JP2008007805A - Production method of ferritic steel - Google Patents

Production method of ferritic steel Download PDF

Info

Publication number
JP2008007805A
JP2008007805A JP2006176864A JP2006176864A JP2008007805A JP 2008007805 A JP2008007805 A JP 2008007805A JP 2006176864 A JP2006176864 A JP 2006176864A JP 2006176864 A JP2006176864 A JP 2006176864A JP 2008007805 A JP2008007805 A JP 2008007805A
Authority
JP
Japan
Prior art keywords
ferritic steel
temperature
heating
steel
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006176864A
Other languages
Japanese (ja)
Other versions
JP4355787B2 (en
Inventor
Takanori Nakazawa
崇徳 中澤
Satoshi Mogi
智 茂木
Kenichi Kimura
健一 木村
Takasumi Wakai
隆純 若井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Japan Atomic Energy Agency
Original Assignee
Gunma University NUC
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC, Japan Atomic Energy Agency filed Critical Gunma University NUC
Priority to JP2006176864A priority Critical patent/JP4355787B2/en
Publication of JP2008007805A publication Critical patent/JP2008007805A/en
Application granted granted Critical
Publication of JP4355787B2 publication Critical patent/JP4355787B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a high-chromium ferritic steel excellent in creep ductility. <P>SOLUTION: The high-chromium ferritic steel is produced by conducting a step of heating a ferritic steel with a thickness th[mm] at ≥T<SB>1</SB>[°C] for ≥t<SB>1</SB>[min], a step of cooling the ferritic steel under a condition yielding a cooling rate of ≥10°C/sec at the center of thickness, a step of subsequently heating the same at 450-600°C and a step of subsequently heating the same at 650-780°C, wherein T<SB>1</SB>is a temperature defined by the equation 1: T<SB>1</SB>=3427×(C+N)×(Nb+V)+1,050 and t<SB>1</SB>is a time defined by the equation 2: t<SB>1</SB>=0.3th+10. The ferritic steel comprises, by weight, 0.01-0.05% C, 0.01-0.05% N, 8-13% Cr, 0.03-0.07% Nb, 0.05-0.20% V and the balance being Fe and unavoidable impurities. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高温で安定な微細析出物を高密度に分散析出させた高クロムフェライト鋼を製造する、フェライト鋼の製造方法に関わる。   The present invention relates to a ferritic steel manufacturing method for manufacturing a high chromium ferritic steel in which fine precipitates stable at high temperature are dispersed and precipitated at a high density.

高温機器に使用される耐熱鋼は、高クロムフェライト鋼と、オーステナイト系ステンレス鋼とに、大別される。   Heat resistant steels used for high temperature equipment are roughly classified into high chromium ferritic steels and austenitic stainless steels.

このうち、高クロムフェライト鋼は、400℃から600℃の温度域で強度や耐食性・耐酸化性が優れているため、ボイラーや火力発電や化学プラントの耐熱耐圧部材として用いることが考えられている(例えば、特許文献1及び特許文献2参照)。   Among these, high chromium ferritic steel is considered to be used as a heat and pressure resistant member for boilers, thermal power generation and chemical plants because it has excellent strength, corrosion resistance and oxidation resistance in the temperature range of 400 ° C to 600 ° C. (For example, refer to Patent Document 1 and Patent Document 2).

ところで、現在、開発・実用化が進められている、液体ナトリウムを冷却材とする高速増殖炉(FBR)の構造物は、稼働・停止・運転制御による温度変動に伴う熱応力が繰り返し負荷されるため、耐熱応力設計用の鉄鋼材料を必要とする。
このため、高速増殖炉の構造物に使用される材料には、クリープ強度よりも、クリープ延性が求められる。また、大型の溶接構造物となるため、靱性も必要となる。
By the way, the structure of a fast breeder reactor (FBR) using liquid sodium as a coolant, which is currently being developed and put to practical use, is repeatedly subjected to thermal stress accompanying temperature fluctuations due to operation / stop / operation control. Therefore, a steel material for heat stress design is required.
For this reason, creep ductility is required rather than creep strength for the material used for the structure of the fast breeder reactor. Moreover, since it becomes a large-sized welded structure, toughness is also required.

これまでの開発段階のFBRには、クリープ延性及び靱性に優れる、オーステナイト系ステンレス鋼が使用されてきた。   Austenitic stainless steels having excellent creep ductility and toughness have been used for FBR in the development stage so far.

しかし、オーステナイト系ステンレス鋼は、高クロムフェライト鋼よりも熱膨張係数が大きく、かつ熱伝導度が低いため、運転中に発生する熱応力が高くなる、という欠点を有する。
このため、熱応力の観点から、高クロム系フェライト鋼をFBRの構造物に使用できれば、大幅な設計合理化が可能となり、実用化の最大の課題となっている経済性を、大きく向上させることができる。
However, since austenitic stainless steel has a larger coefficient of thermal expansion than that of high chromium ferritic steel and a low thermal conductivity, it has a drawback that thermal stress generated during operation is increased.
Therefore, from the viewpoint of thermal stress, if high-chromium ferritic steel can be used for FBR structures, it will be possible to greatly rationalize the design and greatly improve the economic efficiency, which is the biggest problem in practical use. it can.

特開平6−10041号公報JP-A-6-10041 特開平8−337813号公報JP-A-8-337813

しかしながら、従来の高クロム系フェライト鋼は、高圧力環境となる火力発電ボイラー等の耐圧力設計用の鉄鋼材料として開発・実用化されてきたため、専らクリープ強度を指向した合金設計がなされており、クリープ延性や靱性はオーステナイト系ステンレス鋼よりも劣っている。
このため、現在、開発・実用化されている火力発電ボイラー用の高クロムフェライト鋼では、FBRの構造物への適用条件を満足することはできない。
However, conventional high-chromium ferritic steel has been developed and put to practical use as a steel material for pressure-resistant design such as thermal power boilers that become high-pressure environments. Creep ductility and toughness are inferior to austenitic stainless steel.
For this reason, the high-chromium ferritic steel for thermal power boilers currently developed and put into practical use cannot satisfy the application conditions for FBR structures.

上述した問題の解決のために、本発明においては、優れたクリープ延性を有し、高速増殖炉の構造物に用いて好適な高クロムフェライト鋼を製造することができる、フェライト鋼の製造方法を提供するものである。なお、構造用の材料であることから、所定水準のクリープ強度が必要である。   In order to solve the above-described problems, the present invention provides a method for producing ferritic steel, which has excellent creep ductility and can be used for producing a high chromium ferritic steel suitable for use in a structure of a fast breeder reactor. It is to provide. In addition, since it is a structural material, a predetermined level of creep strength is required.

火力発電ボイラー用の高クロム(Cr)フェライト鋼のクリープ延性や靱性が低い原因は、クリープ強度を高めるために、強化元素として、炭素(C)、ニオブ(Nb)、バナジウム(V)、モリブデン(Mo)、タングステン(W)を多量に含有している点にある。
これら多量に添加された元素は、熱間圧延等の製造工程や熱処理工程あるいは高温使用中に粗大な析出物を形成し、クリープ延性や靱性を低下させることになる。
The reason for the low creep ductility and toughness of high chromium (Cr) ferritic steels for thermal power boilers is that carbon (C), niobium (Nb), vanadium (V), molybdenum ( Mo) and tungsten (W) are contained in large quantities.
These elements added in a large amount form coarse precipitates during a manufacturing process such as hot rolling, a heat treatment process, or high temperature use, thereby reducing creep ductility and toughness.

本発明は、強度を指向した火力用高クロム鋼の高温長時間における材料特性劣化因子であるCr炭化物や、金属間化合物Laves相の析出等を排除した、新しい成分系(低炭素で、かつMo及びWは固溶限以下の添加に抑える)において、MX(MXとは、V,Nbの炭窒化物である。MはNb及びVを、XはC及びNを、それぞれ表す記号である。)の析出強化機構の高温長時間安定化を追求したものである。
析出強化は、析出物のサイズと密度(数)に依存するため、その強化機構の維持には、高温使用中の析出物の凝集・粗大化を防止する必要がある。
使用温度より十分に高い温度で生成させた析出物は、使用温度での凝集・粗大化は抑制されるが、析出物のサイズが大きく密度は低くなるため、十分な強化作用が得られない。
一方、使用温度近傍の熱処理では、微細・高密度の強化に有効な析出形態が得られるが、使用中の凝集・粗大化は抑制できない。
The present invention is a new component system (low carbon and Mo) that eliminates Cr carbide, which is a deterioration factor of material properties of high-chromium steel for thermal power oriented at a high temperature for a long time, and precipitation of intermetallic compound Laves phase. And W are limited to additions below the solid solubility limit) MX (MX is a carbonitride of V and Nb, M is a symbol representing Nb and V, and X is a symbol representing C and N, respectively. ) Is pursuing high temperature long time stabilization of precipitation strengthening mechanism.
Precipitation strengthening depends on the size and density (number) of the precipitates, and thus maintaining the strengthening mechanism requires preventing the precipitates from agglomerating and coarsening during high temperature use.
The precipitate produced at a temperature sufficiently higher than the use temperature is suppressed from agglomeration and coarsening at the use temperature. However, since the size of the precipitate is large and the density is low, a sufficient strengthening action cannot be obtained.
On the other hand, in the heat treatment near the use temperature, a precipitation form effective for fine and high-density strengthening can be obtained, but aggregation and coarsening during use cannot be suppressed.

本発明は、低温焼戻しにより微細MXの析出核を高密度に分布させた後に、高温焼戻しにより微細MXを高密度に析出させることによって、高温で安定な析出形態を実現し、析出強化機構を高温で長時間確保したものである。   The present invention realizes a stable precipitation form at high temperature by precipitating fine MX with high density by high-temperature tempering after distributing fine MX precipitation nuclei with high-density by low-temperature tempering, and a high-temperature precipitation strengthening mechanism. It was secured for a long time.

即ち、本発明のフェライト鋼の製造方法は、重量%で、C:0.01〜0.05%、N:0.01〜0.05%、Cr:8〜13%、Nb:0.03〜0.07%、V:0.05〜0.20%を含有し、残部がFe及び不可避不純物からなる、厚さth[mm]のフェライト鋼を、下記式1に示される温度T[℃]以上で、下記式2に示される時間t[分]以上加熱する工程(第1の加熱工程)と、
=3427×(C+N)×(Nb+V)+1050 (式1)
(ただし、C,N,Nb,Vは、各元素の含有量(重量%)である)
=0.3th+10 (式2)
その後、フェライト鋼の肉厚中心位置が10℃/sec以上の冷却速度となる条件で冷却する工程(冷却工程)と、
その後、450〜600℃の範囲の温度T[℃]において、下記式3に示される指数1が15500〜17300となる時間t[時間]加熱する工程(第2の加熱工程)と、
指数1=(T+273)(logt+20) (式3)
その後、650〜780℃の範囲の温度T[℃]において、下記式4に示される指数2が19600〜21100となる時間t[時間]加熱する工程(第3の加熱工程)とを行う
指数2=(T+273)(logt+20) (式4)
ものである。
That is, the method for producing a ferritic steel according to the present invention is, in wt%, C: 0.01 to 0.05%, N: 0.01 to 0.05%, Cr: 8 to 13%, Nb: 0.03. A ferritic steel having a thickness of th [mm], containing 0.0 to 7%, V: 0.05 to 0.20%, the balance being Fe and inevitable impurities, is expressed by the temperature T 1 [ [° C.] or more and a step of heating for a time t 1 [min] or more shown in the following formula 2 (first heating step);
T 1 = 3427 × (C + N) × (Nb + V) +1050 (Formula 1)
(However, C, N, Nb, and V are the content (% by weight) of each element)
t 1 = 0.3th + 10 (Formula 2)
Thereafter, a cooling step under the condition that the thickness center position of the ferritic steel has a cooling rate of 10 ° C./sec or more, and
Thereafter, at a temperature T 2 [° C.] in the range of 450 to 600 ° C., a step of heating t 2 [hour] when the index 1 shown in the following formula 3 becomes 15500 to 17300 (second heating step);
Index 1 = (T 2 +273) (logt 2 +20) (Formula 3)
After that, at a temperature T 3 [° C.] in the range of 650 to 780 ° C., a time t 3 [hour] heating step (third heating step) at which the index 2 shown in the following formula 4 becomes 19600 to 21100 is performed. Index 2 = (T 3 +273) (logt 3 +20) (Formula 4)
Is.

また、本発明において、より好ましくは、フェライト鋼を、さらに重量%で、Mo:0.2〜0.6%、W:0.2〜0.6%のいずれか、あるいは双方を成分として含有する構成とする。   In the present invention, more preferably, ferritic steel is further contained by weight, Mo: 0.2 to 0.6%, W: 0.2 to 0.6%, or both as components. The configuration is as follows.

上述の本発明のフェライト鋼の製造方法の各構成要件は、以下のように導き出されたものである。   Each component of the manufacturing method of the above-mentioned ferritic steel of the present invention is derived as follows.

(1)使用するフェライト鋼(高クロム鋼)の化学成分
使用するフェライト鋼(高クロム鋼)において、各成分元素の含有量は、次のように規定される。
まず、C及びNは、Nb及びVの炭窒化物であるMXによる析出強化の基本元素としての役割から、0.01%以上を必要とするが、それぞれ0.05%を越えて含有するとMXの粗大化を引き起こして靱性を劣化させるため、この値を上限とした。
Crは、耐酸化性や焼き入れ性の確保のために、8%以上が必要であるが、過剰に含有すると金属間化合物が析出し靱性を損なうため、13%以下とした。
Nb及びVは、析出強化のためのMXを構成する元素であるが、その効果はNbでは0.03%以上、Vでは0.05%以上で生じることから、これらの値を下限値とした。一方、過剰に添加するとMXの析出量の増加による靱性劣化が生じるため、Nbは0.07%、Vは0.20%を上限値とした。
Mo及びWは、共に固溶強化により強度を高める元素であり、その作用は0.2%以上で有効となる。これら元素の添加量が使用温度における固溶限以下であれば、極めて安定な強化作用を得ることができる。しかし、固溶限以上に添加すると、高温使用中に金属間化合物として析出するため、固溶強化作用は高温で長時間使用後には固溶限添加鋼のレベルにまで低下することに加え、金属間化合物による靱性劣化が生じることから、上限を0.6%とした。
(1) Chemical composition of ferritic steel (high chromium steel) used In the ferritic steel (high chromium steel) used, the content of each component element is defined as follows.
First, C and N require 0.01% or more from the role of precipitation strengthening by MX, which is a carbonitride of Nb and V, but if it contains more than 0.05%, MX This value was made the upper limit in order to cause coarsening of the steel and deteriorate toughness.
Cr needs to be 8% or more in order to ensure oxidation resistance and hardenability, but if it is excessively contained, an intermetallic compound precipitates and impairs toughness, so it was made 13% or less.
Nb and V are elements constituting MX for precipitation strengthening, but the effect is produced at 0.03% or more for Nb and 0.05% or more for V. Therefore, these values are set as lower limit values. . On the other hand, if added excessively, toughness deterioration occurs due to an increase in the amount of MX precipitated, so Nb was set to 0.07% and V was set to 0.20% as the upper limit.
Both Mo and W are elements that increase the strength by solid solution strengthening, and the effect is effective at 0.2% or more. If the amount of these elements added is below the solid solubility limit at the operating temperature, a very stable strengthening action can be obtained. However, if added above the solid solubility limit, it precipitates as an intermetallic compound during use at high temperatures, so that the solid solution strengthening action decreases to the level of solid solution addition steel after long-term use at high temperatures. Since the toughness deterioration due to the intermetallic compound occurs, the upper limit was made 0.6%.

(2)析出物の形成条件
A.第1の加熱工程
微細なMXを析出させるためには、熱間圧延等の素材の製造過程で析出した粗大なMXを、固溶させる必要がある。そのためには、MXの固溶温度以上に加熱しなければならないが、その温度は構成元素の量が増加すると共に上昇する。即ち、固溶させるためには(C+N)×(Nb+V)で表されるMXの溶解度積に対応して温度を上昇させる必要がある。
このような考え方の元に、粗大なMXを再固溶する工業的な温度として、式1に示すようなC,N,Nb,V量に依存するTを選定した。なお、式1における定数1050は、格子欠陥を多量に含む各種の加工や変態組織を完全なオーステナイト組織にするための温度(℃)であり、第一項の係数3427は経験的に得られたものである。
このような組織制御は、基本的には拡散過程によるものであり、式2に示す拡散のための時間t(分)が必要となる。式2における定数10は、各種の履歴により製造された素材を完全なオーステナイト組織にするために必要な時間(分)であり、第一項の係数0.3は、肉厚thの増加と共に、素材の製造工程で生じる粗大なMXのサイズが大きくなるため、固溶に必要な拡散時間が長くなることにより導入したものであり、その係数は経験的に得られたものである。
(2) Precipitate formation conditions 1st heating process In order to precipitate fine MX, it is necessary to make the solid MX which precipitated in the manufacturing processes of raw materials, such as hot rolling, form a solid solution. For that purpose, it must be heated to a temperature equal to or higher than the solid solution temperature of MX, and the temperature rises as the amount of constituent elements increases. That is, in order to form a solid solution, it is necessary to raise the temperature corresponding to the solubility product of MX represented by (C + N) × (Nb + V).
Based on this concept, T 1 depending on the amounts of C, N, Nb, and V as shown in Equation 1 was selected as an industrial temperature for re-dissolving coarse MX. The constant 1050 in Equation 1 is a temperature (° C.) for making various processing and transformation structures containing a large amount of lattice defects into a complete austenite structure, and the coefficient 3427 of the first term was obtained empirically. Is.
Such tissue control is basically based on the diffusion process, and the time t 1 (minute) for diffusion shown in Equation 2 is required. The constant 10 in Equation 2 is the time (minutes) required to make a material manufactured with various histories into a complete austenite structure, and the coefficient 0.3 of the first term is increased with the increase in the thickness th. Since the size of coarse MX generated in the raw material manufacturing process is increased, the diffusion time necessary for solid solution is increased, and the coefficient is obtained empirically.

B.冷却工程
次に、固溶加熱温度からの冷却において、冷却速度が10℃/secより小さくなると冷却中に粗大な析出が生じ、目的とする微細MXの高密度分散を得ることができなくなる。従って、この冷却中の析出を抑制するため、冷却速度が最も遅くなる肉厚中心部の冷却速度を10℃/sec以上とする必要がある。
B. Cooling step Next, in cooling from the solid solution heating temperature, if the cooling rate is less than 10 ° C./sec, coarse precipitation occurs during cooling, and the desired high density dispersion of fine MX cannot be obtained. Therefore, in order to suppress this precipitation during cooling, it is necessary to set the cooling rate at the center of the thickness where the cooling rate is the slowest to 10 ° C./sec or more.

C.第2の加熱工程
このようにして析出物形成元素であるC,N,Nb,Vを十分に固溶した素材を、その後、450℃〜600℃の温度域Tで式3に示す時間t加熱する工程(第2の加熱工程)を行うことにより、非常に微細なMXを析出させることができる。即ち、この熱処理は微細なMXを高密度に得るための析出核を準備するものである。この第2の加熱工程の温度と析出状態との間には、温度が低いほど析出核の臨界サイズが小さくなり、過飽和度も増すため、より微細で高密度な析出となる、という関係がある。しかしながら、450℃以下では、拡散が遅いため、加熱時間が長くなり経済性が損なわれる。一方、600℃以上では、析出密度が低下することから、この温度範囲及び時間を決定した。
拡散等の熱活性化過程を伴う現象に対しては、温度と時間が共に影響することから、さらに、Larson Miller指数(式3)により、この第2の加熱工程の温度T及び時間tの条件範囲を設定した。
C. Second heating step C is a precipitate-forming elements in this manner, N, Nb, materials that are sufficiently solid solution V, then, 450 ° C. to 600 ° C. temperature range T 2 time is shown in Equation 3 at t By performing the process of 2 heating (2nd heating process), very fine MX can be deposited. That is, this heat treatment prepares precipitation nuclei for obtaining fine MX with high density. Between the temperature of the second heating step and the precipitation state, there is a relationship that the lower the temperature, the smaller the critical size of precipitation nuclei and the greater the degree of supersaturation, resulting in finer and higher density precipitation. . However, at 450 ° C. or lower, since diffusion is slow, the heating time becomes long and the economy is impaired. On the other hand, since the precipitation density decreases at 600 ° C. or higher, this temperature range and time were determined.
Since both the temperature and the time affect the phenomenon accompanied by the thermal activation process such as diffusion, the temperature T 2 and the time t 2 of the second heating step are further determined by the Larson Miller index (Equation 3). The condition range of was set.

D.第3の加熱工程
その後、650℃〜780℃の温度域Tで式4に示す時間t加熱する工程(第3の加熱工程)を行うことにより、高密度に用意された析出核を成長させて、微細で安定なMXの高密度分散状態を実現することができる。650℃以下では、拡散速度が遅いため長時間を必要とし経済性が損なわれる。一方、780℃以上では、オーステナイトへの逆変態が生じてMXが消失することから、この温度範囲を決定した。また、高温では拡散が継続するため、時間の増加と共に析出物は凝集・粗大化、いわゆるオストヴァルド成長をする。従って、微細なMXの高密度分散状態を確保するため、さらに、温度と時間を関係づけたLarson Miller指数(式4)により、この第3の加熱工程の温度T及び時間tの条件範囲を設定した。
D. The third heating step followed by performing a 650 ° C. to 780 ° C. in the step of the time t 3 heating depicted in Equation 4 in a temperature range T 3 (third heating step), growth at high density has been prepared precipitation nuclei As a result, a fine and stable MX high-density dispersion state can be realized. Below 650 ° C., the diffusion rate is slow, so a long time is required and the economy is impaired. On the other hand, since the reverse transformation to austenite occurs and MX disappears at 780 ° C. or higher, this temperature range was determined. Further, since diffusion continues at a high temperature, the precipitates agglomerate and become coarse, that is, so-called Ostwald growth, as time increases. Therefore, in order to ensure a high-density dispersion state of fine MX, the condition range of the temperature T 3 and the time t 3 of this third heating step is further determined by the Larson Miller index (Equation 4) relating the temperature and time. It was set.

上述の本発明の製造方法によれば、微細なMXを高密度に析出させることができるため、高温で安定した析出状態を実現することができ、高いクリープ延性と析出強化機構を高温で長時間確保することができる。
これにより、クリープ延性や靱性に優れた高クロムフェライト鋼を製造することができる。
従って、本発明により、高速増殖炉(FBR)の構造物のように、温度変動に伴う熱応力が繰り返し加わる用途にも適用することができる、高クロムフェライト鋼を実現することができる。
According to the manufacturing method of the present invention described above, fine MX can be precipitated at high density, so that a stable precipitation state can be realized at high temperature, and high creep ductility and precipitation strengthening mechanism can be achieved at high temperature for a long time. Can be secured.
Thereby, the high chromium ferritic steel excellent in creep ductility and toughness can be manufactured.
Therefore, according to the present invention, it is possible to realize a high chromium ferritic steel that can be applied to applications in which thermal stress accompanying temperature fluctuation is repeatedly applied, such as a structure of a fast breeder reactor (FBR).

重量%で、C(炭素)が0.04%、N(窒素)が0.02%、Cr(クロム)が9.0%、Nb(ニオブ)が0.05%、V(バナジウム)が0.10%、Mo(モリブデン)が0.5%、W(タングステン)が0.2%の含有量で、残部がFe(鉄)及び不可避不純物からなる厚さ15mmのフェライト鋼板を使用して、このフェライト鋼板に対して、熱処理条件を変えて熱処理を行い、熱処理後の微細組織を調べた。   By weight, C (carbon) is 0.04%, N (nitrogen) is 0.02%, Cr (chromium) is 9.0%, Nb (niobium) is 0.05%, and V (vanadium) is 0. 10%, Mo (molybdenum) content of 0.5%, W (tungsten) content of 0.2%, the remainder using Fe (iron) and 15mm thick ferrite steel plate consisting of inevitable impurities, The ferritic steel sheet was subjected to heat treatment under different heat treatment conditions, and the microstructure after the heat treatment was examined.

本発明の実施例として、第1の加熱工程を1100℃で30分行い、水冷により80℃/secの冷却速度で冷却工程を行い、析出核準備処理として550℃で1時間加熱する工程(第2の加熱工程)を行ってから、750℃で1時間加熱する工程(第3の加熱工程)を行った。
上述の含有量から、(式1)のT=1081℃となるので、T以上の温度で第1の加熱工程を行う条件を満たす。また、厚さ15mmから(式2)のt=14.5分となるので、加熱時間の条件を満たす。さらに、T=550℃,t=1から、式3の指数1が16460となり、第2の加熱工程の条件を満たす。そして、T=750℃,t=1から、式4の指数2が20460となり、第3の加熱工程の条件を満たす。
As an example of the present invention, the first heating step is performed at 1100 ° C. for 30 minutes, the cooling step is performed at a cooling rate of 80 ° C./sec by water cooling, and the precipitation nucleus preparation process is performed at 550 ° C. for 1 hour (first step) 2), a process of heating at 750 ° C. for 1 hour (third heating process) was performed.
Since T 1 = 1081 ° C. in (Equation 1) from the above-described content, the condition for performing the first heating step at a temperature equal to or higher than T 1 is satisfied. Further, since the thickness of 15 mm becomes t 1 = 14.5 minutes in (Expression 2), the condition of the heating time is satisfied. Furthermore, from T 2 = 550 ° C. and t 2 = 1, the index 1 in Equation 3 is 16460, which satisfies the condition of the second heating step. Then, from T 3 = 750 ° C. and t 3 = 1, the index 2 of Equation 4 becomes 20460, which satisfies the condition of the third heating step.

本発明の実施例として、析出核準備処理として550℃で1時間加熱する工程(第2の加熱工程)を行ってから750℃で1時間加熱する工程(第3の加熱工程)を行った場合と、この析出核準備処理の工程を行わずに、750℃で1時間加熱する工程だけを行った場合とで、それぞれのフェライト鋼に析出するMXの粒子直径dの分布を調べた。なお、析出核準備処理の工程以外は、全く同一の条件とした。
それぞれの場合に析出するMXの粒子直径dの分布を比較して、図1に示す。図1には、併せて抽出レプリカ試料による電子顕微鏡組織の写真も示している。
As an example of the present invention, when the step of heating at 550 ° C. for 1 hour (second heating step) is performed as the precipitation nucleus preparatory treatment, and then the step of heating at 750 ° C. for 1 hour (third heating step) is performed. In addition, the distribution of the particle diameter d of MX precipitated on each ferritic steel was examined in the case where only the step of heating at 750 ° C. for 1 hour was performed without performing the step of preparing the precipitation nuclei. The conditions were exactly the same except for the precipitation nucleus preparation process.
FIG. 1 shows a comparison of the distribution of the particle diameter d of MX precipitated in each case. FIG. 1 also shows a photograph of the electron microscope structure of the extracted replica sample.

図1からわかるように、析出核準備処理の工程(第2の加熱工程)を行った場合には、微細な粒子を高密度に析出させることができる。   As can be seen from FIG. 1, when the precipitation nucleus preparation process (second heating process) is performed, fine particles can be precipitated at a high density.

次に、本発明の実施例として、第1の加熱工程を1100℃で行った後、水冷により80℃/secの冷却速度で冷却工程を行った場合と、比較例として1100℃から空冷により1℃/secで冷却した場合とで、それぞれのフェライト鋼に析出するMXの粒子直径dの分布を調べた。なお、冷却後の第2の加熱工程以降は、全く同一の条件とした。
それぞれの場合に析出するMXの粒子直径dの分布を比較して、図2に示す。図2には、併せて抽出レプリカ試料による電子顕微鏡組織の写真も示している。
Next, as an example of the present invention, after the first heating step is performed at 1100 ° C., the cooling step is performed at a cooling rate of 80 ° C./sec by water cooling, and as a comparative example, 1 cooling is performed from 1100 ° C. by air cooling. The distribution of the particle diameter d of MX precipitated on each ferritic steel was examined in the case of cooling at ° C / sec. In addition, it was set as the completely same conditions after the 2nd heating process after cooling.
FIG. 2 shows a comparison of the distribution of the particle diameter d of MX precipitated in each case. FIG. 2 also shows a photograph of the electron microscopic structure of the extracted replica sample.

図2からわかるように、水冷により冷却速度を10℃/sec以上の80℃/secとして冷却工程を行った場合には、微細な粒子を高密度に析出させることができる。
一方、冷却速度が1℃/secと遅くなる空冷(AC)では、析出物が粗大化して、かつ密度も低下することがわかる。
As can be seen from FIG. 2, when the cooling step is performed with water cooling at a cooling rate of 10 ° C./sec or more and 80 ° C./sec, fine particles can be precipitated at high density.
On the other hand, it can be seen that in air cooling (AC) in which the cooling rate is as low as 1 ° C./sec, the precipitates become coarse and the density also decreases.

本発明は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲でその他様々な構成が取り得る。   The present invention is not limited to the above-described embodiments, and various other configurations can be taken without departing from the gist of the present invention.

本発明のフェライト鋼の製造方法により得られる高クロムフェライト鋼は、高速増殖炉(FBR)の構造物用の鋼板、鋼管、並びに鍛造品として利用することができる。   The high chromium ferritic steel obtained by the ferritic steel manufacturing method of the present invention can be used as a steel plate, a steel pipe, and a forged product for a fast breeder reactor (FBR) structure.

析出核準備処理の工程を行った場合と、行っていない場合とで、それぞれのフェライト鋼に析出するMXの粒子直径の分布を比較した図である。It is the figure which compared the distribution of the particle diameter of MX which precipitates on each ferritic steel with the case where it does not perform the process of the precipitation nucleus preparation process. 冷却速度80℃/secで冷却工程を行った場合と、1℃/secで冷却を行った場合とで、それぞれのフェライト鋼に析出するMXの粒子直径の分布を比較した図である。It is the figure which compared distribution of the particle diameter of MX which precipitates in each ferritic steel, when the cooling process is performed at a cooling rate of 80 ° C./sec and when cooling is performed at 1 ° C./sec.

Claims (2)

重量%で、C:0.01〜0.05%、N:0.01〜0.05%、Cr:8〜13%、Nb:0.03〜0.07%、V:0.05〜0.20%を含有し、残部がFe及び不可避不純物からなる、厚さth[mm]のフェライト鋼を、下記式1に示される温度T[℃]以上で、下記式2に示される時間t[分]以上加熱する工程と、
=3427×(C+N)×(Nb+V)+1050 (式1)
(ただし、C,N,Nb,Vは、各元素の含有量(重量%)である)
=0.3th+10 (式2)
その後、前記フェライト鋼の肉厚中心位置が10℃/sec以上の冷却速度となる条件で冷却する工程と、
その後、450〜600℃の範囲の温度T[℃]において、下記式3に示される指数1が15500〜17300となる時間t[時間]加熱する工程と、
指数1=(T+273)(logt+20) (式3)
その後、650〜780℃の範囲の温度T[℃]において、下記式4に示される指数2が19600〜21100となる時間t[時間]加熱する工程とを行う
指数2=(T+273)(logt+20) (式4)
ことを特徴とするフェライト鋼の製造方法。
By weight, C: 0.01 to 0.05%, N: 0.01 to 0.05%, Cr: 8 to 13%, Nb: 0.03 to 0.07%, V: 0.05 to A ferrite steel having a thickness of th [mm], containing 0.20%, the balance being Fe and inevitable impurities, is not less than the temperature T 1 [° C.] shown in the following formula 1 and is shown in the following formula 2. heating for t 1 [min] or more;
T 1 = 3427 × (C + N) × (Nb + V) +1050 (Formula 1)
(However, C, N, Nb, and V are the content (% by weight) of each element)
t 1 = 0.3th + 10 (Formula 2)
Then, the step of cooling under the condition that the thickness center position of the ferritic steel becomes a cooling rate of 10 ° C./sec or more,
Then, at a temperature T 2 [° C.] in the range of 450 to 600 ° C., a time t 2 [hour] in which the index 1 shown in the following formula 3 becomes 15500 to 17300;
Index 1 = (T 2 +273) (logt 2 +20) (Formula 3)
Then, at a temperature T 3 [° C.] in the range of 650 to 780 ° C., a time t 3 [hour] in which the index 2 shown in the following formula 4 becomes 19600 to 21100 is performed. Index 2 = (T 3 +273 ) (Logt 3 +20) (Formula 4)
A method for producing a ferritic steel, characterized in that
前記フェライト鋼を、さらに重量%で、Mo:0.2〜0.6%、W:0.2〜0.6%のいずれか、あるいは双方を成分として含有する構成とすることを特徴とする請求項1に記載のフェライト鋼の製造方法。   The ferritic steel is further configured to contain, by weight, either Mo: 0.2 to 0.6%, W: 0.2 to 0.6%, or both as components. The manufacturing method of the ferritic steel of Claim 1.
JP2006176864A 2006-06-27 2006-06-27 Ferritic steel manufacturing method Expired - Fee Related JP4355787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006176864A JP4355787B2 (en) 2006-06-27 2006-06-27 Ferritic steel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006176864A JP4355787B2 (en) 2006-06-27 2006-06-27 Ferritic steel manufacturing method

Publications (2)

Publication Number Publication Date
JP2008007805A true JP2008007805A (en) 2008-01-17
JP4355787B2 JP4355787B2 (en) 2009-11-04

Family

ID=39066277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006176864A Expired - Fee Related JP4355787B2 (en) 2006-06-27 2006-06-27 Ferritic steel manufacturing method

Country Status (1)

Country Link
JP (1) JP4355787B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293067A (en) * 2008-06-03 2009-12-17 Jfe Steel Corp High-tensile-strength steel material superior in formability and fatigue resistance, and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293067A (en) * 2008-06-03 2009-12-17 Jfe Steel Corp High-tensile-strength steel material superior in formability and fatigue resistance, and manufacturing method therefor

Also Published As

Publication number Publication date
JP4355787B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
CN110157970A (en) A kind of high strength and ductility CoCrNi medium entropy alloy and preparation method thereof
CN110129658B (en) High-manganese nitrogen-free high-strength high-toughness hydrogen embrittlement-resistant austenitic stainless steel and preparation method thereof
EP2307586A1 (en) Steel alloy for ferritic steel having excellent creep strength and oxidation resistance at elevated usage temperatures
JP2015528057A (en) Austenitic alloy steel with excellent creep strength, oxidation resistance and corrosion resistance at high operating temperature
JP2004323937A (en) Austenitic stainless steel
CN105624469A (en) Nickel-based high-temperature alloy used for ultra-supercritical boiler and preparation method and application of nickel-based high-temperature alloy
CN102943209B (en) Radiation-resistant martensite heat-resistant steel having excellent compatibility with Pb and Pb-Bi
WO2011154515A1 (en) A method for producing a tempered martensitic heat resistant steel for high temperature applications
JP2000080448A (en) Ferritic heat resistant steel
JP4995131B2 (en) Ferritic heat-resistant steel and heat-resistant structure with excellent creep characteristics in weld heat-affected zone
CN102041450A (en) Ferrite heat resisting steel and manufacture method thereof
US20120018054A1 (en) Stainless steel material having outstanding high-temperature strength, and a production method therefor
JP4077441B2 (en) Method for producing high chromium ferrite / martensitic heat resistant alloy
CN107326301B (en) A kind of ferritic heat-resistant steel
JP2015506415A (en) Austenitic alloy
JP2010520372A (en) Martensitic creep resistant steel strengthened by Z phase
CN112760553A (en) Super austenitic heat-resistant steel, seamless pipe and manufacturing method thereof
CN112458369B (en) Precipitation-strengthened ferritic heat-resistant steel and preparation method thereof
JP2001192730A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL AND ITS HEAT TREATMENT METHOD
JP4355787B2 (en) Ferritic steel manufacturing method
JP2010138465A (en) Heat resistant steel having excellent creep strength, and method for producing the same
CN115976528A (en) Preparation process of high-niobium stainless steel band, high-niobium stainless steel band and application
JP2000204434A (en) Ferritic heat resistant steel excellent in high temperature strength and its production
JP2009256791A (en) Two-phase series stainless steel excellent in corrosion resistance, and its producing method
Wang et al. High temperature strengthening in 12Cr-W-Mo steels by controlling the formation of delta ferrite

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090701

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees