JP2009293067A - High-tensile-strength steel material superior in formability and fatigue resistance, and manufacturing method therefor - Google Patents

High-tensile-strength steel material superior in formability and fatigue resistance, and manufacturing method therefor Download PDF

Info

Publication number
JP2009293067A
JP2009293067A JP2008146095A JP2008146095A JP2009293067A JP 2009293067 A JP2009293067 A JP 2009293067A JP 2008146095 A JP2008146095 A JP 2008146095A JP 2008146095 A JP2008146095 A JP 2008146095A JP 2009293067 A JP2009293067 A JP 2009293067A
Authority
JP
Japan
Prior art keywords
less
steel material
composition
amount
formability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008146095A
Other languages
Japanese (ja)
Other versions
JP5187003B2 (en
Inventor
Shunsuke Toyoda
俊介 豊田
Tetsushi Jodai
哲史 城代
Takako Yamashita
孝子 山下
Yuji Hashimoto
裕二 橋本
Yoshikazu Kawabata
良和 河端
Akio Sato
昭夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008146095A priority Critical patent/JP5187003B2/en
Publication of JP2009293067A publication Critical patent/JP2009293067A/en
Application granted granted Critical
Publication of JP5187003B2 publication Critical patent/JP5187003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-tensile-strength steel material which is suitable for an automotive structure member and is superior in formability and fatigue resistance after a cross section has been worked, and to provide a manufacturing method therefor. <P>SOLUTION: This manufacturing method includes imparting such a heat history that a cumulative heat-treatment parameter ΣAi which is defined by the expression: ΣAi=ΣäTi×(20+log ti)} (wherein ti represents heat-treatment period of time (hr) in i-th step; and Ti represents heat-treatment temperature (K) in the i-th step) satisfies 28,000 to 21,000 in a temperature range of 850 to 1,150°C and 20,000 to 13,000 in a temperature range of 500 to 700°C, and imparting such a working of which the cumulative rolling reduction in a temperature range of 850 to 1,050°C is 87 to 97%, to a base material having a composition containing 0.03 to 0.24% C and at least 0.001 to 0.15% Nb. Thereby, the steel material acquires a structure in which Nbsp/Nbsol that is a ratio of an amount of Nb in precipitates having particle sizes of smaller than 20 nm to an amount of dissolving Nb is 0.8 to 8.0. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、トーションビーム、アスクルビーム、トレーリングアーム、サスペンションアーム等の自動車構造部材用として好適な高張力鋼材に係り、とくに成形性と耐疲労特性の向上に関する。なお、ここでいう「高張力鋼材」とは、引張強さ:590MPa以上の鋼材をいうものとする。また、ここでいう「鋼材」には、鋼管、鋼板等を含むものとする。   The present invention relates to a high-tensile steel material suitable for automobile structural members such as a torsion beam, an ASKUL beam, a trailing arm, and a suspension arm, and particularly relates to improvement of formability and fatigue resistance. The “high-strength steel material” here refers to a steel material having a tensile strength of 590 MPa or more. The “steel material” here includes steel pipes, steel plates and the like.

近年の地球環境の保全という観点から、自動車の燃費向上が強く求められている。そのため、自動車等の車体の徹底した軽量化が指向されている。自動車等の構造部材についても例外ではなく、軽量化と安全性との両立を図るために、一部の構造部材では、高強度化された電縫鋼管が採用されつつある。従来では、素材(電縫鋼管)を所定の形状に成形した後、焼入れ処理等の調質処理を施して、部材の高強度化が図られていた。しかし、調質処理を採用することは工程が複雑になり、部材の製造期間が長期化するうえ、部材製造コストの高騰を招くという問題がある。   In recent years, there has been a strong demand for improving the fuel efficiency of automobiles from the viewpoint of protecting the global environment. Therefore, a thorough weight reduction of the body of an automobile or the like is aimed at. Structural members such as automobiles are no exception, and in order to achieve both weight reduction and safety, some structural members are adopting highly-strengthened ERW steel pipes. Conventionally, after forming a material (electrically welded steel pipe) into a predetermined shape, a tempering process such as a quenching process is performed to increase the strength of the member. However, adopting the tempering treatment has a problem in that the process becomes complicated, the manufacturing period of the member becomes longer, and the manufacturing cost of the member increases.

このような問題に対し、例えば特許文献1には、自動車等の構造部材用超高張力電縫鋼管の製造方法が記載されている。特許文献1に記載された技術では、C、Si、Mn、P、S、Al、Nを適正量に調整したうえ、B:0.0003〜0.003%を含み、さらにMo、Ti、Nb、Vのうちの1種以上を含有する組成の鋼素材に、950℃以下Ar変態点以上で仕上圧延を終了し、250℃以下で巻取る熱間圧延を施し管用鋼帯とし、該管用鋼帯を造管して電縫鋼管としたのち、500〜650℃で時効処理を施す、電縫鋼管の製造方法である。この技術によれば、Bの変態組織強化とMo,Ti,Nb等の析出硬化により、調質処理を施すことなく、1000MPaを超える超高張力鋼管を得ることができるとしている。 For such a problem, for example, Patent Document 1 describes a method of manufacturing an ultra-high-strength ERW steel pipe for a structural member such as an automobile. In the technique described in Patent Document 1, C, Si, Mn, P, S, Al, and N are adjusted to appropriate amounts, and B: 0.0003 to 0.003% is included, and among Mo, Ti, Nb, and V The steel material having a composition containing one or more of the above is subjected to finish rolling at 950 ° C or less at the Ar 3 transformation point and hot rolling at 250 ° C or less to form a steel strip for pipes. This is a method for producing an ERW steel pipe, which is made into an ERW steel pipe and then subjected to an aging treatment at 500 to 650 ° C. According to this technology, it is said that an ultra-high strength steel pipe exceeding 1000 MPa can be obtained without tempering treatment by strengthening the transformation structure of B and precipitation hardening of Mo, Ti, Nb and the like.

また、特許文献2には、自動車のドアインパクトビーム用及びスタビライザー用として好適な、引張強さ:1470N/mm以上の高強度とかつ高延性を有する電縫鋼管の製造方法が記載されている。特許文献2に記載された技術では、C:0.18〜0.28%、Si:0.10〜0.50%、Mn:0.60〜1.80%を含み、P、Sを適正範囲に調整したうえ、Ti:0.020〜0.050%、B:0.0005〜0.0050%を含有し、さらにCr、MoおよびNbのうちの1種以上を含有する組成の素材鋼からなる鋼板を用いて製造した電縫鋼管に850〜950℃でノルマ処理を施し、さらに、焼入れ処理を施す、電縫鋼管の製造方法である。この技術によれば、1470N/mm以上の高強度と、10〜18%程度の延性を有する電縫鋼管が得られ、自動車のドアインパクトビーム用及びスタビライザー用として好適であるとしている。
特許第2588648号公報 特許第2814882号公報
Patent Document 2 describes a method for producing an electric-welded steel pipe having high tensile strength: 1470 N / mm 2 or more and high ductility, which is suitable for automobile door impact beams and stabilizers. . In the technique described in Patent Document 2, C: 0.18 to 0.28%, Si: 0.10 to 0.50%, Mn: 0.60 to 1.80% are included, and P and S are adjusted to an appropriate range, and Ti: 0.020 to 0.050% , B: 0.0005 to 0.0050% and further subjected to normalization at 850 to 950 ° C. for an ERW steel pipe manufactured using a steel plate made of material steel having a composition containing at least one of Cr, Mo and Nb This is a method for producing an electric resistance welded steel pipe, which is further subjected to quenching treatment. According to this technique, an electric resistance welded steel pipe having a high strength of 1470 N / mm 2 or more and a ductility of about 10 to 18% is obtained, which is said to be suitable for use in automobile door impact beams and stabilizers.
Japanese Patent No. 2588648 Japanese Patent No. 2814882

しかしながら、特許文献1に記載された技術で製造された電縫鋼管は、伸びElが14%以下と低延性であるため成形性に劣り、プレス成形あるいはハイドロフォーム成形を伴うトーションビーム、アクスルビーム、トレーリングアーム、サスペンションアーム等の自動車構造部材用としては不適であるという問題があった。
一方、特許文献2に記載された技術で製造された電縫鋼管は、伸びElが高々18%であり、曲げ加工により成形されるスタビライザー用としては好適であるが、プレス成形あるいはハイドロフォーム成形を伴う部材用としては、延性が不足し、プレス成形あるいはハイドロフォーム成形を伴うトーションビーム、アクスルビーム等の自動車構造部材用としては不適であるという問題があった。また、特許文献2に記載された技術では、ノルマ処理および焼入れ処理を必要とし、工程が複雑であり、寸法精度、経済性という観点からも問題を残していた。
However, the ERW steel pipe manufactured by the technique described in Patent Document 1 is inferior in formability because of its low ductility, with an elongation El of 14% or less, and a torsion beam, axle beam, tray with press molding or hydroform molding. There is a problem that it is not suitable for automobile structural members such as ring arms and suspension arms.
On the other hand, the ERW steel pipe manufactured by the technique described in Patent Document 2 has an elongation El of at most 18% and is suitable for a stabilizer formed by bending. For the accompanying member, there is a problem that the ductility is insufficient and it is not suitable for an automobile structural member such as a torsion beam and an axle beam accompanied by press molding or hydroforming. Further, the technique described in Patent Document 2 requires a normalization process and a quenching process, has a complicated process, and has left a problem in terms of dimensional accuracy and economy.

本発明は、上記した従来技術の問題を有利に解決し、とくに、トーションビーム、アクスルビーム、トレーリングアーム、サスペンションアームなどの、自動車構造部材用として好適な、引張強さ:590MPa以上を有し、低温靭性、成形性、および断面成形加工後の耐疲労特性、とくに耐ねじり疲労特性に優れた高張力鋼材およびその製造方法を提供することを目的とする。   The present invention advantageously solves the above-described problems of the prior art, and particularly has a tensile strength of 590 MPa or more, which is suitable for automobile structural members such as a torsion beam, an axle beam, a trailing arm, and a suspension arm. It is an object of the present invention to provide a high-tensile steel material excellent in low-temperature toughness, formability, and fatigue resistance after cross-section forming processing, particularly torsional fatigue resistance, and a method for producing the same.

なお、本発明でいう、「優れた成形性」とは、JIS X 2248−1996の規定に準拠した曲げ試験で得られた限界曲げ内側半径rと肉厚tとの比、r/tが3.0以下である場合を言うものとする。
また、本発明でいう「断面成形加工後の優れた耐ねじり疲労特性」とは、図1(特開2001−321846号公報の図11)に示すように、鋼管の長手中央部分をV字形状に断面を成形加工したのち、両端部をチャッキングにより固定してねじり疲労試験を、1Hz、両振りの条件で行い5×10繰返し疲れ限度σを求め、得られた5×10繰返し疲れ限度σと鋼管引張強さTSとの比、(σ/TS)が0.45以上である場合をいうものとする。
In the present invention, “excellent formability” means the ratio between the limit bending inner radius r and the wall thickness t obtained by a bending test based on the provisions of JIS X 2248-1996, and r / t is 3.0. The following cases shall be said.
Further, “excellent torsional fatigue resistance after cross-section forming” as used in the present invention means that the longitudinal center portion of the steel pipe is V-shaped as shown in FIG. 1 (FIG. 11 of JP-A-2001-331846). After forming the cross-section, the torsional fatigue test was performed with both ends fixed by chucking under the conditions of 1Hz and both swings, 5 × 10 5 repetition fatigue limit σ B was obtained, and 5 × 10 5 repetitions obtained were obtained. The ratio between the fatigue limit σ B and the steel pipe tensile strength TS (σ B / TS) is 0.45 or more.

また、本発明でいう「優れた低温靭性」とは、図1(特開2001‐321846号公報の図11)に示すように、試験材(鋼管)の長手中央部分をV字形状に断面を成形加工したままで、試験材の平坦部分より、管円周方向(C方向)が試験片長さとなるように展開し、JIS Z 2242の規定に準拠してVノッチ試験片(1/4サイズ)を切出し、シャルピー衝撃試験を実施した場合の破面遷移温度vTrsが、いずれも−50℃以下である場合をいうものとする。   In addition, “excellent low temperature toughness” as used in the present invention means that the longitudinal center portion of the test material (steel pipe) has a V-shaped cross section as shown in FIG. 1 (FIG. 11 of Japanese Patent Laid-Open No. 2001-331846). While still being molded, expand from the flat part of the test material so that the pipe circumferential direction (C direction) is the test piece length, and V-notch test piece (1/4 size) in accordance with JIS Z 2242 When the Charpy impact test is performed, the fracture surface transition temperature vTrs is all −50 ° C. or lower.

本発明者らは、強度、低温靭性、成形性、断面成形加工後の耐ねじり疲労特性という相反する特性を高度なレベルで両立させた鋼材を安定して製造するために、これら特性に影響する各種要因、とくに鋼材の組成、製造条件について系統的な検討を鋭意実施した。その結果、Cと、炭化物形成元素Xとして少なくとも1種、好ましくはNbを含有する組成の鋼素材に、特定条件の熱履歴および加工を施し、炭化物形成元素Xの微細析出物量と固溶量との比を適正範囲に制御することにより、所定の高強度で、高い成形性、優れた低温靭性を有し、さらに断面成形後の耐ねじり疲労特性に優れた高強度鋼材が製造できることを知見した。   The present inventors influence these properties in order to stably produce a steel material in which conflicting properties such as strength, low temperature toughness, formability, and torsional fatigue resistance after cross-section forming are compatible at a high level. A systematic study was conducted on various factors, especially the composition of steel materials and production conditions. As a result, a steel material having a composition containing C and at least one carbide forming element X, preferably Nb, is subjected to thermal history and processing under specific conditions, and the amount of fine precipitates and solid solution amount of the carbide forming element X It has been found that by controlling the ratio in a proper range, it is possible to produce a high strength steel material having a predetermined high strength, high formability, excellent low temperature toughness, and excellent torsional fatigue resistance after cross-section forming. .

本発明は、上記したような知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は、次の通りである。
(1)質量%で、C:0.03〜0.24%を含み、少なくとも1種の炭化物形成元素Xを含有する組成を有し、粒径20nm未満の析出物中のX量Xspと、固溶X量Xsolとの比、Xsp/Xsolが所定の範囲内となる組織を有することを特徴とする成形性と耐疲労特性に優れた高張力鋼材。
(2)(1)において、質量%で、C:0.03〜0.24%を含み、炭化物形成元素XとしてNb:0.001〜0.15%を含有する組成を有し、粒径20nm未満の析出物中のNb量Nbspと、固溶Nb量Nbsolとの比、Nbsp /Nbsolが0.80〜8.0である組織を有することを特徴とする成形性と耐疲労特性に優れた高張力鋼材。
(3)(2)において、前記組成が、質量%で、C:0.03〜0.24%、Si:0.002〜0.95%、Mn:1.01〜1.99%、Al:0.01〜0.08%、Nb:0.001〜0.15%を含有し、さらにP、S、N、Oを、P:0.019%以下、S:0.010%以下、N:0.008%以下、O:0.003%以下に調整して含み、残部がFeおよび不可避的不純物からなる組成であることを特徴とする高張力鋼材。
(4)(2)または(3)において、前記組成に加えてさらに、炭化物形成元素Xとして、質量%で、V:0.001〜0.15%、Ti:0.001〜0.15%、Mo:0.001〜0.45%、W:0.001〜0.15%のうちから選ばれた1種または2種以上を含有する組成とし、前記組織がさらに、Vを含有する場合は、粒径20nm未満の析出物中のV量Vspと固溶V量Vsol との比、Vsp /Vsolが0.20〜2.0であり、Tiを含有する場合は、粒径20nm未満の析出物中のTi量Tispと固溶Ti量Tisolとの比、Tisp /Tisolが0.8〜8.0であり、Moを含有する場合は、粒径20nm未満の析出物中のMo量Mospと固溶Mo量Mosolとの比、Mosp /Mosolが0.10〜1.0であり、Wを含有する場合は、粒径20nm未満の析出物中のW量Wspと固溶W量Wsolとの比、Wsp/Wsolが0.10〜1.0である組織とすることを特徴とする高張力鋼材。
(5)(2)ないし(4)のいずれかにおいて、前記組成に加えてさらに、質量%で、Cr:0.001〜0.45%、Cu:0.001〜0.45%、Ni:0.001〜0.45%、B:0.0001〜0.0009%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする高張力鋼材。
(6)(2)ないし(5)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.0001〜0.005%を含有する組成とすることを特徴とする高張力鋼材。
(7)(2)ないし(6)のいずれかにおいて、前記高張力鋼材が、管内外表面の算術平均粗さRaが2μm以下、最大高さ粗さRzが30μm以下、十点平均粗さRz JIS が20μm以下であり、前記組織に加えてさらに、最外表面および最内表面から肉厚方向に50μmまでの領域の組織が体積率で60%以上のフェライト相を有し、該フェライト相の円周方向断面での平均結晶粒径が2〜8μmである、中空管状体であることを特徴とする高張力鋼材。
(8)質量%で、C:0.03〜0.24%を含み、炭化物形成元素Xとして少なくともNb:0.001〜0.15%を含有する組成の鋼素材に、前記炭化物形成元素Xの炭化物が固溶する温度以上に加熱したのち、所定の熱履歴と所定の加工とを施し、鋼材とするにあたり、前記所定の熱履歴を、次(1)式
ΣAi=Σ{Ti・(20+log ti)} ‥‥(2)
(ここで、ti:i番目の工程での熱処理時間(hr)、Ti:i番目の工程での熱処理温度(K))
で定義される累積熱処理パラメータΣAi、が850〜1150℃の温度域で28000〜21000、かつ500〜700℃の温度域で20000〜13000を満足する熱履歴とし、前記所定の加工を850〜1050℃の温度域での累積圧下率が87〜97%となる加工とすることを特徴とする成形性と耐疲労特性に優れた高張力鋼材の製造方法。
(9)(8)において、前記組成が、質量%で、C:0.03〜0.24%、Si:0.002〜0.95%、Mn:1.01〜1.99%、Al:0.01〜0.08%を含み、炭化物形成元素XとしてNb:0.001〜0.15%を含有し、さらにP、S、N、Oを、 P:0.019%以下、S:0.010%以下、N:0.008%以下、O:0.003%以下に調整して含み、残部がFeおよび不可避的不純物からなる組成であることを特徴とする高張力鋼材の製造方法。
(10)(8)または(9)において、前記組成に加えてさらに炭化物形成元素Xとして、質量%で、V:0.001〜0.15%、Ti:0.001〜0.15%、Mo:0.001〜0.45%、W:0.001〜0.15%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする高張力鋼材の製造方法。
(11)(8)ないし(10)のいずれかにおいて、前記組成に加えてさらに、質量%で、Cr:0.0001〜0.45%、Cu:0.001〜0.45%、Ni:0.001〜0.45%、B:0.0001〜0.0009%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする高張力鋼材の製造方法。
(12)(8)ないし(11)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.001〜0.005%を含有する組成とすることを特徴とする高張力鋼材の製造方法。
The present invention has been completed based on the above-described findings and further studies. That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.03 to 0.24%, including at least one carbide forming element X, X amount Xsp in precipitates having a particle size of less than 20 nm, and solid solution X amount A high-tensile steel material excellent in formability and fatigue resistance, characterized by having a structure in which the ratio of Xsol and Xsp / Xsol falls within a predetermined range.
(2) In (1), Nb in a precipitate having a composition containing C: 0.03 to 0.24% by mass%, Nb: 0.001 to 0.15% as the carbide forming element X, and having a particle size of less than 20 nm A high-strength steel material excellent in formability and fatigue resistance, characterized by having a structure in which the amount Nbsp is a ratio of the solid solution Nb amount Nbsol and the Nbsp / Nbsol is 0.80 to 8.0.
(3) In (2), the composition is mass%, C: 0.03-0.24%, Si: 0.002-0.95%, Mn: 1.01-1.99%, Al: 0.01-0.08%, Nb: 0.001-0.15% In addition, P, S, N, and O are adjusted to include P: 0.019% or less, S: 0.010% or less, N: 0.008% or less, and O: 0.003% or less, with the balance being Fe and inevitable impurities. A high-strength steel material having a composition comprising:
(4) In (2) or (3), in addition to the above-described composition, the carbide forming element X may further include, in mass%, V: 0.001 to 0.15%, Ti: 0.001 to 0.15%, Mo: 0.001 to 0.45%, W: When the composition contains one or more selected from 0.001 to 0.15% and the structure further contains V, the amount of Vsp in the precipitate having a particle size of less than 20 nm is solidified. The ratio of dissolved V amount Vsol, Vsp / Vsol is 0.20 to 2.0, and when Ti is contained, the ratio of Ti amount Tisp and solid solution Ti amount Tisol in precipitates having a particle size of less than 20 nm, Tisp / Tisol Is 0.8 to 8.0, and when Mo is contained, the ratio of Mo amount Mosp to solid solution Mo amount Mosol in the precipitate having a particle size of less than 20 nm, Mosp / Mosol is 0.10 to 1.0, and W is contained. In the case, a high-tensile steel material characterized by having a structure in which the ratio of W amount Wsp and solid solution W amount Wsol in a precipitate having a particle size of less than 20 nm, Wsp / Wsol is 0.10 to 1.0.
(5) In any one of (2) to (4), in addition to the above composition, in addition to mass, Cr: 0.001 to 0.45%, Cu: 0.001 to 0.45%, Ni: 0.001 to 0.45%, B: 0.0001 A high-tensile steel material characterized by having a composition containing one or more selected from -0.0009%.
(6) In any one of (2) to (5), in addition to the above-described composition, the high-strength steel material further includes Ca: 0.0001 to 0.005% by mass%.
(7) In any one of (2) to (6), the high-tensile steel material has an arithmetic average roughness Ra of 2 μm or less on the inner and outer surfaces of the pipe, a maximum height roughness Rz of 30 μm or less, and a ten-point average roughness Rz. JIS is 20 μm or less, and in addition to the above structure, the structure in the region from the outermost surface and the innermost surface to 50 μm in the thickness direction has a ferrite phase with a volume ratio of 60% or more. A high-strength steel material, characterized in that it is a hollow tubular body having an average crystal grain size in a circumferential cross section of 2 to 8 µm.
(8) More than the temperature at which the carbide of carbide forming element X is dissolved in a steel material having a composition containing C: 0.03 to 0.24% and containing at least Nb: 0.001 to 0.15% as carbide forming element X. In order to obtain a steel material by applying a predetermined heat history and a predetermined processing, the predetermined heat history is expressed by the following equation (1)
ΣAi = Σ {Ti ・ (20 + log ti)} (2)
(Where ti: heat treatment time (hr) in the i-th process, Ti: heat treatment temperature (K) in the i-th process)
The cumulative heat treatment parameter ΣAi defined in the above is a heat history satisfying 28000-21000 in the temperature range of 850-1150 ° C and 20000-13000 in the temperature range of 500-700 ° C, and the predetermined processing is 850-1050 ° C A method for producing a high-strength steel material having excellent formability and fatigue resistance, characterized in that the cumulative rolling reduction in the temperature range is 87 to 97%.
(9) In (8), the composition contains, in mass%, C: 0.03-0.24%, Si: 0.002-0.95%, Mn: 1.01-1.99%, Al: 0.01-0.08%, and a carbide forming element X And Nb: 0.001 to 0.15%, and further containing P, S, N, and O, adjusted to P: 0.019% or less, S: 0.010% or less, N: 0.008% or less, O: 0.003% or less, A method for producing a high-strength steel material, characterized in that the balance is composed of Fe and inevitable impurities.
(10) In (8) or (9), in addition to the above composition, the carbide-forming element X further includes, in mass%, V: 0.001 to 0.15%, Ti: 0.001 to 0.15%, Mo: 0.001 to 0.45%, W : A method for producing a high-strength steel material, characterized in that the composition contains one or more selected from 0.001 to 0.15%.
(11) In any one of (8) to (10), in addition to the above composition, in addition to mass, Cr: 0.0001 to 0.45%, Cu: 0.001 to 0.45%, Ni: 0.001 to 0.45%, B: 0.0001 A method for producing a high-strength steel material, characterized in that the composition contains one or more selected from -0.0009%.
(12) In any one of (8) to (11), in addition to the above composition, the method further includes a composition containing Ca: 0.001 to 0.005% by mass%.

本発明によれば、590MPa以上の引張強さを有し、優れた低温靭性、優れた成形性と断面成形加工後の優れた耐ねじり疲労特性とを有する高張力鋼材を安価に製造でき、産業上格段の効果を奏する。また、本発明によれば、自動車構造部材の特性向上に顕著に寄与するという効果もある。   According to the present invention, a high-tensile steel material having a tensile strength of 590 MPa or more, excellent low-temperature toughness, excellent formability, and excellent torsional fatigue resistance after cross-section forming processing can be manufactured at low cost. Has an exceptional effect. Moreover, according to the present invention, there is an effect that it contributes remarkably to the improvement of the characteristics of the automobile structural member.

まず、本発明高張力鋼材の組成限定理由について説明する。以下、とくに断らない限り、質量%は単に%で記す。
本発明高張力鋼材は、C:0.03〜0.24%を含み、さらに炭化物形成元素Xとして少なくとも1種、好ましくはNb:0.001〜0.15%を含有する組成を有する。炭化物形成元素Xとしては、Nb以外に、V、Ti、Mo、Wのうちの1種または2種以上とする。
First, the reasons for limiting the composition of the high-strength steel material of the present invention will be described. Hereinafter, unless otherwise specified, mass% is simply expressed as%.
The high-tensile steel material of the present invention has a composition containing C: 0.03 to 0.24% and further containing at least one carbide forming element X, preferably Nb: 0.001 to 0.15%. The carbide forming element X is one or more of V, Ti, Mo, and W in addition to Nb.

C:0.03〜0.24%
Cは、固溶強化あるいは炭化物形成元素Xと結合し析出物(炭化物)として析出物強化を介して、鋼の強度を増加させる元素であり、鋼材強度、疲労強度を確保するうえで必須の元素である。このような効果は、0.03%以上の含有で認められる。0.03%未満の含有では所望の析出物量が得られず、所望の耐ねじり疲労特性を確保することができない。一方、0.24%を超える含有は、鋼材の延性が低下し所望の成形性が確保できなくなるとともに、低温靭性が低下する。このためCは0.03〜0.24%の範囲に限定した。なお、好ましくは0.08〜0.20%である。
C: 0.03-0.24%
C is an element that increases the strength of steel through precipitation strengthening as a precipitate (carbide) by combining with solid solution strengthening or carbide forming element X, and is an essential element for securing steel strength and fatigue strength. It is. Such an effect is recognized when the content is 0.03% or more. If the content is less than 0.03%, the desired amount of precipitates cannot be obtained, and the desired torsional fatigue resistance characteristics cannot be ensured. On the other hand, if the content exceeds 0.24%, the ductility of the steel material decreases, and the desired formability cannot be secured, and the low temperature toughness decreases. For this reason, C was limited to the range of 0.03-0.24%. In addition, Preferably it is 0.08 to 0.20%.

Nb:0.001〜0.15%
Nbは、Cと結合し炭化物として析出し、所望の高強度の確保および疲労強度の向上に寄与する元素である。このような効果を得るためには、0.001%以上の含有を必要とする。一方、0.15%を超える含有は、析出物の過剰な析出により延性低下が顕著となる。このため、Nbは0.15%以下に限定する。なお、好ましくは0.010〜0.049%である。
Nb: 0.001 to 0.15%
Nb is an element that combines with C and precipitates as a carbide, contributing to ensuring a desired high strength and improving fatigue strength. In order to obtain such an effect, a content of 0.001% or more is required. On the other hand, when the content exceeds 0.15%, the ductility decreases remarkably due to excessive precipitation of precipitates. For this reason, Nb is limited to 0.15% or less. In addition, Preferably it is 0.010 to 0.049%.

本発明では、炭化物形成元素Xとして、上記したNbに加えて、さらにV:0.001〜0.15%、Ti:0.001〜0.15%、Mo:0.001〜0.45%、W:0.001〜0.15%のうちから選ばれた1種または2種以上を含有してもよい。
V、Ti、Mo、Wはいずれも、Nbと同様に炭化物形成元素であり、微細炭化物として析出し、疲労強度を向上させる作用を有する元素であり、Nbに加えて、必要に応じて1種または2種以上を選択して含有できる。
In the present invention, the carbide forming element X is selected from V: 0.001 to 0.15%, Ti: 0.001 to 0.15%, Mo: 0.001 to 0.45%, and W: 0.001 to 0.15% in addition to the above-described Nb. Moreover, you may contain 1 type (s) or 2 or more types.
V, Ti, Mo, and W are all carbide-forming elements like Nb, are precipitated as fine carbides, and have an effect of improving fatigue strength. In addition to Nb, one kind is optionally added. Alternatively, two or more kinds can be selected and contained.

Vは、Cと結合し微細炭化物として析出して、疲労強度を向上させる作用を有する。このような効果は、0.001%以上の含有で発現する。一方、0.15%を超える含有は、成形性、低温靭性を低下させる。このため、含有する場合、Vは0.001〜0.15%の範囲に限定することが好ましい。なお、さらに好ましくは、0.06%以下である。
また、Tiは、まずNと結合して固溶Nを低減させる作用を有し、鋼材の成形性確保に有効に寄与するとともに、窒化物となった以外のTi、すなわち余剰Tiは、Cと結合し炭化物として析出して、疲労強度を向上させる作用を有する。このような効果は、0.001%以上の含有で顕著となるが、0.15%を超える含有は、析出物(炭化物)による強度上昇が著しくなり、それに伴い延性が顕著に低下し、成形性が低下する。このため、含有する場合、Tiは0.001〜0.15%の範囲に限定することが好ましい。なお、さらに好ましくは、0.0010〜0.080%である。
V combines with C and precipitates as fine carbides, and has the effect of improving fatigue strength. Such an effect is manifested at a content of 0.001% or more. On the other hand, if it exceeds 0.15%, formability and low temperature toughness are lowered. For this reason, when it contains, it is preferable to limit V to 0.001 to 0.15% of range. More preferably, it is 0.06% or less.
In addition, Ti has an action of first combining with N to reduce the solute N, and contributes effectively to ensuring the formability of the steel material, and Ti other than nitride, that is, excess Ti, is C and Bonds and precipitates as carbides and has the effect of improving fatigue strength. Such an effect becomes remarkable when the content is 0.001% or more. However, when the content exceeds 0.15%, the strength is significantly increased by precipitates (carbides), and the ductility is remarkably decreased accordingly, and the moldability is decreased. . For this reason, when it contains, it is preferable to limit Ti to the range of 0.001 to 0.15%. In addition, More preferably, it is 0.0010 to 0.080%.

また、Moは、Nb、V等と同様に、Cと結合し炭化物として析出して、疲労強度を向上させる作用を有する。このような効果は0.001%以上の含有で発現するが、0.45%を超える含有は、成形性を低下させる。このために、含有する場合、Moは0.001〜0.45%の範囲に限定することが好ましい。なお、さらに好ましくは0.12〜0.20%である。
また、Wは、Nb、V等と同様に、Cと結合し炭化物として析出して、疲労強度を向上させる作用を有する。このような効果は0.001%以上の含有で発現する。一方、0.15%を超える含有は、成形性、低温靭性を低下させる。このため、含有する場合、Wは0.001〜0.15%の範囲に限定することが好ましい。なお、さらに好ましくは、0.06%以下である。
Also, Mo, like Nb, V, etc., binds to C and precipitates as carbides, and has an action of improving fatigue strength. Such an effect is manifested at a content of 0.001% or more, but a content exceeding 0.45% reduces moldability. For this reason, when it contains, it is preferable to limit Mo to 0.001 to 0.45% of range. More preferably, it is 0.12 to 0.20%.
W, like Nb, V, etc., binds to C and precipitates as carbides, and has the effect of improving fatigue strength. Such an effect is manifested at a content of 0.001% or more. On the other hand, if it exceeds 0.15%, formability and low temperature toughness are lowered. For this reason, when it contains, it is preferable to limit W to 0.001 to 0.15% of range. More preferably, it is 0.06% or less.

上記したC、およびNbをはじめとした炭化物形成元素以外は、つぎのような成分とすることが好ましい。
Si:0.002〜0.95%
Siは、フェライト形成元素であり、熱履歴中に、オーステナイト(γ)→フェライト(α)変態を促進し、成形性の向上に寄与する。このような効果は、0.002%以上の含有で顕著となる。一方、0.95%を超える含有は、表面性状が低下する。このため、Siは0.002〜0.95%の範囲に限定することが好ましい。なお、さらに好ましくは0.10〜0.30%である。
Other than the above-mentioned carbide-forming elements such as C and Nb, the following components are preferable.
Si: 0.002 to 0.95%
Si is a ferrite-forming element and promotes the transformation of austenite (γ) → ferrite (α) during the thermal history and contributes to improvement of formability. Such an effect becomes remarkable when the content is 0.002% or more. On the other hand, if the content exceeds 0.95%, the surface properties are lowered. For this reason, it is preferable to limit Si to 0.002 to 0.95% of range. In addition, More preferably, it is 0.10 to 0.30%.

Mn:1.01〜1.99%
Mnは、鋼材の強度増加に寄与するとともに、疲労強度を向上させる作用を有する元素である。このような効果は、1.01%以上の含有で発現する。1.99%を超える含有は、延性の低下が著しく、所望の成形性を確保できなくなる。このため、Mnは1.01〜1.99%の範囲に限定することが好ましい。なお、さらに好ましくは1.20〜1.80%である。
Mn: 1.01-1.99%
Mn is an element that contributes to an increase in the strength of the steel material and has an effect of improving the fatigue strength. Such an effect is manifested at a content of 1.01% or more. If the content exceeds 1.99%, the ductility is remarkably lowered, and the desired formability cannot be ensured. For this reason, it is preferable to limit Mn to the range of 1.01-1.99%. Further, it is more preferably 1.20 to 1.80%.

Al:0.01〜0.08%
Alは、製鋼時の脱酸剤として作用するとともに、Nと結合し熱履歴中のオーステナイト粒の成長を抑制し、結晶粒を微細化し、疲労強度を向上させる作用を有する元素である。このような効果は、0.01%以上の含有で認められるようになる。一方、0.08%を超える含有は、効果が飽和し含有量に見合う効果が期待できなくなり経済的に不利となるうえ、かえって酸化物系介在物の増大に繋がり、耐疲労特性の低下が著しくなる。このため、Alは0.01〜0.08%の範囲に限定することが好ましい。なお、さらに好ましくは、0.02〜0.06%である。
Al: 0.01-0.08%
Al is an element that acts as a deoxidizer during steelmaking, and has an action of binding to N and suppressing the growth of austenite grains in the thermal history, refining crystal grains, and improving fatigue strength. Such an effect comes to be recognized when the content is 0.01% or more. On the other hand, if the content exceeds 0.08%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. In addition, the oxide inclusions are increased, and the fatigue resistance is significantly deteriorated. For this reason, it is preferable to limit Al to the range of 0.01 to 0.08%. More preferably, it is 0.02 to 0.06%.

なお、本発明では、不純物元素である、P、S、N、Oを、P:0.019%以下、S:0.010%以下、N:0.008%以下、O:0.003%以下に調整して含むことが好ましい。
Pは、Mnとの凝固共偏析を介し、低温靭性を低下させるとともに、電縫溶接性を低下させる悪影響を有する元素であり、できるだけ低減することが好ましい。0.019%を超えて含有すると、上記した悪影響が顕著となるため、Pは0.019%以下に限定した。
In the present invention, the impurity elements P, S, N, and O are adjusted to include P: 0.019% or less, S: 0.010% or less, N: 0.008% or less, and O: 0.003% or less. preferable.
P is an element having an adverse effect of lowering the low temperature toughness and lowering the electroweldability through solidification co-segregation with Mn, and is preferably reduced as much as possible. If the content exceeds 0.019%, the above-described adverse effects become remarkable, so P is limited to 0.019% or less.

Sは、鋼中ではMnS等の介在物として存在し、成形時の微細割れや疲労亀裂の起点として、成形性、耐疲労特性を低下させる。また、鋼材の電縫溶接性、低温靭性等を低下させる悪影響を有する元素であり、できるだけ低減することが好ましい。0.010%を超えて含有すると、上記した悪影響が顕著となるため、Sは0.010%を上限とすることが好ましい。なお、より好ましくは0.005%以下である。   S exists as inclusions such as MnS in steel, and lowers formability and fatigue resistance as a starting point of fine cracks and fatigue cracks during molding. Moreover, it is an element which has the bad influence which reduces the electric resistance weldability, low temperature toughness, etc. of steel materials, and it is preferable to reduce as much as possible. If the content exceeds 0.010%, the above-described adverse effects become remarkable, so S is preferably made 0.010% as an upper limit. More preferably, it is 0.005% or less.

Nは、鋼中に固溶Nとして残存すると、鋼材の成形性、低温靭性を低下させる悪影響を有する元素であり、本発明ではできるだけ低減することが好ましい。0.008%を超えて含有すると、上記した悪影響が顕著となるため、Nは0.008%を上限とすることが好ましい。なお、より好ましくは0.0049%以下である。
Oは、鋼中では酸化物系介在物として存在し、鋼材の耐疲労特性、低温靭性を低下させる悪影響を有する元素であり、本発明ではできるだけ低減することが好ましい。0.003%を超えて含有すると、上記した悪影響が顕著となるため、Oは0.003%を上限とすることが好ましい。なお、より好ましくは0.002%以下である。
If N remains as solid solution N in the steel, N is an element having an adverse effect of lowering the formability and low temperature toughness of the steel material. In the present invention, N is preferably reduced as much as possible. If the content exceeds 0.008%, the above-described adverse effects become remarkable, so N is preferably made 0.008% as an upper limit. More preferably, it is 0.0049% or less.
O is an element that exists as an oxide inclusion in steel and has an adverse effect of lowering the fatigue resistance and low temperature toughness of the steel, and is preferably reduced as much as possible in the present invention. When the content exceeds 0.003%, the above-described adverse effects become remarkable, so O is preferably made 0.003% as the upper limit. More preferably, it is 0.002% or less.

上記した成分に加えてさらに、Cr:0.001〜0.45%、Cu:0.001〜0.45%、Ni:0.001〜0.45%、B:0.0001〜0.0009%のうちから選ばれた1種または2種以上、および/またはCa:0.001〜0.005%を含有することができる。
Cr、Cu、Ni、Bはいずれも、疲労強度を向上させるか、疲労強度を向上させる作用を補完する元素であり、必要に応じて選択して含有できる。
In addition to the above-described components, one or more selected from Cr: 0.001 to 0.45%, Cu: 0.001 to 0.45%, Ni: 0.001 to 0.45%, B: 0.0001 to 0.0009%, and / or Or Ca: 0.001-0.005% can be contained.
Cr, Cu, Ni, and B are all elements that improve the fatigue strength or supplement the effect of improving the fatigue strength, and can be selected and contained as necessary.

Crは、疲労強度を向上させる作用を有する元素であり、このような効果は、0.001%以上の含有で発現する。一方、0.45%を超える含有は、成形性を低下させる。このため、含有する場合には、Crは0.001〜0.45%の範囲に限定することが好ましい。なお、さらに好ましくは0.08〜0.29%である。
Cu、Niは、いずれも疲労強度を向上させる作用を補完する元素であるが、さらに鋼材の耐食性を向上させる作用をも元素である。これらの効果は0.001%以上の含有で発現する。一方、0.45%を超える含有は、成形性を低下させる。このため、含有する場合には、Cuは0.001〜0.45%、Niは0.001〜0.45%の範囲に限定することが好ましい。なお、さらに好ましくは、Cu、Niともに0.2%以下である。
Cr is an element having an effect of improving fatigue strength, and such an effect is manifested when the content is 0.001% or more. On the other hand, if the content exceeds 0.45%, the moldability is lowered. For this reason, when it contains, it is preferable to limit Cr to 0.001 to 0.45% of range. Further, it is more preferably 0.08 to 0.29%.
Both Cu and Ni are elements that complement the effect of improving fatigue strength, but are also elements that further improve the corrosion resistance of steel materials. These effects appear when the content is 0.001% or more. On the other hand, if the content exceeds 0.45%, the moldability is lowered. For this reason, when it contains, it is preferable to limit Cu to 0.001 to 0.45% and Ni to 0.001 to 0.45%. More preferably, both Cu and Ni are 0.2% or less.

Bは、同様に、疲労強度を向上させる作用を補完する元素である。このような効果は、0.0001%以上の含有で発現する。一方、0.0009%を超える含有は、成形性を低下させる。このため、含有する場合には、Bは0.0001〜0.0009%の範囲に限定することが好ましい。
Caは、展伸した介在物(MnS)を粒状の介在物(Ca(Al)S(O))とする、いわゆる介在物の形態を制御する作用を有する。このような介在物の形態制御を介して、成形時の微細割れおよび疲労亀裂発生を抑制し、成形性、耐疲労特性、低温靭性を向上させる作用を有する元素である。このような効果は、0.0001%以上の含有で顕著となるが、0.005%を超える含有は、非金属介在物が増加しかえって耐疲労特性が低下する。このため、含有する場合には、Caは0.0001〜0.005%の範囲に限定することが好ましい。
Similarly, B is an element that complements the effect of improving fatigue strength. Such an effect is manifested when the content is 0.0001% or more. On the other hand, if the content exceeds 0.0009%, the moldability is lowered. For this reason, when it contains, it is preferable to limit B to 0.0001 to 0.0009% of range.
Ca has an action of controlling the form of so-called inclusions in which the expanded inclusions (MnS) are granular inclusions (Ca (Al) S (O)). It is an element which has the effect | action which suppresses the generation | occurrence | production of the fine crack and fatigue crack at the time of shaping | molding, and improves a moldability, a fatigue-resistant characteristic, and low temperature toughness through form control of such an inclusion. Such an effect becomes remarkable when the content is 0.0001% or more. However, when the content exceeds 0.005%, the non-metallic inclusions are increased, and the fatigue resistance is deteriorated. For this reason, when it contains, it is preferable to limit Ca to 0.0001 to 0.005% of range.

上記した成分以外の残部は、Feおよび不可避的不純物である。
さらに、本発明の高張力鋼材は、上記したようにCと、炭化物形成元素Xとして少なくとも1種、好ましくはNbを含有する組成と、粒径20nm未満の析出物中のX量Xspとの固溶X量Xsolとの比、Xsp/Xsolが所定の範囲内となる組織、Nbを含有する場合は粒径20nm未満の析出物中のNb量Nbspと固溶Nb量Nbsolとの比、Nbsp/Nbsolが0.80〜8.0である組織を有する。なお、析出物のサイズ別定量方法は、後述する。
The balance other than the above components is Fe and inevitable impurities.
Further, as described above, the high-tensile steel material of the present invention is a solid comprising C, a composition containing at least one carbide forming element X, preferably Nb, and an X amount Xsp in a precipitate having a particle size of less than 20 nm. The ratio of dissolved X amount Xsol, the structure in which Xsp / Xsol falls within a predetermined range, and the ratio of Nb amount Nbsp and solid solution Nb amount Nbsol in precipitates having a particle size of less than 20 nm when containing Nb, Nbsp / Nbsol has a structure of 0.80 to 8.0. In addition, the quantification method according to size of the precipitate will be described later.

炭化物形成元素Xの粒径20nm未満の微細析出物(Nb炭化物)は、鋼材の降伏強度を高め、疲労強度を上昇させる。しかし、粒径20nm未満の微細析出物を過剰に析出させると、鋼材の成形性が低下するとともに、初期疲労亀裂の発生段階において、応力集中部での応力緩和特性も低下する。
一方、固溶X(固溶Nb)は、組織の微細化を介して鋼材の成形性、とくに曲げ成形性の低下を抑制するとともに、鋼材の疲労強度を高める効果を有する。しかし、固溶X(固溶Nb)の耐疲労特性への寄与は、粒径20nm未満の微細析出物の寄与に比較し小さいため、粒径20nm未満の微細析出物(Nb炭化物)量と固溶X量(固溶Nb量)とをバランスさせる必要がある。
Fine precipitates (Nb carbides) having a particle size of carbide forming element X of less than 20 nm increase the yield strength of the steel and increase the fatigue strength. However, when fine precipitates having a particle size of less than 20 nm are excessively precipitated, the formability of the steel material is lowered, and the stress relaxation characteristics at the stress concentration portion are also lowered at the stage of initial fatigue crack generation.
On the other hand, the solid solution X (solid solution Nb) has the effect of suppressing the deterioration of the formability of the steel material, in particular the bending formability, through the refinement of the structure and increasing the fatigue strength of the steel material. However, since the contribution of solid solution X (solid solution Nb) to fatigue resistance is small compared to the contribution of fine precipitates with a particle size of less than 20 nm, the amount of fine precipitates (Nb carbide) with a particle size of less than 20 nm It is necessary to balance the amount of dissolved X (the amount of dissolved Nb).

図2に、r/t、断面成形加工後の(σ/TS)とNbsp/Nbsolとの関係を示す。本発明では、成形性(曲げ成形性)は、限界曲げ半径rと肉厚tの比、r/tで代表し、耐ねじり疲労特性は、断面成形後の5×10繰返し疲れ限度σと鋼管引張強さTSとの比、(σ/TS)で代表する。
図2から、Nbsp/Nbsolを0.80〜8.0の範囲とすることにより、所望の優れた曲げ成形性および優れた断面成形加工後の耐ねじり疲労特性を兼備する鋼材とすることができることがわかる。Nbsp/Nbsolが、0.80未満では(σ/TS)で示される耐ねじり疲労特性が、また8.0超えではr/tで代表される成形性が、それぞれ低下する。このようなことから、本発明では、Nbsp/Nbsolを0.80〜8.0の範囲に限定した。なお、好ましくは1.6〜6.0である。
FIG. 2 shows the relationship between r / t, (σ B / TS) after cross-section forming, and Nbsp / Nbsol. In the present invention, the formability (bending formability) is represented by the ratio of the critical bending radius r to the wall thickness t, r / t, and the torsional fatigue resistance is 5 × 10 5 repeated fatigue limit σ B after cross-sectional forming. Of steel pipe tensile strength TS, represented by (σ B / TS).
From FIG. 2, it can be seen that by setting Nbsp / Nbsol in the range of 0.80 to 8.0, it is possible to obtain a steel material having both desired excellent bend formability and excellent torsional fatigue resistance after cross-section forming. When Nbsp / Nbsol is less than 0.80, the torsional fatigue resistance shown by (σ B / TS) is deteriorated, and when Nbsp / Nbsol is more than 8.0, the formability represented by r / t is lowered. Therefore, in the present invention, Nbsp / Nbsol is limited to the range of 0.80 to 8.0. In addition, Preferably it is 1.6-6.0.

また、炭化物形成元素Xは、Nbに加えてさらに、V、Ti、Mo、Wのうちから選ばれた1種または2種以上を含有してもよい。
炭化物形成元素Xとして、Vを含有する場合には、粒径20nm未満の析出物中のV量Vspと、固溶V量Vsolとの比、Vsp /Vsolを0.20〜2.0に調整する。これにより、所望の優れた曲げ成形性および優れた断面成形加工後の耐ねじり疲労特性を兼備させることができる。なお、好ましくは0.40〜1.6である。
Further, the carbide forming element X may further contain one or more selected from V, Ti, Mo, and W in addition to Nb.
When V is contained as the carbide forming element X, the ratio of the V amount Vsp in the precipitate having a particle size of less than 20 nm to the solid solution V amount Vsol, Vsp / Vsol is adjusted to 0.20 to 2.0. Thereby, desired excellent bending formability and excellent torsional fatigue resistance after cross-section forming can be combined. In addition, Preferably it is 0.40-1.6.

また、炭化物形成元素Xとして、Tiを含有する場合には、粒径20nm未満の析出物中のTi量Tispと、固溶Ti量Tisolとの比、Tisp /Tisolを0.80〜8.0に調整する。これにより、所望の優れた曲げ成形性および優れた断面成形加工後の耐ねじり疲労特性を兼備させることができる。なお、好ましくは1.6〜6.0である。
また、炭化物形成元素Xとして、Moを含有する場合には、粒径20nm未満の析出物中のMo量Mospと、固溶Mo 量Mosolとの比、Mosp /Mosolを0.10〜1.0に調整する。これにより、所望の優れた曲げ成形性および優れた断面成形加工後の耐ねじり疲労特性を兼備させることができる。なお、好ましくは0.20〜0.80である。
Further, when Ti is contained as the carbide forming element X, the ratio of Ti amount Tisp in precipitates having a particle diameter of less than 20 nm to solid solution Ti amount Tisol, Tisp / Tisol is adjusted to 0.80 to 8.0. Thereby, desired excellent bending formability and excellent torsional fatigue resistance after cross-section forming can be combined. In addition, Preferably it is 1.6-6.0.
Further, when Mo is contained as the carbide forming element X, the ratio of Mo amount Mosp in precipitates having a particle size of less than 20 nm to solid solution Mo amount Mosol, Mosp / Mosol is adjusted to 0.10 to 1.0. Thereby, desired excellent bending formability and excellent torsional fatigue resistance after cross-section forming can be combined. In addition, Preferably it is 0.20-0.80.

また、炭化物形成元素Xとして、Wを含有する場合には、粒径20nm未満の析出物中のW量Wspと、固溶W量Wsolとの比、Wsp /Wsolを0.10〜1.0に調整する。これにより、所望の優れた曲げ成形性および優れた断面成形加工後の耐ねじり疲労特性を兼備させることができる。なお、好ましくは0.20〜0.80である。
さらに本発明高張力鋼材は、上記した組成を有し、JIS B 0601-2001の規定に準拠して測定された表面粗さで、管内外表面の算術平均粗さRaが2μm以下、最大高さ粗さRzが30μm以下、十点平均粗さRz JIS が20μm以下であり、前記組織に加えてさらに、最外表面および最内表面から肉厚方向に50μmまでの領域の組織が体積率で60%以上のフェライト相を有し、該フェライト相の円周方向断面での平均結晶粒径が2〜8μmである、中空管状体(鋼管)とすることが好ましい。
When W is contained as the carbide forming element X, the ratio of the W amount Wsp in the precipitate having a particle size of less than 20 nm to the solid solution W amount Wsol, Wsp / Wsol is adjusted to 0.10 to 1.0. Thereby, desired excellent bending formability and excellent torsional fatigue resistance after cross-section forming can be combined. In addition, Preferably it is 0.20-0.80.
Furthermore, the high-strength steel material of the present invention has the above-described composition, and has a surface roughness measured in accordance with the provisions of JIS B 0601-2001. The arithmetic average roughness Ra of the inner and outer surfaces of the pipe is 2 μm or less, and the maximum height. The roughness Rz is 30 μm or less and the ten-point average roughness Rz JIS is 20 μm or less. In addition to the above structure, the structure in the region from the outermost surface and the innermost surface to 50 μm in the thickness direction has a volume ratio of 60. It is preferable to make a hollow tubular body (steel pipe) having a ferrite phase of at least% and having an average crystal grain size of 2 to 8 μm in the circumferential cross section of the ferrite phase.

上記した領域のフェライト相の体積率が60%未満では、延性が低下し所望の成形性を確保できない。また、延性の低下に伴う、局所的な減肉、表面肌荒れ、微細割れが応力集中部となり耐疲労特性が大きく低下する。このため、上記した領域のフェライト相の体積率を60%以上に限定することが好ましい。なお、より好ましくは75%以上である。
ここでいうフェライト相は、ポリゴナルフェライトに加え、アシキュラフェライト、ウィッドマンステッテンフェライト、ベイニティックフェライト等を含むものとする。なお、フェライト相以外の第二相としては、カーバイト、パーライト、ベイナイト、マルテンサイトおよびそれらの混合相が例示できる。
If the volume fraction of the ferrite phase in the above region is less than 60%, the ductility is lowered and the desired formability cannot be ensured. In addition, local thinning, rough surface, and fine cracks accompanying the reduction in ductility become stress-concentrated portions, and the fatigue resistance is greatly reduced. For this reason, it is preferable to limit the volume fraction of the ferrite phase in the above region to 60% or more. More preferably, it is 75% or more.
Here, the ferrite phase includes acicular ferrite, Widmanstatten ferrite, bainitic ferrite and the like in addition to polygonal ferrite. Examples of the second phase other than the ferrite phase include carbide, pearlite, bainite, martensite, and a mixed phase thereof.

また、上記した領域のフェライト相の、円周方向断面での平均結晶粒径は2〜8μmとすることが好ましい。平均粒径が2μm未満では、所望の成形性を確保できないうえ、局所的な減肉、表面肌荒れ、微細割れが応力集中部となり耐疲労特性が大きく低下する。一方、平均粒径が8μmを超えて大きくなると、成形性が低下するとともに、表面硬さが低下し耐疲労特性が低下する。このため、管最外表面および最内表面から肉厚方向に50μmまでの領域でのフェライト相の平均粒径は2〜8μmの範囲に限定することが好ましい。さらに好ましくは5μm以下である。   Moreover, it is preferable that the average crystal grain diameter in the circumferential cross section of the ferrite phase in the above region is 2 to 8 μm. If the average particle size is less than 2 μm, desired moldability cannot be ensured, and local thinning, rough surface, and fine cracks become stress-concentrated portions, and the fatigue resistance is greatly reduced. On the other hand, when the average particle size exceeds 8 μm, the moldability is lowered, the surface hardness is lowered, and the fatigue resistance is lowered. For this reason, it is preferable that the average particle diameter of the ferrite phase in the region from the outermost surface of the tube and the innermost surface to 50 μm in the thickness direction is limited to a range of 2 to 8 μm. More preferably, it is 5 μm or less.

つぎに、本発明鋼材の好ましい製造方法について説明する。
本発明では、上記した組成を有する鋼素材(スラブ、鋼板、鋼管等)に、炭化物形成元素Xの炭化物が固溶する温度(固溶温度)以上に加熱したのち、熱間圧延等の熱履歴および加工、さらに熱処理等の熱履歴を適正条件で施して、微細析出物量と炭化物形成元素の固溶量との比が上記したような適正範囲となる高張力鋼材とすることが好ましい。
Below, the preferable manufacturing method of this invention steel material is demonstrated.
In the present invention, the steel material (slab, steel plate, steel pipe, etc.) having the above composition is heated to a temperature higher than the temperature at which the carbide of the carbide forming element X is dissolved (solid solution temperature), and then the heat history such as hot rolling. In addition, it is preferable to apply a heat history such as processing and heat treatment under appropriate conditions to obtain a high-strength steel material in which the ratio between the amount of fine precipitates and the solid solution amount of carbide-forming elements is within the appropriate range as described above.

鋼素材は、まず、炭化物形成元素Xの炭化物が固溶する温度(固溶温度)以上の温度に加熱される。加熱温度が、炭化物の固溶温度未満では、粗大な炭化物が残存し、所望量の粒径20nm未満の微細析出物を所望量確保できず、疲労強度が低下する。加熱温度の上限はとくに限定する必要はないが、結晶粒の粗大化が顕著となる1300℃程度とすることが好ましい。ここで炭化物の固溶温度は、次式で定義される各炭化物の平衡固溶温度とする。   The steel material is first heated to a temperature equal to or higher than the temperature at which the carbide of the carbide forming element X is dissolved (solid solution temperature). If the heating temperature is less than the solid solution temperature of carbide, coarse carbide remains, and a desired amount of fine precipitates having a particle size of less than 20 nm cannot be secured, resulting in a decrease in fatigue strength. The upper limit of the heating temperature is not particularly limited, but is preferably about 1300 ° C. at which crystal grain coarsening becomes remarkable. Here, the solid solution temperature of the carbide is the equilibrium solid solution temperature of each carbide defined by the following equation.

log[Nb][C+12/14N]=−6770/T+2.26
log[Ti][C]=−7000/T+2.75
log[V][C]=−9500/T+6.72
なお、Mo、Wの場合は次式で定義されるAc1変態点以上とする(なお、含有しない元素は零として計算するものとする)。
log [Nb] [C + 12 / 14N] =-6770 / T + 2.26
log [Ti] [C] = − 7000 / T + 2.75
log [V] [C] =-9500 / T + 6.72
In addition, in the case of Mo and W, it shall be more than the A c1 transformation point defined by the following formula ( note that elements not contained are calculated as zero).

c1変態点(℃)=721−10.7Mn−16.9Ni+29.1Si+16.9Cr+290As+6.38W
(ここで、Mn、Ni、Si、Cr、As、W:各元素の含有量(質量%))
ついで、微細析出物量と炭化物形成元素の固溶量との比が上記したような適正範囲となるように、所定の熱履歴および所定の加工を施す。
所定の熱履歴は、累積熱処理パラメータΣAi
ΣAi=Σ{Ti・(20+logt)}
(ここで、t:i番目の工程での熱処理時間(hr)、Ti:i番目の工程での熱処理温度(K))
が、850〜1150℃の温度域でΣAi=28000〜21000、かつ500〜700℃の温度域でΣAi=20000〜13000の範囲となるような、熱履歴とすることが好ましい。また所定の加工は、850〜1050℃の温度域での累積圧下率が87〜97%となる加工とすることが好ましい。これにより、上記したような適正な範囲の、炭化物形成元素Xの微細析出物量と炭化物形成元素Xの固溶量との比を確保できる。ここで、累積熱処理パラメータΣAiは、公知のパラメータで、例えば、日本鉄鋼協会編「改訂5版 鋼の熱処理 p.164」に、Lanson−Millerパラメータとして記載されている。
A c1 transformation point (℃) = 721-10.7Mn-16.9Ni + 29.1Si + 16.9Cr + 290As + 6.38W
(Here, Mn, Ni, Si, Cr, As, W: content of each element (mass%))
Next, predetermined heat history and predetermined processing are performed so that the ratio between the amount of fine precipitates and the solid solution amount of the carbide-forming element is within the appropriate range as described above.
Predetermined thermal history is the cumulative heat treatment parameter ΣAi
ΣAi = Σ {Ti · (20 + logt i )}
(Where t i : heat treatment time (hr) in the i th step, Ti: heat treatment temperature (K) in the i th step)
However, it is preferable that the thermal history be such that ΣAi = 28000-21000 in the temperature range of 850-1150 ° C. and ΣAi = 20000-13000 in the temperature range of 500-700 ° C. The predetermined processing is preferably processing in which the cumulative rolling reduction in the temperature range of 850 to 1050 ° C. is 87 to 97%. Thereby, the ratio of the amount of fine precipitates of the carbide forming element X and the solid solution amount of the carbide forming element X in the proper range as described above can be ensured. Here, the cumulative heat treatment parameter ΣAi is a well-known parameter, and is described, for example, as the Lanson-Miller parameter in “Improved 5th edition heat treatment p.164” edited by the Japan Iron and Steel Institute.

850℃〜1150℃のオーステナイト域では、主として粒径20nm以上の析出物が析出する。その析出量は、温度、時間を内包する累積熱処理パラメータΣAiと関連する。850℃〜1150℃のオーステナイト域でのΣAiが、28000を超えて大きくなると、所望の範囲の、炭化物形成元素Xの粒径20nm未満の微細析出物量と炭化物形成元素Xの固溶量との比、を確保できなくなる。なお、850℃〜1150℃のオーステナイト域でのΣAiが、21000未満では、加工における所望の累積圧下率を確保できなくなる。   In the austenite region of 850 ° C. to 1150 ° C., precipitates having a particle size of 20 nm or more are mainly precipitated. The amount of precipitation is related to the cumulative heat treatment parameter ΣAi including temperature and time. When ΣAi in the austenite region of 850 ° C. to 1150 ° C. exceeds 28000, the ratio between the amount of fine precipitates having a particle size of carbide forming element X of less than 20 nm and the solid solution amount of carbide forming element X in a desired range. , Can not secure. If ΣAi in the austenite region of 850 ° C. to 1150 ° C. is less than 21000, a desired cumulative rolling reduction in processing cannot be secured.

所定の加工は、850〜1050℃の温度域での累積圧下率が87〜97%となる加工とする。
上記したオーステナイト域の熱履歴中に、加工を施し加工歪を付与する。850〜1050℃の温度域は、オーステナイトの再結晶温度域に該当し、この温度域での加工は、鋼材表層部の組織を微細化し、それにより成形性(曲げ成形性)の向上に寄与する。累積圧下率が87%未満では、最外表面および最内表面から肉厚方向に50μmまでの領域の組織を、体積率で60%以上のフェライト相を有し、該フェライト相の円周方向断面での平均結晶粒径が2〜8μmである、所望の組織とすることができず、成形性が低下する。一方、累積圧下率が97%を超えると、析出が促進され析出物量が増加し、所望のNbsp/Nbsol等を確保できなくなる。このため、加工における850〜1050℃の温度域での累積圧下率を87〜97%の範囲に限定することが好ましい。なお、好ましくは90〜95%である。
The predetermined processing is processing in which the cumulative rolling reduction in the temperature range of 850 to 1050 ° C. is 87 to 97%.
In the above-described heat history of the austenite region, processing is applied to impart processing strain. The temperature range of 850 to 1050 ° C corresponds to the recrystallization temperature range of austenite, and the processing in this temperature range contributes to improving the formability (bending formability) by refining the structure of the steel surface layer. . When the cumulative rolling reduction is less than 87%, the structure in the region from the outermost surface and the innermost surface to the thickness direction of 50 μm has a ferrite phase with a volume ratio of 60% or more, and the circumferential cross section of the ferrite phase In this case, the desired crystal structure with an average crystal grain size of 2 to 8 μm cannot be obtained, and the moldability deteriorates. On the other hand, if the cumulative rolling reduction exceeds 97%, precipitation is promoted and the amount of precipitates increases, so that desired Nbsp / Nbsol cannot be secured. For this reason, it is preferable to limit the cumulative rolling reduction in the temperature range of 850 to 1050 ° C. in the range of 87 to 97%. In addition, Preferably it is 90 to 95%.

500〜700℃のフェライト域では、主として粒径20nm未満の析出物が析出する。その析出量は温度、時間を内包する累積熱処理パラメータΣAiと関連する。500〜700℃のフェライト域でのΣAiが、20000を超えて大きくなると、粒径20nm未満の微細析出物量が過剰となり成形性が低下する。一方、ΣAiが、13000未満では、粒径20nm未満の微細析出物量が少なく、疲労強度が低下する。このため、500〜700℃のフェライト域でのΣAiを20000〜13000の範囲に限定することが好ましい。なお、より好ましくは19000〜15000である。   In the ferrite region of 500 to 700 ° C., precipitates having a particle size of less than 20 nm are mainly deposited. The amount of precipitation is related to the cumulative heat treatment parameter ΣAi including temperature and time. When ΣAi in the ferrite region of 500 to 700 ° C. exceeds 20000, the amount of fine precipitates having a particle size of less than 20 nm becomes excessive and formability is deteriorated. On the other hand, when ΣAi is less than 13000, the amount of fine precipitates having a particle size of less than 20 nm is small and fatigue strength is reduced. For this reason, it is preferable to limit (SIGMA) Ai in the ferrite region of 500-700 degreeC to the range of 20000-13000. More preferably, it is 19000-15000.

図3に、Cと、炭化物形成元素としてNbを含有する鋼材における、Nbsp/Nbsol値に及ぼす、 850〜1050℃の温度域での累積圧下率と、500〜700℃の温度域での累積熱処理パラメータΣAiとの関係の影響を示す。なお、850〜1150℃の温度域での累積熱処理パラメータΣAiは、約25000とした。図3から、850〜1050℃の温度域での累積圧下率が87〜97%、500〜700℃の温度域での累積熱処理パラメータΣAiが20000〜13000の範囲に囲まれる領域で、Nbsp/Nbsol値が、望ましい範囲である0.8〜8.0となることがわかる。   Fig. 3 shows the cumulative rolling reduction in the temperature range of 850 to 1050 ° C and the cumulative heat treatment in the temperature range of 500 to 700 ° C on the Nbsp / Nbsol value in steels containing C and Nb as a carbide-forming element. The influence of the relationship with the parameter ΣAi is shown. The cumulative heat treatment parameter ΣAi in the temperature range of 850 to 1150 ° C. was about 25000. From FIG. 3, in the region where the cumulative rolling reduction in the temperature range of 850 to 1050 ° C. is 87 to 97% and the cumulative heat treatment parameter ΣAi in the temperature range of 500 to 700 ° C. is surrounded by the range of 20000 to 13000, Nbsp / Nbsol It can be seen that the value is in the desirable range of 0.8 to 8.0.

本発明の高張力鋼材は、上記した条件の熱履歴で熱処理された、例えば、溶接鋼管、冷延鋼板や、上記した条件の熱履歴や、上記した条件の加工を施された、例えば、熱延鋼帯、厚板、継目無鋼管など、が該当する。
以下に、中空管状体(溶接鋼管)の製造方法について、熱間圧延された熱延鋼帯を用いて電縫溶接により閉断面素材(中空管状体:鋼管)とする電縫造管工程を利用する場合を例に説明する。
The high-tensile steel material of the present invention is heat-treated with the thermal history of the above-described conditions, for example, a welded steel pipe, a cold-rolled steel sheet, the thermal history of the above-described conditions, or the processing of the above-described conditions, for example, heat This includes steel strips, thick plates, and seamless steel pipes.
The following is a method for manufacturing a hollow tubular body (welded steel pipe), using an electric-forged pipe process that uses a hot-rolled hot-rolled steel strip as a closed cross-section material (hollow tubular body: steel pipe) by means of electric-welding welding. An example of this will be described.

上記した組成を有する鋼素材に、上記した条件の加熱、熱履歴、および加工を施されて製造された熱延鋼帯は、熱延ままでもよいが、酸洗、ショットブラスト等を施して表面の黒皮を除去して用いることが好ましい。さらに、耐食性、塗膜密着性の観点からこの鋼帯に亜鉛メッキ、アルミメッキ、ニッケルメッキ、有機皮膜処理などの表面処理を施すこともできる。酸洗まま、あるいは表面処理を施された鋼帯は、幅絞り率10%以下の電縫造管を施して鋼管とされることが好ましい。   A hot rolled steel strip produced by heating, heat history, and processing of the above-described conditions to the steel material having the above composition may remain hot rolled, but the surface is subjected to pickling, shot blasting, etc. It is preferable to remove the black skin. Furthermore, from the viewpoint of corrosion resistance and coating film adhesion, the steel strip can be subjected to surface treatment such as galvanization, aluminum plating, nickel plating, organic coating treatment, and the like. The steel strip that has been pickled or surface-treated is preferably made into a steel pipe by applying an electric sewing pipe having a width drawing ratio of 10% or less.

なお、溶接鋼管の素材は、熱延鋼帯に限定されることはない。上記した熱延鋼帯を素材として、冷間圧延、焼鈍等を施された冷延焼鈍鋼帯、あるいはさらに各種表面処理を施された表面処理鋼帯を用いてもなんら問題はない。また、電縫造管に代えて、ロールフォーミング、切板のプレス閉断面化、造管後の冷間・温間・熱間での縮径および焼鈍などの熱処理等を組合せた造管工程としてもよい。さらに電縫溶接に代えて、レーザー溶接、アーク溶接、プラズマ溶接、スポット溶接などを用いてもなんら問題はない。本発明の鋼材、例えば中空管状体(閉断面素材)は、部材成形ままで優れた特性を発揮するが、付加的に部材成形後に残留応力除去焼鈍等の熱処理、あるいはショットピーニング等による表面の高硬度化や圧縮残留応力付与を施すこともなんら問題ない。   Note that the material of the welded steel pipe is not limited to the hot-rolled steel strip. There is no problem even if the above-described hot-rolled steel strip is used as a raw material, and a cold-rolled annealed steel strip that has been subjected to cold rolling or annealing, or a surface-treated steel strip that has been subjected to various surface treatments is used. Also, instead of electric sewing pipes, pipe forming processes that combine roll forming, press-cut cross section of the cut plate, heat treatment such as cold, warm, hot diameter reduction and annealing after pipe forming Also good. Furthermore, there is no problem even if laser welding, arc welding, plasma welding, spot welding or the like is used instead of electric seam welding. The steel material of the present invention, for example, a hollow tubular body (closed cross-section material), exhibits excellent characteristics as it is formed into a member, but additionally has a high surface by heat treatment such as residual stress removal annealing or shot peening after forming the member. There is no problem in applying hardness and applying compressive residual stress.

また、このようにして製造された中空管状体は、JIS B 0601-2001の規定に準拠して測定された表面粗さ表示で、好ましくは管内外表面の算術平均粗さRaが2μm以下、最大高さ粗さRzが30μm以下、十点平均粗さRz JIS が20μm以下である表面性状の中空管状体とすることが好ましい。これにより、とくに、疲労の起点となる管内外表面の凹凸に起因する応力集中が緩和されることにより、耐ねじり疲労特性が顕著に向上する。 In addition, the hollow tubular body manufactured in this way has a surface roughness measured in accordance with the provisions of JIS B 0601-2001. Preferably, the arithmetic average roughness Ra of the inner and outer surfaces of the pipe is 2 μm or less, the maximum A surface-like hollow tubular body having a height roughness Rz of 30 μm or less and a ten-point average roughness Rz JIS of 20 μm or less is preferable. Thereby, especially the stress concentration resulting from the unevenness | corrugation of the internal and external surface of a pipe | tube used as the starting point of fatigue is relieve | moderated, and a torsional fatigue-proof characteristic improves notably.

また、このようにして製造された中空管状体は、上記した析出物分布に加えてさらに、好ましくは最外表面および最内表面から肉厚方向に50μmまでの領域の組織が体積率で60%以上のフェライト相を有し、該フェライト相の円周方向断面での平均結晶粒径が2〜8μmである組織を有する。これにより、成形性、および耐ねじり疲労特性が顕著に向上する。   In addition to the precipitate distribution described above, the hollow tubular body produced in this way preferably further has a volume ratio of 60% in the region from the outermost surface and the innermost surface to 50 μm in the thickness direction. It has the above ferrite phase, and has a structure in which the average crystal grain size in the circumferential cross section of the ferrite phase is 2 to 8 μm. Thereby, formability and torsional fatigue resistance are significantly improved.

表1に示す組成の鋼スラブに、含有する炭化物形成元素Xの炭化物の固溶温度以上である1230℃に加熱し、表2に示す850〜1050℃の温度域における累積圧下率で加工を施し、かつ850〜1150℃の温度域での累積熱処理パラメータΣAiが約24500となる熱履歴とを施し、引続き、表2に示すように、500〜700℃の温度域でΣAi=11500〜22500の範囲となる熱履歴を施し、板厚:約3mmの熱延鋼帯とした。各熱延鋼帯の熱履歴、加工の累積圧下率を纏めて表2に示す。   The steel slab having the composition shown in Table 1 is heated to 1230 ° C, which is higher than the solid solution temperature of the carbide of the carbide forming element X contained, and processed at the cumulative reduction rate in the temperature range of 850 to 1050 ° C shown in Table 2. In addition, a thermal history in which the cumulative heat treatment parameter ΣAi in the temperature range of 850 to 1150 ° C. is about 24500 is applied, and subsequently, in the temperature range of 500 to 700 ° C., the range of ΣAi = 11500 to 22500 as shown in Table 2 A heat history was applied to obtain a hot rolled steel strip having a thickness of about 3 mm. Table 2 summarizes the heat history of each hot-rolled steel strip and the cumulative rolling reduction ratio.

ついで、これら熱間圧延鋼帯に酸洗を施したのち、所定の幅寸法にスリット加工を施し管素材とした。これら管素材に、連続成形してオープン管とし、該オープン管を高周波抵抗溶接により電縫溶接する電縫造管を施して、中空管状体である溶接鋼管(製品管)(外径89.1mmφ×肉厚約3mm)とした。なお、電縫造管では、幅絞り率は4%とした。
得られた溶接鋼管から、試験材を採取し、引張試験、曲げ試験、析出物量・固溶量の定量試験、組織観察、ねじり疲労試験、低温靭性試験、表面粗さ試験を実施した。試験方法はつぎの通りとした。
(1)引張試験
これら溶接鋼管から、管軸方向が引張方向となるように、JIS Z 2201の規定に準拠してJIS12号試験片を切出し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(引張強さTS、降伏強さYS、El)を求めた。
(2)曲げ試験
これら溶接鋼管から、円周方向にJIS 1号相当の短冊状試験片を採取し、管内面、管外面がポンチ側となるように、JIS X 2248−1996の規定に準拠して曲げ試験を実施し、限界曲げ半径rと肉厚tとの比、r/tを求めた。なお、管内面、管外面で限界曲げ半径rが相違する場合には大きいほうを採用した。
(3)析出物量・固溶量定量試験
これら溶接鋼管から、20×30mm×肉厚約3mmの大きさの試片を切出し、10vol%アセチルアセトン−1mass%塩化テトラメチルアンモニウム−メタノール系電解液(以下、10%AA系電解液という)中で、約0.2gを電流密度20mA/cm2で定電流電解した。電解後の、表面に析出物が付着している試片を電解液から取り出して、ヘキサメタリン酸ナトリウム水溶液(500mg/l)(以下、SHMP水溶液という)中に浸漬し、超音波振動を付与して、析出物を試片から剥離し、SHMP水溶液中に抽出した。次いで、析出物を含むSHMP水溶液を、穴径100nmフィルタ、および、穴径20nmフィルタを順に用いて濾過した。濾過後のフィルタ上の残渣と、濾液とに対してICP発光分光分析装置を用いて分析し、フィルタ上の残渣および濾液中の炭化物形成元素X(Mo、V、W、Ti、Nb)の絶対量を測定し、粒径100nmを超える析出物中、粒径100〜20nmの析出物中、粒径20nm未満の析出物中にそれぞれ含まれるX(Mo、V、W、Ti、Nb)の絶対量Xlp、Xmp、Xspを得た。なお、電解重量は、析出物剥離後の試片に対して重量を測定し、電解前の試片重量から差し引くことにより算出した。
Next, after pickling these hot-rolled steel strips, slitting was applied to a predetermined width dimension to obtain a pipe material. These pipe materials are continuously formed into open pipes, and the open pipes are subjected to electro-welded pipes that are electro-welded by high-frequency resistance welding, and welded steel pipes (product pipes) that are hollow tubular bodies (outer diameter 89.1 mmφ × The wall thickness was about 3 mm). In the case of an electric sewing tube, the width drawing ratio was 4%.
Test materials were collected from the obtained welded steel pipes, and subjected to tensile tests, bending tests, quantitative tests of precipitates and solid solutions, structural observations, torsional fatigue tests, low temperature toughness tests, and surface roughness tests. The test method was as follows.
(1) Tensile test From these welded steel pipes, a JIS No. 12 test piece is cut out in accordance with the provisions of JIS Z 2201 and the tensile test is carried out in accordance with the provisions of JIS Z 2241 so that the pipe axis direction is the tensile direction. Tensile properties (tensile strength TS, yield strength YS, El) were obtained.
(2) Bending test From these welded steel pipes, strip test pieces equivalent to JIS No. 1 are collected in the circumferential direction, and the pipe inner surface and pipe outer surface are on the punch side in accordance with the provisions of JIS X 2248-1996. Then, a bending test was performed, and a ratio of the limit bending radius r to the wall thickness t, r / t, was obtained. When the limit bending radius r is different between the inner surface and the outer surface of the tube, the larger one is adopted.
(3) Precipitate amount / Solid solution quantitative test From these welded steel pipes, a test piece of 20 x 30 mm x wall thickness of about 3 mm was cut out, and 10 vol% acetylacetone-1 mass% tetramethylammonium chloride-methanol electrolyte (hereinafter referred to as "electrolytic solution") , 10% AA electrolyte solution) was subjected to constant current electrolysis at a current density of 20 mA / cm 2 . After electrolysis, remove the specimen with deposits on the surface from the electrolyte and immerse it in an aqueous solution of sodium hexametaphosphate (500 mg / l) (hereinafter referred to as SHMP aqueous solution) to give ultrasonic vibration. The precipitate was peeled from the specimen and extracted into an aqueous SHMP solution. Subsequently, the SHMP aqueous solution containing the precipitate was filtered using a hole diameter 100 nm filter and a hole diameter 20 nm filter in this order. The residue on the filter after filtration and the filtrate are analyzed using an ICP emission spectrophotometer, and the residues on the filter and the absolute value of carbide forming elements X (Mo, V, W, Ti, Nb) in the filtrate are analyzed. The amount of X (Mo, V, W, Ti, Nb) contained in precipitates having a particle size of more than 100 nm, precipitates having a particle size of 100 to 20 nm, and precipitates having a particle size of less than 20 nm are measured. The quantities Xlp, Xmp, Xsp were obtained. The electrolytic weight was calculated by measuring the weight of the specimen after peeling the deposit and subtracting it from the specimen weight before electrolysis.

炭化物形成元素Xの固溶量は、電解後の電解液を分析溶液とし、ICP質量分析法を利用し、炭化物形成元素Xおよび比較元素としてFeの液中濃度を測定した。得られた濃度を基に、Feに対する炭化物形成元素Xの濃度比をそれぞれ算出し、さらに試片中のFeの含有率を乗じることで、固溶状態にある炭化物形成元素Xの量(固溶X量)を算出した。なお、試片中のFeの含有量は、Fe以外の成分含有量の合計を、100%から減じることにより求めることができる。
(4)組織観察
これら溶接鋼管から、観察面が円周方向断面となるように組織観察用試験片を採取し、研磨、ナイタール腐食して走査型電子顕微鏡(倍率:3000倍)を用いて組織を観察し、撮像して、得られた組織写真について画像解析装置を用いて、フェライト相の組織分率(体積率)、フェライト相の平均結晶粒径を測定した。なお、フェライト相の各結晶粒の占有面積を測定し、さらに円相当径に換算してフェライトの結晶粒径(μm)とした。測定位置は、最外表面、最内表面から深さ50μmまでの領域を、深さ方向に3ブロックにわけ、各ブロックごとの測定値の総平均(n=6)を求め、各試験片のフェライト相の組織分率、フェライト相の平均結晶粒径とした。
(5)ねじり疲労試験
得られた溶接鋼管から、試験用管材(長さ:1500mm)を採取した。そして、採取した試験用管材の中央部約1000mmLを図1(特開2001−321846号公報の図11)に示すように円周方向断面がV字形状となるように断面成形加工し、ねじり疲労試験用試験材とした。
The solid solution amount of the carbide forming element X was determined by measuring the concentration of Fe in the liquid as the carbide forming element X and the comparative element using the electrolytic solution after electrolysis as an analysis solution and using ICP mass spectrometry. Based on the obtained concentration, the concentration ratio of the carbide-forming element X to Fe is calculated, and the content of the carbide-forming element X in the solid solution state (solid solution) is further multiplied by the Fe content in the specimen. X amount) was calculated. Note that the Fe content in the specimen can be determined by subtracting the total content of components other than Fe from 100%.
(4) Microstructure observation From these welded steel pipes, specimens for microstructural observation were collected so that the observation surface had a circumferential cross-section, and the structure was polished, nital-corroded, and scanned using a scanning electron microscope (magnification: 3000 times). Were observed, imaged, and the obtained structural photograph was measured for the fraction of the ferrite phase (volume fraction) and the average grain size of the ferrite phase using an image analyzer. Note that the area occupied by each crystal grain of the ferrite phase was measured, and further converted into the equivalent circle diameter to obtain the ferrite crystal grain size (μm). The measurement position is divided into three blocks in the depth direction from the outermost surface and the inner surface to a depth of 50 μm, and the total average (n = 6) of the measured values for each block is obtained. The structure fraction of the ferrite phase and the average crystal grain size of the ferrite phase were used.
(5) Torsional fatigue test A test pipe (length: 1500 mm) was collected from the obtained welded steel pipe. Then, about 1000 mmL of the central portion of the collected test tube material is subjected to cross-section molding processing so that the circumferential cross-section is V-shaped as shown in FIG. 1 (Japanese Patent Laid-Open No. 2001-331846), and torsional fatigue It was set as the test material for a test.

ねじり疲労試験は、1Hz、両振りの条件で応力水準を種々変化させて行い、負荷応力Sにおける破断までの繰返し回数Nを求めた。得られたS−N線図より5×105繰返し限度σB(MPa)を求め、σに対する管引張強さTSの比(σB/TS)で、耐ねじり疲労特性を評価した。なお、負荷応力Sは最初にダミー片でねじり試験を行い、疲労亀裂位置を確認し、その位置に3軸歪ゲージを貼付けて実測した。
(6)低温靭性試験
得られた溶接鋼管から、試験用管材(長さ:1500mm)を採取し、採取した試験用管材の中央部約1000mmLを図1(特開2001−321846号公報の図11)に示すように円周方向断面がV字形状となるように断面成形加工し、試験材平坦部分より、管円周方向(C方向)が試験片長さとなるように展開し、JIS Z 2242の規定に準拠してVノッチ試験片(1/4サイズ)を切出し、シャルピー衝撃試験を実施し、破面遷移温度vTrsを求め、低温靭性を評価した。
(7)表面粗さ試験
得られた溶接鋼管の内外表面の表面粗さを、触針式粗度計を用いて、JIS B 0601−2001の規定に準拠して、粗さ曲線を測定し、粗さパラメータとして、算術平均粗さRa、最大高さ粗さRz、十点平均粗さRzJISを求めた。なお、粗さ曲線の測定方向は、管の円周方向(C方向)とし、低域カットオフ値0.8mm、評価長さ4mmとした。代表値としては、内表面又は外表面のうち、値の大きい方を採用した。
The torsional fatigue test was performed by changing the stress level variously under the conditions of 1 Hz and both swings, and the number of repetitions N until the fracture at the load stress S was obtained. The resulting asked to S-N diagram than 5 × 10 5 repeatedly limit σ B (MPa), the ratio of the tube tensile strength TS for σ B (σ B / TS) , were evaluated resistance torsional fatigue characteristics. The load stress S was measured by first conducting a torsion test with a dummy piece, confirming the fatigue crack position, and attaching a triaxial strain gauge at that position.
(6) Low temperature toughness test From the obtained welded steel pipe, a test pipe (length: 1500 mm) was sampled, and about 1000 mmL of the central part of the collected test pipe was shown in FIG. 1 (FIG. 11 of JP-A-2001-331846). ) As shown in Fig. 2, the cross-section is processed so that the cross-section in the circumferential direction becomes V-shaped. From the flat part of the test material, the pipe is circumferentially extended (C direction) to the test piece length. A V-notch specimen (1/4 size) was cut out in accordance with the regulations, a Charpy impact test was performed, the fracture surface transition temperature vTrs was obtained, and the low temperature toughness was evaluated.
(7) Surface roughness test The surface roughness of the inner and outer surfaces of the obtained welded steel pipe was measured using a stylus type roughness meter in accordance with the provisions of JIS B 0601-2001, As the roughness parameters, arithmetic average roughness Ra, maximum height roughness Rz, and ten-point average roughness Rz JIS were determined. The measurement direction of the roughness curve was the circumferential direction (C direction) of the tube, the low-frequency cut-off value was 0.8 mm, and the evaluation length was 4 mm. As the representative value, the larger one of the inner surface and the outer surface was adopted.

得られた結果を表3、表4に示す。   The obtained results are shown in Tables 3 and 4.

Figure 2009293067
Figure 2009293067

Figure 2009293067
Figure 2009293067

Figure 2009293067
Figure 2009293067

Figure 2009293067
Figure 2009293067

本発明はいずれも、伸びElが16%以上、r/tが3.0以下で成形性に優れ、(σB/TS)が0.45以上で断面成形加工後の耐ねじり疲労特性に優れ、断面成形加工後の破面遷移温度vTrsが−50℃以下と低温靭性に優れた溶接鋼管(鋼材)である。一方、本発明の範囲を外れる比較例は、r/tが3.0より大きく成形性が低下しているか、(σB/TS)が0.45未満で断面成形加工後の耐ねじり疲労特性が低下しているか、あるいはvTrsが−50℃超えと低温靭性が低下した製品管となっている。 In any of the present invention, elongation El is 16% or more, r / t is 3.0 or less and excellent formability, (σ B / TS) is 0.45 or more and excellent torsional fatigue resistance after cross-section forming, cross-section forming It is a welded steel pipe (steel material) that has excellent low-temperature toughness with a later fracture surface transition temperature vTrs of -50 ° C or lower. On the other hand, in the comparative example out of the scope of the present invention, the r / t is larger than 3.0 and the formability is lowered, or (σ B / TS) is less than 0.45 and the torsional fatigue resistance after the cross-section forming process is lowered. Or vTrs exceeds -50 ° C, resulting in a product tube with low temperature toughness.

850〜1050℃の温度域での累積圧下率が本発明の好適範囲より小さいか、500〜700℃の温度域のΣAiが本発明の好適範囲よりも小さい比較例(管No.1、No.4、No.7、No.10、No.13、No.16、No.19、No.22、No.25、No.28)はいずれも、粒径20nm未満の析出物中のNb、Ti、V、Mo、W量と、Nb、Ti、V、Mo、Wの固溶量との比Nbsp/Nbsol、Tisp/Tisol、Vsp/Vsol、Mosp/Mosol、Wsp/Wsolのうち少なくとも一つが本発明範囲より小さく、断面成形加工後の(σB/TS)が0.45未満と耐ねじり疲労特性が低下している。また、850〜1050℃の温度域での累積圧下率が本発明の好適範囲より大きいか、500〜700℃の温度域のΣAiが本発明の好適範囲よりも大きい比較例(管No.3、No.6、No.9、No.12、No.15、No.18、No.21、No.24、No.27、No.30)はいずれもNbsp/Nbsol、Tisp/Tisol、Vsp/Vsol、Mosp/Mosol、Wsp/Wsolのうち少なくとも一つが本発明範囲よりも大きく、Elが16%未満と低く、r/tが3.0より大きく、成形性が低下し、かつ断面成形後の(σB/TS)が0.45未満と耐ねじり疲労特性が低下している。 Comparative examples (pipe No. 1, No. 1) in which the cumulative rolling reduction in the temperature range of 850 to 1050 ° C. is smaller than the preferred range of the present invention or ΣAi in the temperature range of 500 to 700 ° C. is smaller than the preferred range of the present invention. 4, No.7, No.10, No.13, No.16, No.19, No.22, No.25, No.28) are all Nb and Ti in precipitates with a particle size of less than 20 nm. , V, Mo, W amount and Nb, Ti, V, Mo, W solid solution ratio At least one of Nbsp / Nbsol, Tisp / Tisol, Vsp / Vsol, Mosp / Mosol, Wsp / Wsol The torsional fatigue resistance is reduced when the (σ B / TS) after cross-section forming is smaller than the invention range and less than 0.45. In addition, a comparative example (pipe No. 3, in which the cumulative rolling reduction in the temperature range of 850 to 1050 ° C. is larger than the preferred range of the present invention or ΣAi in the temperature range of 500 to 700 ° C. is larger than the preferred range of the present invention. No.6, No.9, No.12, No.15, No.18, No.21, No.24, No.27, No.30) are all Nbsp / Nbsol, Tisp / Tisol, Vsp / Vsol , Mosp / Mosol, Wsp / Wsol is larger than the range of the present invention, El is less than 16%, r / t is larger than 3.0, moldability is reduced, and (σ B / TS) is less than 0.45 and the torsional fatigue resistance is degraded.

また、850〜1050℃の温度域での累積圧下率および500〜700℃の温度域のΣAiがいずれも本発明の好適範囲内であるが、組成が本発明の好適範囲を外れる比較例(管No.31〜No.40)はいずれも、r/tが3.0より大きく成形性が低下し、かつ断面成形加工後の(σB/TS)が0.45未満で、耐ねじり疲労特性が低下している。なお、これら比較例は、管No.31、No.40を除いて、vTrsが−50℃超えと低温靭性も低下している。 Further, although the cumulative rolling reduction in the temperature range of 850 to 1050 ° C. and ΣAi in the temperature range of 500 to 700 ° C. are both within the preferred range of the present invention, the comparative example (tube) whose composition is outside the preferred range of the present invention. In each of No. 31 to No. 40), the r / t is larger than 3.0 and the formability is reduced, and (σ B / TS) after cross-section forming processing is less than 0.45, and the torsional fatigue resistance is reduced. Yes. In these comparative examples, except for the pipes No. 31 and No. 40, the vTrs exceeds −50 ° C. and the low temperature toughness is also lowered.

C量が本発明の好適範囲を外れる比較例(管No. 31、No.32)は、Nbsp/Nbsolが本発明範囲より大きく、また、Nb、V、W、Ti、Mo量が本発明の好適範囲を上回る比較例(管No.36〜No.40)は、いずれもNbsp/Nbsol、Tisp/Tisol、Vsp/Vsol、Mosp/Mosol、Wsp/Wsolのうち少なくとも一つが本発明範囲より小さく、r/tが3.0を超え、成形性が低下し、かつ断面成形加工後の(σB/TS)が0.45未満で、耐ねじり疲労特性が低下している。Si量が本発明の好適範囲を下回る比較例(管No.33)は、フェライト組織分率が本発明の好適範囲より低く、r/tが3.0を超え、成形性が低下し、かつ断面成形加工後の(σB/TS)が0.45未満で、耐ねじり疲労特性が低下している。一方、Si量が本発明の好適範囲を上回る比較例(管No.34)は、管内外面の表面粗さが大きく、また、炭化物形成元素を含有しない比較例(管No.35)は、フェライトの平均結晶粒径が本発明の好適範囲より大きく、r/tが3.0を超え成形性が低下し、かつ断面成形加工後の(σB/TS)が0.45未満で耐ねじり疲労特性が低下している。 In the comparative examples (pipe No. 31, No. 32) in which the C amount is outside the preferred range of the present invention, Nbsp / Nbsol is larger than the present range, and the amounts of Nb, V, W, Ti, and Mo are In the comparative examples (pipe No. 36 to No. 40) exceeding the preferred range, at least one of Nbsp / Nbsol, Tisp / Tisol, Vsp / Vsol, Mosp / Mosol, Wsp / Wsol is smaller than the scope of the present invention. The r / t exceeds 3.0, the formability is reduced, and the (σ B / TS) after the cross-section forming process is less than 0.45, and the torsional fatigue resistance is reduced. In the comparative example (pipe No. 33) in which the Si amount is less than the preferred range of the present invention, the ferrite structure fraction is lower than the preferred range of the present invention, r / t exceeds 3.0, the moldability is reduced, and the cross-section molding is performed. The (σ B / TS) after processing is less than 0.45, and the torsional fatigue resistance is degraded. On the other hand, the comparative example (pipe No. 34) in which the Si amount exceeds the preferred range of the present invention has a large surface roughness on the inner and outer surfaces of the pipe, and the comparative example (pipe No. 35) containing no carbide forming element is ferrite. The average crystal grain size is larger than the preferred range of the present invention, r / t exceeds 3.0, the formability decreases, and (σ B / TS) after cross-section forming processing is less than 0.45, the torsional fatigue resistance is reduced. ing.

なお、製品管(管No.1〜No.33、No.35〜No.40)の管内外表面の表面粗さは、算術平均粗さRaが2μm以下、最大高さ粗さRzが30μm以下、十点平均粗さRzJISが20μm以下と良好であった。なお、表3では製品管(管No.1〜No.33)の表面粗さは省略している。   The surface roughness of the inner and outer surfaces of product pipes (pipe No.1 to No.33, No.35 to No.40) has an arithmetic average roughness Ra of 2 μm or less and a maximum height roughness Rz of 30 μm or less. The ten-point average roughness RzJIS was as good as 20 μm or less. In Table 3, the surface roughness of the product tubes (tubes No. 1 to No. 33) is omitted.

実施例におけるねじり疲労試験、低温靭性試験に用いる試験材の断面成形加工状態を示す説明図である。It is explanatory drawing which shows the cross-section shaping | molding processing state of the test material used for the torsional fatigue test and low temperature toughness test in an Example. 粒径20nm未満の析出物中のNb量Nbspと固溶Nb量Nbsolとの比、Nbsp/Nbsolと、曲げ試験での限界曲げ半径rと肉厚tとの比r/t、断面成形加工後の(σB/TS)との関係を示すグラフである。Ratio of Nb content Nbsp and solid solution Nb content Nbsol in precipitates having a particle size of less than 20 nm, Nbsp / Nbsol, ratio of critical bending radius r and thickness t in bending test, r / t, after cross-section forming It is a graph which shows the relationship with ((sigma) B / TS). Nbsp/Nbsol 値に及ぼす、 850〜1050℃の温度域での累積圧下率と、500〜700℃の温度域での累積熱処理パラメータΣAiとの関係の影響を示すグラフである。It is a graph which shows the influence of the relationship between the cumulative reduction in the temperature range of 850 to 1050 ° C. and the cumulative heat treatment parameter ΣAi in the temperature range of 500 to 700 ° C. on the Nbsp / Nbsol value.

Claims (12)

質量%で、C:0.03〜0.24%を含み、少なくとも1種の炭化物形成元素Xを含有する組成を有し、粒径20nm未満の析出物中のX量Xspと、固溶X量Xsolとの比、Xsp/Xsolが所定の範囲内となる組織を有することを特徴とする成形性と耐疲労特性に優れた高張力鋼材。   C: 0.03 to 0.24% by mass and having a composition containing at least one carbide-forming element X, and an X amount Xsp in a precipitate having a particle size of less than 20 nm and a solid solution X amount Xsol A high-tensile steel material excellent in formability and fatigue resistance, characterized by having a structure in which the ratio, Xsp / Xsol falls within a predetermined range. 質量%で、C:0.03〜0.24%、Nb:0.001〜0.15%を含有する組成を有し、粒径20nm未満の析出物中のNb量Nbspと、固溶Nb量Nbsolとの比、Nbsp /Nbsolが0.80〜8.0である組織を有することを特徴とする成形性と耐疲労特性に優れた高張力鋼材。   The ratio of the Nb content Nbsp in the precipitate having a particle size of less than 20 nm and the solid solution Nb content Nbsol having a composition containing C: 0.03-0.24% and Nb: 0.001-0.15% by mass%, Nbsp / A high-strength steel material excellent in formability and fatigue resistance, characterized by having a structure in which Nbsol is 0.80 to 8.0. 前記組成が、質量%で、
C:0.03〜0.24%、 Si:0.002〜0.95%、
Mn:1.01〜1.99%、 Al:0.01〜0.08%、
Nb:0.001〜0.15%を含有し、
さらにP、S、N、Oを、P:0.019%以下、S:0.010%以下、N:0.008%以下、O:0.003%以下に調整して含み、残部がFeおよび不可避的不純物からなる組成であることを特徴とする請求項2に記載の高張力鋼材。
The composition is in weight percent,
C: 0.03-0.24%, Si: 0.002-0.95%,
Mn: 1.01-1.99%, Al: 0.01-0.08%,
Nb: 0.001 to 0.15% contained,
Further, P, S, N, and O are adjusted to include P: 0.019% or less, S: 0.010% or less, N: 0.008% or less, and O: 0.003% or less, with the balance being Fe and inevitable impurities. The high-tensile steel material according to claim 2, wherein
前記組成に加えてさらに、質量%で、V:0.001〜0.15%、Ti:0.001〜0.15%、Mo:0.001〜0.45%、W:0.001〜0.15%のうちから選ばれた1種または2種以上を含有する組成とし、前記組織がさらに、
Vを含有する場合は、粒径20nm未満の析出物中のV量Vspと、固溶V量Vsol との比、Vsp /Vsolが0.20〜2.0であり、
Tiを含有する場合は、粒径20nm未満の析出物中のTi量Tispと、固溶Ti量Tisolとの比、Tisp /Tisolが0.80〜8.0であり、
Moを含有する場合は、粒径20nm未満の析出物中のMo量Mospと、固溶Mo量Mosolとの比、Mosp /Mosolが0.10〜1.0であり、
Wを含有する場合は、粒径20nm未満の析出物中のW量Wspと、固溶W量Wsolとの比、Wsp/Wsolが0.10〜1.0である組織とすることを特徴とする請求項2または3に記載の高張力鋼材。
In addition to the above composition, one or more kinds selected from V: 0.001 to 0.15%, Ti: 0.001 to 0.15%, Mo: 0.001 to 0.45%, and W: 0.001 to 0.15% in mass%. And the composition further comprises:
In the case of containing V, the ratio of the V amount Vsp in the precipitate having a particle size of less than 20 nm to the solid solution V amount Vsol, Vsp / Vsol is 0.20 to 2.0,
When Ti is contained, the ratio of the Ti amount Tisp in the precipitate having a particle size of less than 20 nm to the solid solution Ti amount Tisol, Tisp / Tisol is 0.80 to 8.0,
When Mo is contained, the ratio of Mo amount Mosp in precipitates having a particle size of less than 20 nm to solid solution Mo amount Mosol, Mosp / Mosol is 0.10 to 1.0,
3. When W is contained, the ratio of the W amount Wsp in the precipitate having a particle size of less than 20 nm to the solid solution W amount Wsol, and the structure has a structure in which Wsp / Wsol is 0.10 to 1.0. Or the high-tensile steel material of 3.
前記組成に加えてさらに、質量%で、Cr:0.001〜0.45%、Cu:0.001〜0.45%、Ni:0.001〜0.45%、B:0.0001〜0.0009%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項2ないし4のいずれかに記載の高張力鋼材。   In addition to the above composition, one or more selected from Cr: 0.001-0.45%, Cu: 0.001-0.45%, Ni: 0.001-0.45%, B: 0.0001-0.0009% in mass% The high-tensile steel material according to claim 2, wherein the high-tensile steel material has a composition containing 前記組成に加えてさらに、質量%で、Ca:0.0001〜0.005%を含有する組成とすることを特徴とする請求項2ないし5のいずれかに記載の高張力鋼材。   The high-strength steel material according to any one of claims 2 to 5, wherein in addition to the composition, the composition further contains Ca: 0.0001 to 0.005% by mass. 前記高張力鋼材が、管内外表面の算術平均粗さRaが2μm以下、最大高さ粗さRzが30μm以下、十点平均粗さRz JIS が20μm以下であり、前記組織に加えてさらに、最外表面および最内表面から肉厚方向に50μmまでの領域の組織が体積率で60%以上のフェライト相を有し、該フェライト相の円周方向断面での平均結晶粒径が2〜8μmである、中空管状体であることを特徴とする請求項2ないし6のいずれかに記載の高張力鋼材。 The high-strength steel material has an arithmetic average roughness Ra of the pipe inner and outer surfaces of 2 μm or less, a maximum height roughness Rz of 30 μm or less, and a ten-point average roughness Rz JIS of 20 μm or less. The structure in the region from the outer surface and the innermost surface to the thickness direction of 50 μm has a ferrite phase with a volume ratio of 60% or more, and the average crystal grain size in the circumferential section of the ferrite phase is 2 to 8 μm The high-strength steel material according to any one of claims 2 to 6, which is a hollow tubular body. 質量%で、C:0.03〜0.24%を含み、炭化物形成元素Xとして少なくともNb:0.001〜0.15%を含有する組成の鋼素材に、前記炭化物形成元素Xの炭化物が固溶する温度以上に加熱したのち、所定の熱履歴と所定の加工を施し、鋼材とするにあたり、
前記所定の熱履歴を、下記(1)式で定義される累積熱処理パラメータΣAi、が850〜1150℃の温度域で28000〜21000、かつ500〜700℃の温度域で20000〜13000を満足する熱履歴とし、
前記所定の加工を850〜1050℃の温度域での累積圧下率が87〜97%となる加工とすることを特徴とする成形性と耐疲労特性に優れた高張力鋼材の製造方法。

ΣAi=Σ{Ti・(20+log ti)} ‥‥(1)
ここで、ti:i番目の工程での熱処理時間(hr)
Ti:i番目の工程での熱処理温度(K)
A steel material having a composition containing C: 0.03 to 0.24% and containing at least Nb: 0.001 to 0.15% as a carbide forming element X at a mass% is heated to a temperature higher than the temperature at which the carbide of the carbide forming element X is dissolved. After that, given a predetermined heat history and predetermined processing,
The predetermined heat history is a heat that satisfies a cumulative heat treatment parameter ΣAi defined by the following formula (1) of 28000 to 21000 in the temperature range of 850 to 1150 ° C and 20000 to 13000 in the temperature range of 500 to 700 ° C. History and
A method for producing a high-tensile steel material excellent in formability and fatigue resistance, wherein the predetermined processing is processing in which a cumulative rolling reduction in a temperature range of 850 to 1050 ° C is 87 to 97%.
Record
ΣAi = Σ {Ti ・ (20 + log ti)} (1)
Where ti: heat treatment time in the i-th process (hr)
Ti: Heat treatment temperature in the i-th process (K)
前記組成が、質量%で、
C:0.03〜0.24%、 Si:0.002〜0.95%、
Mn:1.01〜1.99%、 Al:0.01〜0.08%
を含み、炭化物形成元素XとしてNb:0.001〜0.15%を含有し、さらにP、S、N、Oを、 P:0.019%以下、S:0.010%以下、N:0.008%以下、O:0.003%以下に調整して含み、残部がFeおよび不可避的不純物からなる組成であることを特徴とする請求項8に記載の高張力鋼材の製造方法。
The composition is in weight percent,
C: 0.03-0.24%, Si: 0.002-0.95%,
Mn: 1.01-1.99%, Al: 0.01-0.08%
Nb: 0.001 to 0.15% as a carbide forming element X, P, S, N, O, P: 0.019% or less, S: 0.010% or less, N: 0.008% or less, O: 0.003% The method for producing a high-strength steel material according to claim 8, characterized in that the composition is adjusted as follows and the balance is composed of Fe and inevitable impurities.
前記組成に加えてさらに炭化物形成元素Xとして、質量%で、V:0.001〜0.15%、Ti:0.001〜0.15%、Mo:0.001〜0.45%、W:0.001〜0.15%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項8または9に記載の高張力鋼材の製造方法。   In addition to the above-mentioned composition, the carbide forming element X is selected in mass% from V: 0.001 to 0.15%, Ti: 0.001 to 0.15%, Mo: 0.001 to 0.45%, W: 0.001 to 0.15%. The method for producing a high-tensile steel material according to claim 8 or 9, wherein the composition contains seeds or two or more kinds. 前記組成に加えてさらに、質量%で、Cr:0.001〜0.45%、Cu:0.001〜0.45%、Ni:0.001〜0.45%、B:0.0001〜0.0009%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項8ないし10のいずれかに記載の高張力鋼材の製造方法。   In addition to the above composition, one or more selected from Cr: 0.001-0.45%, Cu: 0.001-0.45%, Ni: 0.001-0.45%, B: 0.0001-0.0009% in mass% The method for producing a high-strength steel material according to any one of claims 8 to 10, characterized in that the composition contains s. 前記組成に加えてさらに、質量%で、Ca:0.0001〜0.005%を含有する組成とすることを特徴とする請求項8ないし11のいずれかに記載の高張力鋼材の製造方法。   The method for producing a high-strength steel material according to any one of claims 8 to 11, wherein the composition further contains Ca: 0.0001 to 0.005% by mass% in addition to the composition.
JP2008146095A 2008-06-03 2008-06-03 High strength steel material excellent in formability and fatigue resistance and method for producing the same Active JP5187003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008146095A JP5187003B2 (en) 2008-06-03 2008-06-03 High strength steel material excellent in formability and fatigue resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008146095A JP5187003B2 (en) 2008-06-03 2008-06-03 High strength steel material excellent in formability and fatigue resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009293067A true JP2009293067A (en) 2009-12-17
JP5187003B2 JP5187003B2 (en) 2013-04-24

Family

ID=41541516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008146095A Active JP5187003B2 (en) 2008-06-03 2008-06-03 High strength steel material excellent in formability and fatigue resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5187003B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236496A (en) * 2010-04-16 2011-11-24 Jfe Steel Corp Steel excellent in coated film peeling resistance
WO2013024860A1 (en) * 2011-08-17 2013-02-21 株式会社神戸製鋼所 High-strength hot-rolled steel plate
JP2013040381A (en) * 2011-08-17 2013-02-28 Kobe Steel Ltd High-strength hot-rolled steel sheet having both formability and fatigue characteristic in base material and weld heat affected zone
WO2013046693A1 (en) * 2011-09-29 2013-04-04 Jfeスチール株式会社 Hot-rolled steel sheet and method for producing same
CN103764864A (en) * 2011-08-31 2014-04-30 杰富意钢铁株式会社 Hot-rolled steel sheet for cold-rolled steel sheet, hot-rolled steel sheet for hot-dipped galvanized steel sheet, method for producing hot-rolled steel sheet for cold-rolled steel sheet, and method for producing hot-rolled steel sheet for hot-dipped
WO2017006563A1 (en) * 2015-07-06 2017-01-12 Jfeスチール株式会社 High-strength thin steel sheet and method for manufacturing same
CN107532263A (en) * 2015-04-22 2018-01-02 新日铁住金株式会社 The manufacture method of hot rolled steel plate, steel and hot rolled steel plate
JP2018104746A (en) * 2016-12-26 2018-07-05 新日鐵住金株式会社 Steel material for linepipe and manufacturing method therefor
CN109642284A (en) * 2016-10-03 2019-04-16 新日铁住金株式会社 Torsion beam electric welded steel pipe
JP2019094563A (en) * 2017-11-24 2019-06-20 Jfeスチール株式会社 Steel material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262487A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp High strength steel sheet having excellent stretch flange formability
JP2008007805A (en) * 2006-06-27 2008-01-17 Gunma Univ Production method of ferritic steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262487A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp High strength steel sheet having excellent stretch flange formability
JP2008007805A (en) * 2006-06-27 2008-01-17 Gunma Univ Production method of ferritic steel

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236496A (en) * 2010-04-16 2011-11-24 Jfe Steel Corp Steel excellent in coated film peeling resistance
WO2013024860A1 (en) * 2011-08-17 2013-02-21 株式会社神戸製鋼所 High-strength hot-rolled steel plate
JP2013040381A (en) * 2011-08-17 2013-02-28 Kobe Steel Ltd High-strength hot-rolled steel sheet having both formability and fatigue characteristic in base material and weld heat affected zone
US9689060B2 (en) 2011-08-17 2017-06-27 Kobe Steel, Ltd. High-strength hot-rolled steel sheet
CN103764864A (en) * 2011-08-31 2014-04-30 杰富意钢铁株式会社 Hot-rolled steel sheet for cold-rolled steel sheet, hot-rolled steel sheet for hot-dipped galvanized steel sheet, method for producing hot-rolled steel sheet for cold-rolled steel sheet, and method for producing hot-rolled steel sheet for hot-dipped
US9574254B2 (en) 2011-09-29 2017-02-21 Jfe Steel Corporation Hot-rolled steel sheet and method for producing same
WO2013046693A1 (en) * 2011-09-29 2013-04-04 Jfeスチール株式会社 Hot-rolled steel sheet and method for producing same
KR20140068218A (en) * 2011-09-29 2014-06-05 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet and method for producing same
EP2762584A4 (en) * 2011-09-29 2015-05-27 Jfe Steel Corp Hot-rolled steel sheet and method for producing same
TWI502078B (en) * 2011-09-29 2015-10-01 Jfe Steel Corp Hot rolled steel sheet and method of manufacturing the same
KR101603175B1 (en) 2011-09-29 2016-03-14 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet and method for producing same
CN103842538A (en) * 2011-09-29 2014-06-04 杰富意钢铁株式会社 Hot-rolled steel sheet and method for producing same
JP2013076116A (en) * 2011-09-29 2013-04-25 Jfe Steel Corp Hot-rolled steel sheet and method for producing the same
CN107532263A (en) * 2015-04-22 2018-01-02 新日铁住金株式会社 The manufacture method of hot rolled steel plate, steel and hot rolled steel plate
EP3260570A4 (en) * 2015-04-22 2018-09-05 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet, steel member, and method for manufacturing hot-rolled steel sheet
CN107532263B (en) * 2015-04-22 2019-11-22 日本制铁株式会社 The manufacturing method of hot rolled steel plate, steel and hot rolled steel plate
US10718040B2 (en) 2015-04-22 2020-07-21 Nippon Steel Corporation Hot-rolled steel sheet, steel material, and method for producing hot-rolled steel sheet
JP6103160B1 (en) * 2015-07-06 2017-03-29 Jfeスチール株式会社 High strength thin steel sheet and method for producing the same
WO2017006563A1 (en) * 2015-07-06 2017-01-12 Jfeスチール株式会社 High-strength thin steel sheet and method for manufacturing same
US10526678B2 (en) 2015-07-06 2020-01-07 Jfe Steel Corporation High-strength thin steel sheet and method for manufacturing the same
CN109642284A (en) * 2016-10-03 2019-04-16 新日铁住金株式会社 Torsion beam electric welded steel pipe
CN109642284B (en) * 2016-10-03 2021-04-20 新日铁住金株式会社 Electric welding steel pipe for torsion beam
US11028456B2 (en) 2016-10-03 2021-06-08 Nippon Steel & Sumitomo Metal Corporation Electric resistance welded steel pipe for torsion beam
JP2018104746A (en) * 2016-12-26 2018-07-05 新日鐵住金株式会社 Steel material for linepipe and manufacturing method therefor
JP2019094563A (en) * 2017-11-24 2019-06-20 Jfeスチール株式会社 Steel material

Also Published As

Publication number Publication date
JP5187003B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP4466619B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
JP5187003B2 (en) High strength steel material excellent in formability and fatigue resistance and method for producing the same
JP4443910B2 (en) Steel materials for automobile structural members and manufacturing method thereof
JP5463715B2 (en) Manufacturing method of high strength welded steel pipe for automobile structural members
JP4735315B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
JP5142141B2 (en) Hot-rolled steel sheets for hydroforming, steel pipes for hydroforming, and methods for producing them
JP4910694B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
JP4506486B2 (en) ERW steel pipe for high-strength hollow stabilizer and method for producing high-strength hollow stabilizer
JP4853082B2 (en) Steel plate for hydroforming, steel pipe for hydroforming, and production method thereof
JP2009197327A (en) Hollow member and method for production thereof
WO2011078165A1 (en) High-strength spring steel
JP5391656B2 (en) High tensile welded steel pipe for automobile parts and manufacturing method thereof
JP5499559B2 (en) High tensile steel material for automobile undercarriage members having excellent formability and torsional fatigue resistance and method for producing the same
JP4635708B2 (en) Non-tempered high-tensile welded steel pipe for automotive structural members with excellent formability and low-temperature toughness and excellent torsional fatigue resistance after cross-section forming processing
WO2018186273A1 (en) Steel member, hot-rolled steel sheet for said steel member and production methods therefor
JP5736929B2 (en) Ultra-high-strength ERW steel pipe with excellent workability and low-temperature toughness and method for producing the same
JP2009242858A (en) High-strength steel pipe and manufacturing method therefor
JP5125601B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
JP5499560B2 (en) High tensile steel material for automobile undercarriage members having excellent formability and torsional fatigue resistance and method for producing the same
JP5282449B2 (en) High strength steel material excellent in formability and fatigue resistance and method for producing the same
WO2018186274A1 (en) Steel member, hot-rolled steel sheet for said steel member and production methods therefor
CN113631735B (en) Electric welded steel pipe for hollow stabilizer, and method for producing same
JP5460099B2 (en) High strength steel pipe excellent in corrosion resistance and impact bending toughness and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250