replacement · Filling path This valve is used to supply hydrogen gas when hydrogen is replaced, and opens and closes automatically.
(08)タンク調整電磁バルブ (HAV13)  (08) Tank adjustment solenoid valve (HAV13)
HTA2タンク ·ΗΤΑ3タンク內水素置換、圧力調整などを行うためのバルブであり、 自動的に開閉する。 ·  HTA2 tank · 內 3 tank バ ル ブ Valve for hydrogen replacement, pressure adjustment, etc., which opens and closes automatically. ·
(09)ガス抜き電磁パルプ (HAV14)  (09) Degassed electromagnetic pulp (HAV14)
添加経路置換 ·排水時などにガスを放出するためのバルブであり、 自動的に開 閉する。  Addition path replacement · Valve for releasing gas when draining, etc., and automatically opens and closes.
(10)窒素ガスス電磁バルブ (HAV15)  (10) Nitrogen gas solenoid valve (HAV15)
強制排水時に使用する窒素ガスを供給する為のバルブであり、 自動的に開閉す る。  This valve is used to supply nitrogen gas for forced drainage, and it opens and closes automatically.
(11)原料水供給パルプ (HHV51)  (11) Raw water supply pulp (HHV51)
原料水供給用のバルブであり、 通常 ONとなる。  This is a valve for supplying raw water and is normally ON.
(12)流量計(HHV52、 HF02)  (12) Flow meter (HHV52, HF02)
HPU01ポンプから HTA3タンクへ供給される水量を調整するための部分である。 (13)原料水供給電磁パルプ (HAV51) This is the part for adjusting the amount of water supplied from the HPU01 pump to the HTA3 tank. (13) Raw water supply electromagnetic pulp (HAV51)
原料水供給用のバルブであり、 製造時自動的に開閉する。  This is a valve for supplying raw water, which opens and closes automatically during production.
(14)水素溶解水供給電磁バルブ(HAV52)  (14) Hydrogen dissolved water supply solenoid valve (HAV52)
水素溶解水を充填機へ送水するためのバルブであり、自動的に開閉する。また、 充填経路水素置換 · CIP洗浄時も自動的に開閉する。  This valve is used to send hydrogen-dissolved water to the filling machine and automatically opens and closes. It also automatically opens and closes during filling route hydrogen replacement and CIP cleaning.
(15)排水電磁バルブ(HAV53)  (15) Drainage solenoid valve (HAV53)
製造終了 ·強制排水時自動的に開閉し、 排水するためのパルプである。 また、 CIP洗浄時には、 設定温度確認と同時に動作する。  Discontinued • Pulp that opens and closes automatically during forced drainage and drains. During CIP cleaning, it operates simultaneously with the set temperature check.
(16)排水電磁バルブ(HAV54)  (16) Drainage solenoid valve (HAV54)
HTA2タンク内の排水時に、 自動的に開閉するパルプである。  This pulp automatically opens and closes when draining into the HTA2 tank.
(17)排水電磁バルブ(HAV55)  (17) Drainage solenoid valve (HAV55)
主に HTA1タンク' HPU01ポンプ内の排水時に、自動的に開閉するパルプである。 Mainly HTA1 tank 'Pulp that opens and closes automatically when draining in the HPU01 pump.
(18)排水電磁バルブ(HAV56) ' (18) Drainage solenoid valve (HAV56) ''
主に配管内 · フィルター内の排水時に、 自動的に開閉するバルブである。 It is a valve that opens and closes automatically when draining inside the pipe and filter.
(19)渦流ポンプ (HPU01) (19) Vortex pump (HPU01)
原料水を送水するとともに、 入口側から供給される水素ガスと原料水を混合攪 拌し、 水素ガスを混合するパーツである。 本装置の場合、 この渦流ポンプの液体 導入口が気液混合部となっており、 液体に気体が混合される。  It is a part that feeds raw water and mixes and mixes hydrogen gas and raw water supplied from the inlet side and mixes hydrogen gas. In the case of this device, the liquid inlet of this vortex pump is a gas-liquid mixing section, and gas is mixed with the liquid.
(20)原料水貯水タンク (HTA1) ·  (20) Raw water storage tank (HTA1) ·
供給される原料水を一時的に貯水する部分である。  This is the part that temporarily stores the raw water supplied.
(21)バッファータンク(HTA2) '  (21) Buffer tank (HTA2) '
主に水素ガス圧の調整をするためのタンクである。  This tank is mainly used for adjusting the hydrogen gas pressure.
(22)製品貯留タンク (HTA3)  (22) Product storage tank (HTA3)
主に HPU01から送水される製品を貯留するタンクである。 該タンク内の圧力は 大気圧と同等である。  This tank mainly stores products sent from HPU01. The pressure in the tank is equivalent to atmospheric pressure.
(23)液面スィッチ (HTA1、 HTA3)  (23) Liquid level switch (HTA1, HTA3)
タンクの給排水制御を行うためのスィツチであり、 H · M · Lの 3箇所のスィッ チにより制御する。  This switch is used to control the water supply and drainage of the tank, and is controlled by three switches, H, M, and L.
(24)温度センサ (動 1) C I P時 HTA3タンクに供給される熱水の温度を測定するための部分である。(24) Temperature sensor (Dynamic 1) This is a part for measuring the temperature of hot water supplied to the HTA3 tank during CIP.
(25)安全バルブ (HSAV01) (25) Safety valve (HSAV01)
HTA2タンク内の圧力を調整するためのバルブであり、HTA2タンク内の圧力が設 定値以上になると開く。  This valve is used to adjust the pressure inside the HTA2 tank and opens when the pressure inside the HTA2 tank exceeds the set value.
(26)リアクター部  (26) Reactor section
液体と水素ガスとを加圧下で気液接触させ、 水素ガスを気体に溶解させる。 Liquid and hydrogen gas are brought into gas-liquid contact under pressure to dissolve hydrogen gas in the gas.
(27)フィルター 20 μ、 4. 5 / (27) Filter 20 μ, 4.5 /
原水、 水素水中の不純物を取り除くための部分である。  It is a part for removing impurities in raw water and hydrogen water.
(28)ベントフイノレター  (28) Bent Fino Letter
ΗΤΑ1、 ΗΤΑ2タンクに流入する空気の塵埃を取り除くための部分である。  ΗΤΑ1 and ΗΤΑ2 Parts for removing dust from the air flowing into the tank.
(29)サイ トグラス  (29) Site glass
管内の液体の流れを確認するための部分である。  It is a part for confirming the flow of the liquid in the pipe.
(30)防爆換気扇 . - 水素溶解水製造装置箱内の空気を排出するための部分である。  (30) Explosion-proof ventilation fan-This is the part for discharging the air in the hydrogen dissolved water production equipment box.
(31)水素検知器  (31) Hydrogen detector
水素溶解水製造装置より漏れた水素ガスを検知するための部分である。  This is a part for detecting hydrogen gas leaked from the hydrogen-dissolved water production apparatus.
2, OOOppmに達すると装置が停止します。 2, The device stops when it reaches OOOppm.
(32)圧空用レギュレータ  (32) Regulator for compressed air
電磁バルブ用の圧空の圧力を 0. 4MPaに調整 1~るための部分である。  This is the part for adjusting the pressure of the compressed air for the electromagnetic valve to 0.4 MPa.
図 9に示す装置において、 図左の水素で示された部分に図 1 Bの気体ボンべ 2 In the apparatus shown in Fig. 9, the gas cylinder shown in Fig. 1B
5が連結され、 水で示された部夯に図 1 Bの原料液体容器 2 1が連結される。 ま た、 HPU01 で示される渦流ポンプが図 1 Bの加圧ポンプ 2 3に相当し、 渦流ポン プの直ぐ上流に図 1 Bの気液混合部 3 5が存在し、 水素ガスが水に混合される。 さらに、 図 8に示す装置のリアクターで示される部分が図 1 Bのリアクター部 75 is connected, and the raw material liquid container 21 in FIG. 1B is connected to the part indicated by water. In addition, the vortex pump shown by HPU01 corresponds to the pressurizing pump 23 in Fig. 1B, and the gas-liquid mixing section 35 in Fig. 1B exists immediately upstream of the vortex pump, and hydrogen gas is mixed with water. Is done. Furthermore, the part shown by the reactor in the apparatus shown in FIG. 8 is the reactor part 7 in FIG. 1B.
0に相当する。 リアクター部から出る水素溶解水は、 細管を通って、 図 1 Bの気 体溶解液体受器 3 1に相当するタンク H T A 3に貯留される。 Corresponds to 0. The hydrogen-dissolved water exiting from the reactor section passes through a thin tube and is stored in a tank H T A 3 corresponding to the gas-dissolved liquid receiver 31 in FIG. 1B.
図 9に示す装置により、内径 1. 1cmのリアクターを用いて水を 20 L/分の流量 で流した場合でも水素が過飽和状態で溶解している水素溶解水を製造することが でき、 その場合の水素溶解水の製造スピードは 1. 2 トン /時間であった。 産業上の利用可能性 ' The device shown in Fig. 9 can produce hydrogen-dissolved water in which hydrogen is dissolved in a supersaturated state even when water is flowed at a flow rate of 20 L / min using a reactor with an internal diameter of 1.1 cm. The production speed of hydrogen-dissolved water was 1.2 tons / hour. Industrial applicability ''
本発明の連続加圧流通式の気体溶解装置を用いた場合、 多量の気体が溶解した 液体を短時間で多量に連続的に製造することができる。  When the continuous pressure flow type gas dissolving apparatus of the present invention is used, a liquid in which a large amount of gas is dissolved can be continuously produced in a large amount in a short time.
また、 同時に複数の気体を混合させることにより、 又は本装置を部分的に連結 することにより複数の気体を溶解した気体溶解液体を製造することができる。 本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする。  In addition, a gas-dissolved liquid in which a plurality of gases are dissolved can be manufactured by mixing a plurality of gases at the same time or by partially connecting the apparatus. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims

請求の範囲 The scope of the claims
1 . 液体が流通する管路であって、 原料液体を気体溶解液体受器まで流通さ せる液体流通管路、 1. a liquid flow line through which a liquid flows, the liquid flow line for flowing the raw material liquid to a gas-dissolved liquid receiver;
該液体流通管路の途中に設けられた加圧手段 あって、 原料液体を加圧して前 記流通管路を流通させるための加圧手段、  A pressurizing means provided in the middle of the liquid circulation pipe, the pressurizing means for pressurizing the raw material liquid to circulate through the flow pipe,
該液体流通管路の途中に設けられた少なくとも 1つの気液混合部であって、 気 体供給配管を介して気体容器と連結し、 気体容器からの気体を液体に混合するた めの気液混合部、  It is at least one gas-liquid mixing part provided in the middle of the liquid circulation pipe, and is connected to the gas container via the gas supply pipe, and is a gas-liquid for mixing the gas from the gas container with the liquid Mixing section,
前記液体流通管路の途中の前記気液混合部の下流に設けられた少なくとも 1つ のリアクター部であって、 気液混合部で混合した気体混合液体の圧力を維持し、 気体の液体への溶解を促進させるリアクター部、  At least one reactor unit provided downstream of the gas-liquid mixing unit in the middle of the liquid circulation pipe, maintaining the pressure of the gas mixed liquid mixed in the gas-liquid mixing unit, A reactor section that promotes dissolution,
を含む、 液体を液体流通管路中を流通さ 、 加圧し ¾がら連続的に気体溶解液体 を製造する連続加圧流通式気体溶解液体製造装置。 A continuous pressurized flow type gas-dissolved liquid production apparatus for continuously producing a gas-dissolved liquid by circulating and pressurizing a liquid in a liquid flow conduit.
2 . リアクター部において、リアクター内を流通する液体にかかる圧力を徐々 に低下させる、 請求項 1記載の連続加圧流通式気体溶解液体製造装置。  2. The continuous pressurized flow type gas-dissolved liquid production apparatus according to claim 1, wherein in the reactor section, the pressure applied to the liquid flowing through the reactor is gradually reduced.
3 . リアクター部が液体の流通を部分的に阻害する構造を有するものである、 請求項 1又は 2に記載の連続加圧流通式気体溶解液体製造装置。  3. The continuous pressurized flow type gas-dissolved liquid production apparatus according to claim 1 or 2, wherein the reactor section has a structure that partially obstructs the flow of the liquid.
4 . リアクター部がフィン構造、 切込み構造、 突起構造、 プラス ト加工処理 構造及び溝構造からなる群から選択される液体の流通を部分的に阻害する構造を 有する、 請求項 3記載の連続加庄流通式気体溶解液体製造装置。  4. The continuous pressure chamber according to claim 3, wherein the reactor part has a structure that partially obstructs the flow of a liquid selected from the group consisting of a fin structure, a notch structure, a protrusion structure, a plaste processing structure, and a groove structure. Flow-type gas dissolved liquid production equipment.
5 . リアクター部がスタティックミキサである、 請求項 1〜4のいずれか 1 項に記載の連続加圧流通式気体溶解液体製造装置。  5. The continuous pressurized flow type gas-dissolved liquid production apparatus according to any one of claims 1 to 4, wherein the reactor section is a static mixer.
6 . 気液混合部がェジェクタである、 請求項 1〜5のいずれか 1項に記載の 連続加圧流通式気体溶解液体製造装置。  6. The continuous pressurized flow-type gas-dissolved liquid producing apparatus according to any one of claims 1 to 5, wherein the gas-liquid mixing unit is an ejector.
7 . 加圧手段が加圧ポンプである、 請求項 1〜6のいずれか 1項に記載の連 続加圧流通式気体溶解液体製造装置。  7. The continuous pressurized flow type gas-dissolved liquid producing apparatus according to any one of claims 1 to 6, wherein the pressurizing means is a pressurizing pump.
8 . 加圧ポンプが渦流ポンプであり、 気液混合部の下流かつリアクター部の 上流に設けられた、 請求項 7記載の連続加圧流通式気体溶解液体製造装置。 8. The continuous pressurized flow type gas-dissolved liquid producing apparatus according to claim 7, wherein the pressurizing pump is a vortex pump, and is provided downstream of the gas-liquid mixing unit and upstream of the reactor unit.
9. 気液混合部とリアクター部が直接連結している、 請求項 1〜8のいずれ か 1項に記載の連続加圧流通式気体溶解液体製造装置。 ' 9. The continuous pressurized flow type gas-dissolved liquid production apparatus according to any one of claims 1 to 8, wherein the gas-liquid mixing unit and the reactor unit are directly connected. '
10. リアクター部の管内径に対する長さの比が 10以上である、請求項 1〜 9のいずれか 1項に記載の連続加圧流通式気体溶解液体製造装置。  10. The continuous pressurized flow type gas-dissolved liquid production apparatus according to any one of claims 1 to 9, wherein a ratio of a length of the reactor section to a tube inner diameter is 10 or more.
1 1. 原料液体又は気体溶解液体の少なく 'とも一方にかかる圧力が大気圧と 同等であり、 開放系である、 請求項 1〜 10のいずれか 1項に記載の連続加压流 通式気体溶解液体製造装置。  1 1. Continuously pressurized flow-through gas according to any one of claims 1 to 10, wherein the pressure applied to at least one of the raw material liquid and the gas-dissolved liquid is equivalent to atmospheric pressure and is an open system. Dissolved liquid production equipment.
12. 気液混合部とリアクター部の組を複数有し、 複数の気体を溶解させる ことができる、 請求項 1〜 1 1のいずれか 1項に記載の連続加圧流通式気体溶解 液体製造装置。  12. The continuous pressurization flow type gas dissolution liquid production device according to any one of claims 1 to 11, which has a plurality of pairs of gas-liquid mixing sections and reactor sections and can dissolve a plurality of gases. .
13. 液体が水、 ミネラルウォーター、茶、 コーヒー、清涼飲料、 ジュース、 ゲル状飲料、 化粧品、 シャンプー及び生理食塩水からなる群から選択され、 気体 が水素ガス、 酸素ガス及ぴオゾンガスからなる群か 'ら選択される気体を含む気体 である、 請求項 1〜12のいずれか 1項に記載の連続加圧流通式気体溶解液体製 造装置。  13. The liquid is selected from the group consisting of water, mineral water, tea, coffee, soft drinks, juice, gel drinks, cosmetics, shampoos and saline, and the gas is a group consisting of hydrogen gas, oxygen gas and ozone gas. The continuous pressurized flow-type gas dissolving liquid manufacturing apparatus according to any one of claims 1 to 12, which is a gas containing a gas selected from the above.
14. 以下の (1) 〜 (3) の工程を含む、 管路内を流通する加圧液体に連 続的に気体を溶解させることにより、 気体溶解液体を製造する方法:  14. A method for producing a gas-dissolved liquid by continuously dissolving a gas in a pressurized liquid flowing in a pipeline, including the following steps (1) to (3):
(1) 液体流通管路を流れている加圧した液体に加圧した気体を混合する工程、 (1) a step of mixing the pressurized gas with the pressurized liquid flowing through the liquid circulation line;
(2) 得られた気体混合液体の加圧状態を維持することにより気体を液体に溶 解する工程、 及び (2) a step of dissolving the gas in the liquid by maintaining the pressurized state of the obtained gas mixed liquid; and
(3) 気体が溶解した液体を常圧に戻して、 気体溶解液体を回収する工程。  (3) A step of returning the gas-dissolved liquid to normal pressure and recovering the gas-dissolved liquid.
15. (1) の工程が液体流通管路を流れている加圧液体に液体管路の途中 に設けられた気液混合部に加圧気体を供給することにより、 加圧した液体に加圧 した気体を混合する工程である、 請求項 14記載の管路内を流通する加圧液体に 連続的に気体を溶解させることにより、 気体溶解液体を製造する方法。  15. In step (1), the pressurized liquid is pressurized by supplying pressurized gas to the gas-liquid mixing section provided in the middle of the liquid pipe to the pressurized liquid flowing in the liquid circulation pipe. 15. A method for producing a gas-dissolved liquid by continuously dissolving a gas in a pressurized liquid flowing in a pipe line according to claim 14, wherein the gas-dissolved liquid is a step of mixing the gas.
16. (2) の工程が、 得られた気体混合液体を、 液体流通管路の途中であ つて前記気液混合部の下流に設けられたリアクター部を通し、 該リアクター部の 作用により、 気体混合液体の加圧状態を維持することにより気体を液体に溶解す る工程である、 請求項 14又は 1 5に記載の管路内を流通する加圧液体に連続的 に気体を溶解させることにより、 気体溶解液体を製造する方法。 16. In the step (2), the obtained gas mixture liquid is passed through a reactor section provided in the middle of the liquid circulation pipe and downstream of the gas-liquid mixing section. The process of dissolving a gas in a liquid by maintaining a pressurized state of the mixed liquid, wherein the gas is continuously added to the pressurized liquid flowing in the pipeline according to claim 14 or 15. A method for producing a gas-dissolved liquid by dissolving a gas in
17. (1) の工程における気液 合部がェジヱクタである、 請求項 1 5又 は 16に記載の管路内を流通する加圧液体に連続的に気体を溶解させることによ り、 気体溶解液体を製造する方法。  17. The gas-liquid junction in the step (1) is an ejector, and the gas is obtained by continuously dissolving the gas in the pressurized liquid flowing in the pipe line according to claim 15 or 16. A method for producing a dissolved liquid.
18. (2) の工程におけるリアクター部が液体の流通を部分的に阻害する 構造を有するものである、 請求項 15〜17のいずれか 1項に記載の管路内.を流 通する加圧液体に連続的に気体を溶解させることにより、 気体溶解液体を製造す る方法。  18. Pressurization through the pipe line according to any one of claims 15 to 17, wherein the reactor part in the step (2) has a structure that partially obstructs the flow of liquid. A method for producing a gas-dissolved liquid by continuously dissolving a gas in the liquid.
1 9. (2) の工程におけるリアクター部がフィン構造、 切込み構造、 突起 構造、 ブラスト加工処理構造及ぴ溝構造からなる群から選択される液体の流通を 部分的に阻害する構造を有する、 請求項 18記載の管路内を流通する加圧液体に 連続的に気体を溶解させることにより、 気体溶解液体を製造する方法。  1 9. The reactor in the step (2) has a structure that partially obstructs the flow of a liquid selected from the group consisting of a fin structure, a notch structure, a protrusion structure, a blast processing structure, and a groove structure. Item 19. A method for producing a gas-dissolved liquid by continuously dissolving a gas in a pressurized liquid flowing in a pipe line according to Item 18.
20. (2) の工程におけるリアクター部がス ティックミキサである、 請 求項 16〜19のいずれか 1項に記載の管路内を流通する加圧液体に連続的に気 体を溶解させることにより、 気体溶解液体を製造する方法。  20. The reactor in the step (2) is a stick mixer, and the gas is continuously dissolved in the pressurized liquid flowing in the pipeline according to any one of claims 16 to 19. To produce a gas-dissolved liquid.
21. (1) の工程における加圧液体が加圧ポンプにより加圧される、 請求 項 16〜 20のいずれか 1項に記載の管路内を流通する加圧液体に連続的に気体 を溶解させることにより、 気体溶解液体を製造する方法。  21. The pressurized liquid in the step (1) is pressurized by a pressure pump, and the gas is continuously dissolved in the pressurized liquid flowing in the pipeline according to any one of claims 16 to 20. A method for producing a gas-dissolved liquid.
22. リアクター部において、 リアクター内を流通する液体にかかる圧力を 徐々に低下させ、 気体を溶解させた液体を常圧に戻す、 請求項 16〜21のいず れか 1項に記載の管路内を流通する加圧液体に連続的に気体を溶解させることに より、 気体溶解液体を製造する方法。  22. The conduit according to any one of claims 16 to 21, wherein, in the reactor section, the pressure applied to the liquid flowing through the reactor is gradually reduced, and the liquid in which the gas is dissolved is returned to normal pressure. A method for producing a gas-dissolved liquid by continuously dissolving a gas in a pressurized liquid flowing through the inside.
23. 気液混合部とリアクター部の組を複数有し、 複数の気体を溶解させる ことができる、 請求項 16〜22のいずれか 1項に記載の管路内を流通する加圧 液体に連続的に気体を溶解させることにより、 気体溶解液体を製造する方法。  23. It has a plurality of pairs of gas-liquid mixing sections and reactor sections, and can dissolve a plurality of gases, and is continuous with the pressurized liquid flowing in the pipeline according to any one of claims 16 to 22. A method for producing a gas-dissolving liquid by dissolving a gas.
24. 気体溶解液体において、 気体が液体に過飽和状態で溶解している、 請 求項 14〜23のいずれか 1項に記載の管路内を流通する加圧液体に連続的に気 体を溶解させることにより、 気体溶解液体を製造する方法。  24. In a gas-dissolved liquid, the gas is dissolved in a supersaturated state in the liquid, and the gas is continuously dissolved in the pressurized liquid flowing in the pipeline according to any one of claims 14 to 23. A method for producing a gas-dissolved liquid.
25. 液体が水、 ミネラルウォーター、 茶、 コーヒー、 清涼飲料、 ジュース 及び生理食塩水からなる群から選択され、 気体が水素ガス、 酸素ガス及ぴオゾン ガスからなる群から選択される気体を含む気体である、 請求項 1 4〜2 4のいず れか 1項に記載の管路内を流通する加圧液体に連続的に気体を溶解させることに より、 気体溶解液体を製造する方法。 25. Liquid is water, mineral water, tea, coffee, soft drink, juice And the gas is a gas containing a gas selected from the group consisting of hydrogen gas, oxygen gas, and ozone gas, and any one of claims 14 to 24. A method for producing a gas-dissolved liquid by continuously dissolving a gas in a pressurized liquid flowing through the pipe line described in 1.
PCT/JP2007/054606 2006-09-05 2007-03-02 Process and equipment for mass production of liquid containing gas dissolved therein by continuous pressure flowing method WO2008029525A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-240723 2006-09-05
JP2006240723 2006-09-05

Publications (1)

Publication Number Publication Date
WO2008029525A1 true WO2008029525A1 (en) 2008-03-13

Family

ID=39156970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054606 WO2008029525A1 (en) 2006-09-05 2007-03-02 Process and equipment for mass production of liquid containing gas dissolved therein by continuous pressure flowing method

Country Status (1)

Country Link
WO (1) WO2008029525A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870522A (en) * 2009-04-24 2010-10-27 株式会社安来特 Fine bubble generating apparatus
CN103408121A (en) * 2013-07-26 2013-11-27 徐礼鲜 Device for preparing water with dissolved hydrogen and dissolved oxygen through microbubble, replacement, baffle and mixing
JP2015047527A (en) * 2013-08-30 2015-03-16 株式会社デンソー Ejector device and pipe washing device
JP5699232B1 (en) * 2014-02-12 2015-04-08 有限会社ジェニス・ホワイト Hydrogen water production apparatus and production method and storage method thereof
JP5826421B1 (en) * 2015-03-30 2015-12-02 株式会社ジェ・スク Gas dissolver and carbonated water generator using the same
CN108473347A (en) * 2015-11-09 2018-08-31 生物焦炭技术研究株式会社 The manufacturing method of hydrogen-rich device, hydrogen-rich method and hydrogen-rich liquid
US10076540B1 (en) 2017-08-08 2018-09-18 Perricone Hydrogen Water Company, Llc Medication enhancement using hydrogen
US10155010B1 (en) 2017-08-08 2018-12-18 Perricone Hydrogen Water Company, Llc Barriers for glass and other materials
JP6467550B1 (en) * 2018-09-13 2019-02-13 株式会社エヌティシィー Tap water supply system for tap water containing hydrogen
CN110180422A (en) * 2019-04-12 2019-08-30 南京汇仁化工设备有限公司 A kind of static mixer device
CN110655168A (en) * 2019-10-09 2020-01-07 武汉宝盈普济科技有限公司 Portable hydrogen-rich water preparation device and preparation method
US11123365B2 (en) 2019-11-18 2021-09-21 Perricone Hydrogen Water Company, Llc Compositions comprising palmitoylethanolamide and hydrogen water, and methods thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112321U (en) * 1989-02-22 1990-09-07
JP2000334283A (en) * 1999-05-26 2000-12-05 Ishikawajima Harima Heavy Ind Co Ltd Ozone dissolving method and device
JP2002095942A (en) * 2000-09-22 2002-04-02 Yoshiyuki Sawada Gas dissolving device
JP2002273183A (en) * 2001-03-23 2002-09-24 Nikuni:Kk Gas-liquid mixing and dissolving apparatus
JP2003019426A (en) * 2001-05-01 2003-01-21 Joho Kagaku Kenkyusho:Kk Method and system for producing gas dissolving liquid medium
JP2004122043A (en) * 2002-10-04 2004-04-22 Okumine:Kk Apparatus for manufacturing ozone water
JP2004344859A (en) * 2003-04-28 2004-12-09 Joho Kagaku Kenkyusho:Kk Automatic oxidation reduction system by colloid solution of hydrogen gas and oxygen gas dissolved under vacuum and pressure
JP2005144352A (en) * 2003-11-17 2005-06-09 Yaskawa Electric Corp High-speed ozone catalytic reaction apparatus
JP2005246351A (en) * 2004-03-08 2005-09-15 Irie Shingo Fine bubble forming apparatus for improving water quality
JP2006116504A (en) * 2004-10-25 2006-05-11 Ted:Kk Hydrogen reduced water and method for preparing it
JP2006198557A (en) * 2005-01-21 2006-08-03 Sato Kogyo Kk Apparatus for producing water having oxidation-reduction potential

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112321U (en) * 1989-02-22 1990-09-07
JP2000334283A (en) * 1999-05-26 2000-12-05 Ishikawajima Harima Heavy Ind Co Ltd Ozone dissolving method and device
JP2002095942A (en) * 2000-09-22 2002-04-02 Yoshiyuki Sawada Gas dissolving device
JP2002273183A (en) * 2001-03-23 2002-09-24 Nikuni:Kk Gas-liquid mixing and dissolving apparatus
JP2003019426A (en) * 2001-05-01 2003-01-21 Joho Kagaku Kenkyusho:Kk Method and system for producing gas dissolving liquid medium
JP2004122043A (en) * 2002-10-04 2004-04-22 Okumine:Kk Apparatus for manufacturing ozone water
JP2004344859A (en) * 2003-04-28 2004-12-09 Joho Kagaku Kenkyusho:Kk Automatic oxidation reduction system by colloid solution of hydrogen gas and oxygen gas dissolved under vacuum and pressure
JP2005144352A (en) * 2003-11-17 2005-06-09 Yaskawa Electric Corp High-speed ozone catalytic reaction apparatus
JP2005246351A (en) * 2004-03-08 2005-09-15 Irie Shingo Fine bubble forming apparatus for improving water quality
JP2006116504A (en) * 2004-10-25 2006-05-11 Ted:Kk Hydrogen reduced water and method for preparing it
JP2006198557A (en) * 2005-01-21 2006-08-03 Sato Kogyo Kk Apparatus for producing water having oxidation-reduction potential

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870522A (en) * 2009-04-24 2010-10-27 株式会社安来特 Fine bubble generating apparatus
JP2010269301A (en) * 2009-04-24 2010-12-02 Anlet Co Ltd Micropscopic bubble generating apparatus
US8292269B2 (en) 2009-04-24 2012-10-23 Anlet Co., Ltd. Microscopic bubble generating apparatus
CN103408121A (en) * 2013-07-26 2013-11-27 徐礼鲜 Device for preparing water with dissolved hydrogen and dissolved oxygen through microbubble, replacement, baffle and mixing
CN103408121B (en) * 2013-07-26 2015-07-15 徐礼鲜 Device for preparing water with dissolved hydrogen and dissolved oxygen through microbubble, replacement, baffle and mixing
JP2015047527A (en) * 2013-08-30 2015-03-16 株式会社デンソー Ejector device and pipe washing device
JP5699232B1 (en) * 2014-02-12 2015-04-08 有限会社ジェニス・ホワイト Hydrogen water production apparatus and production method and storage method thereof
JP2015150472A (en) * 2014-02-12 2015-08-24 有限会社ジェニス・ホワイト Manufacturing device for hydrogen water, and manufacturing method and storage method for hydrogen water
JP5826421B1 (en) * 2015-03-30 2015-12-02 株式会社ジェ・スク Gas dissolver and carbonated water generator using the same
JP2016187765A (en) * 2015-03-30 2016-11-04 株式会社ジェ・スク Gas dissolver and carbonated water generator using the same
CN108473347A (en) * 2015-11-09 2018-08-31 生物焦炭技术研究株式会社 The manufacturing method of hydrogen-rich device, hydrogen-rich method and hydrogen-rich liquid
US10076540B1 (en) 2017-08-08 2018-09-18 Perricone Hydrogen Water Company, Llc Medication enhancement using hydrogen
US10155010B1 (en) 2017-08-08 2018-12-18 Perricone Hydrogen Water Company, Llc Barriers for glass and other materials
US11129848B2 (en) 2017-08-08 2021-09-28 Perricone Hydrogen Water Company, Llc Medication enhancement using hydrogen
JP6467550B1 (en) * 2018-09-13 2019-02-13 株式会社エヌティシィー Tap water supply system for tap water containing hydrogen
JP2020040043A (en) * 2018-09-13 2020-03-19 株式会社エヌティシィー Tap water supply system for tap water containing hydrogen
KR20200031039A (en) * 2018-09-13 2020-03-23 가부시키가이샤 엔티씨 Tap water supplying system of tap water having ionized hydrogen and supplying method of tap water having ionized hydrogen
KR102293744B1 (en) 2018-09-13 2021-08-26 가부시키가이샤 엔티씨 Tap water supplying system of tap water having ionized hydrogen and supplying method of tap water having ionized hydrogen
CN110180422A (en) * 2019-04-12 2019-08-30 南京汇仁化工设备有限公司 A kind of static mixer device
CN110655168A (en) * 2019-10-09 2020-01-07 武汉宝盈普济科技有限公司 Portable hydrogen-rich water preparation device and preparation method
US11123365B2 (en) 2019-11-18 2021-09-21 Perricone Hydrogen Water Company, Llc Compositions comprising palmitoylethanolamide and hydrogen water, and methods thereof

Similar Documents

Publication Publication Date Title
WO2008029525A1 (en) Process and equipment for mass production of liquid containing gas dissolved therein by continuous pressure flowing method
JP3139460U (en) Mass production equipment for gas-dissolved liquid by continuous pressurized flow system
KR100985087B1 (en) Ozonated water flow and concentration control apparatus and method
KR101004850B1 (en) Method and apparatus for producing oxygen-containing reducing aqueous beverage
TW201709973A (en) Preparation device of supersaturated hydrogen solution and preparation method thereof
JP3662111B2 (en) Cleaning liquid manufacturing method and apparatus therefor
JP2011062669A (en) Drinking water, using method of drinking water, refining method of drinking water and drinking water generating device
CA2244436A1 (en) Process and equipment for sanitizing and packaging food using ozone
EP2573053B1 (en) Gas dispersion apparatus for improved gas-liquid mass transfer
AU654718B2 (en) A method of hardening water and apparatus for use thereof
JP2011020097A (en) Purification device and method
JP4757228B2 (en) Gas-liquid mixing and dissolution method and gas-liquid mixing and dissolution apparatus using linear slits
US20150122126A1 (en) Deaerator and method for deaeration
CN108495807A (en) The integrated beverage distribution head of wash module
JP2010051846A (en) Gas dissolving apparatus
JP3859430B2 (en) Degassing method and degassing device
JP2010194440A (en) Gas-liquid mixing apparatus
JPH10230285A (en) High speed ozone reaction system
KR20170091023A (en) Functional water producing apparatus and functional water producing method
US20030111429A1 (en) Cavitation method and apparatus for deaeration
CN102249361B (en) Ozone gas supply pressure stabilizing device and air flotation reactor using same
JP2002166147A (en) Ozone water production apparatus
JPH01317586A (en) Device to remove dissolved oxygen in water as material to be used for drinks such as beer and soft drink
JP2733781B2 (en) Method and apparatus for dissolving carbon dioxide
JP4960435B2 (en) Bubble generating valve device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738091

Country of ref document: EP

Kind code of ref document: A1