JP2009301936A - 燃料電池発電装置及び燃料電池発電装置の制御方法 - Google Patents

燃料電池発電装置及び燃料電池発電装置の制御方法 Download PDF

Info

Publication number
JP2009301936A
JP2009301936A JP2008156694A JP2008156694A JP2009301936A JP 2009301936 A JP2009301936 A JP 2009301936A JP 2008156694 A JP2008156694 A JP 2008156694A JP 2008156694 A JP2008156694 A JP 2008156694A JP 2009301936 A JP2009301936 A JP 2009301936A
Authority
JP
Japan
Prior art keywords
load
fuel
fuel cell
amount
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008156694A
Other languages
English (en)
Other versions
JP5353080B2 (ja
Inventor
Migaku Fukumura
琢 福村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2008156694A priority Critical patent/JP5353080B2/ja
Publication of JP2009301936A publication Critical patent/JP2009301936A/ja
Application granted granted Critical
Publication of JP5353080B2 publication Critical patent/JP5353080B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】不要な燃料投入を行うことなく、負荷変動に対する追従性の向上可能な燃料電池発電装置の制御方法を提供する。
【解決手段】顧客負荷の負荷変動幅が小さい場合には、顧客負荷の負荷変動を相殺するようにヒータ負荷の負荷量を調整し、予備燃料及び水素ガスの流量は変更しない。顧客負荷の負荷が閾値を超えて増加したときは、増加分相当の予備燃料増加量ΔQだけ予備燃料流量を増量し、且つ、燃料電池に供給される改質ガスが、増量した予備燃料流量相当の改質ガス流量に達するまでの応答遅れに伴う改質ガスの不足分相当の追加流量Δqだけ、燃料電池に供給される水素ガスを一時的に増量する。結果的に改質ガスの不足分が水素ガスにより補われることと同等となり、負荷量の変動に対する発電電力の追従性を向上させることができる。このとき、改質ガスの不足分相当の水素ガスのみを供給しているため、水素ガスを過不足なく投入することができる。
【選択図】図5

Description

本発明は、燃料電池の発電電力により負荷への供給電力を賄うようにした燃料電池発電装置及び燃料電池発電装置の制御方法に関する。
従来、燃料電池の発電電力を負荷に供給するようにした燃料電池発電装置においては、燃料電池の発電電流に見合った燃料流量となるように燃料流量制御を行っている。
燃料電池の燃料としては都市ガスなどが用いられており、燃料として都市ガスを用いる場合には、都市ガスを水素リッチなガスに改質し、この改質ガスを燃料電池に供給している。
そして、都市ガスを燃料として負荷への電力供給を行っている状態で、地震等により都市ガスの供給が停止されたときには、都市ガスに替えて、水素ガスタンクからの水素ガスを燃料電池に供給することで、負荷への電力供給を継続するようにしたものが提案されている(例えば、特許文献1参照)。また、このように貯蔵しておいた水素ガスを燃料として用いるようにしたものにおいて、都市ガスを燃料として用いる際に、水素ガスタンクの残量に応じて生成される改質ガスの流量を調整し、都市ガスを改質して得た水素ガスを水素ガスタンクに補充するようにした方法が提案されている(例えば、特許文献2参照)。
また、電力系統と燃料電池とで連系運転を行わず、負荷への電力供給を燃料電池の発電出力のみにより賄う自立運転時に、改質を行う必要のある原燃料ガスを燃料として用いる場合、原燃料ガスを改質して改質ガスを生成する必要があるため、改質を行う分、改質ガスが実際に燃料電池に供給されるまでに時間を要する。
このため、負荷の負荷量の変動に伴い発電電流が変動したとしても、この発電電流に見合った流量の改質ガスが実際に燃料電池に供給されるまでには時間を要するため、結果的に燃料電池が燃料不足傾向となる可能性がある。
これを回避するために、負荷の負荷量の上昇割合を検出し、この上昇割合から負荷量の上昇に伴う燃料電池の発電電流の増加分を予測しこれに伴い必要となる原燃料ガスの増加分を予測し、予測した原燃料ガスの増加分を余剰分とし、この余剰分だけ燃料電池に供給する燃料流量を前以って増加させると共にダミー負荷抵抗を増加させて、余剰分相当だけ増加した燃料電池の発電出力と負荷全体の電力負荷とのバランスをとるようにし、この状態から負荷の負荷量が増加すると、負荷量の増加量に応じてダミー負荷抵抗を調整することにより、負荷の負荷量の増加に伴い燃料ガスが不足傾向となることを回避しつつ、燃料電池の発電出力と電力負荷とのバランスをとる方法などが提案されている。
また、このように負荷量の変動に対する追従特性を向上させるために、負荷の負荷量の変動パターンを予め検出しておき、この変動パターンに沿って改質ガスの流量を調整することにより、負荷変動に対する追従性を向上させるようにしたもの(特許文献3)、水素を予め緩衝用タンクに充填しておき、負荷が急増して燃料電池における水素の消費量が急増したときにタンクに蓄積しておいた水素や、配管内の水素を用いることにより、負荷変動に対する追従性を向上させるようにしたもの(特許文献4)、また、水素バッファのみ、或いは水素バッファと電気バッファとを設け、必要に応じてこれらによりアシストを行うことにより負荷変動に対する追従性を向上させるようにしたもの(特許文献4及び特許文献5)等も提案されている。
特開2004−86458号公報 特開2004−95363号公報 特開平11−31521号公報 特開平9−306531号公報 特開2002−329519号公報 特開2001−035518号公報
しかしながら、上述のように、負荷変動に対する追従性確保のために、前以って余剰分だけ、原燃料ガスの流量を増量する方法にあっては、真に必要な原燃料ガスよりも常に余剰分だけ増量した原燃料ガスが投入されるため、その分原燃料ガスが無駄に消費されることになる。また、改質ガスとは別に水素ガスを投入して追従性を確保する方法においても、水素ガスの投入量が少ない場合には追従応答性を十分向上させることができず燃料電池が燃料不足傾向となる可能性があり、また、水素ガスの投入量が多過ぎる場合には、燃料ガス過多となって燃料電池の温度上昇等をもたらす可能性がある。特に、自立運転時にガスタンクに貯蔵されている原燃料ガスを用いる場合、或いは、水素ガスタンクに貯蔵している水素ガスを投入する場合には、ガスタンクの貯蔵量には限りがあるため、必要以上のガスの投入は好ましくない。
そこで、この発明は上記従来の未解決の課題に着目してなされたものであり、不要な燃料投入を行うことなく、負荷変動に対する追従性向上を図ることの可能な燃料電池発電装置及び燃料電池発電装置の制御方法を提供することを目的としている。
上記目的を達成するために、本発明の請求項1に係る発明は、供給される原燃料を水素リッチなガスに改質しこの改質ガスを燃料電池に供給する改質手段と、水素ガスが貯蔵される水素ガス貯蔵手段と、負荷で必要とする電力に見合った発電を行うように前記改質手段に供給する原燃料の流量を制御すると共に、前記水素ガスを前記燃料電池に供給する燃料制御手段と、を有し、前記燃料電池の発電電力のみにより前記負荷への供給電力を賄う自立運転を行う燃料電池発電装置において、前記負荷の負荷量を検出する負荷量検出手段と、前記負荷量検出手段の検出値に基づき前記負荷の負荷量が予め設定した閾値以上増加したことを検出したとき、前記負荷量の増加分相当だけ前記燃料電池の発電出力を増加させるために必要な前記原燃料の流量を演算する原燃料増流量演算手段と、前記燃料電池に実際に供給される前記改質ガスの流量が、前記原燃料増流量演算手段で演算された原燃料増流量だけ増量された原燃料相当の改質ガス流量に達するまでの間の、前記燃料電池に実際に供給される改質ガスの流量と前記増量された原燃料相当の改質ガス流量との差分の積分値に相当する燃料不足量を演算する燃料不足量演算手段と、を備え、前記燃料制御手段は、前記負荷量検出手段の検出値に基づき前記負荷の負荷量が前記閾値以上増加したことを検出したとき、前記原燃料増流量演算手段で演算された前記原燃料増流量相当だけ前記改質手段に供給する原燃料の流量を増量すると共に、前記燃料電池に供給する前記水素ガスの流量を前記燃料不足量相当だけ一時的に増量することを特徴としている。
ここで、負荷の負荷量が増加した場合には、これに伴い改質手段への原燃料の流量を増量し、燃料電池への改質ガスの供給流量を増量させる必要があるが、原燃料を増量した時点から、燃料電池に供給される改質ガスが増量するまでには応答遅れが生じるため、その間、燃料電池は燃料不足傾向となる可能性がある。
しかしながら、改質手段に供給する原燃料の流量を増量すると共に、応答遅れによる改質ガスの不足量相当の水素ガスを直接燃料電池に供給しているため、結果的に改質ガスの不足分が水素ガスにより補われることと同等となり、負荷量の変動に対する発電電力の追従性を向上させることができる。このとき、投入する水素ガスは、応答遅れによる改質ガスの不足量相当だけ投入するようにしているため、過不足のない水素ガス投入を行うことができ、水素ガスの無駄な消費を回避することができる。
また、請求項2に係る発明は、前記燃料不足量演算手段は、前記原燃料増流量と、前記原燃料の増量が開始された時点から増量された原燃料相当の改質ガスが前記燃料電池に達するまでの予測される所要時間と、前記燃料電池での燃料電池発電における前記原燃料及び前記水素ガス中の水素使用量の比と、に基づき前記燃料不足量を推測することを特徴としている。
この発明によれば、負荷量の増加分相当だけ燃料電池の発電出力を増加させるために必要な原燃料増流量と、原燃料の増量が開始された時点から増量された原燃料が改質されその改質ガスが燃料電池に達するまでの予測される所要時間と、燃料電池での燃料電池発電における原燃料中及び水素ガス中の水素使用量の比と、に基づき、改質ガスの応答遅れに伴う燃料不足量を推測するため、燃料不足量を容易且つ的確に検出することができる。
また、請求項3に係る発明は、負荷量を調整可能な調整用負荷と、前記負荷量検出手段で検出される前記負荷量と前記調整用負荷の負荷量との和が一定となるように前記調整用負荷の負荷量を調整する負荷量調整手段と、を備え、前記原燃料増流量演算手段は、前記負荷の負荷量が予め設定した閾値以上増加したときには前記負荷量の増加量から前記負荷量調整手段による前記調整用負荷の調整量を減算した差分相当だけ前記燃料電池の発電出力を増加させるために必要な前記原燃料の流量を演算し、前記燃料制御手段は、前記負荷の負荷量の変動量が前記閾値よりも小さいときには、前記原燃料及び前記水素ガスの流量を保持することを特徴としている。
この発明によれば、負荷量調整手段により負荷の負荷量と調整用負荷の負荷量との和が一定となるように制御するため、負荷の負荷量の変動に対し、原燃料や水素ガスの流量変更を伴うことなく比較的速やかに対応することができる。また、負荷の変動量が閾値以上増加したときには、調整用負荷の負荷量の調整分相当を差し引いて原燃料の流量制御を行うため、原燃料の流量を的確に制御することができる。
また、請求項4に係る発明は、前記燃料電池に対し、前記負荷で必要とする電力に見合った流量と予め設定した余裕代との和相当の燃料を供給する燃料電池発電装置であって、前記燃料制御手段は、前記負荷で必要とする電力に見合った流量の前記原燃料を前記改質手段に供給し、且つ前記余裕代相当の前記水素ガスを前記燃料電池に供給することを特徴としている。
この発明によれば、燃料電池に対し、負荷で必要とする電力に見合った流量の燃料と、負荷変動を見越して予め多めに燃料供給を行うための余裕代相当の燃料とを供給する際に、負荷で必要とする電力に見合った燃料は原燃料を用い、余裕代分は水素ガスを用いるようにしたため、余裕代分も原燃料を用いる場合に比較して、その分だけ原燃料の消費量を削減することができる。自立運転時の原燃料としてガスタンクに貯蔵されたLPGガスを用いる場合等には、ガスタンクの貯蔵量には限界があるため、原燃料の消費量を削減することによりその分、自立運転をより長い時間継続することができる。
また、請求項5に係る発明は、電力系統と連系して前記負荷に電力供給を行う連系運転を行い、且つ連系運転時には都市ガスを前記原燃料として用いる燃料電池発電装置であって、前記連系運転時の予め設定した期間に、前記改質手段で改質された改質ガスを、前記水素ガスとして前記水素ガス貯蔵手段に補充することを特徴としている。
この発明によれば、都市ガスを用いて、電力系統と連系して負荷への電力供給を行う連系運転時の予め設定した期間に、都市ガスを改質して得た改質ガスを水素ガスとして水素ガス貯蔵手段に補充するため、水素ガス貯蔵手段の貯蔵量が零となることを回避することができる。また、水素ガス貯蔵手段への水素ガスの補充を、連系運転時の予め設定した期間に行い、例えば、夜間等負荷への電力供給量が比較的少ないときなどに行うことによって、改質ガスを流用したとしても負荷に対して影響を与えることなく、水素ガスを補充することができる。
また、請求項6に係る発明は、前記水素ガス貯蔵手段は、水素ガスを貯蔵する水素ガス貯蔵機能及び水素ガスを生成する水素ガス生成機能の少なくとも何れか一方を有することを特徴としている。
また、請求項7に係る発明は、前記水素ガス貯蔵手段は、前記水素ガス生成機能を有し、前記燃料電池の発電過程で生成される燃料電池生成水と、酸化卑金属との化学反応により前記水素ガスを生成することを特徴としている。
さらに、本発明の請求項8に係る発明は、供給される原燃料を水素リッチなガスに改質しこの改質ガスを燃料電池に供給する改質手段と、水素ガスが貯蔵される水素ガス貯蔵手段と、を備え、負荷で必要とする電力に見合った電力発電を行うように前記改質手段に供給する原燃料の流量を制御すると共に、前記水素ガスを前記燃料電池に供給して、燃料電池の発電電力のみにより前記負荷への供給電力を賄う自立運転を行う燃料電池発電装置の制御方法において、前記負荷の負荷量が予め設定した閾値以上増加したときには、前記負荷量の増加分相当だけ前記燃料電池の発電出力を増加させるように前記改質手段に供給する前記原燃料の流量を増量し、且つ、前記燃料電池に実際に供給される前記改質ガスの流量が、前記原燃料増流量演算手段で演算された原燃料増流量だけ増量された原燃料相当の改質ガス流量に達するまでの間の、前記燃料電池に実際に供給される改質ガスの流量と前記増量された原燃料相当の改質ガス流量との差分の積分値に相当する燃料不足量相当だけ、前記燃料電池に供給する水素ガスの流量を一時的に増加することを特徴としている。
ここで、負荷の負荷量が増加した場合には、これに伴い改質手段への原燃料の流量を増量し、燃料電池への改質ガスの供給流量を増量させる必要があるが、原燃料を増量した時点から、燃料電池に供給される改質ガスが増量するまでには応答遅れが生じるため、その間、燃料電池は燃料不足傾向となる可能性がある。
しかしながら、改質手段に供給する原燃料の流量を増量すると共に、応答遅れによる改質ガスの不足量相当の水素ガスを直接燃料電池に供給しているため、結果的に改質ガスの不足分が水素ガスにより補われることと同等となり、負荷量の変動に対する発電電力の追従性を向上させることができる。このとき、投入する水素ガスは、応答遅れによる改質ガスの不足量相当だけを供給するようにしているため、過不足のない水素ガス投入を行うことができ、水素ガスの無駄な消費を回避することができる。
本発明の請求項1及び請求項2に係る発明によれば、負荷の負荷量が増加した場合には、改質手段への原燃料の供給流量を増量すると共に、応答遅れに伴う改質ガスの燃料不足量相当の水素ガスを燃料電池に供給しているため、結果的に改質ガスの不足分が水素ガスにより補われることと同等となり、負荷量の変動に対する発電電力の追従性を向上させることができる。また、応答遅れによる改質ガスの燃料不足量を予測し、この燃料不足量相当だけ、水素ガスを投入しているため、過不足のない水素ガス投入を行うことができ、水素ガスの無駄な消費を回避することができる。
また、請求項3に係る発明によれば、負荷量調整手段により調整用負荷の負荷量を調整するため、負荷の負荷量の変動に対し、原燃料や水素ガスの流量変更を伴うことなく比較的速やかに対応することができる。また、負荷の変動量が閾値以上増加したときには、調整用負荷の負荷量の調整分相当を差し引いて原燃料の流量制御を行うため、原燃料の流量を的確に制御することができる。
また、請求項4に係る発明によれば、負荷変動を見越して多めに燃料供給を行うための余裕代分の燃料として水素ガスを用いるため、余裕代分も原燃料を用いる場合に比較して、その分だけ原燃料の消費量を削減することができる。自立運転時の原燃料としてガスタンクに貯蔵されたLPGガスを用いる場合等には、原燃料が零となり、自立運転ができなくなる時点をより遅らせることができる。
また、請求項5に係る発明によれば、都市ガスを用いて、電力系統と連系して負荷への電力供給を行う連系運転時の予め設定した期間に、都市ガスを改質して得た改質ガスを水素ガスとして水素ガス貯蔵手段に補充するため、水素ガス貯蔵手段の貯蔵量が零となることを回避することができる。また、水素ガス貯蔵手段への水素ガスの補充を、夜間等負荷への電力供給量が比較的少ないとき等の予め設定した期間に行うことにより、改質ガスを流用したとしても負荷に対して影響を与えることなく、補充することができる。
また、請求項6及び請求項7に係る発明によれば、水素ガス貯蔵手段として、水素ガスを貯蔵する水素ガス貯蔵機能や、水素ガスを生成する水素ガス生成機能を備えたものを用いることにより水素ガスを貯蔵するだけでなく生成することができ、特に、前記燃料電池の発電過程で生成される燃料電池生成水を用い、酸化卑金属との化学反応により前記水素ガスを生成することにより燃料電池生成水を有効に活用することができる。
さらに、本発明の請求項8に係る発明によれば、負荷の負荷量が増加した場合には、改質手段への原燃料の供給流量を増量すると共に、応答遅れに伴う改質ガスの燃料不足量相当の水素ガスを燃料電池に供給しているため、結果的に改質ガスの不足分が水素ガスにより補われることと同等となり、負荷量の変動に対する発電電力の追従性を向上させることができる。また、応答遅れによる改質ガスの燃料不足量を予測し、この燃料不足量相当だけ、水素ガスを投入しているため、過不足のない水素ガス投入を行うことができ、水素ガスの無駄な消費を回避することができる。
以下、本発明の実施の形態を説明する。
図1は、本発明を適用した燃料電池発電装置100の概略構成を示すブロック図である。
図1に示すように、燃料電池発電装置100は、燃料電池により発電を行う電池部1と、電池部1で発電された直流電力を交流電力に変換するインバータ2と、燃料電池の負荷となる負荷全体の電力負荷調整用のヒータ負荷3と、燃料電池発電装置100内の図示しないブロワ等といった各種の補機負荷4と、燃料電池冷却用の図示しない冷却設備等といった外部冷却器負荷5と、燃料電池発電装置100全体を制御するコントローラ6と、コントローラ6に対して常時電力供給を行うための無停電電源装置等で構成される外部バッテリ6aと、を備える。
インバータ2は、インバータ2を系統電源21及び各種負荷から切り離すための遮断器7と、系統電源21を電池部1及び各種負荷から切り離すための系統連系用遮断器8とを介して、系統電源21に接続される。
遮断器7と系統連系用遮断器8との間に、外部バッテリ6a、補機負荷4、外部冷却負荷5がそれぞれ直接接続される。さらに遮断器7と系統連系用遮断器8との間には、遮断器9を介してヒータ負荷3が接続されると共に、電力供給対象である顧客負荷22が、遮断器10を介して接続される。
電池部1は、燃料として供給される都市ガス等の原燃料を、改質用蒸気を用いて水蒸気改質し、水素に富んだガスに改質する改質器11と、改質器11で生成した改質ガスを用いて燃料電池発電を行う燃料電池12と、水素ガスを貯蔵する水素貯蔵器13とを備える。
改質器11は、供給される燃料ガスを、図示しないブロワから供給される燃焼ガス及び燃料電池12から排出される未反応水素を含む燃料オフガスを用いて水蒸気改質し、水素に富む水素リッチガスを生成する。
改質器11には、系統電源21と連系して顧客負荷22への電力供給を行う連系運転時は主燃料としての都市ガスが供給される。また、地震などにより都市ガスの供給が停止したとき、或いは系統電源21に停電が生じたときなど、電池部1及び顧客負荷22を系統電源21から解列し、顧客負荷22への供給電力を燃料電池12の発電出力のみを用いて賄う自立運転に移行する必要が生じたときには、主燃料に替えて予備燃料が供給される。この予備燃料としては、例えば、LPGガスなどの原燃料ガスが適用される。
水素貯蔵器13は、ガスタンクやガスフォルダ等で構成される。なお、水素貯蔵器13は、水素貯蔵合金やナノフラーレンC60を充填して構成してもよく、また、燃料電池本体12での発電過程で生成される燃料電池生成水と酸化卑金属との化学反応等により即時に水素生成が可能な装置などで構成してもよい。このように燃料電池生成水を化学反応に用いることにより、発電過程で生成される燃料電池生成水を有効に活用することができる。また、自然エネルギを利用して水素ガスを得る構成としてもよい。例えば、太陽電池を利用し水電解にて生成した水素を貯蔵するようにしてもよい。このように自然エネルギを用いることにより、エネルギの大幅な増加を伴うことなく、水素ガスを得ることができる。
水素貯蔵器13は、改質器11と燃料電池12との間に接続され、水素貯蔵器13と燃料電池12との間の水素ガスライン16には、水素貯蔵器13からの水素ガスの供給及び水素貯蔵器13への水素ガスの導入を遮断する遮断弁16aと、水素貯蔵器13からの水素ガスの供給量及び水素ガス貯蔵器13への水素ガスの導入量を制御する流量制御弁16bとが設けられている。
そして、必要に応じて遮断弁16a、流量制御弁16bを制御することにより、水素貯蔵器13に貯蔵された水素ガスを、水素ガスライン16を通じて燃料電池12に供給し、また改質器11からの改質ガスを水素貯蔵器13に導入する。
改質器11に主燃料を供給するための主燃料ライン14には、主燃料の供給を遮断する遮断弁14aと、遮断弁14aの下流側に、改質器11に供給される主燃料の流量調整を行うための流量制御弁14bとが設けられている。同様に、改質器11に予備燃料を供給するための予備燃料ライン15には、予備燃料の供給を遮断する遮断弁15aと、遮断弁15aの下流側に、改質器11に供給される予備燃料の流量調整を行うための流量制御弁15bとが設けられている。
また、顧客負荷22と遮断器10との間には、顧客負荷22への供給電力量を検出する電力計22aが設けられている。また、燃料電池12の出力側には、発電電流を計測する電流センサ12aが設けられている。
これら電力計22a及び電流センサ12aの検出値は、コントローラ6に供給される。
コントローラ6は、各種センサの検出信号をもとに、インバータ2や各種遮断器を制御すると共に電池部1内の各部を制御し、電池部1と系統電源21とで連系運転をして顧客負荷22に電力供給を行い、系統電源21に異常が生じた場合、或いは、地震により主燃料の供給が停止された場合など、必要に応じて電池部1及び顧客負荷22を系統電源21から解列して切り離すと共に、燃料を、主燃料から予備燃料に切り替えて自立運転を行う。また、コントローラ6は、改質器11に供給される燃料流量が電流センサ12aの検出値に見合った流量となるように、主燃料の各制御弁14a、14b、及び予備燃料の各制御弁15a、15bを制御する。
さらに、自立運転中は、予め設定した余剰流量q1相当の水素ガスを水素貯蔵器13から燃料電池12に供給すると共に、電力計22aの検出値に基づき顧客負荷22の負荷量を監視し、負荷量の変動に応じてヒータ負荷3の負荷量を調整して、燃料電池12の発電出力と負荷全体の電力負荷とのバランスをとる。また、顧客負荷22の負荷量が予め設定したしきい値以上増加したときには負荷量の変動分に基づき燃料電池12に供給する水素ガスの流量を増量すると共に改質器11に供給する予備燃料の流量を、前記負荷量の変動分に応じて増加させる。
次に、上記実施の形態を、自立運転時にコントローラ6で実行される処理の処理手順を示す、図2から図4のフローチャート及び、図5のタイムチャートを用いて説明する。
なお、図2は、改質器11に供給する予備燃料の流量を制御する処理の処理手順を示す。図3は、ヒータ負荷3の負荷量を制御する処理の処理手順を示す。図4は、水素貯蔵器13から燃料電池12に供給する水素ガスの流量を制御する処理手順を示す。
また、図5は、自立運転時の各部の状態を表すタイムチャートであって、(a)は顧客負荷22の負荷量、(b)は予備燃料の流量制御弁15bの目標開度、(c)は燃料電池12に入力される予備燃料の改質ガスの流量、(d)は燃料電池12に入力される水素ガスの流量、(e)は燃料電池12に入力される予備燃料の改質ガスと水素ガスとの混合ガスの流量、(f)は電流センサ12aで検出される燃料電池12の発電電流、(g)はヒータ負荷3の負荷量を表す。
燃料電池発電装置100は、連系運転中は、主燃料を改質器11に供給し、改質器11に供給する主燃料流量が電流センサ12aで検出される燃料電池12の発電電流に見合った流量となるように主燃料の流量制御弁14bを制御する。これにより燃料電池12で電力負荷に見合った発電が行われ、その発電出力が、インバータ2で交流電力に変換された後、遮断器7を介して補機負荷4及び外部冷却器負荷5に供給されると共に、遮断器7及び遮断器10を介して顧客負荷22に供給される。さらに、燃料電池12の発電電力の余剰分は、遮断器7及び系統連系用遮断器8を介して系統電源21に供給される。また、燃料電池12の発電電力が不足する場合には、系統電源21から系統連系用遮断器8及び遮断器10を介して顧客負荷22に電力供給がなされると共に、系統連系用遮断器8を介して補機負荷4、外部冷却器負荷5に供給される。系統運転時には、遮断器9は開状態に制御され、ヒータ負荷3への電力供給は行われない。
これによって、燃料電池12において過不足のない発電が行われ、顧客負荷22や各種負荷に対して各負荷で要求する電力量相当の電力供給が行われる。
また、コントローラ6では、夜間等、顧客負荷22での電力需要が低い予め設定した時間帯に、水素貯蔵器13への水素ガスの補充を行う。例えば、貯蔵量センサ等の、水素貯蔵器13の貯蔵量を検出する図示しない貯蔵量検出手段を設けておく。また、水素ガスの遮断弁16a及び流量制御弁16bを双方向制御可能な弁で構成し、さらに改質ガスを水素貯蔵機13に導入するために必要な、圧力、温度、流量などの計測器を初めとする図示しない導入装置を設けておく。そして、水素ガスの貯蔵量がある程度少なくなったときに、水素ガスの遮断弁16a及び流量制御弁16bを制御し、図示しない導入装置を作動させることにより、改質器11からの改質ガスを水素貯蔵器13に導入する。これにより、水素貯蔵器13の貯蔵量が零となることを回避することができる。また、この水素ガスの補充は、夜間等、電力需要の低い時間帯に行っているため、燃料電池12に供給される改質ガスが不足し、この改質ガスの不足のために各負荷への電力供給量が不足したりすることなく実現することができる。逆に、水素貯蔵器13への補充を行うことにより、電力需要が低い時間帯であっても改質器11の出力特性の変化を抑制することができ、効果的である。
この状態から、地震等により主燃料である都市ガスの供給が停止されたとき或いは系統電源21で停電等が生じた場合には、コントローラ6では、系統連系用遮断器8を開状態に切り替えて電池部1及び顧客負荷22を系統電源21から解列し、遮断器10を開状態に切り替える。さらに、主燃料の遮断弁14a、流量制御弁14bを閉状態に切り替え、逆に予備燃料の遮断弁15a、流量制御弁15bを開状態に切り替え、燃料を主燃料から予備燃料に切り替える。また、水素貯蔵器13から燃料電池12に対し、予め設定した余剰流量相当の水素ガスの供給を開始する。そして、遮断器9を閉状態に切り替える。
これによって、改質器11で改質された改質ガスと水素貯蔵器13の水素ガスとの混合ガスが燃料電池12に供給され、燃料電池12では、供給される混合ガス流量に応じた発電を行う。この発電出力は遮断器9を介してヒータ負荷3に供給され、燃料電池12の発電出力が安定し顧客負荷22への電力供給が可能な状態となったとき、遮断器10を閉状態に切り替えて顧客負荷22への電力供給を開始した後、ヒータ負荷3の負荷量を略零に制御する。
このとき、コントローラ6では、顧客負荷22への電力供給が可能な状態となるまでの間、ヒータ負荷3の負荷量を、予め検出した自立運転移行時に顧客負荷22で必要とされる電力相当に調整する。このため、顧客負荷22への電力供給を開始した時点で、ヒータ負荷3に供給されていた燃料電池12の発電電力の出力先が、ヒータ負荷3から顧客負荷22に切り替わることになって、顧客負荷22で必要とする電力供給を行うことができる。
以後、予備燃料を燃料として用い、系統電源21と連系せずに、燃料電池12の発電出力のみにより顧客負荷22への供給電力を賄う自立運転を行う。
この自立運転中、コントローラ6は、図2のフローチャートに示す手順にしたがって、改質器11に供給される予備燃料の流量制御を行う。
すなわち、まず、ステップS1で、電力計22aの検出値を読み込み、ステップS2に移行して、電力計22aの検出値に基づき、顧客負荷22の消費電力が前回値よりも閾値以上増加しているか否かを判断する。
この閾値は、顧客負荷22の消費電力の変化量に相当する顧客負荷22の負荷量の増加に伴って、増加分相当だけ燃料電池12の発電電力を増加させるにあたり、ヒータ負荷3の負荷量を調整することのみにより対応することが可能な負荷量の増加分の最大値相当に設定される。
そして、顧客負荷22の負荷量の変動幅が比較的小さく閾値を下回る場合には、ステップS2からステップS3に移行し、予備燃料の流量を変更せず、予備燃料の流量制御弁15bの開度はそのままを維持する。このため、顧客負荷22の負荷量の変動が小さい間は、予備燃料の流量制御弁15bの開度は一定に維持され、一定量の予備燃料が改質器11に供給される。
コントローラ6では、図2の予備燃料制御を行うと共に、電力計22aの検出値に基づきヒータ負荷3の負荷量を調整する。このヒータ負荷3の負荷量の調整は、図3のフローチャートに示すように、まず、ステップS21で電力計22aの検出値を読み込み、ステップS22に移行して、電力計22aの検出値に基づき、顧客負荷22の消費電力が前回値よりも前記閾値以上増加しているか否かを判断する。
そして、消費電力が閾値以上増加していなければ顧客負荷22の負荷量の変動は小さいか又は負荷量が減少したと判断し、ステップS23に移行して、消費電力の変動分に応じてヒータ負荷3の負荷量を調整する。すなわち、顧客負荷22の消費電力が増加している場合はヒータ負荷3の負荷量を増加分相当低減してヒータ負荷3の負荷量と顧客負荷22の負荷量との和を一定に保つ。逆に顧客負荷22の消費電力が減少している場合にはヒータ負荷3の負荷量を減少分相当増加してヒータ負荷3の負荷量と顧客負荷22の負荷量との和を一定に保つ。このため、顧客負荷22の負荷量の変動が小さいか、負荷量が減少している間は、ヒータ負荷3の負荷量は、顧客負荷2の負荷量の変動に応じて、これらの負荷量の和が一定となるように制御されることになる。
さらに、コントローラ6では、自立運転中、水素貯蔵器13に貯蔵している水素ガスを燃料電池12に供給し、その流量を、図4のフローチャートに示す手順で調整する。
この水素ガスの流量制御では、図3に示すヒータ負荷制御のステップS21及びステップS22の処理と同様に、電力計22aの検出値を読み込み(ステップS31)、この検出値に基づき、顧客負荷22の負荷量が閾値以上増加しているかを判断する(ステップS32)。そして、顧客負荷22の負荷量が閾値以上増加していなければ、ステップS33に移行し、予め設定した前述の余剰流量q1を水素ガスの目標流量qとし、燃料電池12に供給される水素ガスの流量が目標流量q(=q1)となるように水素ガスの流量制御弁16bを調整する。このため、顧客負荷22の負荷量の変動が小さいか、顧客負荷22の負荷量が減少する間は、燃料電池12への水素ガスの流量は、余剰流量q1相当となるように制御されることになる。
したがって、自立運転中、顧客負荷22の負荷量の変動が小さいときには、予備燃料の流量は変更されず(図2のステップS1〜S3)、顧客負荷22の負荷量の変動に対し、顧客負荷22の負荷量とヒータ負荷3の負荷量との和が一定となるようにヒータ負荷3の負荷量が調整されるため(図3のステップS21〜S23)、結果的に、燃料電池12に対する電力負荷の変動が抑制される。また、燃料電池12には、予め設定した余剰流量q1相当の水素ガスが常時余分に供給されており(図4のステップS31〜S33)、燃料電池12には、燃料電池12の発電電流に見合った流量の予備燃料を改質した改質ガスと、余剰流量q1相当の水素ガスとの混合ガスが供給される。したがって、通常、連系運転時には、負荷全体で真に必要とする燃料流量よりも余分に主燃料を供給しているが、自立運転時には、真に必要とする燃料流量及び余分に供給する余剰分との両方を予備燃料で賄うのではなく、余分に供給している余剰分は水素ガスで賄って余剰分に相当する余剰流量q1だけ供給し、予備燃料は、負荷全体で真に必要とする燃料流量相当分のみを賄うようにしているため、余剰流量q1相当だけ予備燃料の供給量を削減することができる。
この状態から、何らかにより顧客負荷22の負荷量が大幅に増加し、電力計22aで検出される検出値が大きく増加しその変動量が閾値を超えると、コントローラ6では、図2の予備燃料制御において、ステップS1からステップS2、ステップS11を経てステップS12に移行する。そして、顧客負荷22の負荷量の変動分相当から、後述のヒータ負荷3で賄うべきヒータ負荷担当分ΔQsを除いた負荷変動分相当だけ燃料電池12の発電電力を増加させるために必要な予備燃料の増加量ΔQを算出する。そして、ステップS13に移行し、予備燃料の目標流量Qの前回値にステップS12で算出した予備燃料増加量ΔQだけ加算した値を、今回の予備燃料の目標流量Qとする。そしてステップS14に移行し、改質器11に供給される予備燃料流量が目標流量Qとなるように、予備燃料の流量制御弁15bの開度を調節する。
また、コントローラ6では、ヒータ負荷3の負荷量調整を行い、顧客負荷22の負荷量の変動分が閾値を超えていることから、図3のステップS21からステップS22を経てステップS24に移行し、ヒータ負荷3の負荷量を前述の負荷担当分ΔQsだけ低減させる。
さらに、コントローラ6では、図4の水素ガス流量制御を行い、顧客負荷22の負荷量の変動分が閾値を超えていることから、ステップS31からステップS32を経てステップS35に移行し、顧客負荷22の負荷量の増加に対する水素ガスの追加流量Δqを算出する。
ここで、前記予備燃料流量制御では、顧客負荷22の負荷量の変動に応じて予備燃料の流量制御弁15bの開度を制御し予備燃料の増加を図っているが、流量制御弁15bの開度が実際に目標とする開度に達し、増量された予備燃料が改質器11で改質されて燃料電池12に供給されるまでには、ある程度の所要時間がかかる。このため、図5(b)に示すように、時点t0で予備燃料の流量制御弁15bの目標開度を、増量した予備燃料相当の開度に切り替えたとしても、燃料電池12に実際に供給される、予備燃料を改質した改質ガスの流量は、図5(c)に示すように緩やかに増加し、時点t3で目標流量Qに達することになる。
前記水素ガスの追加流量Δqは、図5(c)に斜線で示す領域で表される、時点t0から時点t3間における、目標流量Q相当の予備燃料が供給されたときに得られる改質ガス流量の目標値と燃料電池12に実際に供給される予備燃料の改質ガス流量との差の積分値である不足量Eq相当分に応じて設定される。つまり、顧客負荷22の負荷量が閾値を超えて増加した時点t0からの不足量Eq相当分を水素ガスにより補うように追加流量Δqを設定し、図5(d)に示すように、顧客負荷22の負荷量が閾値を超えた時点から速やかに水素ガスの供給流量を増加させ、図5(c)に示す燃料電池12に実際に供給される予備燃料の改質ガスの流量が増加するとこれに伴って水素ガスの流量が減少し、予備燃料の改質ガスの流量が目標値相当に達する時点t3近傍で、水素ガスの供給流量が略零となるように、追加流量Δqを設定する。
具体的には、まず、予備燃料の流量制御弁15bの開度制御を開始した時点から、流量制御弁15bの開度制御により増量された予備燃料の改質ガスが目標流量相当に達するまでの所要時間、すなわち、改質器11での改質に伴う処理時間や、改質器11から出力された改質ガスが燃料電池12に入力されるまでの移動時間等を含んだ、時点t0から時点t3の応答時間Tを算出する。
ここで、予備燃料として、例えばLPGガスを用いた場合、LPGガスの改質反応式は、次式(1)で表すことができる。
38+6H2O→10H2+3CO2 ……(1)
したがって、単純に同モル量で計算すると、同一量の水素ガスを得るためには、LPGガスの容量に対して10倍の容量の水素ガスが必要となる。
応答時間Tにおける改質ガスの不足量Eqは、予備燃料増加量ΔQ〔m3/h(normal)〕で予備燃料を投入したときの、応答時間あたりに投入された予備燃料から得られる改質ガス量に相当する。
このため、例えば、予備燃料増加量ΔQ〔m3/h(normal)〕を“5〔m3/h(normal)〕”とすると、“5〔m3/h(normal)〕”で投入される予備燃料から得られる改質ガスと同一量の水素ガスを投入するためには、その10倍の、5×10〔m3/h(normal)〕で水素ガスを投入する必要がある。したがって、応答時間を例えば、10秒とすると、10秒間に投入される予備燃料から得られる改質ガスと同量の水素ガスを投入するためには、5×10〔m3/h(normal)〕×10秒=約0.14m3(140L)の水素ガスが必要となる。
したがって、改質ガスの不足量Eqを補うためには、約0.14m3(140L)の水素ガスを投入すればよいことになる。
したがって、顧客負荷22の負荷量が閾値を超えて増加した時点から、応答時間の間の水素ガスの投入量の総和が、上述のようにして算出される改質ガスの不足量Eqに相当する水素ガス容量Eq(H)(=約0.14m3(140L))となるように、水素ガスの流量を設定し、且つ、図5(d)に示すように実際に燃料電池12に供給される水素ガスが、顧客負荷22の負荷量が閾値を超えた時点から速やかに増加し、さらに増量された予備燃料の改質ガスの不足分を補うように水素ガスの流量を設定する。
例えば、増量された予備燃料の改質ガスが燃料電池12に供給されるときの、改質ガスの変化特性と、水素ガスの流量制御弁16bを制御したときの燃料電池12に供給される水素ガスの変化特性とを予め検出しておき、この変化特性に基づき設定すればよい。また、追加流量Δqや、改質ガスの不足量Eqに相当する水素ガス容量Eq(H)等に基づき、水素ガスの増量時間を設定する。
そして、ステップS36に移行し、水素ガスの追加流量Δqと、前述の余剰流量q1との和を目標流量q(=q1+Δq)とし、燃料電池12に供給される水素ガスの流量が、目標流量qとなるように水素ガスの流量制御弁16bの開度を制御する。
そして、前述の水素ガスの増量時間が経過し、改質ガスの不足量Eqに相当する水素ガス容量Eq(H)相当の水素ガスの供給が終了したとき、ステップS37からステップS38に移行し、水素ガスの流量制御弁16bの目標開度qを前述の余剰流量q1に切り替え、目標開度qとなるように流量制御弁16bを調節し、燃料電池12への水素ガスの供給量を、余剰流量q1相当に戻す。
これにより、燃料電池12に供給される水素ガスの流量は、図5(d)に示すように、給電負荷22の負荷量が増加した後、余剰流量q1相当から一時的に増加した後、余剰流量q1に収束することになる。
したがって、図5のタイムチャートに示すように、時点t0で顧客負荷22の負荷量が閾値を超えて増加すると(図5(a))、この時点で、予備燃料の流量制御弁14bが目標開度となるように制御を開始したとしても(図5(b))、流量制御弁14bの弁開度が実際に目標開度に達するまでには応答遅れがあり、また、増量された予備燃料を改質した改質ガスが燃料電池12に実際に供給されるまでには時間がかかるため、燃料電池12に実際に供給される改質ガスは、図5(c)に示すように時点t0から応答時間が経過した時点t3で目標流量相当の流量となる。
このため、この予備燃料を改質した改質ガスのみを用いて燃料電池12で電池発電を行った場合、燃料電池12の発電電流は、図5(f)に破線で示すように、時点t3からさらに電池発電に要する所要時間が経過した時点t4で、顧客負荷22の負荷量に見合った発電電流に達することになる。
つまり、時点t0から時点t4間は、燃料電池12の発電出力は、顧客負荷22を含む電力負荷全体で必要とする電力量よりも少ないことになり、すなわち、この時点t0〜t4間は、燃料電池12が燃料不足傾向となることになる。
しかしながら、図5(d)に示すように、時点t0で顧客負荷22の負荷量が増加したとき、水素ガスを追加流量Δqだけ増量投入しており、この追加流量Δqは、図5(c)に斜線で示すように、本来時点t0から投入されるべき予備燃料の不足分相当である。このため、図5(e)に示すように、燃料電池12には図5(d)に示す流量の水素ガスと図5(c)に示す流量の改質ガスとの混合ガスが、時点t0から供給されることになり、この混合ガスは、時点t0から比較的速やかに増加し、時点t1で目標とする予備燃料の目標流量に達する。このため、燃料電池12の発電電流も、時点t1から比較的速やかに増加し時点t2で目標電流に達することになる。
したがって、水素ガスと改質ガスとの混合ガスを燃料電池12への燃料ガスとして用いることにより、燃料電池12に供給される燃料用ガスが目標流量に達する時点を予備燃料の改質ガスのみを燃料とした場合の時点t3から、より早い時点t1に早めることができ、これに伴い、燃料電池の発電電流が目標電流に達する時点を、予備燃料の改質ガスのみを燃料とした場合の時点t4からより早い時点t2に早めることができる。すなわち、燃料電池12が燃料不足傾向となる期間を短縮することができる。
そして、このようにして、顧客負荷22の負荷量の大きな変動に対し、燃料電池12の発電電力の負荷追従性を向上させて顧客負荷22の負荷量にみあった電力発電を行っている状態で、顧客負荷22の負荷量が変動した場合には、コントローラ6では、顧客負荷22の負荷の変動量が小さい場合には、予備燃料の制御は行わずに、ヒータ負荷3の負荷量を調整することで顧客負荷22の負荷量の変動に対して追従する(図2のステップS1〜ステップS3、図3のステップS21〜ステップS23)。
また、この状態から、顧客負荷22の負荷量が閾値を超えて低減された場合には、コントローラ6では、図2のステップS1からステップS2、ステップS11を経てステップS16に移行し、電流センサ12aの検出値を読み込み、燃料電池12の発電電流に見合った目標流量Qを算出し(ステップS17)、この目標流量Qとなるように予備燃料の流量制御を行う(ステップS14)。これにより、燃料電池12の発電電力と電力負荷とが平衡状態に収束することになる。
以上のように、顧客負荷22が大きく変動した場合には、水素ガスを追加投入するようにしているため、増量された予備燃料の改質ガスが燃料電池12に到達するまでの応答遅れを短縮することができ、その分、燃料電池12が燃料不足傾向となる可能性のある期間を短縮することができる。
また、このとき、水素ガスの追加流量Δq1として、図5(c)に斜線で示す、予備燃料の不足分に相当する不足量Eq相当に設定し、水素ガスを不足量Eq相当だけ導入するようにしているため、必要以上に水素ガスを導入することはない。このため、燃料電池12に供給される燃料ガスが過多となり燃料電池12本体の温度上昇等が生じ、燃料電池12本体に影響を与えることを回避することができる。
また、水素貯蔵器13に貯蔵された水素ガスを供給するようにしているため、供給可能な水素ガスには限りがある。しかしながら、必要量の水素ガスのみを導入しているため、水素貯蔵器13の貯蔵量が零に達する時点をより遅らせることができる。
また、顧客負荷22の負荷量の増加に伴い、予備燃料及び水素ガスを増量するだけでなく、ヒータ負荷3の負荷量を所定量だけ低減している。このため、顧客負荷22の負荷量の増加に伴う発電電力の不足分を、予備燃料及び水素ガスのみにより補う場合に比較して、予備燃料及び水素ガスの流量増加分は少なくてすむ。したがって、顧客負荷22の負荷量の増加により消費される予備燃料及び水素ガスの流量を削減することができ、ガスボンベ等に貯蔵される予備燃料や水素貯蔵器13に貯蔵される水素ガスといった、限りある資源の使用量を低減することができ、その分、予備燃料や水素ガスの貯蔵量が零に達する時点を遅らせることができる。
また、真に必要な燃料ガス流量よりも安全を見込んで投入する余剰流量q1相当の燃料として、予備燃料ではなく水素ガスを用いているため、その分、予備燃料の消費量を低減することができる。
また、顧客負荷22の負荷量の変動が比較的小さい場合には、予備燃料の増量は行わず、ヒータ負荷3の負荷量を変更することで対応しているため、その分、予備燃料の消費を低減することができる。
特に、自立運転時には、予備燃料を用いて電池発電を行っているため、このように予備燃料の消費量を低減することは、自立運転が可能な時間を延長することになるため、効果的である。
なお、上記実施の形態においては、顧客負荷22の負荷量の増加が大きいときには、ヒータ負荷3の負荷量を、ヒータ負荷担当分ΔQsだけ低減させ、ヒータ負荷3の負荷量の調整と水素ガスを追加投入することとの両方により、燃料電池12の負荷追従特性を向上させるようにした場合について説明したが、水素ガスの追加投入のみにより対応するようにしてもよい。例えば、ヒータ負荷3の負荷量が限度に達し、必要分だけ低減することができない可能性がある場合等には、水素ガスの追加投入のみにより対応してもよい。
また、上記実施の形態においては、ヒータ負荷3の負荷量の調整と、水素ガスを余剰流量q1相当投入することにより、顧客負荷22の変動幅の比較的小さな変動に対して対応するようにしているが、余剰流量q1の投入は行わず、ヒータ負荷3の負荷量の調整のみにより対応するようにしてもよい。このようにすることにより、その分、水素ガスの消費量を低減することができる。例えば、水素貯蔵器13の貯蔵量が少ない場合などには、ヒータ負荷3の負荷量の調整のみにより対応することで、水素ガスの消費量が低減されるため、効果的である。
また、上記実施の形態においては、顧客負荷22の変動幅の比較的小さな変動に対して、ヒータ負荷3の負荷量を調整することで対応しているが、補機負荷4や外部冷却器負荷5の負荷量を調整することが可能であるならば、ヒータ負荷3の負荷量と共に、これら補機負荷4や外部冷却器負荷5の負荷量を調整することにより対応する構成とすることも可能である。
ここで、上記実施の形態において、改質器11が改質手段に対応し、水素貯蔵器13が水素ガス貯蔵手段に対応し、コントローラ6が燃料制御手段に対応し、電力計22aが負荷量検出手段に対応している。
また、図2のステップS12で、予備燃料増加量ΔQを算出する処理が原燃料増流量演算手段に対応し、図4のステップS35で、追加投入量Δqを算出する処理が燃料不足量演算手段に対応している。
また、ヒータ負荷3が調整用負荷に対応し、図3のヒータ負荷制御処理が負荷量調整手段に対応している。
本発明を適用した燃料電池発電装置の一例を示す概略構成図である。 予備燃料制御の処理手順の一例を示すフローチャートである。 ヒータ負荷制御の処理手順の一例を示すフローチャートである。 水素ガス流量制御の処理手順の一例を示すフローチャートである。 顧客負荷が増加したときの各部の状況を示すタイムチャートである。
符号の説明
1 電池部
2 インバータ
3 ヒータ負荷
4 補機負荷
5 外部冷却器負荷
6 コントローラ
11 改質器
12 燃料電池
12a 電流センサ
13 水素貯蔵器
21 電力系統
22 給電負荷
22a 電力計
100 燃料電池発電装置

Claims (8)

  1. 供給される原燃料を水素リッチなガスに改質しこの改質ガスを燃料電池に供給する改質手段と、
    水素ガスが貯蔵される水素ガス貯蔵手段と、
    負荷で必要とする電力に見合った発電を行うように前記改質手段に供給する原燃料の流量を制御すると共に、前記水素ガスを前記燃料電池に供給する燃料制御手段と、を有し、
    前記燃料電池の発電電力のみにより前記負荷への供給電力を賄う自立運転を行う燃料電池発電装置において、
    前記負荷の負荷量を検出する負荷量検出手段と、
    前記負荷量検出手段の検出値に基づき前記負荷の負荷量が予め設定した閾値以上増加したことを検出したとき、前記負荷量の増加分相当だけ前記燃料電池の発電出力を増加させるために必要な前記原燃料の流量を演算する原燃料増流量演算手段と、
    前記燃料電池に実際に供給される前記改質ガスの流量が、前記原燃料増流量演算手段で演算された原燃料増流量だけ増量された原燃料相当の改質ガス流量に達するまでの間の、前記燃料電池に実際に供給される改質ガスの流量と前記増量された原燃料相当の改質ガス流量との差分の積分値に相当する燃料不足量を演算する燃料不足量演算手段と、を備え、
    前記燃料制御手段は、
    前記負荷量検出手段の検出値に基づき前記負荷の負荷量が前記閾値以上増加したことを検出したとき、前記原燃料増流量演算手段で演算された前記原燃料増流量相当だけ前記改質手段に供給する原燃料の流量を増量すると共に、前記燃料電池に供給する前記水素ガスの流量を前記燃料不足量相当だけ一時的に増量することを特徴とする燃料電池発電装置。
  2. 前記燃料不足量演算手段は、前記原燃料増流量と、前記原燃料の増量が開始された時点から増量された原燃料相当の改質ガスが前記燃料電池に達するまでの予測される所要時間と、前記燃料電池での燃料電池発電における前記原燃料及び前記水素ガス中の水素使用量の比と、に基づき前記燃料不足量を推測することを特徴とする請求項1記載の燃料電池発電装置。
  3. 負荷量を調整可能な調整用負荷と、
    前記負荷量検出手段で検出される前記負荷量と前記調整用負荷の負荷量との和が一定となるように前記調整用負荷の負荷量を調整する負荷量調整手段と、を備え、
    前記原燃料増流量演算手段は、前記負荷の負荷量が予め設定した閾値以上増加したときには前記負荷量の増加量から前記負荷量調整手段による前記調整用負荷の調整量を減算した差分相当だけ前記燃料電池の発電出力を増加させるために必要な前記原燃料の流量を演算し、
    前記燃料制御手段は、前記負荷の負荷量の変動量が前記閾値よりも小さいときには、前記原燃料及び前記水素ガスの流量を保持することを特徴とする請求項1又は請求項2記載の燃料電池発電装置。
  4. 前記燃料電池に対し、前記負荷で必要とする電力に見合った流量と予め設定した余裕代との和相当の燃料を供給する燃料電池発電装置であって、
    前記燃料制御手段は、前記負荷で必要とする電力に見合った流量の前記原燃料を前記改質手段に供給し、且つ前記余裕代相当の前記水素ガスを前記燃料電池に供給することを特徴とする請求項1から請求項3の何れか1項に記載の燃料電池発電装置。
  5. 電力系統と連系して前記負荷に電力供給を行う連系運転を行い、且つ連系運転時には都市ガスを前記原燃料として用いる燃料電池発電装置であって、
    前記連系運転時の予め設定した期間に、前記改質手段で改質された改質ガスを、前記水素ガスとして前記水素ガス貯蔵手段に補充することを特徴とする請求項1から請求項4の何れか1項に記載の燃料電池発電装置。
  6. 前記水素ガス貯蔵手段は、水素ガスを貯蔵する水素ガス貯蔵機能及び水素ガスを生成する水素ガス生成機能の少なくとも何れか一方を有することを特徴とする請求項1から請求項5の何れか1項に記載の燃料電池発電装置。
  7. 前記水素ガス貯蔵手段は、前記水素ガス生成機能を有し、前記燃料電池の発電過程で生成される燃料電池生成水と、酸化卑金属との化学反応により前記水素ガスを生成することを特徴とする請求項6記載の燃料電池発電装置。
  8. 供給される原燃料を水素リッチなガスに改質しこの改質ガスを燃料電池に供給する改質手段と、
    水素ガスが貯蔵される水素ガス貯蔵手段と、を備え、
    負荷で必要とする電力に見合った電力発電を行うように前記改質手段に供給する原燃料の流量を制御すると共に、前記水素ガスを前記燃料電池に供給して、燃料電池の発電電力のみにより前記負荷への供給電力を賄う自立運転を行う燃料電池発電装置の制御方法において、
    前記負荷の負荷量が予め設定した閾値以上増加したときには、前記負荷量の増加分相当だけ前記燃料電池の発電出力を増加させるように前記改質手段に供給する前記原燃料の流量を増量し、且つ、前記燃料電池に実際に供給される前記改質ガスの流量が、前記原燃料増流量演算手段で演算された原燃料増流量だけ増量された原燃料相当の改質ガス流量に達するまでの間の、前記燃料電池に実際に供給される改質ガスの流量と前記増量された原燃料相当の改質ガス流量との差分の積分値に相当する燃料不足量相当だけ、前記燃料電池に供給する水素ガスの流量を一時的に増加することを特徴とする燃料電池発電装置の制御方法。
JP2008156694A 2008-06-16 2008-06-16 燃料電池発電装置及び燃料電池発電装置の制御方法 Active JP5353080B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008156694A JP5353080B2 (ja) 2008-06-16 2008-06-16 燃料電池発電装置及び燃料電池発電装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008156694A JP5353080B2 (ja) 2008-06-16 2008-06-16 燃料電池発電装置及び燃料電池発電装置の制御方法

Publications (2)

Publication Number Publication Date
JP2009301936A true JP2009301936A (ja) 2009-12-24
JP5353080B2 JP5353080B2 (ja) 2013-11-27

Family

ID=41548623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008156694A Active JP5353080B2 (ja) 2008-06-16 2008-06-16 燃料電池発電装置及び燃料電池発電装置の制御方法

Country Status (1)

Country Link
JP (1) JP5353080B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013200990A (ja) * 2012-03-23 2013-10-03 Seiko Instruments Inc 燃料電池装置
JP2021113145A (ja) * 2020-01-20 2021-08-05 東京瓦斯株式会社 製品ガス供給システム
CN114937795A (zh) * 2022-04-28 2022-08-23 清华大学 一种拓宽固体氧化物燃料电池系统工作域的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306531A (ja) * 1996-05-21 1997-11-28 Toyota Motor Corp 燃料電池システム
JP2002080202A (ja) * 2000-07-03 2002-03-19 Toyota Motor Corp 燃料電池用燃料ガスの生成システム
JP2002329519A (ja) * 2001-05-01 2002-11-15 Honda Motor Co Ltd 燃料電池発電システム及びその運転方法
JP2002343392A (ja) * 2001-05-16 2002-11-29 Sekisui Chem Co Ltd 燃料電池システム
JP2003234108A (ja) * 2002-02-08 2003-08-22 Matsushita Electric Ind Co Ltd 燃料電池システム
JP2005347182A (ja) * 2004-06-04 2005-12-15 Idemitsu Kosan Co Ltd 負荷が消費する電力を発電するために必要な量のみの水素を燃料電池に提供する燃料電池システムおよび燃料電池システム制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306531A (ja) * 1996-05-21 1997-11-28 Toyota Motor Corp 燃料電池システム
JP2002080202A (ja) * 2000-07-03 2002-03-19 Toyota Motor Corp 燃料電池用燃料ガスの生成システム
JP2002329519A (ja) * 2001-05-01 2002-11-15 Honda Motor Co Ltd 燃料電池発電システム及びその運転方法
JP2002343392A (ja) * 2001-05-16 2002-11-29 Sekisui Chem Co Ltd 燃料電池システム
JP2003234108A (ja) * 2002-02-08 2003-08-22 Matsushita Electric Ind Co Ltd 燃料電池システム
JP2005347182A (ja) * 2004-06-04 2005-12-15 Idemitsu Kosan Co Ltd 負荷が消費する電力を発電するために必要な量のみの水素を燃料電池に提供する燃料電池システムおよび燃料電池システム制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013200990A (ja) * 2012-03-23 2013-10-03 Seiko Instruments Inc 燃料電池装置
JP2021113145A (ja) * 2020-01-20 2021-08-05 東京瓦斯株式会社 製品ガス供給システム
JP7355659B2 (ja) 2020-01-20 2023-10-03 東京瓦斯株式会社 製品ガス供給システム
CN114937795A (zh) * 2022-04-28 2022-08-23 清华大学 一种拓宽固体氧化物燃料电池系统工作域的方法
CN114937795B (zh) * 2022-04-28 2024-03-12 清华大学 一种拓宽固体氧化物燃料电池系统工作域的方法

Also Published As

Publication number Publication date
JP5353080B2 (ja) 2013-11-27

Similar Documents

Publication Publication Date Title
US9853306B2 (en) System and method for optimizing efficiency and power output from a vanadium redox battery energy storage system
US20140162091A1 (en) Method of controlling storage battery, apparatus for controlling storage battery, and electric power control system
JP5731241B2 (ja) 電力供給システム
US20090155633A1 (en) Fuel Cell Hybrid Power Supply Apparatus
JP2004178962A (ja) 燃焼器を有する水素製造装置を用いた燃料電池発電システム
JP4660422B2 (ja) エネルギ供給システム
JP2006032262A (ja) 燃料電池システム及び制御方法
JP5353080B2 (ja) 燃料電池発電装置及び燃料電池発電装置の制御方法
JP6826436B2 (ja) 燃料電池システム及びその運転方法
JP2021158076A (ja) Sofc/soecシステム
JP2001346332A (ja) 電力変動補償システム
JPWO2019159377A1 (ja) 電力供給システムの制御装置、電力供給システムの制御方法、及び電力供給システム
JP2011009099A (ja) 燃料電池発電装置の制御方法及び燃料電池発電装置
KR100700548B1 (ko) 연료전지의 난방/온수 제어 장치 및 그 방법
JP2021010204A (ja) 電力供給システム
JP5720584B2 (ja) 燃料電池システムおよびその制御方法
JP2007202265A (ja) 燃料電池システム
JP3808636B2 (ja) 燃料電池発電システムおよび発電システム
JP5266891B2 (ja) 燃料電池発電装置及び燃料電池発電装置の制御方法
WO2020080006A1 (ja) エネルギーマネジメントシステム、独立システム、及び独立システムの運用方法
JP6445096B2 (ja) 燃料電池システムおよびその運転方法
JP7366275B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP4176354B2 (ja) 燃料及び水供給量制御装置、燃料及び水供給量制御方法及び電力供給システム
JP2019030160A (ja) 分散型電源システム
JP2012059614A (ja) 燃料電池発電システムおよびその制御方法

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110414

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5353080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250