JP5573003B2 - High tensile welded steel pipe for automobile parts - Google Patents

High tensile welded steel pipe for automobile parts Download PDF

Info

Publication number
JP5573003B2
JP5573003B2 JP2009129967A JP2009129967A JP5573003B2 JP 5573003 B2 JP5573003 B2 JP 5573003B2 JP 2009129967 A JP2009129967 A JP 2009129967A JP 2009129967 A JP2009129967 A JP 2009129967A JP 5573003 B2 JP5573003 B2 JP 5573003B2
Authority
JP
Japan
Prior art keywords
less
strength
steel pipe
welded
welded steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009129967A
Other languages
Japanese (ja)
Other versions
JP2010275594A (en
Inventor
昌利 荒谷
俊介 豊田
良和 河端
坂田  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009129967A priority Critical patent/JP5573003B2/en
Publication of JP2010275594A publication Critical patent/JP2010275594A/en
Application granted granted Critical
Publication of JP5573003B2 publication Critical patent/JP5573003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、自動車足回り部材、自動車骨格部材等を中心とする自動車部材用として好適な、高張力溶接鋼管に係り、とくに、母材部及び溶接部の低温靭性の向上、さらに溶接部近傍部における円周方向の材質均一性の向上に関する。   The present invention relates to a high-tensile welded steel pipe suitable for use in automobile members centered on automobile undercarriage members, automobile skeleton members, etc., in particular, improvement of low-temperature toughness of the base metal part and the welded part, and the vicinity of the welded part. It relates to improvement of material uniformity in the circumferential direction.

近年、地球環境の保全という観点から、自動車の燃費軽減が指向され、そのため、自動車車体の軽量化が進められている。車体の軽量化の一つの方策として、高強度化した鋼板を素材として使用するようになってきた。また、例えば自動車構造部材においては、従来、溶接した板材が使用されてきたが、車体の軽量化のために、閉断面で高剛性を有する鋼管(中空材)の使用が積極的に進められている。しかし、高強度化のためにCや強化元素を多量に含有させた高強度鋼板を素材とする溶接鋼管の場合にはとくに、母材部に比較して溶接部の硬さが著しく上昇し、このため、溶接部では、母材部に比べ、低温靭性が著しく低下するという問題がある。また、溶接熱影響部(以下、HAZともいう)では軟化が生じる場合があり、とくにハイドロフォーム加工、拡管加工を必要とする部材に適用した場合には、HAZの軟化部で目的の加工が完了する前に、破断が生じるなどの問題があった。   In recent years, from the viewpoint of conservation of the global environment, reduction in fuel consumption of automobiles has been aimed at, and therefore, weight reduction of automobile bodies has been promoted. As a measure to reduce the weight of the car body, steel plates with increased strength have been used as materials. Also, for example, welded plate materials have been conventionally used in automobile structural members. However, in order to reduce the weight of the vehicle body, the use of steel pipes (hollow materials) having high rigidity in a closed cross section has been actively promoted. Yes. However, especially in the case of a welded steel pipe made of a high-strength steel sheet containing a large amount of C or strengthening element for high strength, the hardness of the welded portion is significantly increased compared to the base metal part, For this reason, there exists a problem that low temperature toughness falls remarkably in a welding part compared with a base material part. In addition, softening may occur in the weld heat affected zone (hereinafter also referred to as HAZ), and the target machining is completed in the HAZ softened zone, especially when applied to members that require hydroforming and tube expansion. There was a problem such as the occurrence of breakage.

このような問題に対し、例えば、特許文献1には、C:0.10〜0.65%、Si:0.05〜0.60%、Mn:0.25〜2.0%、Ti:0.020〜0.150%、Mo:0.01〜0.5%、Nb:0.01〜0.1%、V:0.01〜0.1%を含む管用鋼材の熱間圧延時に巻取温度:400〜600℃、または700〜750℃で巻取り、さらに造管後600〜700℃で熱処理する、耐HAZ軟化性の優れた高強度電縫鋼管の製造方法が記載されている。特許文献1に記載された技術によれば、造管時は成形可能な柔らかい材質で、造管後の熱処理を調整して、Tiの析出効果を発現させてHAZ部の軟化を抑制し、溶接部の円周方向硬さ分布を均一化した高強度鋼管を製造できるとしている。   For such a problem, for example, in Patent Document 1, C: 0.10 to 0.65%, Si: 0.05 to 0.60%, Mn: 0.25 to 2.0%, Ti: 0.020 to 0.150%, Mo: 0.01 to 0.5%, Winding temperature of steel for pipes containing Nb: 0.01-0.1%, V: 0.01-0.1% during hot rolling: Winding at 400-600 ° C or 700-750 ° C, and heat treatment at 600-700 ° C after pipe forming A method for producing a high-strength ERW steel pipe excellent in HAZ softening resistance is described. According to the technique described in Patent Document 1, it is a soft material that can be molded at the time of pipe making, adjusting the heat treatment after the pipe making to express the precipitation effect of Ti and suppress the softening of the HAZ part, and welding It is said that a high-strength steel pipe having a uniform hardness distribution in the circumferential direction can be manufactured.

また、特許文献2には、C:0.10〜0.20%、Si:0.15〜0.50%、Mn:1.3〜2.5%、Al:0.01〜0.08%、Ti:0.02〜0.2%、B:0.0010〜0.0030%、N:0.002〜0.005%、Cr:0.3〜0.7%、Mo:0.3〜1.0%、あるいはさらにNb:0.01〜0.10%を含む素材鋼スラブを仕上げ温度950℃以下Ar3変態点以上で熱間圧延し、450〜700℃で巻取った熱延コイルを電縫溶接し、あるいはさらに造管後歪取り焼鈍、焼準、冷間引抜き加工を組み合わせて施す、熱影響部の軟化しにくい高強度電縫鋼管の製造方法が記載されている。特許文献2に記載された技術で製造された電縫鋼管は、引張強さで100〜130kgf/mmの高強度を有し、母材部と溶接部が均一で強度、延性靭性のバランスの優れた電縫鋼管となるとしている。 In Patent Document 2, C: 0.10 to 0.20%, Si: 0.15 to 0.50%, Mn: 1.3 to 2.5%, Al: 0.01 to 0.08%, Ti: 0.02 to 0.2%, B: 0.0010 to 0.0030%, A raw steel slab containing N: 0.002 to 0.005%, Cr: 0.3 to 0.7%, Mo: 0.3 to 1.0%, or Nb: 0.01 to 0.10% is hot-rolled at a finishing temperature of 950 ° C or less and above the Ar3 transformation point. , Hot-stretched coil wound at 450-700 ° C, or high-strength electro-welding that is hard to soften the heat-affected zone by applying post-pipe strain relief annealing, normalizing, and cold drawing A method of manufacturing a steel pipe is described. The electric resistance welded steel pipe manufactured by the technique described in Patent Document 2 has a high strength of 100 to 130 kgf / mm 2 in tensile strength, and the base material portion and the welded portion are uniform, and the balance of strength and ductility toughness is balanced. It is said to be an excellent ERW steel pipe.

特開平04−311526号公報Japanese Patent Laid-Open No. 04-311526 特開平06−10046号公報Japanese Patent Laid-Open No. 06-10046

しかしながら、特許文献1に記載された技術では、造管後の熱処理を必要とし、工程が複雑となり、生産性が低下して製造コストの高騰を招くという問題がある。また、特許文献2に記載された技術も、造管後の熱処理を必要とし、同様に、工程が複雑となり、生産性が低下して製造コストの高騰を招くという問題がある。   However, the technique described in Patent Document 1 has a problem that heat treatment after pipe forming is required, the process becomes complicated, productivity is lowered, and manufacturing costs are increased. In addition, the technique described in Patent Document 2 also requires heat treatment after pipe making, and similarly, there is a problem that the process becomes complicated, the productivity is lowered, and the manufacturing cost is increased.

本発明は、かかる従来技術の問題を解決し、高強度で高靭性、さらに強度延性バランスに優れ、かつ造管後熱処理を行なうことなく、母材部と溶接部の硬度差が小さい、円周方向に均質な材質を有する、高張力溶接鋼管を提供することを目的とする。   The present invention solves such problems of the prior art, has high strength, high toughness, excellent balance of strength and ductility, and has a small hardness difference between the base metal part and the welded part without performing post-tube-forming heat treatment. An object is to provide a high-tensile welded steel pipe having a homogeneous material in the direction.

なお、ここでいう「高強度」とは、引張強さTS:780MPa以上の強度を有する場合をいい、また、「高靭性」とは、鋼管の円周方向におけるシャルピー衝撃試験の破面遷移温度Trs50が−40℃以下である場合を言うものとする。また、「強度延性バランスに優れる」とは、管長手方向を引張り方向とするJIS 12号 B(円弧状)引張試験片を用いて得られた引張強さTS×伸びElが11000MPa・%以上である場合をいうものとする。また、「母材部と溶接部の硬度差が小さい、円周方向に均質な材質」とは、母材部と溶接部の硬度差ΔHVが、ビッカース硬さHV(試験力:4.9Nで測定)で、引張強さTSが780MPa以上980MPa未満の場合、30ポイント以下、引張強さTSが980MPa以上の場合、60ポイント以下である場合をいうものとする。なお、硬さ測定は、溶接部を中心に両側5mmの範囲で円周方向に0.2mmピッチで測定するものとする。そして、溶接熱影響のない範囲の硬さの平均値を母材部硬さHVmとし、溶接部の最高硬さHVmaxおよび軟化部の最低硬さHVminを求める。母材部と溶接部の硬度差ΔHVは次式を用いて算出するものとする。
ΔHV=|HVmax−HVm|又は=|HVm−HVmin|
“High strength” as used herein refers to the case where the tensile strength TS is 780 MPa or more, and “high toughness” refers to the fracture surface transition temperature of the Charpy impact test in the circumferential direction of the steel pipe. The case where Trs 50 is −40 ° C. or lower shall be said. “Excellent strength and ductility balance” means that the tensile strength TS × elongation El obtained using JIS No. 12 B (arc-shaped) tensile specimen with the longitudinal direction of the pipe as the tensile direction is 11000 MPa ·% or more. It shall mean a certain case. Also, “the hardness difference between the base metal part and the welded part is small and the material is homogeneous in the circumferential direction” means that the hardness difference ΔHV between the base metal part and the welded part is measured at Vickers hardness HV (test force: 4.9 N) ), When the tensile strength TS is 780 MPa or more and less than 980 MPa, it means 30 points or less, and when the tensile strength TS is 980 MPa or more, it is 60 points or less. The hardness is measured at a pitch of 0.2 mm in the circumferential direction within a range of 5 mm on both sides around the weld. Then, the average value of the hardness in a range not affected by welding heat is set as the base material part hardness HVm, and the maximum hardness HVmax of the welded part and the minimum hardness HVmin of the softened part are obtained. The hardness difference ΔHV between the base metal part and the welded part is calculated using the following equation.
ΔHV = | HVmax−HVm | or = | HVm−HVmin |

本発明者らは、上記した目的を達成するために、強度、靭性に及ぼす各種要因について鋭意研究した。その結果、C:0.02〜0.20%の低炭素系で、Tiと、さらにMoおよび/またはVを含有する組成とし、平均結晶粒径が10μm以下の微細なフェライト相を主相とし、さらに平均粒径が10nm以下の微細なTiと、Moおよび/またはVを含む複合炭化物を析出させた組織とすることにより、引張強さが780MPa以上の高強度で、かつ高靭性で、さらに溶接部の顕著な硬化およびHAZの顕著な軟化が認められず、円周方向の材質が均質である、高張力溶接鋼管とすることができることを知見した。   In order to achieve the above-mentioned object, the present inventors diligently studied various factors affecting strength and toughness. As a result, C: 0.02 to 0.20% low carbon, a composition containing Ti and further Mo and / or V, a fine ferrite phase having an average crystal grain size of 10 μm or less as a main phase, and an average grain By forming a microstructure in which composite carbide containing fine Ti with a diameter of 10 nm or less and Mo and / or V is precipitated, the tensile strength is high strength of 780 MPa or more, high toughness, and remarkable welded parts It was found that high-strength welded steel pipes with uniform material in the circumferential direction could be obtained without any significant hardening and significant softening of HAZ.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)質量%で、C:0.17〜0.20%、Si:0.001〜1.0%、Mn:0.01〜2.0%、P:0.1%以下、S:0.01%以下、Al:0.01〜0.1%、Ti:0.01〜0.5%を含み、さらに、Mo:0.5%以下および/またはV:0.5%以下を含有し、残部Feおよび不可避的不純物からなる組成と、主相である平均粒径:10μm以下のフェライト相と、面積率で10%以下(0%を含む)の第二相とからなり、平均粒径が10nm以下のTiと、さらにMoおよび/またはVを含む複合炭化物が分散した組織と、を有し、引張強さTS: 980MPa以上で、低温靭性に優れ、強度延性バランスTS×Elが11000MPa%以上で、さらに溶接部の後熱処理を行なうことなく溶接部と母材部の硬度差ΔHVがビッカース硬さで60ポイント以下であることを特徴とする自動車部材用高張力溶接鋼管。
)(1において、前記組成に加えてさらに、質量%で、Nb:0.05%以下を含有する組成とすることを特徴とする自動車部材用高張力溶接鋼管。
)(1)または2)において、前記組成に加えてさらに、質量%で、Cr:0.5%以下、Cu:0.5%以下、Ni:0.5%以下、W:0.05%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする自動車部材用高張力溶接鋼管。
)(1)ないし()のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.02%以下を含有する組成とすることを特徴とする自動車部材用高張力溶接鋼管。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1 ) By mass%, C: 0.17 to 0.20%, Si: 0.001 to 1.0%, Mn: 0.01 to 2.0%, P: 0.1% or less, S: 0.01% or less, Al: 0.01 to 0.1%, Ti: 0.01 A composition containing Mo: 0.5% or less and / or V: 0.5% or less, the balance consisting of Fe and unavoidable impurities, and a ferrite phase having an average particle size of 10 μm or less as a main phase. And a second phase having an area ratio of 10% or less (including 0%), having an average particle size of Ti of 10 nm or less, and a structure in which composite carbide containing Mo and / or V is dispersed. , Tensile strength TS: 980 MPa or more, excellent low-temperature toughness, strength ductility balance TS × El is 11000 MPa% or more, and the hardness difference ΔHV between the welded part and the base metal part without post-heat treatment of the welded part is Vickers hardness A high-strength welded steel pipe for automobile parts, characterized in that it is 60 points or less.
(2) (1), in addition to the composition, by mass%, Nb: high tensile welded steel pipe for automotive member, characterized in that a composition containing 0.05% or less.
( 3 ) In (1) or ( 2) , in addition to the above-mentioned composition, in mass%, Cr: 0.5% or less, Cu: 0.5% or less, Ni: 0.5% or less, W: 0.05% or less A high-tensile welded steel pipe for automobile parts, characterized in that the composition contains one or more kinds.
( 4 ) In any one of (1) to ( 3 ), a high-strength welded steel pipe for automobile members, characterized in that, in addition to the above composition, the composition further contains, by mass%, Ca: 0.02% or less.

本発明によれば、引張強さTS:780MPa以上の高強度と、管円周方向におけるシャルピー衝撃試験の破面遷移温度Trs50が−40℃以下の高靭性とを有し、さらにTS×Elが11000MPa・%以上という強度・延性バランスに優れ、かつ造管後熱処理を行なうことなく、母材部と溶接部の硬度差が小さい、円周方向に均質な材質を有する、高張力溶接鋼管を容易に、かつ安価に製造でき、産業上格段の効果を奏する。 According to the present invention, the tensile strength TS has a high strength of 780 MPa or more, a toughness with a fracture surface transition temperature Trs 50 of −40 ° C. or less in the Charpy impact test in the pipe circumferential direction, and TS × El Is a high-strength welded steel pipe that has an excellent balance between strength and ductility of 11000 MPa ·% or more, has a small hardness difference between the base metal part and the welded part, and has a homogeneous material in the circumferential direction without performing post-heat treatment. It can be manufactured easily and inexpensively, and has a remarkable industrial effect.

まず、本発明高張力溶接鋼管の組成限定理由について説明する。以下、質量%は、とくに断わらない限り単に%で記す。   First, the reasons for limiting the composition of the high-strength welded steel pipe of the present invention will be described. Hereinafter, unless otherwise specified, mass% is simply expressed as%.

C:0.17〜0.20%
Cは、固溶して鋼の強度増加に寄与するとともに、炭化物形成元素と結合して炭化物として析出し、析出強化により強度増加に寄与する元素であり、所望の引張強さを確保するために、本発明では0.02%以上の含有を必要とする。一方、0.20%を超える含有は、延性、靭性の低下を招くとともに、溶接部で過度の硬さ上昇を招き、溶接部の加工性、靭性の低下をもたらす。本発明において、Cは0.17〜0.20%に限定した。
C: 0.17 to 0.20%
C is an element that contributes to increasing the strength of the steel by solid solution and is combined with carbide forming elements to precipitate as carbides and contributes to increasing the strength by precipitation strengthening, in order to ensure the desired tensile strength. In the present invention, a content of 0.02% or more is required. On the other hand, if the content exceeds 0.20%, ductility and toughness are lowered, and excessive hardness rise is caused in the welded part, resulting in lowered workability and toughness of the welded part. In the present invention , C is limited to 0.17 to 0.20%.

Si:0.001〜1.0%
Siは、脱酸剤として寄与するとともに、固溶して鋼の強度を増加させる作用を有する元素である。このような効果を得るためには、0.001%以上の含有を必要とする、一方、1.0%を超える含有は、表面性状の顕著な劣化を招くとともに、延性を低下させ所望の延性を確保することが難しくなるうえ、溶接性をも低下させる。このため、Siは0.001〜1.0%の範囲に限定した。なお、好ましくは0.001〜0.3%である。
Si: 0.001 to 1.0%
Si is an element that contributes as a deoxidizer and has the effect of increasing the strength of steel by solid solution. In order to obtain such an effect, the content of 0.001% or more is required. On the other hand, the content exceeding 1.0% causes a remarkable deterioration of the surface properties and lowers the ductility to ensure a desired ductility. Is difficult and also reduces weldability. For this reason, Si was limited to the range of 0.001 to 1.0%. In addition, Preferably it is 0.001 to 0.3%.

Mn:0.01〜2.0%
Mnは、固溶して鋼の強度増加に寄与する元素であり、所望の引張強さを確保するために、0.01%以上の含有を必要とする。一方、2.0%を超えて含有すると、延性が低下し所望の延性を確保できなくなるとともに、溶接性が低下する。このため、Mnは0.01〜2.0%の範囲に限定した。なお、好ましくは0.5〜1.5%である。
Mn: 0.01-2.0%
Mn is an element that contributes to increasing the strength of the steel by solid solution, and needs to be contained in an amount of 0.01% or more in order to ensure a desired tensile strength. On the other hand, if the content exceeds 2.0%, the ductility is lowered and the desired ductility cannot be secured, and the weldability is lowered. For this reason, Mn was limited to the range of 0.01 to 2.0%. In addition, Preferably it is 0.5 to 1.5%.

P:0.1%以下
Pは、鋼の強度を増加させる作用を元素である。このような効果を得るためには、0.001%以上含有することが望ましいが、0.1%を超える含有は、延性の低下を招く。このため、Pは0.1%以下に限定した。なお、Pによる強化をそれほど必要としない場合には、0.05%以下に限定することが好ましい。
P: 0.1% or less P is an element that increases the strength of steel. In order to acquire such an effect, it is desirable to contain 0.001% or more, but inclusion exceeding 0.1% causes a drop in ductility. For this reason, P was limited to 0.1% or less. In addition, when the reinforcement | strengthening by P is not so required, it is preferable to limit to 0.05% or less.

S:0.01%以下
Sは、鋼中では非金属介在物として存在し、延性や靭性の低下を招くため、できるだけ低減することが望ましい。しかし、0.01%以下に低減すれば、上記した懸念への影響は少なくなる。このため、Sは0.01%以下に限定した。なお、好ましくは0.005%以下である。
S: 0.01% or less S is present as a non-metallic inclusion in steel and causes a decrease in ductility and toughness. Therefore, it is desirable to reduce S as much as possible. However, if it is reduced to 0.01% or less, the above-mentioned concern will be less affected. For this reason, S was limited to 0.01% or less. In addition, Preferably it is 0.005% or less.

Al:0.01〜0.1%
Alは、脱酸剤として作用するとともに、結晶粒粗大化を抑制する作用を有する元素であり、本発明では0.01%以上含有させる。一方、0.1%を超える含有は、酸化物系介在物が増加し、清浄度が低下するとともに、延性が低下する。このため、Alは0.01〜0.1%とした。なお、好ましくは0.01〜0.06%である。
Al: 0.01 to 0.1%
Al is an element that acts as a deoxidizer and has an action of suppressing coarsening of crystal grains. In the present invention, Al is contained by 0.01% or more. On the other hand, if the content exceeds 0.1%, oxide inclusions increase, the cleanliness decreases, and the ductility decreases. For this reason, Al was made 0.01 to 0.1%. In addition, Preferably it is 0.01 to 0.06%.

Ti:0.01〜0.5%とさらにMo:0.5%以下、および/またはV:0.5%以下
Ti、Mo、Vはいずれも、炭化物を形成し析出強化を介して鋼の強度増加に寄与する元素であり、本発明では重要な元素であり、複合して含有する。Tiと、さらにMoおよび/またはVを複合して含有することにより、これら元素の複合炭化物が形成され析出物として分散析出し、母材における所望の高強度を確保するとともに、溶接部における著しい硬化の発生を抑制できる。このような効果を得るためにはそれぞれ、Ti:0.01%以上とMo:0.01%以上および/またはV:0.01%以上の含有を必要とする。一方、Ti:0.5%とMo:0.5%および/またはV:0.5%を、それぞれ超える含有は硬質相が形成され、延性が低下する。このようなことから、それぞれTi:0.01〜0.5%、Mo:0.5%以下、V:0.5%以下の範囲に限定した。
Ti: 0.01 to 0.5%, Mo: 0.5% or less, and / or V: 0.5% or less
Ti, Mo, and V are all elements that form carbides and contribute to increasing the strength of steel through precipitation strengthening, and are important elements in the present invention, and are contained in a composite. By containing Ti and Mo and / or V in a composite, composite carbides of these elements are formed and dispersed and precipitated as precipitates, ensuring the desired high strength in the base metal and significant hardening in the weld zone. Can be suppressed. In order to obtain such effects, it is necessary to contain Ti: 0.01% or more and Mo: 0.01% or more and / or V: 0.01% or more. On the other hand, if the content exceeds Ti: 0.5% and Mo: 0.5% and / or V: 0.5%, a hard phase is formed and ductility is lowered. For this reason, Ti is limited to the range of 0.01 to 0.5%, Mo: 0.5% or less, and V: 0.5% or less, respectively.

上記した成分が基本の成分であるが、本発明では基本の組成に加えてさらに、選択元素として、Nb:0.05%以下、および/または、Cr:0.5%以下、Cu:1%以下、Ni:1%以下、W:0.05%以下のうちから選ばれた1種または2種以上、および/または、Ca:0.02%以下を含有できる。   The above-mentioned components are basic components. In the present invention, in addition to the basic composition, Nb: 0.05% or less and / or Cr: 0.5% or less, Cu: 1% or less, Ni: One or more selected from 1% or less, W: 0.05% or less, and / or Ca: 0.02% or less can be contained.

Nb:0.05%以下
Nbは、鋼の強度を増加させるとともに、組織の微細化に寄与する元素であり、必要に応じて含有できる。このような効果を得るためには、0.005%以上含有することが望ましいが、0.05%を超える含有は、延性を低下させる。このため、Nbは0.05%以下に限定することが好ましい。なお、より好ましくは0.005〜0.02%である。
Nb: 0.05% or less
Nb is an element that increases the strength of the steel and contributes to the refinement of the structure, and can be contained as necessary. In order to acquire such an effect, it is desirable to contain 0.005% or more, but inclusion exceeding 0.05% reduces ductility. For this reason, it is preferable to limit Nb to 0.05% or less. More preferably, it is 0.005 to 0.02%.

Cr:0.5%以下、Cu:0.5%以下、Ni:0.5%以下、W:0.05%以下のうちから選ばれた1種または2種以上
Cr、Cu、Ni、Wはいずれも、鋼の強度を増加させる元素であり、必要に応じて選択して含有できる。
One or more selected from Cr: 0.5% or less, Cu: 0.5% or less, Ni: 0.5% or less, W: 0.05% or less
Cr, Cu, Ni, and W are all elements that increase the strength of steel, and can be selected and contained as necessary.

Crは、鋼中に固溶して鋼の強度を増加させる元素である。このような効果は0.01%以上の含有で顕著となる。一方、0.5%を超える含有は、延性の低下が著しくなる。このため、含有する場合には、Crは0.5%以下に限定する。   Cr is an element that dissolves in steel and increases the strength of the steel. Such an effect becomes remarkable when the content is 0.01% or more. On the other hand, when the content exceeds 0.5%, the ductility deteriorates remarkably. For this reason, when it contains, Cr is limited to 0.5% or less.

Cuは、Crと同様に、鋼中に固溶して鋼の強度を増加させる元素であり、このような効果は0.01%以上の含有で顕著となる。一方、0.5%を超える含有は、延性の低下が著しくなる。このため、含有する場合にはCuは0.5%以下に限定することが好ましい。
Niは、Cr、Cuと同様に、鋼中に固溶して鋼の強度を増加させる元素である。このような効果は0.01%以上の含有で顕著となる。一方、0.5%を超える含有は、延性の低下が著しくなる。このため、含有する場合にはNiは0.5%以下に限定することが好ましい。
Wは、Cr、Cu、Niと同様に、鋼中に固溶して鋼の強度を増加させる元素である。このような効果は0.01%以上の含有で顕著となる。一方、0.05%を超える含有は、延性、靭性の低下が著しくなる。このため、含有する場合にはWは0.05%以下に限定することが好ましい。
Cu, like Cr, is an element that dissolves in steel and increases the strength of the steel, and such an effect becomes significant when the content is 0.01% or more. On the other hand, when the content exceeds 0.5%, the ductility deteriorates remarkably. For this reason, when it contains, it is preferable to limit Cu to 0.5% or less.
Ni, like Cr and Cu, is an element that dissolves in steel and increases the strength of the steel. Such an effect becomes remarkable when the content is 0.01% or more. On the other hand, when the content exceeds 0.5%, the ductility deteriorates remarkably. For this reason, when it contains, it is preferable to limit Ni to 0.5% or less.
W, like Cr, Cu, and Ni, is an element that increases the strength of the steel by forming a solid solution in the steel. Such an effect becomes remarkable when the content is 0.01% or more. On the other hand, if the content exceeds 0.05%, the ductility and toughness are significantly lowered. For this reason, when contained, W is preferably limited to 0.05% or less.

Ca:0.02%以下
Caは、展伸した介在物を球状の介在物とする、いわゆる介在物の形態を制御する作用を有するとともに、成形時の割れや亀裂の進展を抑制し、成形性の向上に寄与する元素であり、必要に応じて含有できる。このような効果を得るためには、0.0020%以上含有することが望ましい。一方、0.02%を超える含有は、非金属介在物量が増加し、延性が低下する。このため、含有する場合には、Caは0.02%以下に限定することが好ましい。
上記した成分以外の残部は、Feおよび不可避的不純物からなる。不可避的不純物としては、N:0.01%以下、O:0.01%以下が許容できる。
Ca: 0.02% or less
Ca is an element that contributes to the improvement of moldability by controlling the shape of so-called inclusions, with the expanded inclusions being spherical inclusions, and suppressing the development of cracks and cracks during molding. Yes, it can be contained if necessary. In order to acquire such an effect, it is desirable to contain 0.0020% or more. On the other hand, if it exceeds 0.02%, the amount of non-metallic inclusions increases and the ductility decreases. For this reason, when it contains, it is preferable to limit Ca to 0.02% or less.
The balance other than the components described above consists of Fe and inevitable impurities. As unavoidable impurities, N: 0.01% or less and O: 0.01% or less are acceptable.

本発明高張力溶接鋼管は、上記した組成を有し、主相である平均粒径:10μm以下のフェライト相と、面積率で10%以下の第二相とからなり、平均粒径が10nm以下の、Tiと、さらにMoおよび/またはVを含む複合炭化物が分散した組織を有する。これにより、引張強さTS:780MPa以上の高強度と、管円周方向のシャルピー衝撃試験の破面遷移温度Trs50が−40℃以下の高靭性とを有し、さらにTS×Elが11000MPa・%以上という強度・延性バランスに優れ、かつ母材部と溶接部の硬度差が小さい、円周方向に均質な材質を有する高張力溶接鋼管を、造管後熱処理を行なうことなく、製造できる。 The high-strength welded steel pipe of the present invention has the above-described composition, and is composed of a ferrite phase having an average particle size of 10 μm or less as a main phase and a second phase having an area ratio of 10% or less, and an average particle size of 10 nm or less. The composite carbide containing Ti and Mo and / or V is dispersed. As a result, it has a high tensile strength of TS: 780 MPa or more, a toughness with a fracture surface transition temperature Trs 50 of −40 ° C. or less in the Charpy impact test in the pipe circumferential direction, and TS × El of 11000 MPa · It is possible to produce a high-tensile welded steel pipe having a uniform material in the circumferential direction with a small hardness difference between the base metal part and the welded part and having a uniform material in the circumferential direction without performing post-heat treatment.

なお、ここでいう「主相」とは、面積率で90%以上、好ましくは95%以上を占める相をいうものとする。主相を平均粒径:10μm以下の転位密度が低い微細フェライト相とすることにより、高強度でかつ高延性を確保できる。また、フェライト相の平均粒径が10μmを超えると、所望の高強度と所望の高靭性とをともに確保することが難しくなる。このため、主相は、平均粒径:10μm以下の微細フェライト相とした。主相以外の第二相は、パーライト、ベイナイト、マルテンサイトのいずれか、あるいはそれらの混合とすることが好ましい。第二相は、面積率で10%以下、好ましくは5%以下(0%を含む)とする。第二相が面積率で10%を超えて多量となると、溶接部(溶接熱影響部)で極端な軟化を生じる。というのは、硬質なマルテンサイト等が、溶接部(溶接熱影響部)でセメンタイトに変化し、溶接部(溶接熱影響部)で著しい軟化を生じる場合があるためである。このため、第二相は、面積率で10%以下(0%を含む)に限定した。なお、好ましくは面積率で5%以下である。   The “main phase” here refers to a phase occupying 90% or more, preferably 95% or more in terms of area ratio. High strength and high ductility can be secured by making the main phase a fine ferrite phase having a low dislocation density with an average particle size of 10 μm or less. On the other hand, if the average particle size of the ferrite phase exceeds 10 μm, it is difficult to ensure both desired high strength and desired high toughness. For this reason, the main phase was a fine ferrite phase having an average particle size of 10 μm or less. The second phase other than the main phase is preferably pearlite, bainite, martensite, or a mixture thereof. The second phase has an area ratio of 10% or less, preferably 5% or less (including 0%). When the amount of the second phase exceeds 10% in area ratio, extreme softening occurs in the weld zone (welding heat affected zone). This is because hard martensite or the like changes to cementite at the welded portion (welding heat affected zone) and may be significantly softened at the welded portion (welded heat affected zone). For this reason, the second phase was limited to 10% or less (including 0%) in area ratio. The area ratio is preferably 5% or less.

また、分散させる複合炭化物は、平均粒径が10nm以下の微細な析出物とする。複合炭化物が平均粒径:10nmを超えて粗大化すると、上記した高強度化を十分に達成できなくなる。分散させる複合炭化物は、Tiと、さらにMoおよび/またはVを含む複合炭化物、すなわち、Ti−Mo系複合炭化物、Ti−Mo−V系複合炭化物、Ti−V系複合炭化物とする。これらの複合炭化物はいずれも、微細に析出するため、加工性を劣化させずに、高強度を確保することができる。また、これらの複合炭化物は、熱的にも安定しており、溶接部においても、粗大化しがたく、溶接部の軟化を抑制することができる。   The composite carbide to be dispersed is a fine precipitate having an average particle size of 10 nm or less. When the composite carbide is coarsened with an average particle size exceeding 10 nm, the above-described increase in strength cannot be achieved sufficiently. The composite carbide to be dispersed is a composite carbide containing Ti and Mo and / or V, that is, a Ti—Mo based composite carbide, a Ti—Mo—V based composite carbide, and a Ti—V based composite carbide. Since all of these composite carbides precipitate finely, high strength can be ensured without degrading workability. Further, these composite carbides are thermally stable and are not easily coarsened even in the welded portion, and can suppress the softening of the welded portion.

つぎに、本発明高張力溶接鋼管の好ましい製造方法について説明する。
まず、上記した組成を有する鋼素材に、熱間圧延を施し熱延鋼帯(熱延板)として鋼管素材とし、該鋼管素材を、造管工程を経て、溶接鋼管とすることが好ましい。
Next, a preferred method for producing the high-strength welded steel pipe of the present invention will be described.
First, it is preferable that the steel material having the above composition is hot-rolled to form a steel pipe material as a hot-rolled steel strip (hot-rolled sheet), and the steel pipe material is made into a welded steel pipe through a pipe forming process.

まず、鋼素材の製造方法は、とくに限定されないが、上記した組成の溶鋼を、転炉、電気炉等の常用の溶製方法で溶製し、連続鋳造法、造塊−分塊法等の常用の方法でスラブ等の圧延素材とすることが好ましい。   First, although the manufacturing method of the steel material is not particularly limited, the molten steel having the above composition is melted by a conventional melting method such as a converter or an electric furnace, and the continuous casting method, the ingot-bundling method, etc. It is preferable to use a rolling material such as a slab by a conventional method.

上記した組成の鋼素材に施す熱間圧延は、仕上圧延終了温度を850℃以上950℃未満とし、巻取温度を500℃以上700℃未満とすることが好ましい。より好ましくは巻取温度は550℃以上である。なお、仕上圧延終了温度が950℃以上では、鋼板の表面性状が劣化し、疲労特性に悪影響を及ぼす。一方、850℃未満では、表層の結晶粒が粗大化し疲労特性が低下するとともに、圧延荷重が増大し、熱間圧延が困難になる。   In the hot rolling applied to the steel material having the above composition, the finish rolling finish temperature is preferably 850 ° C. or higher and lower than 950 ° C., and the winding temperature is preferably 500 ° C. or higher and lower than 700 ° C. More preferably, the coiling temperature is 550 ° C. or higher. When the finish rolling finish temperature is 950 ° C. or higher, the surface properties of the steel sheet deteriorate and adversely affect the fatigue characteristics. On the other hand, when the temperature is lower than 850 ° C., the crystal grains of the surface layer become coarse and the fatigue characteristics are deteriorated, and the rolling load is increased, which makes hot rolling difficult.

また、巻取温度は、フェライト組織とするため、およびランナウトテーブル上での鋼板の走行安定性を確保するため、500℃以上とする。一方、700℃以上となると、パーライトの生成量が増加し、フェライト組織を確保できにくくなる。   The coiling temperature is set to 500 ° C. or higher in order to obtain a ferrite structure and to ensure the running stability of the steel sheet on the run-out table. On the other hand, when the temperature is 700 ° C. or higher, the amount of pearlite generated increases, making it difficult to secure a ferrite structure.

また、溶接鋼管は、上記した鋼管素材を用い、例えば、該鋼管素材を、冷間あるいは温間で、ロール成形あるいは曲げ加工によりオープン管形状としたのち、該オープン管の端部同士を突き合わせ、誘導加熱等を用いて融点以上に加熱しスクイズロールで衝合接合する電縫溶接法を用いて製造することが好ましい。なお、溶接鋼管は、上記した電縫溶接法に限定されるものではなく、鍛接法、あるいはその他の方法、例えば固相圧接法を用いて製造してもよいことは言うまでもない。   In addition, the welded steel pipe uses the above-described steel pipe material, for example, after the steel pipe material is formed into an open pipe shape by roll forming or bending process in a cold or warm manner, the ends of the open pipe are butted together, It is preferable to manufacture by using an electric resistance welding method in which heating is performed at a temperature equal to or higher than the melting point using induction heating or the like and abutting joining is performed using a squeeze roll. Needless to say, the welded steel pipe is not limited to the above-described electric seam welding method, and may be manufactured by a forging method or other methods such as a solid-phase pressure welding method.

以下、本発明について、実施例に基づいてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail based on examples.

表1に示す組成の溶鋼を転炉で溶製したのち、連続鋳造法で鋼素材(スラブ)とした。これら鋼素材に表2に示す条件の熱延工程を施し熱延板(熱延鋼帯)とした。ついで、これら熱延板を鋼管素材として、ロールを用いた連続成形でオープン管形状にしたのち、該オープン管の両端部を突合せ、誘導加熱により融点以上に加熱しスクイズロールで衝合接合して溶接鋼管(外径70mmφ×肉厚2.6mm)とした。   After molten steel having the composition shown in Table 1 was melted in a converter, a steel material (slab) was obtained by a continuous casting method. These steel materials were subjected to a hot rolling process under the conditions shown in Table 2 to obtain hot rolled sheets (hot rolled steel strip). Next, using these hot-rolled sheets as steel pipe materials, after forming into an open pipe shape by continuous forming using rolls, both ends of the open pipe are butted together, heated to the melting point or higher by induction heating, and abutted with a squeeze roll. It was a welded steel pipe (outer diameter 70 mmφ x wall thickness 2.6 mm).

得られた溶接鋼管から、試験片を採取し、組織観察試験、引張試験、衝撃試験、硬さ試験を実施した。試験方法は次の通りである。
(1)組織観察試験
得られた溶接鋼管から、組織観察用試験片を採取し、管軸方向に直交する断面が観察面となるように研磨し、ナイタール腐食して、光学顕微鏡(倍率:400倍)または走査型電子顕微鏡(倍率:2000倍)で組織を観察し、撮像して、主相および第二相の組織の同定を行うとともに、結晶粒径、組織分率を画像解析装置を用いて、算出した。なお、各相の平均粒径は、各相各粒の面積を測定し、円相当直径に換算し、各粒の直径とし、それらを平均してその鋼管の各相の平均粒径とした。
Test pieces were collected from the obtained welded steel pipes, and subjected to a structure observation test, a tensile test, an impact test, and a hardness test. The test method is as follows.
(1) Microstructure observation test A specimen for microstructural observation was collected from the obtained welded steel pipe, polished so that the cross section perpendicular to the pipe axis direction became the observation surface, and subjected to Nital corrosion, and an optical microscope (magnification: 400). ) Or a scanning electron microscope (magnification: 2000 times), observe the structure, take an image, identify the main phase and second phase structures, and use an image analyzer to determine the crystal grain size and tissue fraction. And calculated. In addition, the average particle diameter of each phase measured the area of each particle | grain of each phase, converted into a circle equivalent diameter, made it the diameter of each particle | grain, and averaged them, and it was set as the average particle diameter of each phase of the steel pipe.

また、透過型電子顕微鏡を用いて、組織、析出物の種類、粒径を測定した。析出物の種類は、透過型電子顕微鏡に装着されたエネルギー分散型X線分析装置(EDX)により、含まれる元素を同定して、判定した。析出物の粒径は、各析出物の面積を測定し、該面積から円相当径を算出し、各粒の粒径とし、それらを算術平均して、複合炭化物(析出物)の粒径(平均)とした。
(2)引張試験
得られた溶接鋼管から、管長手方向が引張方向となるように、JIS Z 2201の規定に準拠してJIS 12号A試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(引張強さTS、伸びEl)を測定した。
(3)衝撃試験
得られた溶接鋼管から試験材を採取し展開して、管円周方向が試験片長さ方向となるように、JIS Z 2242の規定に準拠してVノッチ試験片を、母材部および溶接部(ノッチ位置:ボンド部)から採取し、シャルピー衝撃試験を実施し、破面遷移温度Trs50を求め、低温靭性を評価した。
(4)硬さ試験
得られた溶接鋼管から、母材部および溶接部を含む硬さ試験片を採取し、管長手方向と直交する断面が測定面となるように、研磨し、ビッカース硬度計(試験力:4.9N)で、溶接部中心から両側に各々5mmの範囲で円周方向に0.2mmピッチでビッカース硬さHVを測定した。溶接熱影響のない範囲の平均硬さ(母材部硬さ)HVmと溶接部の最高硬さHVmax、最低硬さHVminを求め、ΔHV=|HVmax−HVm|または=|HVm−HVmin|を算出した。
Moreover, the structure | tissue, the kind of deposit, and the particle size were measured using the transmission electron microscope. The type of precipitates was determined by identifying the contained elements with an energy dispersive X-ray analyzer (EDX) attached to a transmission electron microscope. The particle size of the precipitate is obtained by measuring the area of each precipitate, calculating the equivalent circle diameter from the area, setting the particle size of each particle, and arithmetically averaging them to obtain the particle size of the composite carbide (precipitate) ( Average).
(2) Tensile test From the obtained welded steel pipe, JIS No. 12 A test specimens were collected in accordance with the provisions of JIS Z 2201 so that the longitudinal direction of the pipe would be the tensile direction. Tensile tests were performed, and tensile properties (tensile strength TS, elongation El) were measured.
(3) Impact test A test material is collected from the obtained welded steel pipe and developed, and a V-notch test piece is set in accordance with the provisions of JIS Z 2242 so that the pipe circumferential direction is the length direction of the test piece. Samples were taken from the material part and the welded part (notch position: bond part), a Charpy impact test was performed, a fracture surface transition temperature Trs 50 was determined, and low temperature toughness was evaluated.
(4) Hardness test From the obtained welded steel pipe, a hardness test piece including a base metal part and a welded part is sampled and polished so that a cross section perpendicular to the longitudinal direction of the pipe becomes a measurement surface, and a Vickers hardness tester is obtained. (Test force: 4.9 N) Vickers hardness HV was measured at a pitch of 0.2 mm in the circumferential direction within a range of 5 mm on each side from the center of the weld. Calculate the average hardness (base metal hardness) HVm, the maximum hardness HVmax and the minimum hardness HVmin of the weld zone, and ΔHV = | HVmax−HVm | or = | HVm−HVmin | did.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 0005573003
Figure 0005573003

Figure 0005573003
Figure 0005573003

Figure 0005573003
Figure 0005573003

本発明例はいずれも、引張強さTS :780MPa以上の高強度と、母材部および溶接部の管円周方向におけるTrs50が−40℃以下の高靭性と、強度・延性バランスTS×Elが11000MPa%以上の高強度・延性バランスを有し、さらに母材部と溶接部との硬度差ΔHVが30ポイント(TS:760MPa以上980MPa未満の場合)、60ポイント以下(TS:980MPa以上の場合)と、母材部と溶接部の硬度差ΔHVが小さい、管円周方向に均質な材質を有する、高張力溶接鋼管となっている。 In all of the examples of the present invention, tensile strength TS: high strength of 780 MPa or more, high toughness with Trs 50 of −40 ° C. or less in the pipe circumferential direction of the base metal part and the welded part, and a balance between strength and ductility TS × El Has a high strength / ductility balance of 11000 MPa% or more, and the hardness difference ΔHV between the base metal part and the welded part is 30 points (TS: 760 MPa or more and less than 980 MPa), 60 points or less (TS: 980 MPa or more) ), A high-tensile welded steel pipe having a small hardness difference ΔHV between the base metal part and the welded part and having a homogeneous material in the pipe circumferential direction.

一方、本発明の範囲を外れる比較例は、強度、延性、低温靭性のうちのいずれかが低下しているか、あるいは母材部と溶接部の硬度差ΔHVが大きく、管円周方向に材質差が生じている。   On the other hand, in the comparative example outside the scope of the present invention, either the strength, ductility, or low temperature toughness is reduced, or the hardness difference ΔHV between the base metal part and the welded part is large, and there is a material difference in the pipe circumferential direction. Has occurred.

Claims (4)

質量%で、
C:0.17〜0.20%、 Si:0.001〜1.0%、
Mn:0.01〜1.5%、 P:0.1%以下、
S:0.01%以下、 Al:0.01〜0.1%、
Ti:0.01〜0.5%
を含み、さらに、Mo:0.5%以下および/またはV:0.5%以下を含有し、残部Feおよび不可避的不純物からなる組成と、
主相である平均粒径:10μm以下のフェライト相と、面積率で10%以下(0%を含む)の第二相とからなり、平均粒径が10nm以下のTiと、Moおよび/またはV を含む複合炭化物が分散した組織と、
を有し、引張強さTS:980MPa以上で、低温靭性に優れ、強度延性バランスTS×Elが11000MPa%以上で、さらに溶接部の後熱処理を行なうことなく溶接部と母材部の硬度差ΔHVがビッカース硬さで60ポイント以下であることを特徴とする自動車部材用高張力溶接鋼管。
% By mass
C: 0.17 to 0.20%, Si: 0.001 to 1.0%,
Mn: 0.01 to 1.5%, P: 0.1% or less,
S: 0.01% or less, Al: 0.01 to 0.1%,
Ti: 0.01-0.5%
And a composition comprising Mo: 0.5% or less and / or V: 0.5% or less, the balance being Fe and inevitable impurities,
Average particle size as the main phase: Ferrite phase of 10 μm or less and second phase with area ratio of 10% or less (including 0%), Ti with an average particle size of 10 nm or less, Mo and / or V A structure in which a composite carbide containing is dispersed,
Tensile strength TS: 980 MPa or more, excellent low-temperature toughness, strength ductility balance TS x El is 11000 MPa% or more, and hardness difference ΔHV between welded part and base metal part without post-heat treatment of welded part A high-tensile welded steel pipe for automobile parts, characterized by having a Vickers hardness of 60 points or less.
前記組成に加えてさらに、質量%で、Nb:0.05%以下を含有する組成とすることを特徴とする請求項1に記載の自動車部材用高張力溶接鋼管。 The high-strength welded steel pipe for automobile members according to claim 1, wherein the composition further contains Nb: 0.05% or less in mass% in addition to the composition. 前記組成に加えてさらに、質量%で、Cr:0.5%以下、Cu:0.5%以下、Ni:0.5%以下、W:0.05%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1または2に記載の自動車部材用高張力溶接鋼管。 In addition to the above composition, the composition further contains, by mass%, one or more selected from Cr: 0.5% or less, Cu: 0.5% or less, Ni: 0.5% or less, W: 0.05% or less. The high-tensile welded steel pipe for automobile parts according to claim 1 or 2 . 前記組成に加えてさらに、質量%で、Ca:0.02%以下を含有する組成とすることを特徴とする請求項1ないしのいずれかに記載の自動車部材用高張力溶接鋼管。 The high-tensile welded steel pipe for automobile members according to any one of claims 1 to 3 , wherein in addition to the composition, the composition further contains Ca: 0.02% or less by mass%.
JP2009129967A 2009-05-29 2009-05-29 High tensile welded steel pipe for automobile parts Active JP5573003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009129967A JP5573003B2 (en) 2009-05-29 2009-05-29 High tensile welded steel pipe for automobile parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009129967A JP5573003B2 (en) 2009-05-29 2009-05-29 High tensile welded steel pipe for automobile parts

Publications (2)

Publication Number Publication Date
JP2010275594A JP2010275594A (en) 2010-12-09
JP5573003B2 true JP5573003B2 (en) 2014-08-20

Family

ID=43422828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009129967A Active JP5573003B2 (en) 2009-05-29 2009-05-29 High tensile welded steel pipe for automobile parts

Country Status (1)

Country Link
JP (1) JP5573003B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111556A1 (en) * 2012-01-26 2013-08-01 Jfeスチール株式会社 High-strength hot-rolled steel sheet and method for producing same
MX2017005170A (en) * 2014-10-23 2017-07-27 Jfe Steel Corp High-strength welded steel pipe for airbag inflator, and method for manufacturing same.
CN109338221B (en) * 2018-11-07 2021-01-26 林州凤宝管业有限公司 Trailer axle tube and production method thereof
CN113416887B (en) * 2021-05-21 2022-07-19 鞍钢股份有限公司 Automobile super-high formability 980 MPa-grade galvanized steel plate and preparation method thereof
CN118159675A (en) * 2021-10-26 2024-06-07 日本制铁株式会社 Steel pipe welded joint

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119812A (en) * 1998-10-09 2000-04-25 Nippon Steel Corp Resistance welded tube excellent in workability, and its manufacture
JP3925290B2 (en) * 2002-04-26 2007-06-06 Jfeスチール株式会社 High-tensile welded steel pipe with excellent workability and toughness and method for producing the same
JP4363345B2 (en) * 2005-03-18 2009-11-11 住友金属工業株式会社 Hot-rolled steel sheet for hydroforming, its manufacturing method, and electric-welded steel pipe for hydroforming
JP4853075B2 (en) * 2006-03-28 2012-01-11 住友金属工業株式会社 Hot-rolled steel sheet for hydroforming and its manufacturing method, and electric resistance welded steel pipe for hydroforming
JP4853082B2 (en) * 2006-03-30 2012-01-11 住友金属工業株式会社 Steel plate for hydroforming, steel pipe for hydroforming, and production method thereof
JP4466619B2 (en) * 2006-07-05 2010-05-26 Jfeスチール株式会社 High tensile welded steel pipe for automobile structural members and method for manufacturing the same

Also Published As

Publication number Publication date
JP2010275594A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
US7048811B2 (en) Electric resistance-welded steel pipe for hollow stabilizer
US9862014B2 (en) Method for electric resistance welded steel tube
JP5499733B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP5092358B2 (en) Manufacturing method of high strength and tough steel sheet
JP5040475B2 (en) Thick-walled hot-rolled steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same
JP5391656B2 (en) High tensile welded steel pipe for automobile parts and manufacturing method thereof
JP4853075B2 (en) Hot-rolled steel sheet for hydroforming and its manufacturing method, and electric resistance welded steel pipe for hydroforming
JP4853082B2 (en) Steel plate for hydroforming, steel pipe for hydroforming, and production method thereof
WO2010087512A1 (en) Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor
JP6773020B2 (en) Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method
JP5375981B2 (en) Wear-resistant welded steel pipe with excellent weld crack resistance and method for producing the same
WO2016063513A1 (en) High-strength welded steel pipe for airbag inflator, and method for manufacturing same
CN109642284B (en) Electric welding steel pipe for torsion beam
JPWO2019220577A1 (en) Asroll ERW Steel Pipe for Torsion Beam
JP5736929B2 (en) Ultra-high-strength ERW steel pipe with excellent workability and low-temperature toughness and method for producing the same
JP2019116658A (en) Electroseamed steel pipe excellent in fatigue strength, and manufacturing method therefor
JP6128042B2 (en) Low yield ratio high strength spiral steel pipe pile and manufacturing method thereof
JP5573003B2 (en) High tensile welded steel pipe for automobile parts
JP4635708B2 (en) Non-tempered high-tensile welded steel pipe for automotive structural members with excellent formability and low-temperature toughness and excellent torsional fatigue resistance after cross-section forming processing
JP2008163409A (en) High tensile strength welded steel pipe for automobile structural member, and method for producing the same
JP5499559B2 (en) High tensile steel material for automobile undercarriage members having excellent formability and torsional fatigue resistance and method for producing the same
JP2007177326A (en) High tensile strength thin steel sheet having low yield ratio and its production method
JP2019116659A (en) Thick walled large diameter electroseamed steel pipe excellent in fatigue strength, and manufacturing method therefor
JP5125601B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
JP5499560B2 (en) High tensile steel material for automobile undercarriage members having excellent formability and torsional fatigue resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130614

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5573003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250