JP2009502003A - 屈折要素を浄化する方法及びニアフィールド光学システムのための光走査装置 - Google Patents

屈折要素を浄化する方法及びニアフィールド光学システムのための光走査装置 Download PDF

Info

Publication number
JP2009502003A
JP2009502003A JP2008522114A JP2008522114A JP2009502003A JP 2009502003 A JP2009502003 A JP 2009502003A JP 2008522114 A JP2008522114 A JP 2008522114A JP 2008522114 A JP2008522114 A JP 2008522114A JP 2009502003 A JP2009502003 A JP 2009502003A
Authority
JP
Japan
Prior art keywords
purification
refractive element
scanning device
pad
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008522114A
Other languages
English (en)
Inventor
アー フェルスフーレン,クーン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2009502003A publication Critical patent/JP2009502003A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/121Protecting the head, e.g. against dust or impact with the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1387Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13727Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Laser Beam Printer (AREA)
  • Lenses (AREA)

Abstract

本発明は、光ディスクを走査するためにニアフィールド光走査装置の屈折要素の光出射面を浄化する方法であって、屈折要素の光出射面が浄化パッドの表面に対して平行であり、屈折要素は接触エッジに沿って浄化パッドに接触するように、屈折要素及び前記浄化パッドが機械的に接触するようにする、接触ステップと、少なくとも浄化軸に沿って屈折要素に相対して平行な前記浄化パッドの少なくとも相対移動を有し、ここで、浄化軸は浄化パッドの面内にあり且つ接触エッジに対して実質的に垂直である、第1浄化ステップとを有する方法に関する。本発明はまた、前記方法にしたがって屈折要素を浄化することを可能にするニアフィールド光走査装置に関する。

Description

本発明は、一般に、ニアフィールド型の光散乱装置の屈折要素を浄化する方法に関する。本発明はまた、ニアフィールド型の光散乱装置に関する。
光走査装置は、光ディスクに対して小さいスポット状にフォーカシングされる放射線ビームにより光ディスクを走査する。光ディスク内又は光ディスク上の情報層からの読み取り及び/又はその情報層への書き込みは、光ディスクを走査することを意味する。光ディスクから読み取られる及び/又は光ディスクに記録される最大記録データ密度は、光ディスクにフォーカシングされた放射線スポットのサイズに対応する。ディスクにフォーカシングされるスポットが小さければ小さい程、光ディスクに記録されることができるデータ密度はより高くなる。上記のスポットサイズはまた、放射線光源、例えば、レーザにより生成される走査光ビームの波長λと、対物レンズとも称せられる焦点レンズの開口数(NA)との比により決定される。
1を上回る開口数(NA)を達成することは、所謂‘ニアフィールド型’構成を必要とし、光走査装置の屈折要素は、その屈折要素が波長の1/2よりかなり小さい距離だけ、
実際には、数十nmより小さい距離だけ、光ディスクの出射面から間隔を置くように、対物レンズと光ディスクとの間に位置付けられている。
光ディスクから読み取られる又は光ディスクに書き込まれるときに、上記の距離の要求を満たすことを可能にする光走査装置についての既知のデザインは、アクチュエータを使用するアクティブフィードバックシステム及び磁気記録システムに類似しているスライダーを利用するシステムである。
スライダー及びアクチュエータのデザインの両方についての技術的課題は、屈折要素において汚染物質及びダストのない出射面を維持することである。放射線の経路内に付着しているそのような汚染物質又はダストは、光ディスクの表面までの距離を制御するための光走査装置の能力又は光信号に悪影響を与える可能性があり、性能における劣化、又は、極端な場合には、光走査装置の故障に繋がる。
米国特許第6,625,110号明細書においては、スラーダーに基づくニアフィールド型光ヘッドにおけるダストの凝集を回避するために適切な方法について記載されている。その文献においては、スライダーのサスペンションアームに取り付けられている超音波振動子の使用、レンズの汚染浄化は、スライダーを共振させることにより行われる。米国特許第6,625,110号明細書においてまた、浄化ユニットにより光ヘッドの機械式浄化及びスライダーにおけるダスト収集電極の使用について開示されている。
米国特許第6,625,110号明細書
本発明の目的は、ニアフィールド型のアクティブフィードバック(アクチュエータに基づく)光走査システムのためにかなり適切な浄化方法を提供することである。
この目的は、請求項に記載した特徴的な本発明にしたがった方法により達成される。この方法は、ガス及び汚染物質に対する感度が異なる、したがって、目的の課題がスライダーシステムに比べてアクチュエータに基づく光走査システムについて異なるという洞察に基づいている。スライダーシステムは、スライダーが浮かぶ流体力学式空気圧を得るように正及び負圧力点を有する大きい空気軸受け面を有することに依存している。したがって、スライダーシステムは、空気流を乱す圧力点の何れかにおいて堆積される場合に、流体力学式空気圧を低下させ、スラーダーがディスクと衝突するようになる可能性がある。スライダーを支持している薄いリーフスプリングは、一般に、そのような衝突を切り抜けることはできない。それとは対照的に、アクチュエータに基づく光走査システムは、アクチュエータの支持ヒンジがディスクとの極めてロバストに切り抜けられる衝突であるため、より大きいダスト粒子によって影響されない。しかしながら、そのようなシステムは、屈折要素のエッジにおいて優先的に凝集する、より小さいサイズの汚染物質、例えば、指紋からの有機物質に対して高感度であることが理解されている。使用の前及び長期使用の後にアクチュエータに基づく光走査システムで用いる固体含浸レンズ(SIL:Solid Immersion Lens)の光学顕微鏡写真を調べることにより、汚染物質が、その要素を通る放射線の透過に悪影響を与える、レンズのエッジに優先的に凝集することが観測された。射出瞳の小さい直径及び汚染物質の小さい特徴サイズの観点から、ブラッシング及び/又は超音波振動による機械式浄化としてスライダーを用いる既知の浄化方法は、アクチュエータに基づく光走査システムについては適切でない。屈折要素のエッジを優先的に洗浄することを可能にするために、屈折要素の接触エッジに沿って接触が行われるように、屈折要素が浄化パッドに接触して浄化されるようにするステップを有する請求項1に記載の方法により、浄化効率は改善される。
有利な実施形態においては、浄化軸に沿った相対移動の方向は、接触エッジが屈折要素のトレーリングするように選択される。そのような手段は、汚れが屈折要素の表面から遠ざけられるように押し出され、屈折要素の中央を汚染するリスクをなくす有利点を有する。
改善された実施形態が請求項3の手段により得られ、最先端のアクチュエータに基づくニアフィールド式光走査装置において対応可能なレンズ傾け機構は屈折要素を回転するために有利であるように用いられることができる。好適には、回転軸は接触エッジに対して平行に選択される。更に、光ディスクを走査するとき、光ディスクに対する屈折要素の移動のタンジェンシャル方向に一致するように選択される。汚染物質は、走査方向に対して屈折要素の後縁において優先的に凝集し、それ故、前記手段は、汚染物質が最も凝集し易い傾向にある屈折要素のそれらの領域の効率的な浄化を可能にする。
浄化効率を改善するように、好適な複数の浄化ステップが実行される。好適には、その浄化方法は、第1回転ステップにおいて回転方向に対して逆の方向に回転軸の周りにおいて屈折要素を回転させる第2回転ステップと、浄化方向における屈折要素に対する浄化パッドの少なくとも相対移動を有する第2浄化ステップと、を有する。前記方法は、光ディスクの走査方向に対して屈折要素の前縁領域及び後縁領域の両方の効率的な浄化を可能にし、前記領域は、汚染が最も凝集し易い傾向にある。
改善された実施形態は、請求項4の手段により得られる。第1浄化ステップは、接触エッジに対して平行な軸に沿った横方向相対移動を更に有する場合、逆の浄化方向における浄化ステップを有するシーケンスが実行されているときに、浄化パッドの新鮮な表面が各々の浄化ステップを実行する間に与えられ、それ故、光出射表面が再汚染されるリスクが回避されるという有利点を有する。
改善された実施形態が、請求項8の手段により得られる。複数の浄化シーケンスが実行される場合、好適には、第1浄化シーケンスに対応する回折要素の回転角は大きく、好適には、最大である。そのような測定は、回折要素の光出射表面と浄化パッドの表面との間の汚染物質のトラップのリスクがもたらされることなく、回折要素のエッジが浄化されることを確実にする。第1浄化シーケンスの後、回転角は連続する浄化シーケンスについて減少されることが可能であり、好適には、最後の浄化シーケンスは、回折要素自体の光出射表面の浄化を有する。
改善された実施形態が、請求項11の手段により得られる。所定の浄化シーケンスに対応して回転軸の方向を変えている間に浄化シーケンスを繰り返すことは、屈折要素の光出射表面の全部のエッジが、前縁及び後縁のみではなく、浄化されることができるという有利点を有する。
本発明はまた、請求項15にしたがって、光ディスクを走査するためのニアフィールド型の光走査装置に関する。本発明にしたがった光走査装置は、浄化パッドと、屈折要素の光出射表面がその浄化パッドの表面に対して非平行であるように、屈折要素及び浄化パッドに機械的に接触するようにするための第1機械式移動手段であって、その屈折要素は接触エッジに沿って浄化パッドと接している、第1機械式移動手段と、少なくとも浄化軸に沿って屈折要素に対して浄化パッドを相対的に移動させるための第2機械式移動手段と、を有し、浄化軸は、浄化パッドの場所にあり、実質的には、接触エッジに対して垂直である。本発明にしたがった光走査装置は、屈折要素の光出射表面を浄化することができる。好適な実施形態においては、第1機械式移動手段は、光ディスクを走査している間に、レンズチルト及び焦点制御を与えるために用いられるアクチュエータである。好適には、回転角は、1乃至100mradの範囲内にあり、屈折要素は固体含浸レンズ(SIL)である。
本発明の上記の及び他の特徴は、下記において詳述する実施形態から明らかになり、それらの実施形態により説明される。下記において、用語“屈折要素”は多くの光要素を包含し、ニアフィールドシステムのためのSILレンズを含むことと、説明目的のための記載における、用語“SILレンズ”は、本発明のアプリケーションを単なるSILレンズに限定するものではないこととを理解することができる。
本発明の特徴及び有利点については、添付図を参照することにより理解することができる。
図1は、本発明を実行することが可能であるニアフィールド型の光走査装置の模式図である。そのような装置の詳細説明については、文献Proceedings of SPIE(Optical Data Storage 2004),ed.B.V.K.Vijaya Kumar,Vol.5380,pp209−223に記載されている。
装置100は、ニアフィールド型光学システムの一部を構成する。その装置は、モーター制御部102に接続されている制御ユニット101を有し、そのモーター制御部に、光ディスク115が位置付けられたチャック103が置かれている。光ディスク115は、光学システムの読み取り及び書き込み動作中に回転するようにされることが可能である。光ディスク115の上において、ニアフィールドシステムの屈折要素、例えば、固体含浸レンズ(SIL)がヘッドアセンブリ105に収容されている。ヘッドアセンブリ105は、サーボユニット107により光ディスク115の上の特定の距離に位置付けられている。光ディスク115に入射する放射線ビームはフロントエンドユニット108からもたらされ、そのフロントエンドユニットは、レーザ、光学系、検出器等を有し、入力がフォーマットされる及び変調されるユニット109を介して制御ユニット101からの動作指令を受け入れる。
エアギャップとしても知られている、光ディスク115とヘッドアセンブリ105との間における所定距離106の制御を、そのような小さい距離において機械式アクチュエータにより可能にするように、適切な制御信号が、ギャップサーボシステムについての入力として必要である。適切な制御信号は偏光状態を有する反射された光放射線ビームから得られ、その反射された光放射線ビームにおいては、例えば、光ディスクにフォーカシングされる走査光放射線ビームに対して垂直であることが知られている。光放射線ビームのかなりの部分は、SIL−空気−光ディスク界面における反射の後に楕円偏光される。この効果は、反射ビームが偏光子を介して観測されるとき、既知の“マルタクロス(Maltese cross)”を生成する。制御信号が、偏光光学系及び放射線検出器、例えば、光検出器を用いて、この“マルタクロス”の光全部を積分することにより生成される。光検出器の値は、0である距離(機械的な接触)については略0であり、距離106の増加に伴って増加し、距離106が光ビームの波長の略10分の1であるとき、最大値に定められている。制御信号は、ギャップエラー信号(GES)として知られていて、対応するサーボ方法と共に、上記文献及び文献Jpn.J.Appl.Phys.Vol.42(2003)pp2719−2724,Part1,No.5A,May 2003及びTechnical Digest ISOM/ODS 2002,Hawaii,7−11 July 2002 ISBN−0−7803−7379−0に記載され、示されている。
フロントエンドユニット108からの出力は信号処理ユニット110に供給される。この出力は、特に、読み取りデータ及びギャップエラー信号(GES)距離測定を有する。読み取りデータ111は別個のサブシステムの方に方向付けられる。GES信号112は閾値ユニット113に供給される。この閾値ユニットは、予め決定され、そのユニットに対してプログラムされた1つ又はそれ以上の閾値を有する。更に、そのプログラムは、測定された距離の何れかが閾値から外れている場合に実行される必要がある適切な反応を有する。測定距離と閾値との間の比較が行われ、適切な反応が、必要に応じて、選択される。この情報は、その場合、SILレンズを有するヘッド105をまた、制御するサーボユニット107を制御することにより選択された反応を実行するように作用するエアギャップ制御ユニット114に供給される。
ヘッドアセンブリ105を有する光ピックアップユニット(OPU)及びフロントエンドユニット108の更なる詳細について、図2を参照して説明する。この図は例示としての実施例としての意味をもち、幾つかの他の実施形態が当該技術分野において知られている。放射線ビーム、例えば、単色のレーザビームは、レーザダイオード201により生成され、そのレーザビームは格子202を通り、その格子は、主ビーム及び2つの衛星スポットを有する3ビーム径を生成することを可能にする。放射線ビームは、ビームスプリッタ203、コリメータレンズ204を更に通る。最終的に、放射線ビームは、対物レンズ205により光ディスク106に備えられている情報層に対してスポット状にフォーカシングされ、屈折要素206、例えば、固体含浸レンズ(SIL)から出る。光ディスクにおける情報層は、スクラッチに対する機械的保護のためのカバー層によりカバーされることが可能である。光ディスクにおける情報層により反射された放射線ビームの一部は、ビームスプリッタ203を透過し、サーボレンズ207及び検出器208の方に進む。機械式アクチュエータシステム209a及び209bは、光ディスクに対して固体含浸レンズ(SIL)206及び/又は対物レンズ205の位置を確実に調整するためのものである。
固体含浸レンズ(SIL)206の更なる詳細について、図3を参照して説明する。レンズの開口数(NA)は、例えば、図3aに示す半球状の固体含浸レンズ(SIL)206の中央にフォーカシングすることにより空気−媒体界面における屈折を伴わずに高屈折率の媒体にフォーカシングされる場合、1を上回ることが可能である。この場合、実効開口数(NA)はNAeff=nNAであり、ここで、nは半球状固体含浸レンズ(SIL)206の屈折率であり、NAは図3aにしたがった対物レンズ205の空気中のNAである。
NAを更に大きくするために、当該技術分野においては、図3bに示す超半球状固体含浸レンズを用いることが知られている。超半球状レンズは、光軸の方に光ビームを屈折させる。ここで、実効NAはNAeff=nNAである。超半球状固体含浸レンズの光学膜厚はR(1+1/n)であり、ここで、nはレンズ材料の屈折率であり、Rは固体含浸レンズ(SIL)206の半球部分の半径である。
1より大きい実効NAeffが固体含浸レンズの光出射面から極端に短い距離の範囲内にのみ存在することは、エバネッセント波が存在することであることに留意することは重要である。その距離は、典型的には、放射線の波長の10分の1より小さい。上記の距離はまた、ニアフィールドと呼ばれているものである。この短いニアフィールドは、光記録担体に書き込んでいる又はそれから読み取っている間に、固体含浸レンズと記録担体との間の距離は常に、数十nmより小さい必要があることを意味している。このことは、SILの光出射面301に入射する走査光ビームの少なくとも一部がレンズ−空気界面において全反射されるためであり、ここで、光ビームの全反射は、光学的に薄い媒体におけるまさにかなり小さい距離において徐々に消える。
SILレンズ206の光出射面301について、当該技術分野において知られているデザインが、図3c及び3dを参照して更に示されている。半球状のSILレンズの光出射面(301)の一実施形態においては、光出射面(301)はメサエッチを有し、光出射面(301)のメサエッチの実質的に平坦な表面はSILレンズ206の光出射表面(射出瞳)を規定する。射出瞳の直径は20乃至100μmのオーダーにある。光ディスクを走査している間、光ディスクからの短い距離に維持されている射出瞳の直径は、SILレンズの直径が不均一のディスクの高さの課題を未然に防ぐ有利点を有するように、かなり小さい。超半球状のSILレンズ(図3d)の光出射面301の実施形態においては、光出射面301は、光出射面303に対して小さい角度で2つの表面304b及び304a並びに射出瞳を規定する平面状の光出射表面303を有する。そのようなデザインはまた、不均一なディスクの高さの課題を未然に防ぐ有利点を備えている。
そのようなSILレンズ206の光出射表面(射出瞳)(302,303)の直径は、従来の光走査装置の直径よりかなり小さく、前記ディスクを走査している間の光ディスクの表面までの距離はかなり小さいため、ダスト及び汚染物質に対処する上で直面する課題は、従来の光走査装置の場合とは異なる。第1に、アクチュエータの支持ヒンジはかなりロバストであり、ディスクとの衝突を切り抜けることができるため、アクチュエータに基づく光走査システムは大きいダスト粒子により影響されないことが判明している。第2に、使用の前及び長期使用の後に、アクチュエータに基づく光走査システムで用いる固体含浸レンズ(SIL)の光学顕微鏡写真を調べることにより、汚染物質が、その要素を通る放射線の透過に悪影響を与える、レンズのエッジに優先的に凝集することが観測されている。
図4は、本発明にしたがった、屈折要素、特に、SILレンズ206の光出射表面(302,303)を浄化する方法の第1実施形態を示している。光ディスク115を走査している間に、光ディスク115とSILレンズ206との間における20乃至50nmのオーダーのかなり小さい距離は、SILレンズ206の汚染に繋がる可能性がある。これは、光ディスク115において存在する汚染、僅かな接触/衝撃イベントによる残留物等による可能性がある。前記汚染は即時の問題を引き起こすことはないが、大量の残留物は、SILレンズ206の光出射表面(302,303)への汚染又は損傷の可能性を高くし、それ故、回避されなければならない。上記のように、汚染は、主に、SILレンズ206の光出射表面レンズ206の光出射表面(302,303)のエッジのあたりに集まることが観測されている。光出射表面(302,303)のエッジにおけるそのような汚染物質の凝集について、図4に汚染物質400で示されている。それ故、既知の方法にしたがって、例えば、浄化パッドの表面に対して平行な光出射表面(302,303)をブラッシングすることにより、光出射表面(302,303)を浄化する試みは、有効でないことが判明している。更に、光出射表面(302,303)を平行にブラッシングすることは、光出射表面(302,303)に亘って汚染物質400を引き込み、それ故、スクラッチの可能性を増大させる可能性がある。
本発明にしたがった方法においては、接触ステップにおいて、SILレンズ206か又は浄化パッド116のどちらかは、光出射表面(302,303)が浄化パッド116の表面に対して非平行であるように回転され、それらの2つは機械的な接触がもたらされる。これは、浄化パッドの表面に対して非垂直な方向401aにSILレンズ206の光軸401を有することと同等である。接触ステップの結果、SILレンズ206の光出射表面(302,303)が接触エッジに沿って浄化パッドと接するようになる。接触ステップは浄化ステップにより後続され、その浄化ステップにおいて、接触パッド116は、浄化方向402においてSILレンズに対して移動される。このようにして、浄化パッド116がSILレンズ206に対して移動されるとき、汚染物質400はエッジから効率的に除去される一方、汚染物質400が光出射表面(302,303)に亘って引き込まれるリスクが低減される。更に、有利な実施形態においては、SILレンズ206の光出射表面(302,303)の回転方向は、汚染物質400が浄化ステップにおいてSILレンズ206から遠ざかるように除去される(汚染物質400の移動方向を示す、図4における矢印402で示されている)ように、選択される。それ故、SILレンズ206の光出射表面(302,303)における汚染の再堆積又は引き込まれの可能性を最小化することが可能である。
有利な実施形態においては、浄化方向が、光ディスク115を走査しているときに、光ディスク115に対してSILレンズ206の移動のタンジェンシャル方向に沿っているように選択される。走査方向に対して屈折要素の後縁において、汚染物質が優先的に凝集し、それ故、前記測定は、汚染が最も凝集し易い傾向にある屈折要素の領域の効率的な浄化を可能にすることが、実験的に判明している。
上記方法の幾つかの同等のハードウェアの実施形態を容易に考え出すことが可能である。好適な実施形態においては、浄化パッド116に対するSILレンズ206の相対回転
が、レンズチルト機構を用いることにより得られる。そのようなレンズチルト機構は、例えば、ディスクに対するレンズのアライメントの目的のために、最先端の光ピックアップユニット(OPU)において既に利用可能である。そのようなレンズチルト機構は、全体の光ピックアップユニット(OPU)、即ち、図2に示す全体的な光路を傾けることを可能にするものであること、又は、代替として、3D又は4Dアクチュエータとして、当該技術分野において既知である機構であることが可能である。そのような3D又は4Dアクチュエータは、SILレンズ206(2D移動)のフォーカシング及びトラッキング移動(平行移動)を実行するばかりでなく、1つの垂直軸(3D)又は2つの垂直軸(4D)に沿ってSILレンズ206を傾けることを可能にする。そのような3D又は4Dアクチュエータは、今日、例えば、DVD(Digital Versatile Disk)及び/又はブルーレイ(BD)プレーヤ/レコーダのために用いられている。本発明において、“SILレンズ206のフォーカシング及びトラッキング移動(平行移動)の実行すること”は、SILレンズ206のみを調整すること、又はSILレンズ及び焦点レンズ205を有するアセンブリを調整することを有する。
SILレンズ206を回転させるために3D又は4Dアクチュエータを用いること又は全体のOPUの回転のための機構を用いることに代えて、浄化パッドについて回転機構を実施することがまた、可能である。
実施形態においては、(移動可能)浄化パッド116は、光走査装置100の内部に備えられる。浄化パッド116は、好適には、ディスク領域のすぐ外側のチャック103において位置付けられることが可能である。浄化パッドは、制御ユニット101により制御される機械式移動手段117(例えば、モーター又はアクチュエータ)によりSILレンズ206に対して移動されることが可能である。そのような機械式移動手段117は、SILレンズ206に対して浄化パッド116を回転させること、又は浄化パッドがSILレンズ206と機械的に接触するようにすることを更に可能にする。
それ故、接触ステップにおいて浄化パッド116に対してSILレンズ206の相対回転、並びにSILレンズ206及び浄化パッド116の接触方法は、浄化パッド116又はOPUのアクチュエータシステム(209a,209b)により又は機械式移動手段117により実行されることが可能である。光走査装置において既に存在していることを考慮して、OPUのアクチュエータシステム(209a,209b)を使用することが実行される。上記実施形態においては、好適には、浄化手順の間には、例えば、読み出し/書き込み動作の間には、距離106の閉ループ制御は備えられていない。それに代えて、浄化パッド116及びSILレンズ206は、互いに対して穏やかに押し当てられる、現状のOPUにおいては、SILレンズ206は、数百μmのストロークでワイヤ−スプリングホルダに備えられるため、機械的な許容範囲は、浄化パッド116に亘ってレンズを移動させ、それ故、それらを接触するようにするには十分である。最大接触力は、アクチュエータのばね定数により、及び/又は浄化パッドのバッキング材料(例えば、軟らかいゴム又は発泡剤)の弾性により、決定される。このようにして、接触力は、常に、安全な限界の範囲内にある。
代替の実施形態においては、例えば、光ディスク115の内周及び/又は外周の近傍に備えられている小さい浄化ストリップにより、各々の光ディスク115において浄化パッドを備えることが可能である。これは、浄化パッドの移動制御が通常、一方向のみに回転する光ディスク115の移動制御に対して制限される不利点を有する。
図5は、本発明にしたがったSILレンズ206の光出射表面(302,303)を浄化する方法の第2実施形態を示している。それ故、回転及び浄化ステップに対応する浄化シーケンスが実行される。
図5a及び5bにおいては、SILレンズ206の光出射表面(302,303)及び浄化パッド116の平面図が示されている。矢印503は、SILレンズ206の有効な回転方向を表し、矢印505a及び505bは、浄化パッド116の有効な移動方向を表す。参照番号501及び502は、その方法にしたがって浄化されるSILレンズ206の光出射表面(302,303)の2つのエッジを示す。図5bにおける上の図に示すように、ステップの第1シーケンスにおいては、SILレンズ206は、エッジ511が接触エッジであり、エッジ512が浄化パッド116と接触しないように、方向506に回転される。第1浄化ステップにおいては、浄化パッド116は、それに応じて、矢印507に示されているように移動される。ステップの第2シーケンスにおいては、図5bの下の図に示しているように、SILレンズ206は、ここでは、逆のエッジ508が接触エッジであり、エッジ510が浄化パッド116と接触しないように、逆方向508に回転される。第2浄化ステップにおいては、浄化パッド116は、それに応じて、第1シーケンスにおける移動方向に比べて逆方向508に移動される。ステップの第1シーケンス及び第2シーケンスは、必要に応じて繰り返される。
方法の第1実施形態に類似して、光ディスク115を走査しているとき、光ディスク115に対してSIL206の移動のタンジェンシャル方向に沿って浄化方向を選択することは有利である。
ハードウェアの複雑化を付加することなく、SILレンズ206を移動させるためにOPUアクチュエータ(209a,209b)を用いる有利な実施形態において、SILレンズ206の径方向移動をまた、用いることにより、改善された浄化を得ることができる(図5bを参照されたい)。そのような移動は、アクチュエータのトラッキングコイルを用いることにより、又はOPUを所望の半径にするために用いられる回転アーム又は直線状スレッジを用いることにより、得られる。第2実施形態にしたがった浄化方法においては、浄化ステップの間に、SILレンズ206は、浄化方向に対して垂直に、好適には、浄化の移動と同時に、ゆっくり移動される。クリーナの新鮮な部分が常に用いられるために、再汚染の可能性が著しく減少するという有利点がある。浄化ステップの間にSILレンズ206の横方向移動は、その移動方向が、ディスクの移動方向に対してもはや、平行ではないことを意味する。汚染物質をSILレンズ206から遠ざかるように移動させる有利点を維持するために、SILレンズ206の横方向移動速度は、好適には、浄化パッド116の移動速度の2乃至3倍の範囲内にある必要がある。
例えば、左から右への連続移動の場合、SILレンズ206は、浄化パッド116に亘る千鳥状パターンに従う。代替として、SILレンズ206の横方向移動は、浄化ステップ間で実行されることが可能である。ここでは、SIlレンズ206は、矩形波状パターンに従う。浄化の移動はまた、好適には、光ディスクを走査しているとき、SILレンズ206の移動方向に対して平行な方向にある一方、SILレンズ206の回転は、その横方向移動の前、間又は後に行われることが可能である。
代替の実施形態においては、SILレンズ206の横方向移動と浄化パッド116の移動を組み合わせることに代えて、機械式移動手段117は、浄化パッド116が両方の方向に移動することが可能である一方、SILレンズ206が固定されたまま維持されるように、備えられることが可能である。
図6は、本発明にしたがった屈折要素を浄化する方法の第3実施形態を示している。
上記の概念は、(最も重要な)前縁及び後縁のみに代えて、SILレンズ206の光出射表面(302,303)の全体のエッジを浄化するように拡大解釈されることが可能である。好適には、これは、4Dアクチュエータを用いることにより得られ、2つの直交する方向へのSILレンズ206の回転を可能にする。図6は、SILレンズ206の光出射表面(302,303)の円形エッジの平面図からのものである。矢印606及び607は、SILレンズ206の回転のために対応可能な回転方向を示している。破線の軸は、浄化パッド116の有効な移動方向を示している(明確化のために、浄化パッド116は図6に示されていない)。例えば、本発明の第3実施形態にしたがった浄化方法において、その方法は、図6において示している点601において、光出射表面(302,303)のエッジが浄化パッド116に触れるように、SILレンズ206を回転することにより開始される。この回転と同調して、後続の浄化ステップにおいて、浄化パッド116の移動速度及びSILレンズ206の横方向移動速度は、図6b(右側)における矢印の大きさにより示されているように適合される。ここでは、模様付けの矢印608は、SILレンズ206に対する浄化パッド116の速度を表し、白抜きの矢印609は、SILレンズ206の横方向移動の速度を表す。その方法は、点602、603、604及び605について、回転ステップ及び対応する浄化ステップのシーケンスにより続けられる。例えば、SILレンズ206は、光出射表面(302,303)が点603において浄化パッド116と接触するように回転されるとき、浄化パッド116(SILレンズ206からみて)が右方向に移動するように、SILレンズ206のみが移動する。このことは、SILレンズ206の光出射表面から遠ざかるように点603から汚染が除去されることをもたらす。点604については、横方向SILレンズ206の速度は低下し、浄化パッドは、ここで、回転が遅くなる。点605については、浄化パッドのみが移動する、等々である。浄化パッド116の最大移動速度に等しいSILレンズ206の最大横方向移動速度を選択することにより(この実施例の場合のように)、浄化パッド116においてSILレンズ206により行われる円形トレースが得られ、そのトレースの半径は選択された速度によりスケーリングされる。一般に、例えば、一意の最大速度の選択により、極端な場合、図4に示すように、第1実施形態により楕円形状のトレース(横方向のレンズ移動はない)が得られる。
代替の実施形態においては、SILレンズ206の横方向移動と浄化パッド116の移動の組み合わせに代えて、機械式移動手段117は、浄化パッド116が両方の方向に移動することを可能にする一方、SILレンズ206は固定されたまま維持されるように、備えられることが可能である。
浄化しているとき、複数の浄化シーケンス(シーケンスは上−下、又は1つの平行移動)が、より徹底的な浄化のために用いられることが可能である。SILレンズ206の光出射表面に渡る高さの差は、浄化パッド116において用いられる浄化クロス(毛状のもの、ブラシ、繊維)の構造の高さより大きいように、より大きい回転角を有する第1シーケンスを開始することは有利である。このことは、光出射表面(302,303)のエッジが、先ず、光出射表面(302,303)と浄化パッド116との間の光出射表面(302,303)の逆のエッジからの汚染がトラップするリスクを被ることなく浄化されることを確実にする。このシーケンスの後、回転角は、例えば、光出射表面自体の浄化を有するように、連続するシーケンスのために減少されることが可能である。
上記の実施形態は、本発明を限定するのではなく、例示であることに留意する必要がある。当業者は、同時提出の特許請求の範囲における範囲から逸脱することなく、多くの代替の実施形態をデザインすることができる。用語“を有する”及びその用語の派生の用語は、請求項に記載している要素又はステップ以外の要素又はステップの存在を排除するものではない。要素の単数表現は、その要素の複数の存在を排除するものではない。本発明は、複数の別個の要素を有するハードウェアにより及び適切なファームウェアにより実施されることが可能である。複数の手段が列挙されているシステム/装置/機器請求項においては、それらの手段の幾つかは、同じハードウェア又はソフトウェアの一により実施されることが可能である。単に特定の手段が互いに異なる従属請求項に記載されていることは、それらの手段の組み合わせが有利であるように用いられないことを意味するものではない。
本発明が実行されることが可能である光走査装置の模式図である。 光走査装置の光ピックアップユニットの模式図である。 固体含浸レンズの模式図である。 本発明にしたがった屈折要素を浄化する方法の第1実施形態を示す図である。 本発明にしたがった屈折要素を浄化する方法の第2実施形態を示す図である。 本発明にしたがった屈折要素を浄化する方法の第3実施形態を示す図である。

Claims (34)

  1. 光ディスクを走査するためにニアフィールド光走査装置の屈折要素の光出射面を浄化する方法であって:
    前記屈折要素の前記光出射面は浄化パッドの表面に対して平行であり、前記屈折要素が接触エッジに沿って前記浄化パッドに接触するように、前記屈折要素及び前記浄化パッドが機械的に接触するようにする、接触ステップ;並びに
    少なくとも浄化軸に沿って前記屈折要素に相対して平行な前記浄化パッドの少なくとも相対移動を有し、ここで、前記浄化軸は前記浄化パッドの面内にあり且つ前記接触エッジに対して実質的に垂直である、第1浄化ステップ;
    を有する方法。
  2. 請求項1に記載の方法であって、前記接触エッジは前記屈折要素をトレーリングするように、前記浄化軸に沿った前記相対移動の方向を選択することを特徴とする、方法。
  3. 請求項2に記載の方法であって、前記第1浄化ステップに先行する第1回転ステップであって、前記回折要素の面内にある回転軸の周りで前記屈折要素を回転させる、第1回転ステップを更に有することを特徴とする方法。
  4. 請求項3に記載の方法であって、前記回転軸は前記接触エッジに対して平行であることを特徴とする方法。
  5. 請求項4に記載の方法であって、前記第1浄化ステップは、前記接触エッジに対して平行な軸に沿って横方向相対移動を更に有し、好適には、前記浄化軸に沿った前記相対移動及び前記横方向相対移動は同時に実行されることを特徴とする方法。
  6. 請求項3乃至5の何れか一項に記載の方法であって:
    前記第1回転ステップにおける回転方向に対して逆の方向にある回転軸の周りで前記屈折要素を回転させる第2回転ステップ;並びに
    少なくとも浄化方向に前記屈折要素に対して相対的に前記浄化パッドの少なくとも相対移動を有し、前記浄化方向は、前記接触エッジは前記屈折要素をトレーリングするように前記浄化軸に沿っている第2浄化ステップ;
    を更に有することを特徴とする方法。
  7. 請求項6に記載の方法であって、第1回転ステップ、第1浄化ステップ、第2回転ステップ及び第2浄化ステップのシーケンスを繰り返すことを特徴とする方法。
  8. 請求項7に記載の方法であって、第1回転ステップ、第1浄化ステップ、第2回転ステップ及び第2浄化ステップの各々のシーケンスの後に、前記屈折要素を回転させる回転角を減少させることを特徴とする方法。
  9. 請求項7又は8に記載の方法であって、前記浄化ステップは、前記接触エッジに対して平行な方向における相対移動を更に有することを特徴とする方法。
  10. 請求項1乃至9の何れか一項に記載の方法であって、前記接触エッジは、光ディスクから情報を読み取るときに、前記光ディスクに対して前記屈折要素の移動のタンジェンシャル方向に対応するように選択されることを特徴とする方法。
  11. 請求項7に記載の方法であって、前記回転軸は、第1回転ステップ、第1浄化ステップ、第2回転ステップ及び第2浄化ステップの所定のシーケンスに対応し、他のシーケンスの回転軸と異なるように選択されることを特徴とする方法。
  12. 請求項1乃至11の何れか一項に記載の方法であって、前記屈折要素の前記回転は、光ディスクを走査している間に、レンズチルト及び焦点制御を与えるために用いられるアクチュエータにより実行されることを特徴とする方法。
  13. 請求項1乃至12の何れか一項に記載の方法であって、前記浄化パッドはコットンに基づく表面を有することを特徴とする方法。
  14. 請求項1乃至13の何れか一項に記載の方法であって、前記回転角は1乃至100mradの範囲内にあることを特徴とする方法。
  15. 請求項1乃至14の何れか一項に記載の方法であって、前記屈折要素は固体含浸レンズ(SIL)であることを特徴とする方法。
  16. 光ディスクを走査するためのニアフィールド光走査装置であって:
    前方放射線ビーム及び反射放射線を生成するためのフロントエンドユニット;
    前記光ディスクの方に前記前方放射線ビームを透過させ、前記フロントエンドユニットの方に前記光ディスクからの前記反射放射線ビームを透過させるための屈折要素を有する光ヘッド;
    浄化パッド;
    前記屈折要素の光出射表面は前記浄化パッドの表面に対して非平行であり、前記屈折要素が接触エッジに沿って前記浄化パッドと接触するように、前記屈折要素及び前記浄化パッドを機械的に接触させるようにするための第1機械式移動手段;並びに
    少なくとも浄化軸に沿って前記屈折要素に相対して前記浄化パッドを相対移動させるための第2機械式移動手段であって、前記浄化軸は、前記浄化パッドの面内にあり且つ前記接触エッジに対して実質的に垂直である、第2機械式移動手段;
    を有するニアフィールド光走査装置。
  17. 請求項16に記載のニアフィールド光走査装置であって、前記第2機械式移動手段は、前記接触エッジが前記屈折要素をトレーリングするように選択された方向にある前記浄化軸に沿って前記浄化パッドを相対移動するように備えられていることを特徴とするニアフィールド光走査装置。
  18. 請求項17に記載のニアフィールド光走査装置であって、前記第1機械式移動手段は、前記屈折要素の面内にある第1方向における回転軸の周りで前記屈折要素を回転させるように備えられていることを特徴とするニアフィールド光走査装置。
  19. 請求項18に記載のニアフィールド光走査装置であって、前記回転軸は前記接触エッジに対して平行であることを特徴とするニアフィールド光走査装置。
  20. 請求項19に記載のニアフィールド光走査装置であって、前記第2機械式移動手段は、前記接触エッジに対して平行な軸に沿って前記浄化パッドを横方向に移動させるように備えられ、前記第2機械式移動手段は、好適には、前記浄化軸に沿った前記相対移動及び横方向相対移動を同時に実行するように備えられていることを特徴とするニアフィールド光走査装置。
  21. 請求項18乃至20の何れか一項に記載のニアフィールド光走査装置であって:
    前記第1機械式移動手段は、前記第1方向に対して逆の方向における前記回転軸の周りで前記屈折要素を回転させるように更に備えられ;
    前記第2機械式移動手段は、少なくとも浄化方向に前記屈折要素に対して前記浄化パッドを移動させるように更に備えられ、前記浄化方向は、前記接触エッジが前記屈折要素をトレーリングするように、前記浄化軸に沿っている;
    ことを特徴とするニアフィールド光走査装置。
  22. 請求項21に記載のニアフィールド光走査装置であって、前記第1機械式移動手段及び前記第2機械式移動手段は、前記第1回転方向に前記屈折要素を回転させること、前記浄化方向に沿って前記浄化パッドを移動させること、前記第1回転方向に前記逆の方向に前記屈折要素を回転させること及び前記浄化方向に沿って前記浄化パッドを移動させることのシーケンスを繰り返して実行するように更に備えられていることを特徴とするニアフィールド光走査装置。
  23. 請求項22に記載のニアフィールド光走査装置であって、前記第1機械式移動手段は、各々の移動のシーケンスを実行した後、前記屈折要素を回転させる回転角を減少させるように更に備えられていることを特徴とするニアフィールド光走査装置。
  24. 請求項22又は23に記載のニアフィールド光走査装置であって、前記第2機械式移動手段は、前記制御エッジに対して平行の方向に前記浄化パッドを移動させるように更に備えられていることを特徴とするニアフィールド光走査装置。
  25. 請求項16乃至24の何れか一項に記載のニアフィールド光走査装置であって、前記接触エッジは、光ディスクから情報を読み取るとき、前記光ディスクに対して前記屈折要素の移動のタンジェンシャル方向に対応するように選択されることを特徴とするニアフィールド光走査装置。
  26. 請求項22に記載のニアフィールド光走査装置であって、前記第1機械式移動手段及び前記第2機械式移動手段は、少なくとも2つの異なる回転軸に対応する移動のシーケンスを実行するように更に備えられていることを特徴とするニアフィールド光走査装置。
  27. 請求項16乃至26の何れか一項に記載のニアフィールド光走査装置であって、前記第1機械式移動手段は、光ディスクを走査している間に、レンズチルト及び焦点制御を与えるために用いられるアクチュエータであることを特徴とするニアフィールド光走査装置。
  28. 請求項16乃至27の何れか一項に記載のニアフィールド光走査装置であって、前記浄化パッドはコットンに基づく表面を有することを特徴とするニアフィールド光走査装置。
  29. 請求項16乃至28の何れか一項に記載のニアフィールド光走査装置であって、前記回転角は1乃至100mradの範囲内にあることを特徴とするニアフィールド光走査装置。
  30. 請求項16乃至29の何れか一項に記載のニアフィールド光走査装置であって、前記屈折要素は固体含浸レンズ(SIL)であることを特徴とするニアフィールド光走査装置。
  31. 光ディスクを走査するためのニアフィールド光走査装置であって:
    前方放射線ビーム及び反射放射線を生成するためのフロントエンドユニット;
    前記光ディスクの方に前記前方放射線ビームを透過させ、前記フロントエンドユニットの方に前記光ディスクからの前記反射放射線ビームを透過させるための屈折要素を有する光ヘッド;
    前記屈折要素の光出射表面が前記浄化パッドの表面に対して非平行であり、前記屈折要素が接触エッジに沿って前記浄化パッドと接触するように、前記光ディスクに備えられている前記屈折要素及び前記浄化パッドを機械的に接触させるようにするための第1機械式移動手段;並びに
    少なくとも浄化軸に沿って前記屈折要素に相対して前記浄化パッドを相対移動させるための第2機械式移動手段であって、前記浄化軸は、前記浄化パッドの面内にあり且つ前記接触エッジに対して実質的に垂直である、第2機械式移動手段;
    を有するニアフィールド光走査装置。
  32. 請求項31に記載のニアフィールド光走査装置であって、第2機械式移動手段はディスク回転手段であることを特徴とするニアフィールド光走査装置。
  33. 請求項1に記載の浄化方法を実行する請求項31に記載のニアフィールド光走査装置と協働するための浄化パッドを有する光ディスク。
  34. 請求項33に記載の光ディスクであって、前記浄化パッドは、前記光ディスクの内側領域に備えられている環状浄化ストリップであることを特徴とする光ディスク。
JP2008522114A 2005-07-20 2006-07-11 屈折要素を浄化する方法及びニアフィールド光学システムのための光走査装置 Withdrawn JP2009502003A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05106634 2005-07-20
PCT/IB2006/052337 WO2007010437A2 (en) 2005-07-20 2006-07-11 Method of cleaning a refractive element and optical scanning apparatus for near-field optical systems

Publications (1)

Publication Number Publication Date
JP2009502003A true JP2009502003A (ja) 2009-01-22

Family

ID=37635886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008522114A Withdrawn JP2009502003A (ja) 2005-07-20 2006-07-11 屈折要素を浄化する方法及びニアフィールド光学システムのための光走査装置

Country Status (10)

Country Link
US (1) US20080212440A1 (ja)
EP (1) EP1911024B1 (ja)
JP (1) JP2009502003A (ja)
KR (1) KR20080036198A (ja)
CN (1) CN101228579A (ja)
AT (1) ATE418141T1 (ja)
DE (1) DE602006004353D1 (ja)
MY (1) MY141637A (ja)
TW (1) TW200710836A (ja)
WO (1) WO2007010437A2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9754622B2 (en) 2014-03-07 2017-09-05 Venmill Industries Incorporated Methods for optimizing friction between a pad and a disc in an optical disc restoration device
US9620166B2 (en) 2012-05-18 2017-04-11 Venmill Industries Methods for restoring optical discs
EP2850614A4 (en) * 2012-05-18 2016-01-20 Venmill Ind DEVICE, METHOD AND SYSTEM FOR RECOVERING OPTICAL PLATES
US9837120B2 (en) 2014-03-07 2017-12-05 Venmill Industries Incorporated Vapor and heat removal systems in an optical disc restoration device
CN111370035B (zh) * 2020-03-02 2021-04-27 佛山市海德计算机科技有限公司 一种基于光直线传播原理的硬盘检测设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2526112Y2 (ja) * 1992-06-04 1997-02-19 ティアック株式会社 対物レンズのクリーニング装置
US5467238A (en) * 1993-07-06 1995-11-14 Quantum Corporation Cleaning apparatus for heads of data storage disks
JPH07192290A (ja) * 1993-12-28 1995-07-28 Toshiba Corp レンズクリーニング装置
JP3563177B2 (ja) * 1995-10-27 2004-09-08 シャープ株式会社 レンズクリーニング用ディスク
US6307832B1 (en) * 1999-05-04 2001-10-23 Terastor Corporation Optical storage system with head cleaning mechanism based on a position-controllable optical interfacing surface in an optical head
US6625110B2 (en) * 2000-12-28 2003-09-23 Lg Electronics Inc. Contamination preventing device of optical head for near field recording
JP2002329341A (ja) * 2001-04-26 2002-11-15 Maakisu:Kk 光ピックアップ清掃装置

Also Published As

Publication number Publication date
CN101228579A (zh) 2008-07-23
ATE418141T1 (de) 2009-01-15
TW200710836A (en) 2007-03-16
MY141637A (en) 2010-05-31
KR20080036198A (ko) 2008-04-25
EP1911024B1 (en) 2008-12-17
EP1911024A2 (en) 2008-04-16
WO2007010437A3 (en) 2007-05-03
WO2007010437A2 (en) 2007-01-25
DE602006004353D1 (de) 2009-01-29
US20080212440A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP2009502003A (ja) 屈折要素を浄化する方法及びニアフィールド光学システムのための光走査装置
TWI500989B (zh) 包括固態浸沒透鏡和多焦透鏡之物鏡,以遠場模態和近場模態操作之光學拾波器及其操作方法
JP2004319049A (ja) 光記録媒体及びこれを用いた光記録再生方法
JP2006228289A (ja) 光学レンズ装置、ニアフィールド集光レンズ装置、光学ピックアップ装置、および光記録再生装置
KR20080043405A (ko) 굴절부재와 근접장 형태의 광학주사장치의 청결 상태를검사하는 방법
KR100776023B1 (ko) 근접장 광 저장 장치에서의 갭 마진 확보 방법
JP2005302267A (ja) ソリッドイマージョンレンズ、これを用いた集光レンズ、光学ピックアップ装置及び光記録再生装置及びソリッドイマージョンレンズの形成方法
KR100438569B1 (ko) 근접장용 광헤드의 오염 방지 장치
JP4487203B2 (ja) ディスク装置
JP2735135B2 (ja) 光学式情報記録再生装置における対物レンズクリーニング機構
JP4525491B2 (ja) 光ディスク駆動装置、光ディスク装置及びその駆動方法
JP2008210458A (ja) 対物レンズアクチュエータ及びそれを備えた光ピックアップ装置
JP2006344262A (ja) ソリッドイマージョンレンズ、光学ピックアップ装置及び光記録再生装置
JP4068621B2 (ja) 光情報処理装置用クリーナ
JP4100397B2 (ja) カートリッジ
JP2006190420A (ja) 光学的検出方法、ソリッドイマージョンレンズ、集光レンズ、光ピックアップ装置とその制御方法、光記録再生装置及び光記録再生方法
JP2007095171A (ja) ディスク装置
JPH11259897A (ja) 光ピックアップ
JP2009519561A (ja) 近接場光学的走査装置に対する屈折素子の光学面をクリーニングする方法、及び、近接場光学的走査装置に対する屈折素子の光学面をクリーニングするクリーニング装置
JP2006209909A (ja) 光学レンズ装置、ニアフィールド集光レンズ装置、光学ピックアップ装置、および光記録再生装置
US20080186811A1 (en) Device And Method For Controlling Disc Runout In An Optical Disc Drive System
JP2006190421A (ja) 光学レンズの表面状態検出方法、光学レンズの清浄化方法、光記録媒体の表面状態検出方法、光記録媒体の清浄化方法、および光記録再生装置
JP2006313596A (ja) ディスククリーニング装置および記録ディスクドライブ装置
JPH04302830A (ja) 光ディスク装置における対物レンズのクリーニング方法
JP2009158008A (ja) 光ディスク装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090708

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100409