JP5736929B2 - Ultra-high-strength ERW steel pipe with excellent workability and low-temperature toughness and method for producing the same - Google Patents
Ultra-high-strength ERW steel pipe with excellent workability and low-temperature toughness and method for producing the same Download PDFInfo
- Publication number
- JP5736929B2 JP5736929B2 JP2011092553A JP2011092553A JP5736929B2 JP 5736929 B2 JP5736929 B2 JP 5736929B2 JP 2011092553 A JP2011092553 A JP 2011092553A JP 2011092553 A JP2011092553 A JP 2011092553A JP 5736929 B2 JP5736929 B2 JP 5736929B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel pipe
- strength
- ultra
- erw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Articles (AREA)
Description
本発明は、ドライブシャフト、スタビライザー等の自動車部品用中空部材として好適な、超高強度電縫鋼管およびその製造方法に係り、とくに、加工性、靭性の向上に関する。 The present invention relates to an ultra-high-strength electric resistance welded steel pipe suitable as a hollow member for automobile parts, such as a drive shaft and a stabilizer, and a method for producing the same, and more particularly to improvement of workability and toughness.
近年の、地球環境の保全という観点から自動車の燃費改善が強く要望され、自動車車体の軽量化が進められている。このような自動車車体の軽量化要求から、自動車のエンジンの動力を車輪に伝達する、例えばドライブシャフトなどの駆動軸関連部品、あるいはスタビライザーなどの足回り部品においても、棒鋼を用いた中実タイプに代えて、鋼管を用いた中空タイプが採用されるようになっている。 In recent years, there has been a strong demand for improving the fuel efficiency of automobiles from the viewpoint of protecting the global environment, and the weight reduction of automobile bodies has been promoted. In response to such demands for reducing the weight of automobile bodies, for example, drive shaft-related parts such as drive shafts or undercarriage parts such as stabilizers that transmit the power of the engine of a car to wheels are solid types using steel bars. Instead, a hollow type using a steel pipe is adopted.
例えば、特許文献1には、質量%で、C:0.30〜0.47%、Si:0.5%以下、Mn:0.3〜2.0%、P:0.018%以下、S:0.015%以下、Cr:0.15〜1.0%、Al:0.001〜0.05%、Ti:0.005〜0.05%、Ca:0.004%以下、N:0.01%以下、B:0.0005〜0.005%、O:0.0050%以下を含み、有効B量Beffが0.0001以上である鋼管を素材とし焼入れ後のオーステナイト結晶粒度番号が9以上である、高周波焼入れ中空駆動軸が記載されている。特許文献1に記載された技術によれば、高周波焼入れ後のオーステナイト結晶粒界の強度を確保でき、優れた冷間加工性、焼入れ性、靭性および捻り疲労強度を確保でき、安定した疲労寿命を発揮できる中空駆動軸が得られるとしている。 For example, in Patent Document 1, in mass%, C: 0.30 to 0.47%, Si: 0.5% or less, Mn: 0.3 to 2.0%, P: 0.018% or less, S: 0.015% or less, Cr: 0.15 to 1.0% Al: 0.001 to 0.05%, Ti: 0.005 to 0.05%, Ca: 0.004% or less, N: 0.01% or less, B: 0.0005 to 0.005%, O: 0.0050% or less, and the effective B amount Beff is 0.0001 or more An induction hardening hollow drive shaft is described in which a steel pipe is used as a raw material and the austenite grain size number after quenching is 9 or more. According to the technique described in Patent Document 1, the strength of austenite grain boundaries after induction hardening can be secured, and excellent cold workability, hardenability, toughness and torsional fatigue strength can be secured, and a stable fatigue life can be ensured. It is said that a hollow drive shaft that can be exhibited is obtained.
また、特許文献2には、高強度鋼管が記載されている。特許文献2に記載された鋼管では、質量%で、C:0.30%超0.50%以下、Si:1.0%以下、Mn:1.5%以下、Ti:0.1%以下、Mo:0.3〜0.5%、B:0.0005〜0.01%を含む鋼管で、焼入れ後に100〜400℃で焼戻処理を施すことで、旧オーステナイト粒径が10μm以下となる硬化部(マルテンサイト分率が90%以上である領域)が管C断面の30%以上形成される組織を有する耐遅れ破壊特性および疲労特性に優れた、引張強さ:1500MPa以上の高強度鋼管である。 Patent Document 2 describes a high-strength steel pipe. In the steel pipe described in Patent Document 2, in mass%, C: more than 0.30% and 0.50% or less, Si: 1.0% or less, Mn: 1.5% or less, Ti: 0.1% or less, Mo: 0.3 to 0.5%, B: A steel pipe containing 0.0005-0.01%, and when tempering is performed at 100-400 ° C after quenching, the hardened part (region where the martensite fraction is 90% or more) where the prior austenite grain size becomes 10 μm or less It is a high strength steel pipe with a tensile strength of 1500 MPa or more, excellent in delayed fracture resistance and fatigue properties, having a structure formed at 30% or more of the C cross section.
特許文献3には、高強度かつ延性に優れた電縫鋼管の製造方法が記載されている。特許文献3に記載された技術では、mass%で、C:0.10〜0.30%、Si:0.01〜2.0%、Mn:2.0〜4.0%、Al:0.010〜0.10%、N:0.010%以下を含む鋼スラブを、熱間圧延して鋼帯とし、この鋼帯をロール成形したのち電縫溶接して素管としたのち、Ac1〜Ac3の温度域に加熱し、絞り圧延することにより、管長手方向に伸びたフェライトおよびマルテンサイトからなる層状組織を有し、マルテンサイト組織の平均層間隔が2.0μm以下である電縫鋼管が得られるとしている。 Patent Document 3 describes a method for producing an electric-welded steel pipe having high strength and excellent ductility. In the technique described in Patent Document 3, the steel contains mass%, C: 0.10 to 0.30%, Si: 0.01 to 2.0%, Mn: 2.0 to 4.0%, Al: 0.010 to 0.10%, N: 0.010% or less. the slab, hot rolling to a steel strip, after the raw tube to the steel strip by electric resistance welding After roll forming and heated to a temperature range of Ac 1 to Ac 3, by reducing rolling, tube length It is said that an ERW steel pipe having a layered structure composed of ferrite and martensite extending in the hand direction and having an average layer spacing of 2.0 μm or less in the martensite structure is obtained.
しかしながら、特許文献1に記載された技術では、素材となる鋼管を継目無鋼管としており、継目無鋼管では造管方法に由来する表面脱炭、表面疵などが残存する場合が多く、所望とする十分な疲労寿命を確保するためには表面研磨、研削を行う必要があり、またさらに、継目無鋼管では、その造管方法に由来する偏心偏肉等が発生しやすく、ドライブシャフト等の回転物用としては必ずしも適さない場合があるという問題がある。 However, in the technique described in Patent Document 1, the steel pipe used as a raw material is a seamless steel pipe, and in the seamless steel pipe, there are many cases where surface decarburization, surface flaws, etc. derived from the pipe making method remain and are desired. In order to ensure a sufficient fatigue life, it is necessary to perform surface polishing and grinding, and in addition, seamless steel pipes are prone to occurrence of eccentric thickness deviation due to the pipe making method, such as rotating objects such as drive shafts. There is a problem that it may not always be suitable for use.
また、特許文献2に記載された技術では、素材とする鋼管は電縫鋼管、鍛接鋼管、圧接鋼管等の鋼板(帯鋼)を成形加工、接合により管形状としている。高強度鋼板を素材とすると、細径かつ厚肉の鋼管に造管することが難しいため、比較的強度の低い鋼板を素材として造管したのち、高強度を確保するために、焼入れ処理を必須の要件としている。焼入れ処理や、焼戻処理といった熱処理の工程を含むことは、工程が複雑となり、生産性が低下するうえ、製造コストの高騰を招くという問題がある。 Moreover, in the technique described in Patent Document 2, the steel pipe used as a raw material is formed into a pipe shape by forming and joining a steel plate (strip steel) such as an electric-welded steel pipe, a forged steel pipe, or a pressure welded steel pipe. If a high-strength steel plate is used as a raw material, it is difficult to form a thin and thick steel pipe. Therefore, after making a steel plate with a relatively low strength as a material, quenching is essential to ensure high strength. As a requirement. Including a heat treatment process such as quenching or tempering causes problems that the process becomes complicated, productivity is lowered, and manufacturing costs are increased.
また、特許文献3に記載された技術では、絞り圧延の加熱温度が低いため、電縫溶接部の低C域へのCの拡散(復炭)が不十分であるため、電縫溶接部の靭性が局部的に低下する場合があり、さらに母材の組織が層状組織であるため、靭性が劣り、衝撃力が作用した場合に割れが発生する恐れがあるなどの問題がある。
本発明は、かかる従来技術の問題を有利に解決し、焼入れ処理等の熱処理を行なうことなく非調質で、引張強さTS:1500MPa以上で、かつ強度−伸びバランスTS×Elが27000MPa%以上で、かつ−40℃でのシャルピー衝撃試験の衝撃値vE−40が50J/cm2以上となる、加工性および靭性に優れた高強度電縫鋼管およびその製造方法を提供することを目的とする。なお、自動車部品であるドライブシャフトやスタビライザーなどでは引張強さ:1500MPa以上の強度の材料が、また、ドライブシャフトではスウェージ加工が、スタビライザーでは曲げ加工が適用されるため、延性に優れた材料が要望されており、そのため、概ね、強度−伸びバランスTS×Elで27000MPa%以上となる材料(超高強度電縫鋼管)を目標とする。さらに、材質の均一性という観点から、電縫溶接部と母材部との特性差が少ない、具体的には母材部と電縫溶接部との硬度差がビッカース硬さで50ポイント以下となる、電縫鋼管を目的とする。さらに、高靭性という観点から、vE−40が50J/cm2以上となる靭性に優れた電縫鋼管を目的とする。
Further, in the technique described in Patent Document 3, since the heating temperature of the drawing rolling is low, the diffusion (recoalizing) of C into the low C region of the ERW weld is insufficient. There is a case where the toughness is locally lowered, and the base material has a layered structure. Therefore, there is a problem that the toughness is inferior and cracking may occur when an impact force is applied.
The present invention advantageously solves the problems of the prior art, is non-tempered without performing heat treatment such as quenching, and has a tensile strength TS: 1500 MPa or more and a strength-elongation balance TS × El of 27000 MPa% or more. An object of the present invention is to provide a high-strength electric resistance welded steel pipe excellent in workability and toughness, in which an impact value vE- 40 in a Charpy impact test at -40 ° C is 50 J / cm 2 or more, and a method for producing the same. . For drive shafts and stabilizers, which are automotive parts, materials with a tensile strength of 1500 MPa or more, swage processing for drive shafts, and bending processing for stabilizers are applied, so materials with excellent ductility are required. Therefore, the target (substantially high-strength ERW steel pipe) is approximately 27000MPa% in strength-elongation balance TS x El. Furthermore, from the viewpoint of material uniformity, there is little difference in characteristics between the ERW weld and the base metal part.Specifically, the hardness difference between the base metal part and the ERW weld part is 50 points or less in terms of Vickers hardness. The purpose is ERW steel pipe. Furthermore, from the viewpoint of high toughness, the object is an electric-welded steel pipe excellent in toughness with a vE- 40 of 50 J / cm 2 or more.
本発明者らは、上記した目的を達成するために、非調質鋼管における、強度および加工性に及ぼす各種要因について、鋭意研究した。その結果、適正範囲の組成に調整した電縫鋼管に、適正な縮径圧延を施し、冷却することにより、引張強さTS:1500MPa以上の高強度と、15%以上の伸び、vE−40:50J/cm2以上を有する加工性および靭性に優れた高強度電縫鋼管を製造できることを知見した。なお、その際の管組織は、ベイナイトを主体とし、第二相として、フェライトおよび/またはマルテンサイトを合計で面積%で0〜20%含有する組織であった。 In order to achieve the above-mentioned object, the present inventors diligently studied various factors affecting the strength and workability of the non-heat treated steel pipe. As a result, by applying appropriate diameter reduction rolling to the ERW steel pipe adjusted to the composition in the proper range and cooling, the tensile strength TS: high strength of 1500MPa or more, elongation of 15% or more, vE- 40 : It has been found that a high-strength electric resistance welded steel pipe having 50 J / cm 2 or more and excellent workability and toughness can be produced. The tube structure at that time was a structure mainly containing bainite and containing 0 to 20% in total in area% of ferrite and / or martensite as the second phase.
まず、本発明の基礎となった研究結果について説明する。
質量%で、C:0.31%、Si:0.2%、Mn:2.5%、P:0.01%、S:0.0010%、Al:0.03%、N:0.0025%、B:0.0020%を含み、残部Feおよび不可避的不純物からなる組成の電縫鋼管(外径89.1mmφ×肉厚7mm)を素材鋼管とした。なお、この素材鋼管のAc1変態点は702℃、Ac3変態点は750℃、Ar3変態点は725℃である。
First, the research results that are the basis of the present invention will be described.
In mass%, C: 0.31%, Si: 0.2%, Mn: 2.5%, P: 0.01%, S: 0.0010%, Al: 0.03%, N: 0.0025%, B: 0.0020%, the remainder Fe and inevitable ERW steel pipe (outer diameter 89.1mmφ x thickness 7mm) composed of mechanical impurities was used as the raw steel pipe. The steel tube has an Ac 1 transformation point of 702 ° C., an Ac 3 transformation point of 750 ° C., and an Ar 3 transformation point of 725 ° C.
そして、その素材鋼管を1000℃に加熱したのち、累積縮径率を50%とし、圧延終了温度を600〜850℃の範囲内で変化させて縮径圧延したのち、平均冷却速度:1.0℃/sで200℃以下まで冷却し、製品管(外径42.7mmφ×肉厚7mm)とした。
得られた製品管について、組織観察、引張試験および衝撃試験を実施した。試験方法はつぎのとおりとした。
(1)組織観察
得られた製品管から、組織観察用試験片を採取し、円周方向断面を研磨し、ナイタール腐食して、走査型電子顕微鏡(倍率:2000倍)を用いて、組織を観察し、組織の種類を判別した。
(2)引張試験
得られた製品管から、引張方向が管長手方向となるように、JIS 1号試験片(管状試験片:GL50mm)を採取し、JIS Z 2241の規定に準拠して引張試験を行い、引張特性(引張強さTS、伸びEl)を求めた。
(3)衝撃試験
得られた製品管の肉厚中央位置から、管長手方向が試験片の長さ方向に一致するように、JIS Z 2242に準拠して、Vノッチシャルピー衝撃試験片(3mm厚)を採取した。試験温度:−40℃で試験し、衝撃値vE−40(J/cm2)を求めた。試験は各3本実施し、その平均をその製品管の衝撃値とした。
And after heating the raw steel pipe to 1000 ° C, the cumulative diameter reduction rate is set to 50%, the rolling end temperature is changed within the range of 600 to 850 ° C, and then the average cooling rate: 1.0 ° C / The product tube (outer diameter 42.7 mmφ × thickness 7 mm) was cooled to 200 ° C. or lower with s.
The obtained product tube was subjected to a structure observation, a tensile test and an impact test. The test method was as follows.
(1) Tissue observation From the obtained product tube, a specimen for tissue observation is collected, the circumferential cross section is polished, the nital corrosion is performed, and the structure is examined using a scanning electron microscope (magnification: 2000 times). Observed to determine the type of tissue.
(2) Tensile test JIS No. 1 test piece (tubular test piece: GL50mm) is collected from the obtained product tube so that the tensile direction is the longitudinal direction of the tube, and the tensile test is performed in accordance with the provisions of JIS Z 2241. The tensile properties (tensile strength TS, elongation El) were determined.
(3) Impact test V-notch Charpy impact test piece (3 mm thick) in accordance with JIS Z 2242 so that the longitudinal direction of the pipe matches the length direction of the test piece from the central position of the thickness of the obtained product pipe ) Was collected. Test temperature: Tested at −40 ° C. to determine impact value vE −40 (J / cm 2 ). Three tests were carried out for each, and the average was taken as the impact value of the product tube.
得られた結果を、引張強さTS、伸びElと縮径圧延終了温度との関係で図1に示す。そして、この結果からTS×Elを算出し、TS×Elと縮径圧延終了温度との関係で図2に示す。また、試験温度:−40℃での衝撃値vE−40を縮径圧延終了温度との関係で図3に示す。
図1から、引張強さTS:1500MPa以上の高強度を確保することができるのは、縮径圧延終了温度が650℃以上であり、伸びElは15%以上となることを知見した。また、図2から、縮径圧延終了温度が650℃以上であれば、強度−伸びバランスTS×Elが27000MPa%以上を確保できることを見出した。図3から、縮径圧延終了温度がAr3変態点以上であればvE−40:50J/cm2以上を確保できることを見出した。
The obtained results are shown in FIG. 1 in terms of the relationship between the tensile strength TS, the elongation El, and the diameter reduction finish temperature. And TS * El is computed from this result, and it shows in FIG. 2 by the relationship between TS * El and diameter reduction rolling completion temperature. Moreover, the impact value vE- 40 at the test temperature: -40 ° C is shown in Fig. 3 in relation to the end temperature of the diameter reduction rolling.
From FIG. 1, it was found that the tensile strength TS: high strength of 1500 MPa or more can be secured when the diameter reduction rolling finish temperature is 650 ° C. or more and the elongation El is 15% or more. Further, it was found from FIG. 2 that the strength-elongation balance TS × El of 27000 MPa% or more can be secured when the diameter reduction rolling finish temperature is 650 ° C. or higher. From FIG. 3, it was found that vE −40 : 50 J / cm 2 or more can be secured if the diameter reduction rolling finish temperature is equal to or higher than the Ar 3 transformation point.
縮径圧延終了温度がAr3変態点未満では、組織がフェライトとマルテンサイトの二相組織となり、靭性が著しく低下し、さらに650℃未満の縮径圧延終了温度では、フェライト分率が高くなるため、所望の高強度(TS:1500MPa以上)を確保できていない。また、縮径圧延終了温度が900℃を超えた温度域の場合には、結晶粒が拡大化し、靭性が低下するとともに、製品管の表面性状が低下し、生産性も低下する。このため、縮径圧延終了温度を900℃以下とすることが好ましいことも知見した。 If the temperature at which the diameter reduction finishes is less than the Ar 3 transformation point, the structure becomes a two-phase structure of ferrite and martensite, and the toughness is remarkably reduced. Further, at the temperature at which the diameter reduction finish is less than 650 ° C., the ferrite fraction increases. The desired high strength (TS: 1500MPa or more) is not secured. Moreover, in the temperature range where the diameter reduction end temperature exceeds 900 ° C., the crystal grains are enlarged, the toughness is lowered, the surface properties of the product pipe are lowered, and the productivity is also lowered. For this reason, it has also been found that it is preferable to set the temperature at which the diameter reduction finishes to 900 ° C. or less.
このようなことから、本発明者らは、素材鋼管(電縫鋼管)を、とくに、質量%で、C:0.31〜0.50%、Mn:1.0〜4.0%、B:0.0003〜0.0050%、Al:0.1%以下、N:0.0010〜0.0100%、あるいはさらにTi:0.01〜0.1%を含有する組成の鋼管とし、該鋼管に、Ac3変態点以上に加熱・均熱したのち、圧延終了温度:(Ar3変態点)以上900℃以下、900℃以下の温度域での累積縮径率:20〜75%である縮径圧延を施すことが、非調質で、引張強さTS:1500MPa以上で、かつ強度−伸びバランスTS×Elが27000MPa%以上で、−40℃におけるシャルピー衝撃値が50J/cm2以上となる、加工性および低温靭性に優れた高強度電縫鋼管を製造するために、有効であることを見出した。 In view of the above, the inventors of the present invention have made steel pipes (electrically welded steel pipes), in particular, by mass, C: 0.31 to 0.50%, Mn: 1.0 to 4.0%, B: 0.0003 to 0.0050%, Al: A steel pipe having a composition containing 0.1% or less, N: 0.0010 to 0.0100%, or Ti: 0.01 to 0.1%, and heating and soaking the steel pipe above the Ac 3 transformation point, rolling end temperature: (Ar (3 transformation point) More than 900 ° C, less than 900 ° C Cumulative reduction ratio: 20-75%, it is non-tempered, tensile strength TS: 1500MPa or more, Effective for manufacturing high-strength ERW steel pipes with excellent workability and low-temperature toughness with a strength-elongation balance TS x El of 27000 MPa% or more and a Charpy impact value at -40 ° C of 50 J / cm 2 or more. I found out.
本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、C:0.31〜0.50%、Si:0.01〜1.0%、Mn:1.0〜4.0%、Al:0.1%以下、N:0.0010〜0.0100%、B:0.0003〜0.0050%を含み、残部Feおよび不可避的不純物からなる組成と、ベイナイトを主相とし、第二相としてマルテンサイトおよび/またはフェライトを合計で、面積率で0〜20%含む組織とを有し、引張強さTSが1500MPa以上で、かつ強度−伸びバランスTS×Elが27000MPa%以上、−40℃でのシャルピー衝撃試験の衝撃値がvE−40:50J/cm2であり、さらに母材部と電縫溶接部の硬さの差ΔHVが50ポイント以下であることを特徴とする加工性および低温靭性に優れた中空部材用超高強度電縫鋼管。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.31 to 0.50%, Si: 0.01 to 1.0%, Mn: 1.0 to 4.0%, Al: 0.1% or less, N: 0.0010 to 0.0100%, B: 0.0003 to 0.0050%, It has a composition comprising the balance Fe and inevitable impurities, and a structure containing bainite as a main phase and martensite and / or ferrite as a second phase in a total area of 0 to 20% in area ratio, and a tensile strength TS above 1500 MPa, and strength - elongation balance TS × El is 27000MPa% or more, vE impact value of Charpy impact test at -40 ° C. -40: a 50 J / cm 2, further the base metal and the electric-resistance welded portion An ultra-high-strength ERW steel pipe for hollow members with excellent workability and low-temperature toughness, characterized by having a hardness difference ΔHV of 50 points or less.
(2)(1)において、前記組成に加えてさらに、質量%で、Ti:0.1%以下を含有することを特徴とする中空部材用超高強度電縫鋼管。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Cu:1%以下、Cr:1%以下、Mo:2.0%以下、Ni:2.0%以下のうちから選ばれた1種または2種以上を含有することを特徴とする中空部材用超高強度電縫鋼管。
(2) In (1), in addition to the above composition, it further contains, by mass%, Ti: 0.1% or less.
(3) In (1) or (2), in addition to the above composition, it is further selected by mass% from Cu: 1% or less, Cr: 1% or less, Mo: 2.0% or less, Ni: 2.0% or less An ultra-high-strength ERW steel pipe for hollow members, characterized by containing one or more of them.
(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、質量%で、W:2.0%以下、V:1.0%以下、Nb:0.1%以下のうちから選ばれた1種または2種以上を含有することを特徴とする中空部材用超高強度電縫鋼管。
(5)電縫鋼管を素材鋼管とし、該素材鋼管に縮径圧延を施して製品鋼管とする電縫鋼管の製造方法であって、前記素材鋼管を、質量%で、C:0.31〜0.50%、Si:0.01〜1.0%、Mn:1.0〜4.0%、Al:0.1%以下、N:0.0010〜0.0100%、B:0.0003〜0.0050%を含み、残部Feおよび不可避的不純物からなる組成の電縫鋼管とし、前記縮径圧延を、Ac3変態点以上に加熱・均熱したのち、圧延終了温度:Ar3変態点以上900℃以下とし、900℃以下の温度域での累積縮径率:20〜75%である縮径圧延とすることによって、
ベイナイトを主相とし、第二相としてマルテンサイトおよび/またはフェライトを合計で、面積率で0〜20%含む組織とを有し、引張強さTSが1500MPa以上で、かつ強度−伸びバランスTS×Elが27000MPa%以上であり、さらに母材部と電縫溶接部の硬さの差ΔHVが50HV以下であり、−40℃でのシャルピー衝撃値がvE −40 :50J/cm 2 以上である前記製品鋼管を得ることを特徴とする加工性および低温靭性に優れた中空部材用超高強度電縫鋼管の製造方法。
(4) In any one of (1) to (3), in addition to the above composition, 1% selected from mass%, W: 2.0% or less, V: 1.0% or less, Nb: 0.1% or less An ultra-high-strength ERW steel pipe for hollow members characterized by containing seeds or two or more kinds.
(5) A method for producing an electric-welded steel pipe using an electric-welded steel pipe as a raw steel pipe and subjecting the raw steel pipe to reduced diameter rolling to obtain a product steel pipe, wherein the raw steel pipe is in mass%, and C: 0.31 to 0.50% , Si: 0.01 to 1.0%, Mn: 1.0 to 4.0%, Al: 0.1% or less, N: 0.0010 to 0.0100%, B: 0.0003 to 0.0050%, and the composition comprising the balance Fe and inevitable impurities After the above-mentioned diameter reduction rolling is heated and soaked to the Ac 3 transformation point or higher, the rolling end temperature: Ar 3 transformation point to 900 ° C., and the cumulative reduction ratio in the temperature range of 900 ° C. or lower: 20 to By reducing diameter rolling to 75% ,
It has a structure containing bainite as a main phase, martensite and / or ferrite as a second phase in total, and an area ratio of 0 to 20%, a tensile strength TS of 1500 MPa or more, and a strength-elongation balance TS × The El is 27000 MPa% or more, the hardness difference ΔHV between the base metal part and the ERW weld part is 50 HV or less, and the Charpy impact value at −40 ° C. is vE −40 : 50 J / cm 2 or more. A method for producing an ultra-high-strength ERW steel pipe for hollow members, which is excellent in workability and low-temperature toughness, characterized by obtaining a product steel pipe .
(6)(5)において、前記組成に加えてさらに、質量%でTi:0.1%以下を含有することを特徴とする中空部材用超高強度電縫鋼管の製造方法。
(7)(5)または(6)において、前記組成に加えてさらに、質量%で、Cu:1%以下、Cr:1%以下、Mo:2.0%以下、Ni:2.0%以下のうちから選ばれた1種または2種以上を含有することを特徴とする中空部材用超高強度電縫鋼管の製造方法。
(6) In (5), in addition to the said composition, Ti: 0.1% or less is further contained by the mass%, The manufacturing method of the ultra-high-strength ERW steel pipe for hollow members characterized by the above-mentioned.
(7) In (5) or (6), in addition to the above-mentioned composition, the mass is further selected from Cu: 1% or less, Cr: 1% or less, Mo: 2.0% or less, Ni: 2.0% or less The manufacturing method of the ultra-high-strength ERW steel pipe for hollow members characterized by containing 1 type, or 2 or more types.
(8)(5)ないし(7)のいずれかにおいて、前記組成に加えてさらに、質量%で、W:2.0%以下、V:1.0%以下、Nb:0.1%以下のうちから選ばれた1種または2種以上を含有することを特徴とする中空部材用超高強度電縫鋼管の製造方法。 (8) In any one of (5) to (7), in addition to the above composition, 1% selected from mass%, W: 2.0% or less, V: 1.0% or less, Nb: 0.1% or less The manufacturing method of the ultra-high-strength ERW steel pipe for hollow members characterized by containing seed | species or 2 or more types.
本発明によれば、焼入れ処理等の熱処理を施すことなく非調質で、引張強さ:1500MPa以上の高強度で、かつ強度−伸びバランスTS×Elが27000MPa%以上でvE−40が50J/cm2となる、優れた延性を有し、加工性および低温靭性に優れた超高強度電縫鋼管を容易に、しかも安価に製造でき、産業上格段の効果を奏する。
また、本発明によれば、母材部と電縫溶接部の硬さの差ΔHVが50HV以下と小さく均質な電縫鋼管が得られ、安定してドライブシャフト、スタビライザー等の自動車部品用中空部材に適用することが可能となり、自動車車体の軽量化に寄与し、地球環境の保全に貢献できるという効果もある。また、本発明電縫鋼管は、低温靭性に優れているため、寒冷地仕様の自動車用部材として安心して適用できるという効果もある。また、自動車用部材以外にも、機械構造用部材、土木建築構造物用部材に適用できるという効果もある。
According to the present invention, non-tempering without heat treatment such as quenching, tensile strength: high strength of 1500 MPa or more, strength-elongation balance TS × El of 27000 MPa% or more, and vE- 40 of 50 J / An ultra-high-strength ERW steel pipe having excellent ductility, excellent workability and low-temperature toughness of cm 2 can be produced easily and inexpensively, and has a remarkable industrial effect.
In addition, according to the present invention, a uniform ERW steel pipe having a small hardness difference ΔHV of 50 HV or less between the base metal portion and the ERW welded portion can be obtained, and a hollow member for automobile parts such as a drive shaft and a stabilizer can be stably provided. This contributes to the reduction of the weight of the car body, and also contributes to the preservation of the global environment. Moreover, since the electric resistance welded steel pipe of the present invention is excellent in low temperature toughness, there is also an effect that it can be applied with peace of mind as a member for automobiles in cold district specifications. Moreover, there exists an effect that it can apply to the member for machine structures, and the member for civil engineering building structures besides the member for motor vehicles.
まず、本発明超高強度電縫鋼管の組成限定の理由について説明する。以下、とくに断わらない限り、質量%は単に%で記す。
C:0.31〜0.50%
Cは、鋼の強度を増加させる作用を有し、所望の強度を確保するために重要な元素である。このような効果を得るためには、0.31%以上の含有を必要とする。一方、0.50%を超える含有は、電縫溶接性や加工性を顕著に低下させる。このため、Cは0.31〜0.50%の範囲に限定した。なお、好ましくは0.31〜0.40%である。
First, the reason for the composition limitation of the ultra-high strength ERW steel pipe of the present invention will be described. Hereinafter, unless otherwise specified, mass% is simply expressed as%.
C: 0.31 ~ 0.50%
C has an effect of increasing the strength of the steel and is an important element for ensuring a desired strength. In order to obtain such an effect, the content of 0.31% or more is required. On the other hand, if the content exceeds 0.50%, ERW weldability and workability are significantly reduced. For this reason, C was limited to the range of 0.31 to 0.50%. In addition, Preferably it is 0.31 to 0.40%.
Si:0.01〜1.0%
Siは、脱酸剤として作用するとともに、固溶して強度増加に寄与する元素である。このような効果を得るためには、0.01%以上の含有を必要とする。一方、1.0%を超える含有は、加工性、焼入れ性を低下させる。このため、Siは0.01〜1.0%の範囲に限定した。なお、好ましくは0.01〜0.5%である。
Si: 0.01-1.0%
Si is an element that acts as a deoxidizer and contributes to an increase in strength by solid solution. In order to acquire such an effect, 0.01% or more of content is required. On the other hand, if the content exceeds 1.0%, workability and hardenability deteriorate. For this reason, Si was limited to the range of 0.01 to 1.0%. In addition, Preferably it is 0.01 to 0.5%.
Mn:1.0〜4.0%
Mnは、焼入れ性を向上させるとともに、固溶して強度増加に寄与する元素であリ、所望の高強度を確保するためには、1.0%以上の含有を必要とする。一方、4.0%を超える含有は、加工性を低下するとともに、電縫溶接部の品質を低下させる。このため、Mnは1.0〜4.0%の範囲に限定した。なお、好ましくは2.0〜3.0%である。
Mn: 1.0-4.0%
Mn is an element that improves the hardenability and contributes to an increase in strength by solid solution. To ensure the desired high strength, Mn is required to be contained in an amount of 1.0% or more. On the other hand, if the content exceeds 4.0%, the workability is degraded and the quality of the ERW weld is degraded. For this reason, Mn was limited to the range of 1.0 to 4.0%. In addition, Preferably it is 2.0 to 3.0%.
Al:0.1%以下
Alは、脱酸剤として有効に作用するとともに、焼入れ加熱時のオーステナイト粒の成長を抑制し、焼入れ後の強度の確保に有効な元素である。このような効果を得るためには0.001%以上含有することが望ましい。一方、0.1%を超えて含有すると、アルミナ系介在物が増加し、表面性状を低下させるとともに、疲労強度の低下を招く。このため、Alは0.1%以下に限定した。なお、好ましくは0.001〜0.06%である。
Al: 0.1% or less
Al is an element that effectively acts as a deoxidizing agent, suppresses the growth of austenite grains during quenching heating, and is effective in securing strength after quenching. In order to acquire such an effect, it is desirable to contain 0.001% or more. On the other hand, if the content exceeds 0.1%, alumina inclusions increase, surface properties are lowered, and fatigue strength is lowered. For this reason, Al was limited to 0.1% or less. In addition, Preferably it is 0.001 to 0.06%.
N:0.0010〜0.0100%
Nは、Alと結合してAlNを形成し、加熱時に、結晶粒の成長を抑制し、結晶粒の微細化に寄与する元素である。このような効果を得るためには、0.0010%以上の含有を必要とする。一方、0.0100%を超えて過剰に含有すると、Bと結合してBNを形成するため、固溶B量が減少し、Bが有する焼入れ性向上効果が低減する。このため、Nは0.0010〜0.0100%の範囲に限定した。なお、好ましくは0.0010〜0.0080%である。
N: 0.0010 to 0.0100%
N is an element that combines with Al to form AlN, suppresses the growth of crystal grains during heating, and contributes to the refinement of crystal grains. In order to acquire such an effect, 0.0010% or more needs to be contained. On the other hand, when it contains excessively exceeding 0.0100%, it combines with B to form BN, so that the amount of dissolved B decreases and the effect of improving hardenability of B decreases. For this reason, N was limited to the range of 0.0010 to 0.0100%. In addition, Preferably it is 0.0010 to 0.0080%.
B:0.0003〜0.0050%
Bは、粒界に偏析して少量の含有で鋼の焼入れ性を向上させる元素である。このような効果を得るためには、0.0003%以上の含有を必要とする。一方、0.0050%を超えて含有しても、効果が飽和し含有量に見合う効果を期待できないため、経済的に不利となるうえ、粒界に多量に偏析して粒界破壊を促進し、疲労強度を低下させる。このため、Bは0.0003〜0.0050%の範囲に限定した。なお、好ましくは0.0010〜0.0030%である。
B: 0.0003-0.0050%
B is an element that segregates at the grain boundaries and improves the hardenability of the steel with a small content. In order to acquire such an effect, 0.0003% or more needs to be contained. On the other hand, even if the content exceeds 0.0050%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous, and segregates at a large amount on the grain boundary to promote grain boundary fracture, resulting in fatigue. Reduce strength. For this reason, B was limited to the range of 0.0003 to 0.0050%. In addition, Preferably it is 0.0010 to 0.0030%.
上記した成分が基本の成分であるが、これら基本の組成に加えて、選択元素として、Ti:0.1%以下、および/または、Cu:1%以下、Cr:1%以下、Mo:2.0%以下、Ni:2.0%以下のうちから選ばれた1種または2種以上、および/または、W:2.0%以下、V:1.0%以下、Nb:0.1%以下のうちから選ばれた1種または2種以上、を選択して含有できる。 The above-mentioned components are basic components. In addition to these basic compositions, Ti: 0.1% or less and / or Cu: 1% or less, Cr: 1% or less, Mo: 2.0% or less as a selective element Ni: One or more selected from 2.0% or less, and / or W: 2.0% or less, V: 1.0% or less, Nb: 0.1% or less selected from one or two More than one species can be selected and contained.
Ti:0.1%以下
Tiは、鋼中のNと結合し、窒化物(TiN)を形成してNを固定するとともに、熱処理時の結晶粒の粗大化を抑制する作用を有する元素であり、必要に応じて含有できる。このような効果を得るためには、0.01%以上含有することが望ましいが、0.1%を超えて含有すると、加工性、靭性が低下する。このため、含有する場合には、Tiは0.1%以下に限定することが好ましい。なお、より好ましくは0.01〜0.05%である。
Ti: 0.1% or less
Ti is an element that binds to N in steel, forms a nitride (TiN), fixes N, and has an action of suppressing coarsening of crystal grains during heat treatment, and can be contained as necessary. . In order to acquire such an effect, it is desirable to contain 0.01% or more, but when it contains exceeding 0.1%, workability and toughness will fall. For this reason, when it contains, it is preferable to limit Ti to 0.1% or less. In addition, More preferably, it is 0.01 to 0.05%.
Cu:1.0%以下、Cr:1.0%以下、Mo:2.0%以下、Ni:2.0%以下のうちから選ばれた1種または2種以上のうちから選ばれた1種または2種
Cu、Cr、Mo、Niはいずれも、焼入れ性向上を介して鋼の強度増加に寄与し、疲労強度を高める作用を有する元素であり、必要に応じて1種または2種以上を選択して含有できる。このような効果を得るためには、Cu:0.01%以上、Cr:0.01%以上、Mo:0.01%以上、Ni:0.01%以上をそれぞれ含有することが望ましいが、Cu:1.0%、Cr:1.0%、Mo:2.0%、Ni:2.0%をそれぞれ超える含有は、加工性を著しく低下させる。このため、含有する場合には、Cu:1.0%以下、Cr:1.0%以下、Mo:2.0%以下、Ni:2.0%以下にそれぞれ限定することが好ましい。なお、より好ましくは、Cu:0.05〜0.5%、Cr:0.05〜0.5%、Mo:0.05〜0.5%、Ni:0.05〜0.5%である。
Cu: 1.0% or less, Cr: 1.0% or less, Mo: 2.0% or less, Ni: 2.0% or less selected from 1 type or 2 types selected from 2 types or more
Cu, Cr, Mo, and Ni are all elements that contribute to increasing the strength of steel through improving hardenability and have the effect of increasing fatigue strength. Select one or more as required. Can be contained. In order to obtain such an effect, it is desirable to contain Cu: 0.01% or more, Cr: 0.01% or more, Mo: 0.01% or more, Ni: 0.01% or more, but Cu: 1.0%, Cr: 1.0 %, Mo: 2.0%, Ni: More than 2.0%, the workability is significantly reduced. For this reason, when it contains, it is preferable to limit to Cu: 1.0% or less, Cr: 1.0% or less, Mo: 2.0% or less, Ni: 2.0% or less, respectively. More preferably, they are Cu: 0.05-0.5%, Cr: 0.05-0.5%, Mo: 0.05-0.5%, Ni: 0.05-0.5%.
W:2.0%以下、V:1.0%以下、Nb:0.1%以下のうちから選ばれた1種または2種以上
W、V、Nbは、いずれも、炭化物を形成し、鋼の強度を増加させる元素であり、必要に応じて選択して1種または2種以上を含有できる。このような効果を得るためには、W:0.01%以上、V:0.01%以上、Nb:0.01%以上をそれぞれ含有することが望ましいが、W:2.0%、V:1.0%、Nb:0.1%をそれぞれ超えて含有しても、効果が飽和するうえ、加工性が著しく低下する。このため、含有する場合には、W:2.0%以下、V:1.0%以下、Nb:0.1%以下にそれぞれ限定することが好ましい。なお、より好ましくは、W:0.05〜0.5%、V:0.05〜0.5%、Nb:0.001〜0.05%である。
One or more selected from W: 2.0% or less, V: 1.0% or less, Nb: 0.1% or less W, V, and Nb all form carbides and increase the strength of the steel. It is an element and can be selected according to need and contain one or more. In order to obtain such an effect, it is desirable to contain W: 0.01% or more, V: 0.01% or more, and Nb: 0.01% or more, but W: 2.0%, V: 1.0%, Nb: 0.1% Even if it contains exceeding each, an effect is saturated and workability falls remarkably. For this reason, when it contains, it is preferable to limit to W: 2.0% or less, V: 1.0% or less, and Nb: 0.1% or less, respectively. More preferably, W is 0.05 to 0.5%, V is 0.05 to 0.5%, and Nb is 0.001 to 0.05%.
上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、P:0.03%以下、S:0.02%以下、O:0.01%以下が許容できる。
つぎに、本発明超高強度電縫鋼管の組織限定の理由について説明する。
本発明超高強度電縫鋼管は、ベイナイトを主相とし、第二相としてマルテンサイトおよび/またはフェライトを合計で、面積率で0〜20%含む組織を有する。
The balance other than the components described above consists of Fe and inevitable impurities. Inevitable impurities include P: 0.03% or less, S: 0.02% or less, and O: 0.01% or less.
Next, the reason for limiting the structure of the ultrahigh strength electric resistance welded steel pipe of the present invention will be described.
The ultra-high strength ERW steel pipe of the present invention has a structure containing bainite as a main phase and martensite and / or ferrite as a second phase in a total area of 0 to 20% in area ratio.
ベイナイトを主相とすることにより、所望の高強度を確保できるようになる。
主相以外の第二相は、合計で面積率で0〜20%とする。第二相の合計で20%を超えて多くなると、第二相がフェライトの場合には、強度が低下し、所望の高強度を確保できなくなる。一方、第二相がマルテンサイトの場合には延性が低下するとともに、低温靭性が低下する。このため、第二相は、合計で20%以下に限定した。第二相としては、マルテンサイトおよび/またはフェライトとする。
By using bainite as the main phase, a desired high strength can be secured.
The total amount of the second phase other than the main phase is 0 to 20%. If the total amount of the second phase exceeds 20%, when the second phase is ferrite, the strength is lowered and the desired high strength cannot be secured. On the other hand, when the second phase is martensite, the ductility is lowered and the low temperature toughness is lowered. For this reason, the second phase was limited to 20% or less in total. The second phase is martensite and / or ferrite.
つぎに、本発明超高強度電縫鋼管の好ましい製造方法について説明する。
まず、素材鋼管として、上記した組成を有する電縫鋼管を用意し、素材鋼管に縮径圧延を施して製品鋼管とする。
素材鋼管として使用する電縫鋼管は、通常、鋼帯を、連続的にロール成形し、略円筒状のオープン管とし、該オープン管の端部同士を電縫溶接して製造される。使用する鋼帯は、上記した組成を有する熱延鋼帯とすることが、経済性の点から好ましいが、冷延鋼帯でもなんら問題はない。
Next, a preferred method for producing the ultrahigh strength electric resistance welded steel pipe of the present invention will be described.
First, as the material steel pipe, an ERW steel pipe having the above-described composition is prepared, and the material steel pipe is subjected to diameter reduction rolling to obtain a product steel pipe.
The ERW steel pipe used as the material steel pipe is usually manufactured by continuously roll-forming a steel strip to form a substantially cylindrical open pipe, and electro-welding the ends of the open pipe together. The steel strip to be used is preferably a hot-rolled steel strip having the above composition from the viewpoint of economy, but even a cold-rolled steel strip has no problem.
素材鋼管を、Ac3変態点以上、望ましくは1100℃以下の加熱温度に加熱し、均熱する。加熱温度がAc3変態点未満では、電縫溶接部の硬さ低下が不十分となり、母材部との硬さ差をビッカース硬さで50ポイント以下とすることができなくなり、さらに、電縫溶接部の低炭素域における復炭が不十分であるため、電縫溶接部の靭性改善が得られないうえ、管全体での材質の均一性を確保できなくなる。一方、加熱温度が1100℃を超える高温となると、鋼管の表面性状が低下する。なお、加熱温度での保持時間(均熱時間)は0.1〜5min程度とすることが表面肌、材質均一性の観点から好ましい。 The raw steel pipe is heated to a heating temperature not lower than the Ac 3 transformation point, preferably not higher than 1100 ° C., and soaked. The heating temperature is Ac less than 3 transformation point, hardness reduction in the electric-resistance welded portion becomes insufficient, the hardness difference between the base metal can not be less than 50 points in Vickers, further, the electric resistance welded Since the coal recovery in the low carbon region of the welded portion is insufficient, it is impossible to improve the toughness of the electric-welded welded portion and to ensure the uniformity of the material in the entire pipe. On the other hand, when the heating temperature is higher than 1100 ° C., the surface properties of the steel pipe are lowered. The holding time at the heating temperature (soaking time) is preferably about 0.1 to 5 minutes from the viewpoint of surface skin and material uniformity.
加熱後、素材鋼管には、縮径圧延が施される。
縮径圧延は、圧延終了温度:900℃〜Ar3変態点とし、900℃以下の温度域での累積縮径率:20〜75%とする圧延とする。
鋼管表面温度で、圧延終了温度が、900℃を超えて高温では、表面性状が低下する。一方、Ar3変態点未満では、ベイナイト分率が低下し、所望の高強度、高靭性が得られない。このため、縮径圧延の圧延終了温度を900℃〜Ar3変態点の範囲に限定することが好ましい。
After heating, the material steel pipe is subjected to reduced diameter rolling.
The diameter reduction rolling is a rolling at a rolling end temperature: 900 ° C. to Ar 3 transformation point, and a cumulative diameter reduction ratio in a temperature range of 900 ° C. or lower: 20 to 75%.
If the rolling end temperature is higher than 900 ° C. at the surface temperature of the steel pipe, the surface properties are lowered. On the other hand, below the Ar 3 transformation point, the bainite fraction decreases, and the desired high strength and high toughness cannot be obtained. For this reason, it is preferable to limit the rolling end temperature of reduced diameter rolling to the range of 900 ° C. to Ar 3 transformation point.
また、900℃以下の温度域での累積縮径率が20%未満では、加工量が少なすぎて所望の高強度を確保できない。一方、75%を超えると、過度に加工硬化して延性が低下するうえ、生産性が低下する。このため、900℃以下の温度域での累積縮径率を20〜75%に限定することが好ましい。
縮径圧延を終了したのち、管は冷却される。冷却条件はとくに限定する必要はないが、低温靭性向上という観点からは平均冷却速度で0.5℃/s以上10℃/s以下で400℃以下まで冷却することが好ましい。冷却速度(肉厚中心で)が0.5℃/s未満では、フェライト分率が増加し、所望の強度が確保できなくなる。一方、10℃/sを超えるとマルテンサイト分率が増加し、Elの低下が著しくなるため、所望のTS×El値が得られなくなる。
In addition, if the cumulative diameter reduction ratio in the temperature range of 900 ° C. or less is less than 20%, the processing amount is too small to ensure a desired high strength. On the other hand, when it exceeds 75%, work hardening is excessively caused and ductility is lowered, and productivity is lowered. For this reason, it is preferable to limit the cumulative diameter reduction in a temperature range of 900 ° C. or less to 20 to 75%.
After completion of the reduced diameter rolling, the tube is cooled. The cooling conditions are not particularly limited, but from the viewpoint of improving low-temperature toughness, it is preferable to cool to an average cooling rate of 0.5 ° C./s or more and 10 ° C./s or less to 400 ° C. or less. When the cooling rate (at the thickness center) is less than 0.5 ° C./s, the ferrite fraction increases and the desired strength cannot be ensured. On the other hand, if it exceeds 10 ° C./s, the martensite fraction increases and the decrease in El becomes significant, so that the desired TS × El value cannot be obtained.
上記した組成の素材鋼管に、上記した製造方法を適用すれば、引張強さTSが1500MPa以上、かつ強度−伸びバランスTS×Elが27000MPa%以上であり、さらに母材部と電縫溶接部の硬さの差ΔHVが50ポイント以下、−40でのシャルピー衝撃値vE−40が50J/cm2以上である、加工性および低温靭性に優れた超高強度電縫鋼管を容易に得ることができる。
以下、実施例に基づいて、さらに本発明について説明する。
If the above manufacturing method is applied to the material steel pipe having the above composition, the tensile strength TS is 1500 MPa or more and the strength-elongation balance TS × El is 27000 MPa% or more. It is possible to easily obtain an ultra-high-strength electric resistance welded steel pipe having excellent workability and low-temperature toughness with a hardness difference ΔHV of 50 points or less and a Charpy impact value vE −40 of −40 of 50 J / cm 2 or more. .
Hereinafter, based on an Example, this invention is demonstrated further.
表1に示す組成を有する熱延鋼帯(板厚:7.0mm)に、連続的にロール成形し、略円筒状のオープン管とし、該オープン管の端部同士を電縫溶接する造管工程を施して、電縫鋼管(外径:89.1mmφ×肉厚7.0mm)とし、素材鋼管とした。
これら素材鋼管に、表2に示す条件で、縮径圧延を施し、製品鋼管(外径22.2〜69.2mm×肉厚7.0mm)とした。なお、一部の鋼管では、縮径圧延なしの場合を試験し、比較例とした。
A tube forming process in which a hot rolled steel strip having a composition shown in Table 1 (sheet thickness: 7.0 mm) is continuously roll-formed to form a substantially cylindrical open tube, and the ends of the open tube are electro-welded. To give an electric resistance steel pipe (outer diameter: 89.1 mmφ x thickness 7.0 mm), and a raw steel pipe.
These material steel pipes were subjected to reduction rolling under the conditions shown in Table 2 to obtain product steel pipes (outer diameter 22.2 to 69.2 mm × thickness 7.0 mm). In addition, some steel pipes were tested as cases of no diameter reduction rolling and used as comparative examples.
得られた鋼管について、組織観察、引張試験、硬さ測定、衝撃試験を行なった。試験方法はつぎのとおりとした。
(1)組織観察
得られた製品鋼管から組織観察用試験片を採取し、円周方向断面を研磨し、ナイタール腐食して、走査型電子顕微鏡(倍率:2000倍)を用いて、組織を観察し、組織の種類を判別した。
(2)引張試験
得られた製品鋼管から、引張方向が管長手方向となるように、JIS 11号試験片(管状試験片:GL50mm)を採取し、JIS Z 2241の規定に準拠して引張試験を行い、引張特性(引張強さTS、伸びEl)を求めた。
(3)硬さ試験
得られた製品鋼管から、電縫溶接部を含む硬さ測定用試験片を採取し、硬さ分布を測定した。硬さ測定は、ビッカース硬度計(試験力:4.9N)を用いて、管円周方向断面について、母材部から電縫溶接部を含み管円周方向に沿って、0.1mmピッチで測定した。測定位置は、中心偏析を避けた肉厚中央部に近い部分とし、電縫溶接部を中心に片方5mmの範囲とした。得られた結果から、母材部の平均硬さHVと、電縫溶接部の平均硬さHVを求め、電縫溶接部の平均硬さと母材部の平均硬さとの差ΔHVを求めた。
(4)衝撃試験
得られた製品鋼管の肉厚中央から、JIS Z 2242に準拠して、試片長手方向が管軸方向となるように3mm厚のシャルピー衝撃試験片(Vノッチ)を母材部、電縫溶接部から採取し、シャルピー衝撃試験を実施した。なお、電縫溶接部では、Vノッチ底が電縫部に位置するようにノッチ加工を行った。試験温度は−40℃とし、各鋼管各位置3本ずつ試験し、その算術平均値をその鋼管各位置の衝撃値とした。
得られた結果を表3に示す。
The obtained steel pipe was subjected to structure observation, tensile test, hardness measurement, and impact test. The test method was as follows.
(1) Microstructure observation A specimen for microstructural observation is collected from the obtained product steel pipe, the circumferential cross section is polished, the nital corrosion is performed, and the structure is observed using a scanning electron microscope (magnification: 2000 times). The type of tissue was determined.
(2) Tensile test JIS No. 11 test piece (tubular test piece: GL50mm) is taken from the obtained product steel pipe so that the tensile direction is the longitudinal direction of the pipe, and the tensile test is performed in accordance with the provisions of JIS Z 2241. The tensile properties (tensile strength TS, elongation El) were determined.
(3) Hardness test From the obtained product steel pipe, a test piece for hardness measurement including an ERW weld was collected and the hardness distribution was measured. Hardness was measured using a Vickers hardness tester (test force: 4.9 N) at a 0.1 mm pitch along the pipe circumferential direction from the base metal part to the pipe circumferential direction with respect to the pipe circumferential cross section. . The measurement position was a portion close to the center of the wall thickness avoiding the center segregation, and a range of 5 mm on one side centered on the ERW weld. From the obtained results, the average hardness HV of the base metal part and the average hardness HV of the ERW welded part were determined, and the difference ΔHV between the average hardness of the ERW welded part and the average hardness of the base metal part was determined.
(4) Impact test From the thickness center of the product steel pipe obtained, in accordance with JIS Z 2242, a 3 mm thick Charpy impact test piece (V notch) is used as the base metal so that the specimen longitudinal direction is the pipe axis direction. And Charpy impact test were carried out. It should be noted that in the ERW welded portion, notching was performed so that the V-notched bottom was positioned in the ERW portion. The test temperature was −40 ° C., three steel pipes were tested at each position, and the arithmetic average value was taken as the impact value at each steel pipe position.
The obtained results are shown in Table 3.
本発明例はいずれも、焼入れ処理を施すことなく非調質で、引張強さ:1500MPa以上の高強度で、かつ強度−伸びバランスTS×Elが27000MPa%以上と延性に優れ、加工性に優れ、さらに電縫溶接部の平均硬さと母材部の平均硬さとの差ΔHVが50ポイント以下と、管円周方向の均質性にも優れ、かつ−40℃でのシャルピー衝撃値vE−40が50J/cm2以上と低温靭性にも優れた、加工性および低温靭性に優れた超高強度電縫鋼管となっている。 All of the examples of the present invention are non-tempered without quenching, tensile strength: high strength of 1500 MPa or more, strength-elongation balance TS x El of 27000 MPa% or more, excellent ductility, and excellent workability Furthermore, the difference ΔHV between the average hardness of the ERW weld and the average hardness of the base metal part is 50 points or less, excellent in the circumferential direction of the pipe, and the Charpy impact value vE −40 at −40 ° C. is It is an ultra-high-strength ERW steel pipe with excellent workability and low-temperature toughness, excellent in low-temperature toughness of 50 J / cm 2 or more.
一方、本発明の範囲を外れる比較例は、所望の高強度が確保できていないか、伸びが不足し、所望の強度−伸びバランスが確保できていないか、電縫溶接部の平均硬さと母材部の平均硬さとの差ΔHVが大きく、管円周方向の均質性が低下しているか、vE−40が50J/cm2未満と低温靭性が低下している。 On the other hand, in the comparative examples that are outside the scope of the present invention, the desired high strength cannot be ensured, the elongation is insufficient, the desired strength-elongation balance is not ensured, or the average hardness and the base of the ERW welded part. The difference ΔHV from the average hardness of the material part is large, the homogeneity in the circumferential direction of the pipe is reduced, or the low temperature toughness is reduced as vE- 40 is less than 50 J / cm 2 .
Claims (8)
C:0.31〜0.50%、 Si:0.01〜1.0%、
Mn:1.0〜4.0%、 Al:0.1%以下、
N:0.0010〜0.0100%、 B:0.0003〜0.0050%、
を含み、残部Feおよび不可避的不純物からなる組成と、ベイナイトを主相とし、第二相としてマルテンサイトおよび/またはフェライトを合計で、面積率で0〜20%含む組織とを有し、引張強さTSが1500MPa以上で、かつ強度−伸びバランスTS×Elが27000MPa%以上であり、さらに母材部と電縫溶接部の硬さの差ΔHVが50HV以下であり、−40℃でのシャルピー衝撃値がvE−40 :50J/cm2以上であることを特徴とする加工性および低温靭性に優れた中空部材用超高強度電縫鋼管。 % By mass
C: 0.31 to 0.50%, Si: 0.01 to 1.0%,
Mn: 1.0 to 4.0%, Al: 0.1% or less,
N: 0.0010 to 0.0100%, B: 0.0003 to 0.0050%,
And a composition comprising the balance Fe and inevitable impurities, and a structure containing bainite as the main phase and martensite and / or ferrite as the second phase in a total area ratio of 0 to 20%, and tensile strength TS is 1500MPa or more, strength-elongation balance TS x El is 27000MPa or more, hardness difference ΔHV between base metal part and ERW weld is 50HV or less, Charpy impact at -40 ℃ A value of vE −40 : 50 J / cm 2 or more, an ultra-high-strength ERW steel pipe for hollow members excellent in workability and low-temperature toughness.
C:0.31〜0.50%、 Si:0.01〜1.0%、
Mn:1.0〜4.0%、 Al:0.1%以下、
N:0.0010〜0.0100%、 B:0.0003〜0.0050%、
を含み、残部Feおよび不可避的不純物からなる組成の電縫鋼管とし、
前記縮径圧延を、Ac3変態点以上に加熱・均熱したのち、圧延終了温度:Ar3変態点以上900℃以下、900℃以下の温度域での累積縮径率:20〜75%である縮径圧延とすることによって、
ベイナイトを主相とし、第二相としてマルテンサイトおよび/またはフェライトを合計で、面積率で0〜20%含む組織とを有し、引張強さTSが1500MPa以上で、かつ強度−伸びバランスTS×Elが27000MPa%以上であり、さらに母材部と電縫溶接部の硬さの差ΔHVが50HV以下であり、−40℃でのシャルピー衝撃値vE −40 が50J/cm 2 以上である前記製品鋼管を得る
ことを特徴とする加工性および低温靭性に優れた中空部材用超高強度電縫鋼管の製造方法。 An electric-welded steel pipe is a raw steel pipe, and is a method for producing an electric-welded steel pipe having a reduced diameter rolling on the raw steel pipe to obtain a product steel pipe, wherein the raw steel pipe is in mass%,
C: 0.31 to 0.50%, Si: 0.01 to 1.0%,
Mn: 1.0 to 4.0%, Al: 0.1% or less,
N: 0.0010 to 0.0100%, B: 0.0003 to 0.0050%,
And an ERW steel pipe having a composition consisting of the remainder Fe and inevitable impurities,
After the diameter reduction rolling is heated and soaked to the Ac 3 transformation point or higher, the rolling end temperature: Ar 3 transformation point to 900 ° C. or less, and the cumulative diameter reduction ratio in the temperature range of 900 ° C. or less: 20 to 75% By having a certain diameter rolling ,
It has a structure containing bainite as a main phase, martensite and / or ferrite as a second phase in total, and an area ratio of 0 to 20%, a tensile strength TS of 1500 MPa or more, and a strength-elongation balance TS × The above product, wherein El is 27000 MPa% or more, hardness difference ΔHV between base metal part and ERW weld part is 50 HV or less, and Charpy impact value vE −40 at −40 ° C. is 50 J / cm 2 or more. A method for producing an ultra-high-strength electric-welded steel pipe for a hollow member excellent in workability and low-temperature toughness, characterized by obtaining a steel pipe .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011092553A JP5736929B2 (en) | 2011-04-19 | 2011-04-19 | Ultra-high-strength ERW steel pipe with excellent workability and low-temperature toughness and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011092553A JP5736929B2 (en) | 2011-04-19 | 2011-04-19 | Ultra-high-strength ERW steel pipe with excellent workability and low-temperature toughness and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012224900A JP2012224900A (en) | 2012-11-15 |
JP5736929B2 true JP5736929B2 (en) | 2015-06-17 |
Family
ID=47275392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011092553A Expired - Fee Related JP5736929B2 (en) | 2011-04-19 | 2011-04-19 | Ultra-high-strength ERW steel pipe with excellent workability and low-temperature toughness and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5736929B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021037948A1 (en) * | 2019-08-30 | 2021-03-04 | Salzgitter Flachstahl Gmbh | Steel material for a torsionally stressed component, method for producing a torsionally stressed component from said steel material, and component made thereof |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150176109A1 (en) * | 2013-12-20 | 2015-06-25 | Crs Holdings, Inc. | High Strength Steel Alloy and Strip and Sheet Product Made Therefrom |
BR112017004534B1 (en) | 2014-09-08 | 2021-05-04 | Jfe Steel Corporation | high strength seamless steel tube for tubular products for the oil industry and manufacturing method of the same |
KR101666646B1 (en) * | 2015-12-30 | 2016-10-14 | (주)서동 | Ultra high strength steel pipe support manufacturing method using a boron steel and Ultra high sterngth steel pipe support assembly |
WO2018186102A1 (en) * | 2017-04-05 | 2018-10-11 | 新日鐵住金株式会社 | Device and method for manufacturing vehicle underbody component material, quenching steel material for manufacturing vehicle underbody component material, and vehicle underbody component material |
CN110592468B (en) * | 2019-10-25 | 2021-08-20 | 柳州市正东工业技术有限公司 | Casting wear-resistant alloy lining plate |
KR20240101158A (en) * | 2022-12-23 | 2024-07-02 | 현대제철 주식회사 | Non-heat treatment steel rod of excellent cold forging characteristic and method of manufacturing the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05247588A (en) * | 1992-03-06 | 1993-09-24 | Nippon Steel Corp | Cr-based ultrahigh tensile strength resistance welded steel tube excellent in ductility |
JP4506486B2 (en) * | 2005-01-31 | 2010-07-21 | Jfeスチール株式会社 | ERW steel pipe for high-strength hollow stabilizer and method for producing high-strength hollow stabilizer |
JP5353256B2 (en) * | 2008-01-21 | 2013-11-27 | Jfeスチール株式会社 | Hollow member and manufacturing method thereof |
JP5391656B2 (en) * | 2008-11-07 | 2014-01-15 | Jfeスチール株式会社 | High tensile welded steel pipe for automobile parts and manufacturing method thereof |
JP5327106B2 (en) * | 2010-03-09 | 2013-10-30 | Jfeスチール株式会社 | Press member and manufacturing method thereof |
JP5679115B2 (en) * | 2011-02-25 | 2015-03-04 | Jfeスチール株式会社 | High carbon steel pipe excellent in cold workability, machinability and hardenability and method for producing the same |
-
2011
- 2011-04-19 JP JP2011092553A patent/JP5736929B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021037948A1 (en) * | 2019-08-30 | 2021-03-04 | Salzgitter Flachstahl Gmbh | Steel material for a torsionally stressed component, method for producing a torsionally stressed component from said steel material, and component made thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2012224900A (en) | 2012-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5353256B2 (en) | Hollow member and manufacturing method thereof | |
JP4443910B2 (en) | Steel materials for automobile structural members and manufacturing method thereof | |
JP5736929B2 (en) | Ultra-high-strength ERW steel pipe with excellent workability and low-temperature toughness and method for producing the same | |
CN108138279B (en) | High-strength resistance-welded steel pipe for hollow stabilizer, method for producing high-strength resistance-welded steel pipe for hollow stabilizer, high-strength hollow stabilizer, and method for producing high-strength hollow stabilizer | |
JP5040475B2 (en) | Thick-walled hot-rolled steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same | |
JP5845674B2 (en) | High strength steel plate excellent in bending workability and low temperature toughness and method for producing the same | |
WO2014002289A1 (en) | High carbon steel pipe having excellent cold workability, machinability, and quenching properties, and method for manufacturing same | |
JPWO2005080621A1 (en) | Steel plate or steel pipe with small expression of bauschinger effect and method for producing the same | |
JP5892267B2 (en) | ERW steel pipe | |
JP5187003B2 (en) | High strength steel material excellent in formability and fatigue resistance and method for producing the same | |
JP5391656B2 (en) | High tensile welded steel pipe for automobile parts and manufacturing method thereof | |
JP2015190026A (en) | Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor | |
JP4635708B2 (en) | Non-tempered high-tensile welded steel pipe for automotive structural members with excellent formability and low-temperature toughness and excellent torsional fatigue resistance after cross-section forming processing | |
JP5499559B2 (en) | High tensile steel material for automobile undercarriage members having excellent formability and torsional fatigue resistance and method for producing the same | |
JP2002038242A (en) | Stainless steel tube for structural member of automobile excellent in secondary working property | |
JP5679115B2 (en) | High carbon steel pipe excellent in cold workability, machinability and hardenability and method for producing the same | |
JP5573003B2 (en) | High tensile welded steel pipe for automobile parts | |
JP5125601B2 (en) | High tensile welded steel pipe for automobile structural members and method for manufacturing the same | |
JP6796472B2 (en) | Hollow member and its manufacturing method | |
JP5499560B2 (en) | High tensile steel material for automobile undercarriage members having excellent formability and torsional fatigue resistance and method for producing the same | |
US20220186331A1 (en) | Electric resistance-welded steel tube for hollow stabilizer, hollow stabilizer, and manufacturing methods of same | |
JP5942572B2 (en) | ERW welded steel pipe for automobile parts having excellent fatigue resistance and method for producing the same | |
WO2023162507A1 (en) | Steel sheet and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20130702 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140220 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140411 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150304 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150324 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150406 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5736929 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |