JP2009283543A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2009283543A
JP2009283543A JP2008131789A JP2008131789A JP2009283543A JP 2009283543 A JP2009283543 A JP 2009283543A JP 2008131789 A JP2008131789 A JP 2008131789A JP 2008131789 A JP2008131789 A JP 2008131789A JP 2009283543 A JP2009283543 A JP 2009283543A
Authority
JP
Japan
Prior art keywords
semiconductor device
type mosfet
conductivity type
mosfet
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008131789A
Other languages
English (en)
Inventor
Noboru Akiyama
秋山  登
Takayuki Hashimoto
貴之 橋本
Takashi Hirao
高志 平尾
Koji Tateno
孝治 立野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2008131789A priority Critical patent/JP2009283543A/ja
Publication of JP2009283543A publication Critical patent/JP2009283543A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】十分な耐圧を保ちながらMOSFETの製造工程を簡略化し、かつ電気的特性のバラツキを抑えられる技術を提供する。
【解決手段】ゲート側壁にスペーサを形成した後に同一のフォトリソグラフィ工程で、低濃度の不純物を高エネルギーで斜めイオン注入し、高濃度の不純物を前記高エネルギーよりも低いエネルギーでイオン注入してソース、ドレイン領域を形成する。pチャネル型MOSFETQpのソース、ドレインを形成する不純物拡散層110s、110dが高濃度不純物領域112s、112dと低濃度不純物領域114s、114dからなり、基板10の内部で高濃度不純物領域112s、112dが低濃度不純物領域114s、114dに囲まれ、不純物拡散層110s、110dの最深部からソースあるいはドレインの端部までのゲート長方向の最短距離(y1)が、基板表面から前記最深部までの距離(x)よりも長い。
【選択図】図1

Description

本発明は、半導体装置技術に関し、特に、MOS(Metal Oxide Semiconductor)型の電界効果トランジスタを有する半導体装置に適用して有効な技術に関するものである。
半導体素子の微細化に伴いMOS型電界効果トランジスタ(MOSFET)のドレイン領域の電界強度が増大し、寄生バイポーラ効果やホットキャリヤ注入によるゲート酸化膜の帯電現象により耐圧の劣化が生じるようになった。このためゲート長1μm以下のMOSFETでは、ゲート電極の両側の半導体基板に形成されるソースおよびドレイン領域を、浅い接合を有する低濃度不純物領域と、比較的深い接合を有する高濃度不純物領域とで構成する、いわゆるLDD(Lightly Doped Drain)構造が一般的に用いられている。
しかしながら、LDD構造では低濃度不純物領域を形成するために、従来のシングルソース、ドレイン構造に比べて、pチャネル型MOSFETとnチャネル型MOSFETとで各々1回、計2回のフォトリソグラフィ工程が新たに必要になる。このため、この工程を省くために、スペーサを用いたnチャネル型およびpチャネル型MOSFETのデバイス構造およびその製造方法が特許第2982895号(特許文献1)や特開平6−342884号公報(特許文献2)に開示されている。
特許第2982895号 特開平6−342884号公報
しかし、上記特許文献1、2に開示された技術では、ゲート電極の側壁に形成したスペーサを更に加工する必要がある。このため最初のスペーサ形成工程による加工バラツキに、追加工程の加工バラツキが加わるので、その後のイオン注入工程におけるイオンの注入深さがウエハ毎、ロット毎にばらつく。これは素子耐圧の低下やしきい値電圧バラツキの増大を招くので、MOSFETを多数のウエハ毎、ロット毎に安定して製造するのが難しかった。
また、現在一般的に用いられているLDD構造のMOSFETでは、加工バラツキによりスペーサの幅が狭くなると、ソース、ドレインを形成する不純物拡散層の内、低濃度不純物領域が狭まり高濃度不純物領域がゲート電極端に近づくので、ソース、ドレイン間の耐圧が低下する。
例えば、非絶縁型DC−DCコンバータではパワーMOSFETのスイッチング時に、寄生インダクタンスによって出力端子にグランド電圧より数V低いサージ電圧が生じる。したがって、パワーMOSFETを駆動するドライバICの出力段にあるMOSFETのソース、ドレイン間には、定常のオフ状態に比べて数V高いサージ電圧が掛かる。このため、LDD構造のMOSFETを電源システム用のドライバICに用いる場合、耐圧不足とならぬよう余裕を持たせてスペーサ幅を広くする必要があり、MOSFETのオン抵抗の増加をもたらしていた。
本発明の目的は、十分な耐圧を保ちながらMOSFETの製造工程を簡略化し、かつ電気的特性のバラツキを抑えられる技術を提供することにある。
また、本発明のもう一つの目的は、ゲート電極の側壁に形成するスペーサの幅がバラツキで狭くなっても耐圧の劣化の少ないデバイス構造を提供するものである。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
すなわち、本発明は、pチャネル型MOSFETとnチャネル型MOSFETを同一チップ内に集積する半導体装置の少なくともどちらか一方の導電型MOSFETにおいて、ゲート電極の側壁にスペーサを形成した後に、同一のフォトリソグラフィ工程で低濃度の不純物を高エネルギーで斜めにイオン注入し、高濃度の不純物を前記高エネルギーよりも低いエネルギーでイオン注入してソースおよびドレイン領域を形成する工程を有するものである。
これにより、本発明の半導体装置では以下に示すデバイス構造の特徴を有する。1)pチャネル型MOSFETのソースおよびドレインを形成する第1の不純物拡散層が高濃度不純物領域と低濃度不純物領域からなり、半導体基板の内部で前記高濃度不純物領域が低濃度不純物領域に囲まれ、前記第1の不純物拡散層の最深部からソースあるいはドレインの端部までのゲート長方向の最短距離が、半導体基板の表面から前記最深部までの距離よりも長い。或いは、2)nチャネル型MOSFETのソースおよびドレインを形成する第2の不純物拡散層が高濃度不純物領域と低濃度不純物領域からなり、半導体基板の内部で前記高濃度不純物領域が低濃度不純物領域に囲まれ、前記第2の不純物拡散層のうち、半導体基板の表面から深い所に形成された低濃度不純物領域が、ゲート酸化膜の直下にある低濃度不純物領域に比べて、ゲート長方向のゲート中央側に向って突き出る。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
本発明によれば、十分な耐圧を保ちながらMOSFETの製造工程を簡略化し、かつ電気的特性のバラツキを抑えられるので、半導体装置の製造コストを低減できる。
また、本発明によれば加工バラツキによりスペーサの幅が狭くなっても、ソース、ドレインを形成する不純物拡散層の低濃度不純物領域が狭まることが無いので、高濃度不純物領域がゲート電極端に近づいても、ドレイン・ソース間の耐圧低下はLDD構造に比べて少ない。このため、スペーサ幅を狭くできるので、MOSFETのオン抵抗を下げられる。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一機能を有するものは同一の符号を付すようにし、その繰り返しの説明は可能な限り省略するようにしている。
(実施の形態1)
図1は本実施の形態における半導体装置を模式的に示す要部断面図である。図1に示すように、本実施の形態における半導体装置は、例えばp型単結晶シリコンからなる半導体基板(以下、単に「基板」という)10上に例えばシリコン酸化膜(窒素が含まれても良い)からなるゲート酸化膜122、222を介して形成されたゲート電極120、220と、その両側下の基板10に形成されたソースおよびドレインとを、それぞれ有するpチャネル型MOSFETQp(第1導電型MOSFET)とnチャネル型MOSFETQn(第2導電型MOSFET)とを備えている。また、ゲート電極120、220の側壁には例えばシリコン酸化膜から構成されるスペーサ130、230が形成されている。
基板10の主面(素子形成面)には、pチャネル型MOSFETQpが形成される領域A100、nチャネル型MOSFETQnが形成される領域A200および素子分離するためのフィールド酸化膜20が形成される領域A20が設けられている。すなわち、この基板10内にn型ウエル30、p型ウエル32およびフィールド酸化膜20が形成され、n型ウエル30およびp型ウエル32にはpチャネル型MOSFETQpおよびnチャネル型MOSFETQnが各々形成されている。また、基板10の主面には、ウエル給電電極が形成される領域A110、A210が設けられている。
pチャネル型MOSFET(Qp)では、ソース電極(s)、ドレイン電極(d)となる不純物拡散層110s、110d(第1不純物拡散層)が高濃度不純物領域112s、112d(第1不純物領域)と低濃度不純物領域114s、114d(第2不純物領域)からなり、n型ウエル30内において高濃度不純物領域112s、112dは低濃度不純物領域114s、114dに囲われている。具体的には、基板10の表面から浅く形成された高濃度不純物領域112s、112dが、その表面から深く形成された低濃度不純物領域114s、114dに囲まれている。また、n型ウエル30の電位を固定するためのウエル給電電極となる不純物拡散層140も同様に、高濃度不純物領域142と低濃度不純物領域144からなり、n型ウエル30内において高濃度不純物領域142は低濃度不純物領域144に囲まれている。
一方、nチャネル型MOSFETQnでは、ソース電極(s)、ドレイン電極(d)となる不純物拡散層210s、210d(第2不純物拡散層)が高濃度不純物領域212s、212d(第3不純物領域)と低濃度不純物領域214s、214d(第4不純物領域)からなり、p型ウエル32内において高濃度不純物領域212s、212dは低濃度不純物領域214s、214dに囲われている。具体的には、基板10の表面から浅く形成された高濃度不純物領域212s、212dが、その表面から深く形成された低濃度不純物領域214s、214dに囲まれている。また、p型ウエル32の電位を固定するためのウエル給電電極となる不純物拡散層240も同様に、高濃度不純物領域242と低濃度不純物領域244からなり、p型ウエル32内において高濃度不純物領域242は低濃度不純物領域244に囲まれている。
本実施の形態における半導体装置を製造するために、ゲート側壁にスペーサ130、230を形成した後、低濃度の不純物領域114s、114dおよび244と、高濃度の不純物領域112s、112dおよび242を同一のフォトリソグラフィ工程で形成し、同様に低濃度の不純物領域214s、214dおよび144と、高濃度の不純物領域212s、212dおよび142を別の同一フォトリソグラフィ工程で形成している。
以下に、本実施の形態における半導体装置の製造方法について図面を用いて説明する。図2〜図5は本実施の形態における製造工程中の半導体装置を模式的に示す要部断面図である。
まず、図2に示すように、基板10上にフィールド酸化膜20を形成して素子分離を行った後に、フォトリソグラフィ技術および不純物導入技術を用いて、n型ウエル30とp型ウエル32を形成する。そして、MOSFETのしきい値電圧調整用に低濃度のp型不純物を全面にイオン打ち込みしてn型ウエル30の表面にp拡散層124を形成する。このため、p型ウエル32の表面ではp型不純物の濃度が増加する。次に、ゲート酸化膜122、222を熱酸化により基板10表面に形成した後、例えば、多結晶シリコン膜と金属シリサイド膜を堆積し、フォトリソグラフィ工程およびエッチング工程によりpチャネル型MOSFETのゲート電極120とnチャネル型MOSFETのゲート電極220を同時に形成する。ここで、微細化に対応して、pチャネル型MOSFETQpおよびnチャネル型MOSFETQnのゲート長は1μm以下となるようにゲート電極120、220が形成される。
次いで、図3に示すように、基板10の表面にシリコン酸化膜を堆積した後、異方性エッチングを行い、ゲート電極120、220の側壁にシリコン酸化膜からなる幅50nm〜300nmのスペーサ130、230を同時に形成する。
次に、図4に示すようにn型ウエル30の給電用の領域A110上と、給電用の領域A210を除いたp型ウエル32上にイオン注入工程時にマスク層となるフォトレジスト40を形成する。そして、例えばホウ素(B)のようなp型不純物を5×1012/cm〜5×1013/cm程度の低いドーズ量、30keV〜60keVのエネルギー、入射角度45°でイオン注入する(図中の符号113で示す)。続いて、フッ化ホウ素(BF)を1×1015/cm〜5×1016/cm程度の高いドーズ量、および40keV〜70keVのエネルギー(Bイオン注入に換算すると約9keV〜15keVの低エネルギー)、入射角度0°あるいは45°でイオン注入する(図中の符号111で示す)。
前者のイオン注入では不純物イオンがスペーサ130を突き抜けて、低濃度不純物領域114s、114d、244が深く形成される。後者のイオン注入では不純物イオンはスペーサ130を突き抜けず、高濃度不純物領域112s、112d、242は低濃度不純物領域114s、114d、244よりも浅く形成される。
次に、図5に示すように、給電用の領域A110を除いたn型ウエル30上と、p型ウエル32の給電用の領域A210上にイオン注入工程時にマスク層となるフォトレジスト42を形成する。そして、例えば燐(P)のようなn型不純物を5×1012/cm〜5×1013/cm程度の低いドーズ量、および170keV〜200keVのエネルギー、入射角度45°乃至60°でイオン注入する(図中の符号213で示す)。続いて、砒素(As)を1×1015/cm〜5×1015/cm程度の高いドーズ量、および40keV〜70keVのエネルギー、入射角度0°でイオン注入する(図中の符号211で示す)。
前者のイオン注入では不純物イオンがスペーサ230を突き抜けて、低濃度不純物領域214s、214d、144が深く形成され、後者のイオン注入では不純物イオンはスペーサ230を突き抜けず、高濃度不純物領域212s、212d、142は低濃度不純物領域214s、214d、144よりも浅く形成される。
その後、フォトレジスト42を除去し、熱処理により注入された不純物イオンを活性化すると、図1に示したようにn型ウエル30にはpチャネル型MOSFETQpが、p型ウエル32にはnチャネル型MOSFETQnが形成される。
図4および図5を用いて説明した工程では、低濃度不純物のイオン注入時には、高濃度不純物のイオン注入時に比べ高いエネルギー、入射角度45°で図面の左右、前後の4方向から斜めにイオン注入することとなる。この方法により、本実施の形態における半導体装置では、以下に述べるデバイス構造の特徴を有する。
すなわち、1)低濃度不純物領域114s、114d、214s、214dは高濃度不純物領域112s、112d、212s、212dよりも深く形成されるので、基板10の内部で高濃度不純物領域112s、112d、212s、212dが低濃度不純物領域114s、114d、214s、214dに囲まれる。
そして、2)pチャネル型MOSFETQpのソースおよびドレインを形成する不純物拡散層110s、110dの最深部からソースあるいはドレインの端部までのゲート長方向の最短距離が、基板10表面から前記最深部までの距離よりも長くなる(図1において、x<y1)。言い換えると、pチャネル型MOSFETQpのゲート電極120に最も近い不純物拡散層110sの最深部からゲート長方向におけるゲート電極120下の不純物拡散層110sの端部までの最短距離(y1)が、基板10の表面から不純物拡散層110sの最深部までの距離(x)よりも長いものとなっている。
更に、3)pチャネル型MOSFETQpのソースおよびドレインを形成する不純物拡散層110sの形状が最も変化する箇所が、ゲート下方またはゲート端の近傍(0.1μm以下)に存在している。
また、nチャネル型MOSFETQnでは、しきい値電圧調整用のp型不純物がp型ウエル32の表面にイオン注入されるため(図2の説明参照)、ゲート酸化膜222直下のp型不純物の濃度が高く、ゲート端近傍でn型の低濃度不純物領域の形成が抑えられる。その結果、4)nチャネル型MOSFETQnのソースおよびドレインを形成する不純物拡散層210s、210dのうち、基板10表面から深い所に形成された低濃度不純物領域214s、214dが、ゲート酸化膜222の直下にあるソースあるいはドレインを形成する低濃度不純物領域214s、214dに比べて、ゲート長方向のゲート中央側に向って突き出る(図1において、y2>0)。言い換えると、nチャネル型MOSFETQnのゲート電極220下において、基板10の表面から深い所の低濃度不純物領域214s、214dが、その表面から浅い所の低濃度不純物領域214s、214dに比べて、ゲート長方向に突き出ている。
ここで本発明の効果を説明するために、本発明者らが検討したLDD構造のMOSFETの製造方法を図6〜図12を用いて説明する。図6〜図12は製造工程中の本発明者らが検討した半導体装置を模式的に示す要部断面図である。図中の基板10の主面には、pチャネル型MOSFETQp’が形成される領域A800、nチャネル型MOSFETQn’が形成される領域A900、ウエル給電電極が形成される領域A810、A910および素子分離するためのフィールド酸化膜20が形成される領域A20が設けられている。
図6は図2と同じ構造であり、基板10上にフィールド酸化膜20、n型ウエル30、p型ウエル32、およびn型ウエル30の表面にp拡散層124を形成する。そして、ゲート酸化膜822、922を熱酸化により基板10表面に形成した後、多結晶シリコン膜と金属シリサイド膜を堆積し、フォトリソグラフィ工程およびエッチング工程によりpチャネル型MOSFETのゲート電極820とnチャネル型MOSFETのゲート電極920を同時に形成する。
次いで、図7に示すようにn型ウエル30の給電領域A810上と、p型ウエル32上にイオン注入工程時にマスク層となるフォトレジスト44を形成する。そして、例えばフッ化ホウ素(BF)のようなp型不純物をn型ウエル30内に、5×1012/cm〜5×1013/cm程度の低いドーズ量、20keV〜50keVのエネルギーでイオン注入し(図中の符号813で示す)、p型の低濃度不純物領域814s、814dを形成する。
次に、図8に示すようにn型ウエル30上と、p型ウエル32の給電領域A910上にイオン注入工程時にマスク層となるフォトレジスト46を形成する。そして、例えば燐(P)のようなn型不純物をp型ウエル32内に、1×1012/cm〜1×1013/cm程度の低いドーズ量、60keV〜100keVのエネルギーでイオン注入し(図中の符号913で示す)、n型の低濃度不純物領域914s、914dを形成する。
次いで、図9に示すように基板10の表面にシリコン酸化膜を堆積した後、異方性エッチングを行い、ゲート電極820、920の側壁にシリコン酸化膜からなる幅50nm〜300nmのスペーサ830、930を同時に形成する。この工程は図3を用いて説明した工程と同じである。
次に、図10に示すようにn型ウエル30の給電領域上と、給電領域を除いたp型ウエル32上にイオン注入工程時にマスク層となるフォトレジスト40を形成する。そして、例えばフッ化ホウ素(BF)のようなp型不純物を、1×1015/cm〜5×1016/cm程度の高いドーズ量、40keV〜70keVのエネルギー(Bイオン注入に換算すると約9keV〜15keVの低エネルギー)でイオン注入し(図中の符号811で示す)、p型の高濃度不純物領域812s、812dおよび940を形成する。
次に、図11に示すように給電用の領域A810を除いたn型ウエル30上と、p型ウエル32の給電用の領域A910上にイオン注入工程時にマスク層となるフォトレジスト42を形成する。そして、例えば砒素(As)のようなn型不純物を1×1015/cm〜5×1015/cm程度の高いドーズ量、40keV〜70keVのエネルギーでイオン注入し(図中の符号911で示す)、n型の高濃度不純物領域912s、912dおよび840を形成する。
その後、フォトレジスト42を除去し、熱処理により注入された不純物イオンを活性化すると、n型ウエル30にはLDD構造のpチャネル型MOSFETQp’が、p型ウエル32にはLDD構造のnチャネル型MOSFETQn’が形成される(図12参照)。
本発明者らが検討したpチャネル型MOSFETQp’およびnチャネル型MOSFETQn’を備えた半導体装置に対して、本発明のpチャネル型MOSFETQpおよびnチャネル型MOSFETQnを備えた半導体装置によれば、製造工程に必要なフォトリソグラフィ工程を減らすことができる。また、ソース、ドレインを形成する不純物拡散層110s、110d、210s、210dにおいて、高濃度不純物領域112s、112d、212s、212dの周囲に低濃度不純物領域114s、114d、214s、214dを形成できるので、加工バラツキによりスペーサ130、230の幅が狭くなっても、ソース、ドレインを形成する不純物拡散層110s、110d、210s、210dの低濃度不純物領域114s、114d、214s、214dが狭まることは無い。このため、高濃度不純物領域112s、112d、212s、212dがゲート電極120、220端に近づいても、ドレイン・ソース間の耐圧低下はLDD構造に比べて少ない。
また、ゲート電極120、220の側壁に形成するスペーサ130、230の加工も1回で済むので、前記特許文献1、2に開示されたようなスペーサを用いた半導体装置に比べて加工バラツキによる電気的特性のバラツキを抑えられる。
また、実施の形態1の変形例として、図13に示すように、nチャネル型MOSFETとして、LDD構造のnチャネル型MOSFETQn’を用い、pチャネル型MOSFETとして、本実施の形態におけるpチャネル型MOSFETQpを用いた半導体装置とすることも可能である。この場合は、製造工程順において図2を用いて説明した工程と図3を用いて説明した工程の間に、低濃度不純物領域914s、914dを形成するためのフォトリソグラフィとイオン注入の工程が入る。同様に、pチャネル型MOSFETとして、LDD構造のpチャネル型MOSFETQp’を用い、nチャネル型MOSFETとして、本実施の形態におけるnチャネル型MOSFETQnを用いた半導体装置とすることも可能である。
(実施の形態2)
図14および図15を用いて本実施の形態における半導体装置を説明する。前記実施の形態1と異なる点は、pチャネル型MOSFETQp、nチャネル型MOSFETQnに加えて、基板10上にゲート酸化膜322、422を介して形成されたゲート電極320、420と、その両側下の基板10に形成されたソースおよびドレインとを有する耐圧20V以上の高耐圧MOSFETQph、Qnhを備えていることである。
図14は本実施の形態におけるpチャネル型MOSFETを備えた半導体装置を模式的に示す要部断面図であり、pチャネル型MOSFETQpと高耐圧pチャネル型MOSFETQphが示されている。両MOSFETは共に深いn型拡散層50内に形成され、深いp型拡散層60を介して互いに分離されている。
図14において、符号320は高耐圧pチャネル型MOSFETのゲート電極、符号322はゲート酸化膜、符号330はゲート電極の側壁に形成された絶縁物からなるスペーサ、符号50は深いn型拡散層、符号34は高耐圧を得るためのドリフト領域を形成するp型ウエルである。そして、ゲート電極320、ゲート酸化膜322およびスペーサ330は、各々ゲート電極120、ゲート酸化膜122およびスペーサ130と同時に形成される。
また、高耐圧pチャネル型MOSFETQphのソース電極(s)、ドレイン電極(d)およびウエル給電電極に各々なる不純物拡散層310s、310dおよび340は、高濃度不純物領域312s、312dおよび342と、低濃度不純物領域314s、314dおよび344からなる。そして、高濃度不純物領域312s、312dおよび342は、高濃度不純物領域112s、112dおよび142と同時に形成され、低濃度不純物領域314s、314dおよび344は、低濃度不純物領域114s、114dおよび144と同時に形成される。
高耐圧pチャネル型MOSFETQphのソースを構成する不純物拡散層310sが、pチャネル型MOSFETQpのソースおよびドレインを構成する不純物拡散層110s、110dと同時に形成されており、ゲート電極320側の不純物拡散層310sの最深部からゲート長方向に延びるゲート電極320側の不純物拡散層310sの端部までの最短距離(y1)が、基板10の表面から不純物拡散層310sの最深部までの距離(x)よりも長いものとなっている。このため、十分な耐圧を保ちながらMOSFETの製造工程が簡略化され、かつ電気的特性のバラツキを抑えられるので、半導体装置の製造コストを低減できる。
図15は本実施の形態におけるnチャネル型MOSFETを備えた半導体装置を模式的に示す要部断面図であり、nチャネル型MOSFETQnと高耐圧nチャネル型MOSFETQnhが示されている。両MOSFETは共に深いn型拡散層50内に形成され、深いp型拡散層60を介して互いに分離されている。
図15において、符号420は高耐圧nチャネル型MOSFETのゲート電極、符号422はゲート酸化膜、符号430はゲート電極の側壁に形成された絶縁物からなるスペーサ、符号50は深いn型拡散層、符号36はp型ウエル、符号38はn型ウエルである。そして、ゲート電極420はゲート電極220、pチャネル型MOSFETQpのゲート電極120と同時に形成され、ゲート酸化膜422はゲート酸化膜222、pチャネル型MOSFETQpのゲート酸化膜122と同時に形成され、スペーサ430はスペーサ230、pチャネル型MOSFETQpのスペーサ130と同時に形成される。
また、高耐圧nチャネル型MOSFETQnhのソース電極(s)、ドレイン電極(d)およびウエル給電電極に各々なる不純物拡散層410s、410dおよび440は、高濃度不純物領域412s、412dおよび442と、低濃度不純物領域414s、414dおよび444からなる。そして、高濃度不純物領域412s、412dおよび442は、高濃度不純物領域212s、212dおよび242と同時に形成され、低濃度不純物領域414s、414dおよび444は、低濃度不純物領域214s、214dおよび244と同時に形成される。
高耐圧nチャネル型MOSFETQnhのソースを構成する不純物拡散層410sが、nチャネル型MOSFETQnのソースおよびドレインを構成する不純物拡散層210s、210dと同時に形成されており、ゲート電極420下において、基板10の表面から深い所の不純物拡散層410sが、その表面から浅い所の不純物拡散層410sに比べて、ゲート長方向に突き出ている(y2>0)ものとなっている。このため、十分な耐圧を保ちながらMOSFETの製造工程が簡略化され、かつ電気的特性のバラツキを抑えられるので、半導体装置の製造コストを低減できる。
(実施の形態3)
図16を用いて本実施の形態における半導体装置を説明する。図16は前記実施の形態におけるMOSFETを適用したドライバICを用いたスイッチング電源装置の等価回路の一例を示す回路図である。本実施の形態ではスイッチング電源装置として、非絶縁型DC−DCコンバータを例にとり説明する。
図16において、前記実施の形態のMOSFETを含むドライバIC520を用いた非絶縁型DC−DCコンバータ600は、パルス幅変調(Pulse Width Modulation:PWM)制御を行う制御回路510(電源制御IC)、ドライバIC520、スイッチング回路530、入力コンデンサ620、ブートストラップコンデンサ630、チョークコイル640、および出力コンデンサ642から成り、負荷回路であるプロセッサ(MPU)650に安定な定電圧を供給する。スイッチング回路530は2つの半導体スイッチング素子、すなわち制御用のハイサイドパワーMOSFET532と同期用のローサイドパワーMOSFET534とから成る。
ハイサイドパワーMOSFET532は、ハイサイドスイッチ用のパワートランジスタであり、非絶縁型DC−DCコンバータ600の出力(MPU650の入力)に電力を供給するチョークコイル640にエネルギーを蓄えるためのスイッチ機能を有する。
ローサイドパワーMOSFET534は、ローサイドスイッチ用のパワートランジスタであり、非絶縁型DC−DCコンバータ600の整流用トランジスタであって、制御回路510の出力信号に従って、ターンオフ動作に同期してトランジスタの抵抗を低くして整流を行う機能を有する。
制御回路510、ドライバIC520、ハイサイドパワーMOSFET532、およびローサイドパワーMOSFET534はいずれも半導体チップである。ドライバIC520、ハイサイドパワーMOSFET532、およびローサイドパワーMOSFET534は互いに電気的に接続されて1つのパッケージに収められ、マルチチップモジュール500を形成している。
ハイサイドパワーMOSFET532のドレインが接続されるVIN端子には入力電源(VDD)610の直流電圧(例えば12V)が供給され、ローサイドパワーMOSFET534のソースが接続されるPGND端子にはグランド(GND)電圧(例えば0V)が供給されている。また、VCC端子には直流電圧(例えば5V、電源は図示せず)が供給され、ドライバIC520の電源電圧となっている。そして、CGND端子にはグランド(GND)電圧(例えば0V)が供給され、ドライバIC520の論理回路のグランドとなっている。図16において、L1からL4は配線の寄生インダクタンス、R1、R2は配線の寄生抵抗である。
制御回路510は、パワーMOSFET532や534がオン状態になる期間(オン時間)を制御する信号(PWM信号)を発生する。そして、制御回路510が出力する制御信号にしたがってドライバIC520がパワーMOSFETのゲートGH、GLをそれぞれ駆動する。
ドライバIC520は、ハイサイドパワーMOSFETのゲートGHを駆動するpチャネル型MOSFET521とnチャネル型MOSFET522、ローサイドパワーMOSFETのゲートを駆動するpチャネル型MOSFET523とnチャネル型MOSFET524、レベル変換回路525、および論理回路526から成る。
そして、例えば図1に示したpチャネル型MOSFETQpは、pチャネル型MOSFET521、523および論理回路526内のpチャネル型MOSFET(図示せず)に使われ、例えば図1で示したnチャネル型MOSFETQnは、nチャネル型MOSFET522、524および論理回路526内のnチャネル型MOSFET(図示せず)に使われている。また、図14および図15で示した高耐圧pチャネル型MOSFETQphおよび高耐圧nチャネル型MOSFETQnhは、レベル変換回路525内の高耐圧pチャネル型MOSFETおよび高耐圧nチャネル型MOSFET(共に図示せず)に使われている。
ここで、PWM制御を用いた降圧型の非絶縁型DC−DCコンバータの動作を簡単に述べる。負荷回路のMPU650は一定電流Ioutを消費しているとする。
PWM信号によりGHの電圧がハイレベルになると、ハイサイドパワーMOSFET532がオン状態になり(ターンオン)、入力側の入力電源610から電流がVIN端子を介してチョークコイル640に流れ込み、MPU650に電流を供給する。この時、ローサイドパワーMOSFET534はオフ状態にある。
ターンオンが起きると、負荷の電流Ioutが25Aの場合、寄生インダクタンスL2、L4に流れていた25Aの電流が急激に0Aまで減るので、LX端子およびGH端子の電圧は2〜3Vあるいはそれ以上、VDDの電圧12Vよりも跳ね上がった後、寄生のL、C、Rにより共振して振動する。これに伴ってBOOT端子の電圧も17V(=12V+5V)より2〜3Vあるいはそれ以上跳ね上がった後、寄生のL、C、Rによる共振で振動する。そして、GH端子とBOOT端子における電圧共振のタイミングのズレにより、オフ状態にあるハイサイドパワーMOSFETのゲートを駆動するnチャネル型MOSFET522のドレイン・ソース間にはVCCの電圧5Vよりも数V高いサージ電圧が掛かることになる。
ゲートGHの電圧がローレベルになるとハイサイドパワーMOSFET532がオフ状態になるが(ターンオフ)、チョークコイル640および出力コンデンサ642に蓄積されたエネルギーにより電流が流れ続け、ローサイドパワーMOSFET534の内蔵ダイオード(図示せず)を介してGND端子側からLX端子側へ還流電流が流れる。
ターンオフが起きると、負荷の電流Ioutが25Aの場合、寄生インダクタンスL2、L4に流れる電流が0Aから25Aへ急激に増えるので、PGND端子およびGL端子の電圧は2〜3Vあるいはそれ以上、PGNDの電圧0Vよりもドロップした後、寄生のL、C、Rによる共振で振動する。このため、オフ状態にあるpチャネル型MOSFET523のドレイン・ソース間にはVCCの電圧5Vよりも数V高いサージ電圧が掛かることになる。
次に、ハイサイドおよびローサイドパワーMOSFET532、534が共にオフ状態にあるデッドタイム期間を経て、ローサイドパワーMOSFET534がオンする。そして、還流電流はローサイドパワーMOSFET534内を流れ続ける。
PWM信号によりGHの電圧が再びハイレベルになる直前に、ハイサイドおよびローサイドパワーMOSFET532、534が共にオフ状態となるデッドタイム期間を一旦経て、ハイサイドパワーMOSFET532が再びオンする(ターンオン)。
負荷電流Ioutが一定であれば、MPU650に現れる出力電圧Voutは、ハイサイドパワーMOSFET532がオン状態にある期間とスイッチング周期の比に入力電圧VDDを掛けた値となる。
本発明者らの検討では、スペーサ幅以外をティピカル条件にして、スペーサ幅を20%減らした際の耐圧低下の割合を比較すると、LDD構造MOSFETでの低下の割合は、本発明MOSFETの低下の割合に比べて2〜3倍大きくなった。特にpチャネル型MOSFETでは低下が大きく、本発明MOSFETの耐圧が11.0Vから10.5Vへ5%減ったのに対して、LDD構造MOSFETでは11.1Vから9.4Vへ15%減少した。
これは、加工バラツキによりスペーサの幅が狭くなっても、本発明によればソース、ドレインを形成する不純物拡散層の低濃度不純物領域が狭まることが無いので、高濃度不純物領域がゲート電極端に近づいても、ドレイン・ソース間の耐圧低下がLDD構造に比べて少ないためである。
そして、このような特長は、低濃度不純物領域が斜めイオン注入により高濃度不純物領域よりも深く形成されることにより、ゲート酸化膜直下の不純物がp型に反転しているpチャネル型MOSFETでは、ソースおよびドレインを形成する不純物拡散層の最深部からソースあるいはドレインの端部までのゲート長方向の最短距離が、半導体基板表面から前記最深部までの距離よりも長くなる構造となることにより得られ、ゲート酸化膜直下のp型不純物の濃度が高く、ゲート端近傍でn型の低濃度不純物領域の形成が抑えられるnチャネル型MOSFETでは、ソースおよびドレインを形成する不純物拡散層のうち、半導体基板表面から深い所に形成された低濃度不純物領域が、ゲート酸化膜の直下にあるソースあるいはドレインを形成する低濃度不純物領域に比べて、ゲート長方向のゲート中央側に向って突き出る構造となることにより得られる。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
例えば、図1、図13、図14および図15において、ソース、ドレインを形成する不純物拡散層の表面はシリサイド化されてないが、これらをシリサイド化する場合でも本発明の有効性は変わらない。
また、図1、図13、図14および図15においてフィールド酸化膜20がLOCOS(Local Oxidation of Silicon)の場合を示したが、STI(Shallow Trench Isolation)でもよいことは言うまでもない。
また、図16において、制御回路510とドライバIC520が各々別の半導体チップから成る場合もあれば、両者を1チップにまとめて電源制御ICとする場合もある。
更に、図16においてスイッチング電源が非絶縁型DC−DCコンバータの場合を説明したが、絶縁型DC−DCコンバータやAC−DCコンバータの場合であっても、スイッチング素子を駆動するドライバICに本発明の半導体装置を適用できる。
本発明は、半導体装置、特に、pチャネル型MOSFETとnチャネル型MOSFETを同一チップ内に集積する半導体装置に適用して有効であり、さらに半導体装置の製造業に広く適用することができる。例えば、高耐圧素子からなる駆動回路とそれを制御する低耐圧素子からなる論理回路を同一チップに形成したパワーICなどに適用できる。
本発明の一実施の形態における半導体装置を模式的に示す要部断面図である。 本発明の一実施の形態における製造工程中の半導体装置を模式的に示す要部断面図である。 図2に続く製造工程中の半導体装置を模式的に示す要部断面図である。 図3に続く製造工程中の半導体装置を模式的に示す要部断面図である。 図4に続く製造工程中の半導体装置を模式的に示す要部断面図である。 本発明者らが検討した製造工程中の半導体装置を模式的に示す要部断面図である。 図6に続く製造工程中の半導体装置を模式的に示す要部断面図である。 図7に続く製造工程中の半導体装置を模式的に示す要部断面図である。 図8に続く製造工程中の半導体装置を模式的に示す要部断面図である。 図9に続く製造工程中の半導体装置を模式的に示す要部断面図である。 図10に続く製造工程中の半導体装置を模式的に示す要部断面図である。 図11に続く製造工程中の半導体装置を模式的に示す要部断面図である。 本実施の形態の変形例を示す半導体装置を模式的に示す要部断面図である。 本発明の他の実施の形態における半導体装置を模式的に示す要部断面図である。 本発明の他の実施の形態における半導体装置を模式的に示す要部断面図である。 本発明の他の実施の形態における半導体装置の等価回路図である。
符号の説明
10 基板
20 フィールド酸化膜
30、32、34、36、38 ウエル
40、42、44、46 フォトレジスト
50 深いn型拡散層
60 深いp型拡散層
110s、110d 不純物拡散層
112s、112d 高濃度不純物領域
114s、114d 低濃度不純物領域
120 ゲート電極
122 ゲート酸化膜
124 p拡散層
130 スペーサ
140 不純物拡散層
142 高濃度不純物領域
144 低濃度不純物領域
210s、210d 不純物拡散層
212s、212d 高濃度不純物領域
214s、214d 低濃度不純物領域
220 ゲート電極
222 ゲート酸化膜
230 スペーサ
240 不純物拡散層
242 高濃度不純物領域
244 低濃度不純物領域
310s、310d 不純物拡散層
312s、312d 高濃度不純物領域
314s、314d 低濃度不純物領域
320 ゲート電極
322 ゲート酸化膜
330 スペーサ
340 不純物拡散層
342 高濃度不純物領域
344 低濃度不純物領域
410s、410d 不純物拡散層
412s、412d 高濃度不純物領域
414s、414d 低濃度不純物領域
420 ゲート電極
422 ゲート酸化膜
430 スペーサ
440 不純物拡散層
442 高濃度不純物領域
444 低濃度不純物領域
500 マルチチップモジュール
510 制御回路
520 ドライバIC
521 ハイサイドパワーMOSFETのゲートを駆動するpチャネル型MOSFET
522 ハイサイドパワーMOSFETのゲートを駆動するnチャネル型MOSFET
523 ローサイドパワーMOSFETのゲートを駆動するpチャネル型MOSFET
524 ローサイドパワーMOSFETのゲートを駆動するnチャネル型MOSFET
525 レベル変換回路
526 論理回路
530 スイッチング回路
532 ハイサイドパワーMOSFET
534 ローサイドパワーMOSFET
600 非絶縁型DC−DCコンバータ
610 入力電源(VDD)
620 入力コンデンサ(Cin)
630 ブートストラップコンデンサ
640 チョークコイル(L)
642 出力コンデンサ(Cout)
650 プロセッサ(MPU)
812s、812d 高濃度不純物領域
814s、814d 低濃度不純物領域
820 ゲート電極
822 ゲート酸化膜
830 スペーサ
840 高濃度不純物領域
912s、912d 高濃度不純物領域
914s、914d 低濃度不純物領域
920 ゲート電極
922 ゲート酸化膜
930 スペーサ
940 高濃度不純物領域
A20、A100、A110、A200、A210、A300 領域
A800、A810、A900、A910 領域
Qn、Qn’ nチャネル型MOSFET
Qp、Qp’ pチャネル型MOSFET
Qnh 高耐圧nチャネル型MOSFET
Qph 高耐圧pチャネル型MOSFET

Claims (15)

  1. 半導体基板上にゲート酸化膜を介して形成されたゲート電極と、その両側下の前記半導体基板に形成されたソースおよびドレインとを、それぞれ有する第1導電型MOSFETと第2導電型MOSFETとを備えた半導体装置であって、
    前記第1導電型MOSFETのソースおよびドレインを構成する第1不純物拡散層が、第1不純物領域と前記第1不純物領域より不純物濃度が低い第2不純物領域とを有し、
    前記半導体基板の表面から浅く形成された前記第1不純物領域が、その表面から深く形成された前記第2不純物領域に囲まれており、
    前記第1導電型MOSFETのゲート電極に最も近い前記第1不純物拡散層の最深部からゲート長方向における前記第1導電型MOSFETのゲート電極下の前記第1不純物拡散層の端部までの最短距離が、前記半導体基板の表面から前記第1不純物拡散層の最深部までの距離よりも長いことを特徴とする半導体装置。
  2. 請求項1記載の半導体装置において、
    前記第1導電型MOSFETがpチャネル型MOSFETであることを特徴とする半導体装置。
  3. 請求項1記載の半導体装置において、
    前記第2導電型MOSFETがLDD構造のnチャネル型MOSFETであることを特徴とする半導体装置。
  4. 請求項1記載の半導体装置において、
    さらに、前記半導体基板上にゲート酸化膜を介して形成されたゲート電極と、その両側下の前記半導体基板に形成されたソースおよびドレインとを有する耐圧20V以上の高耐圧MOSFETを備えていることを特徴とする半導体装置。
  5. 請求項4記載の半導体装置において、
    前記高耐圧MOSFETのソースを構成する不純物拡散層が、前記第1不純物拡散層と同時に形成されており、
    前記高耐圧MOSFETのゲート電極側の前記不純物拡散層の最深部からゲート長方向に延びる前記高耐圧MOSFETのゲート電極側の前記不純物拡散層の端部までの最短距離が、前記半導体基板の表面から前記不純物拡散層の最深部までの距離よりも長いことを特徴とする半導体装置。
  6. 請求項1記載の半導体装置において、
    前記第1導電型MOSFETおよび前記第2導電型MOSFETのゲート長が1μm以下であることを特徴とする半導体装置。
  7. 請求項1記載の半導体装置において、
    半導体スイッチング素子をオン、オフ駆動して直流電源を開閉し、安定化直流電源を作って外部の負荷へ供給するスイッチング電源装置を構成し、前記半導体スイッチング素子をオン、オフ駆動する信号を出力するドライバICが、前記第1導電型MOSFETおよび前記第2導電型MOSFETを含むことを特徴とする半導体装置。
  8. 半導体基板上にゲート酸化膜を介して形成されたゲート電極と、その両側下の前記半導体基板に形成されたソースおよびドレインとを、それぞれ有する第1導電型MOSFETと第2導電型MOSFETとを備えた半導体装置であって、
    前記第2導電型MOSFETのソースおよびドレインを構成する第2不純物拡散層が、第3不純物領域と前記第3不純物領域より不純物濃度が低い第4不純物領域とを有し、
    前記半導体基板の表面から浅く形成された前記第3不純物領域が、その表面から深く形成された前記第4不純物領域に囲まれており、
    前記第2導電型MOSFETのゲート電極下において、前記半導体基板の表面から深い所の前記第4不純物領域が、その表面から浅い所の前記第4不純物領域に比べて、ゲート長方向に突き出ていることを特徴とする半導体装置。
  9. 請求項8記載の半導体装置において、
    前記第2導電型MOSFETがnチャネル型MOSFETであることを特徴とする半導体装置。
  10. 請求項8記載の半導体装置において、
    前記第1導電型MOSFETがLDD構造のpチャネル型MOSFETであることを特徴とする半導体装置。
  11. 請求項8記載の半導体装置において、
    さらに、前記半導体基板上にゲート酸化膜を介して形成されたゲート電極と、その両側下の前記半導体基板に形成されたソースおよびドレインとを有する耐圧20V以上の高耐圧MOSFETを備えていることを特徴とする半導体装置。
  12. 請求項11記載の半導体装置において、
    前記高耐圧MOSFETのソースを構成する不純物拡散層が、前記第2不純物拡散層と同時に形成されており、
    前記高耐圧MOSFETのゲート電極下において、前記半導体基板の表面から深い所の前記不純物拡散層が、その表面から浅い所の前記不純物拡散層に比べて、ゲート長方向に突き出ていることを特徴とする半導体装置。
  13. 請求項8記載の半導体装置において、
    前記第1導電型MOSFETおよび前記第2導電型MOSFETのゲート長が1μm以下であることを特徴とする半導体装置。
  14. 請求項8記載の半導体装置において、
    半導体スイッチング素子をオン、オフ駆動して直流電源を開閉し、安定化直流電源を作って外部の負荷へ供給するスイッチング電源装置を構成し、前記半導体スイッチング素子をオン、オフ駆動する信号を出力するドライバICが、前記第1導電型MOSFETおよび前記第2導電型MOSFETを含むことを特徴とする半導体装置。
  15. 半導体基板上にゲート酸化膜を介して形成されたゲート電極と、その両側下の前記半導体基板に形成されたソースおよびドレインとを、それぞれ有する第1導電型MOSFETと第2導電型MOSFETとを備えた半導体装置の製造方法であって、
    前記第1導電型MOSFETまたは前記第2導電型MOSFETの少なくとも何れか一方のゲート電極の側壁にスペーサを形成した後に、第1濃度の不純物を第1エネルギーで斜めイオン注入し、前記第1濃度より高い第2濃度の不純物を前記第1エネルギーよりも低い第2エネルギーでイオン注入してソースおよびドレインを形成する工程を有することを特徴とする半導体装置の製造方法。
JP2008131789A 2008-05-20 2008-05-20 半導体装置およびその製造方法 Pending JP2009283543A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131789A JP2009283543A (ja) 2008-05-20 2008-05-20 半導体装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131789A JP2009283543A (ja) 2008-05-20 2008-05-20 半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2009283543A true JP2009283543A (ja) 2009-12-03

Family

ID=41453731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131789A Pending JP2009283543A (ja) 2008-05-20 2008-05-20 半導体装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP2009283543A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151120A (ja) * 2010-01-20 2011-08-04 Toshiba Corp 半導体装置および半導体装置の製造方法
JP2013223419A (ja) * 2012-04-16 2013-10-28 Internatl Rectifier Corp 電力インバーター用のシステムオンチップ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151120A (ja) * 2010-01-20 2011-08-04 Toshiba Corp 半導体装置および半導体装置の製造方法
US8604522B2 (en) 2010-01-20 2013-12-10 Kabushiki Kaisha Toshiba Field effect type semiconductor device and method for manufacturing the same
JP2013223419A (ja) * 2012-04-16 2013-10-28 Internatl Rectifier Corp 電力インバーター用のシステムオンチップ
US9000829B2 (en) 2012-04-16 2015-04-07 International Rectifier Corporation System on chip for power inverter

Similar Documents

Publication Publication Date Title
KR100840958B1 (ko) 승압형 dc-dc 컨버터용 반도체 장치 및 승압형dc-dc 컨버터
US8994106B2 (en) Lateral double-diffused MOSFET
US7666731B2 (en) Method of fabricating a lateral double-diffused MOSFET (LDMOS) transistor and a conventional CMOS transistor
US7074659B2 (en) Method of fabricating a lateral double-diffused MOSFET (LDMOS) transistor
US8357986B2 (en) High speed orthogonal gate EDMOS device and fabrication
US7465621B1 (en) Method of fabricating a switching regulator with a high-side p-type device
KR100985373B1 (ko) 드레인 확장형 mos 트랜지스터 및 그 반도체 장치 제조방법
JP2006509360A (ja) 集積ハーフブリッジ電力回路
KR20010080831A (ko) 모스 트랜지스터 및 그 제조 방법
JP4995873B2 (ja) 半導体装置及び電源回路
US10256236B2 (en) Forming switch circuit with controllable phase node ringing
US20120139005A1 (en) Semiconductor device
JP2009283543A (ja) 半導体装置およびその製造方法
US7863707B2 (en) DC-DC converter
TWI404193B (zh) 半導體裝置以及構成半導體結構之方法
KR100902596B1 (ko) 반도체 소자와 그의 제조방법 및 반도체 소자를 이용한변압회로
JP5055740B2 (ja) 半導体装置
JP2023166727A (ja) 半導体装置および半導体モジュール
US20110121803A1 (en) Semiconductor device and dc-dc converter
Jung Integrated Single Pole Double Throw (SPDT) Vertical Power MOSFETs for High Current and Fast Frequency Monolithic Synchronous Converters

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100528