JP2009282279A - 反射シートおよびバックライトユニット - Google Patents

反射シートおよびバックライトユニット Download PDF

Info

Publication number
JP2009282279A
JP2009282279A JP2008134023A JP2008134023A JP2009282279A JP 2009282279 A JP2009282279 A JP 2009282279A JP 2008134023 A JP2008134023 A JP 2008134023A JP 2008134023 A JP2008134023 A JP 2008134023A JP 2009282279 A JP2009282279 A JP 2009282279A
Authority
JP
Japan
Prior art keywords
sheet
resin
layer
concavo
convex pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008134023A
Other languages
English (en)
Inventor
Yukie Mori
ゆき恵 森
Toshiki Okayasu
俊樹 岡安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP2008134023A priority Critical patent/JP2009282279A/ja
Publication of JP2009282279A publication Critical patent/JP2009282279A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】直下型バックライトユニットに適用した際の正面での輝度を高くでき、しかも輝度を均一化できる反射シートおよびバックライトユニットを提供する。
【解決手段】本発明の反射シート1は、シート状の支持体10と、支持体10の片面に設けられた金属層20とを有し、金属層20の表面に、蛇行した波状の凹凸パターン21が形成され、凹凸パターン21の最頻ピッチが1.0μmを超え20μm以下、平均深さが最頻ピッチを100%とした際の10%以上である。
【選択図】図1

Description

本発明は、例えば、液晶表示装置等に用いられる反射シート、およびバックライトユニットに関する。
液晶表示装置等には、光を反射させる金属層を有する反射シートと、該反射シートの金属層側に配設された光源とを具備する直下型バックライトユニットが設けられることがある。
一般に、反射シートとしては、例えば、プラスチックシート上に銀薄膜層を形成した反射シートが知られている(特許文献1参照)。この反射シートの銀薄膜層は金属光沢を有し、正反射成分が大きく、指向性が強いため、光の入射角と見る角度(受光角)が一致する場合には非常に明るくなるものの、見る角度(受光角)がずれると急激に暗くなる、つまり視野角が狭いという欠点を有している。
液晶表示装置では、画像全体が均一に明るいことが求められるため、直下型バックライトユニットの反射シートにおいては、光源からの光を反射させる際に拡散させる必要がある。
反射の際に光を拡散させる方法として、例えば、金属層が積層される高分子フィルムの表面を凹凸化して、反射特性(光の集中と分散)を制御する方法が知られている。凹凸化方法としては、
(1)高分子フィルム表面にエンボス加工を施して凹凸構造を形成した後、表面を溶剤で処理して滑らかにする方法、
(2)高分子フィルム表面にSiO2などの粒子を高圧空気とともに吹き付けるサンドブラスト法、
(3)エッチング法などの化学的方法
などが挙げられる。
しかしながら、機械的物理的方法によりフィルム表面に凹凸形状を形成する(1),(2)の方法では、フィルムの材質が限定され、また、厚みをある程度厚くしなければならないという欠点がある。さらに、(2)の方法では、粒子の形状が不均一であるため、フィルムに形成された凹凸形状が激しくかつ不均一に荒れており、アルカリ溶液処理などで表面の一部を溶解しても、荒れを充分に均一化することができない。そのため、反射特性を充分に制御できていなかった。
また、(3)の化学的方法においても、フィルムの材質が限定され、また、処理後の洗浄、乾燥に手間を要するという問題を有していた。
つまり、(1)〜(3)の方法では、凹凸の形成方法自体に欠点がある上に、得られた反射シートの視野角が依然として狭いため、明るさ(輝度)が均一な反射特性を得ることができなかった。
視野角が広がるように反射の際の光を拡散させる反射シートとして、以下の特許文献2〜4に記載の反射シートが開示されている。
すなわち、特許文献2,3には、ポリエステルやアクリル系樹脂と有機粒子や無機フィラーとを含む混合液をフィルムに塗工して粗面化させ、その粗面化したフィルムに金属を蒸着したものが開示されている。
特許文献4には、複数の微小な柱状部集合体がドット状に複数設けられた基板の上に光反射薄膜を備えた反射シートが開示されている。
また、輝度を均一化する反射シートとして、特許文献5には、基板表面に直線的に形成された谷部に金属薄膜が被覆された反射シートが開示されている。
特開平2−169244号公報 特開平7−181323号公報 特開平11−64613号公報 特開2001−141915号公報 特開2001−13310号公報
しかし、特許文献2〜4に記載の反射シートは、光の反射性能が不充分であり、また、直下型バックライトユニットに適用した際の正面での輝度が不充分であった。また、特許文献5に記載の反射シートでも、直下型バックライトユニットに適用した際の正面での輝度が不充分であった。そのため、特許文献2〜5に記載の反射シートは、直下型バックライトユニットに適したものではなかった。
以上のことから、直下型バックライトユニットに適用した際に正面での輝度を高くでき、しかも輝度を均一にできる反射シートが求められていた。
本発明は、前記事情を鑑みてなされたものであり、直下型バックライトユニットに適用した際の正面での輝度を高くでき、しかも輝度を均一化できる反射シートおよびバックライトユニットを提供することを目的とする。
本発明者は、上記の課題を解決するために鋭意に検討を重ねた結果、金属層の表面に、蛇行した凹凸パターンが形成されていることで、光拡散性を有し、その光拡散性が適度な異方性を生じるようになり、光を適度に拡散させることを見出した。そして、その知見に基づき、さらに検討して、以下の反射シートを発明した。
すなわち、本発明は以下の態様を包含する。
[1] シート状の支持体と、該支持体の片面に設けられた金属層とを有する反射シートであって、
金属層の表面に、蛇行した波状の凹凸パターンが形成され、該凹凸パターンの最頻ピッチが1.0μmを超え20μm以下、平均深さが最頻ピッチを100%とした際の10%以上であることを特徴とする反射シート。
[2] 前記支持体の片面に、蛇行した波状の凹凸パターンが形成され、
前記金属層が、該支持体の凹凸パターンが形成された面に、略均一の厚みで積層されている[1]に記載の反射シート。
[3] [1]または[2]に記載の反射シートと、該反射シートの金属層側に配設された光源とを具備することを特徴とするバックライトユニット。
本発明の反射シートおよびバックライトユニットは、正面での輝度を高くでき、しかも輝度を均一化できる。
「反射シート」
本発明の反射シートの一実施形態について説明する。
図1に、本実施形態の反射シートを示す。本実施形態の反射シート1は、シート状で、片面に凹凸パターンが形成された支持体10と、支持体10の、凹凸パターンが形成された面に形成された金属層20とを有し、金属層20の表面に凹凸パターン21が形成されたものである。
本実施形態における支持体10のもう片方の面(以下、この面のことを裏面ということがある。)は凹凸パターンが形成されていない平滑な面である。
(凹凸パターン)
凹凸パターン21は略一方向に沿った波状の凹凸を有し、その波状の凹凸が蛇行しているものである。また、本実施形態の凹凸パターン21の凸部の先端は丸みを帯びている。
凹凸パターン21の最頻ピッチAは1μmを超え20μm以下、好ましくは1μmを超え10μm以下である。最頻ピッチAが1μm未満であると、反射の際の光の拡散性が低くなり、20μmを超えると、正面にて所望の輝度が得られなくなる。
また、輝度をより均一化できる点では、凹凸パターン21のピッチは不均一であることが好ましい。
凹凸パターン21の底部21aの平均深さBは最頻ピッチAを100%とした際の10%以上(すなわち、アスペクト比0.1以上)であり、30%以上(すなわち、アスペクト比0.3以上)であることが好ましい。平均深さBが最頻ピッチAを100%とした際の10%未満であると、所望の拡散性が得られず、輝度を均一化できなくなる。
また、平均深さBは、凹凸パターン21を容易に形成できる点から、好ましくは最頻ピッチAを100%とした際の300%以下(すなわち、アスペクト比3.0以下)であり、より好ましくは200%以下(すなわち、アスペクト比2.0以下)である。
ここで、底部21aとは、凹凸パターン21の凹部の極小点であり、平均深さBは、反射シート1を長さ方向に沿って切断した断面(図2参照)を見た際の、反射シート1全体の面方向と平行な基準線Lから各凸部の頂部までの長さB,B,B・・・の平均値(BAV)と、基準線Lから各凹部の底部までの長さb,b,b・・・の平均値(bAV)との差(bAV−BAV)のことである。
平均深さBを測定する方法としては、原子間力顕微鏡により撮影した凹凸パターンの断面の画像にて各底部の深さを測定し、それらの平均値を求める方法などが採られる。
本発明における蛇行とは、隣り合った凸部同士のピッチが凹凸パターン21の方向に沿ってばらついていることである。すなわち、本発明では、凹凸パターン21が蛇行することによって、光拡散の異方性の高い光拡散体が得られるようになっている。ここで、凹凸パターン21の配向のばらつきのことを配向度という。配向度が大きいほど、配向度がばらついていることを示す。この配向度は以下の方法で求められる。
まず、表面光学顕微鏡により凹凸パターンの上面を撮影し、その画像をグレースケールのファイル(例えば、tiff形式等)に変換する。グレースケールのファイルの画像(図3参照)では、白度が低いところ程、凹部の底部が深い(白度が高いところ程、凸部の頂部が高い)ことを表している。次いで、グレースケールのファイルの画像をフーリエ変換する。図4にフーリエ変換後の画像を示す。図4の画像の中心から両側に広がる白色部分は凹凸パターン21のピッチおよび向きの情報が含まれる。
次いで、図4の画像の中心から水平方向に補助線Lを引き、その補助線上の輝度をプロット(図5参照)する。図5のプロットの横軸はピッチの逆数を、縦軸は頻度を表し、頻度が最大となる値Xの逆数が凹凸パターン21の最頻ピッチを表す。
次いで、図4において、補助線Lと値Xの部分にて直交する補助線Lを引き、その補助線L上の輝度をプロット(図6参照)する。ただし、図6の横軸は、各種の凹凸構造との比較を可能にするため、Xの値で割った数値とする。図6の横軸は、凹凸の形成方向(図3における上下方向)に対する傾きの程度を示す指標(配向性)を、縦軸は頻度を表す。図6のプロットにおけるピークの半値幅W(頻度が最大値の半分になる高さでのピークの幅)が凹凸パターンの配向度を表す。半値幅Wが大きい程、蛇行していることを表す。
上記配向度が0.2以上であることで凹凸パターン21が蛇行していることを意味するが、配向度は0.3〜1.0であることが好ましい。配向度が0.3以上であれば、該反射シート1の光拡散性が高くなり、輝度をより均一化できる。配向度が0.3〜1.0であれば、凹凸パターン21のピッチのばらつきが大きいため、光拡散性がより高くなる。配向度が1.0を超えると、凹凸パターン21の方向がある程度ランダムになるため、光拡散性は高くなるが、異方性が低くなる傾向にある。
なお、上記のようにフーリエ変換を利用して求めた凹凸パターン21の最頻ピッチは平均ピッチと略同等となる。
(金属層)
金属層20を構成する金属としては特に制限されず、例えば、銀、アルミニウムまたはこれらの合金などが挙げられる。
金属層20には、他の微量の金属化合物が含まれてもよい。また、金属層20は2層以上の層から形成されていても構わない。2層以上から形成される場合、最外層は防蝕性を有する層が好ましい。
本実施形態における金属層20は厚みが略均一である。金属層20の厚みは70〜400nmが好ましく、100〜300nmがより好ましく、100〜250nmが特に好ましい。金属層20の厚みが70nm以上であれば、金属層20が充分な厚みを有し、所望の反射率が容易に得られる。しかし、400nmより厚くしても反射性能が向上しないため、無益である。
なお、金属層20は、層表面が空気酸化されて空気酸化膜が形成されることがあるが、そのような金属層20の表面が空気酸化された層も、金属からなる層とみなす。
本発明の反射シート1は、凹凸パターン21の最頻ピッチAが1μmを超え20μm以下、凹凸パターン21の底部21aの平均深さBが最頻ピッチAを100%とした際の10%以上であるため、適度に光を拡散できる。また、本発明の反射シート1における凹凸パターン21は蛇行した波状であるため、高い異方性が生じるようになっている。そのため、直下型バックライトユニットに適用した際の正面での輝度を高くでき、しかも輝度を均一化できる。
(その他の構成)
本発明の反射シートは、片面または両面に他の層を備えてもよい。例えば、反射シート1の、凹凸パターン21が形成されている側の面に、その面の汚れを防止するために、フッ素樹脂またはシリコーン樹脂を主成分として含有する厚さ1〜5nm程度の防汚層を備えてもよい。
また、反射シート1の裏面には、厚さ5〜500μmの、透明樹脂製あるいはガラス製の反射シート支持部材が備えられていてもよい。
さらに、反射シート1の裏面に粘着剤層が形成されていてもよく、機能性を適宜持たせるために色素を含んでもよい。
また、本発明の反射シート1では、凹凸パターンの凸部の先端が尖っていても構わない。しかし、凹凸パターンの凸部の形状は拡散性がより高くなる点から、上記実施形態のように、先端が丸みを帯びていることが好ましい。
(反射シートの用途)
本発明の反射シートは、液晶表示装置、とりわけ直下型バックライトユニットを備える液晶表示装置に用いることができる。
また、反射率が高いことから、太陽電池の集光体材料として利用することもできる。また、ストロボ、信号表示、自動車のライト、蛍光灯、懐中電灯や高品位を求められるシャンデリア照明用リフレクターのほか、カーブミラーやバックミラー、スクリーンとして用いることができる。
「反射シートの製造方法」
反射シートの製造方法としては、蛇行した波状の凹凸パターンが片面に形成された支持体を作製し、支持体の凹凸パターンが形成された面に、厚みが均一の金属層を積層する方法(以下、第1の製造方法という。)、樹脂フィルムの片面に表面が平滑な金属層を積層し、得られた積層シートを、金属層を折り畳むように変形させて凹凸パターンを形成する方法(以下、第2の製造方法という。)が挙げられる。
<第1の製造方法>
第1の製造方法において、蛇行した波状の凹凸パターンが片面に形成された支持体の作製方法としては、
(a)樹脂製の基材の片面に、樹脂製の表面が平滑な層(以下、表面が平滑な層を表面平滑層という。)が積層された積層シートを、表面平滑層を折り畳むように変形させて、凹凸パターンが形成されたシート(支持体)を得る方法。この方法では、2つの樹脂層からなる支持体が得られる。
ここで、表面平滑層とは、JIS B0601に記載の中心線平均粗さ0.1μm以下の層である。
(b)樹脂製の基材の片面に、金属製または金属化合物製の表面が平滑な層が積層された積層シートを、表面平滑層を折り畳むように変形させて、凹凸パターンが形成されたシート(支持体)を得る方法。この方法では、樹脂層と金属製または金属化合物製の層とからなる支持体が得られる。
(c)上記(a)または(b)の方法により得たシートを工程シート原版として、支持体を作製する方法。この方法では、1つの樹脂層からなる支持体が得られる。
第1の製造方法における金属層の積層方法としては、メッキ法、真空蒸着法、スパッタリング法、イオンプレーティング法、イオン化蒸着法、イオンクラスタービーム蒸着法等の方法を適宜採用できる。
[(a)の方法]
支持体を作製する際の上記(a)の方法としては、例えば、下記(a−1)の方法が挙げられる。
(a−1)の方法は、図7に示すように、樹脂製の基材である加熱収縮性フィルム11aの片面に、樹脂製の表面平滑層12aを設けて積層シート10aを形成する工程(以下、第1の工程という。)と、加熱収縮性フィルム11aを加熱収縮させて、積層シート10aの少なくとも表面平滑層12aを折り畳むように変形させて、支持体10を得る工程(以下、第2の工程という。)とを有する方法である。
・第1の工程
第1の工程にて、加熱収縮性フィルム11aの片面に表面平滑層12aを設けて積層シート10aを形成する方法としては、例えば、加熱収縮性フィルム11aの片面に、第2の樹脂の溶液または分散液をスピンコーターやバーコーター等により塗工し、溶媒を乾燥させる方法、加熱収縮性フィルム11aの片面に、あらかじめ作製した表面平滑層12aを積層する方法などが挙げられる。
加熱収縮性フィルム11aとしては、例えば、ポリエチレンテレフタレート系シュリンクフィルム、ポリスチレン系シュリンクフィルム、ポリオレフィン系シュリンクフィルム、ポリ塩化ビニル系シュリンクフィルムなどを用いることができる。
加熱収縮性フィルムの中でも、50〜70%収縮するものが好ましい。50〜70%収縮する加熱収縮性フィルムを用いれば、変形率を50%以上にでき、凹凸パターン21の最頻ピッチAが1μmを超え20μm以下、凹凸パターン21の底部21aの平均深さBが最頻ピッチAを100%とした際の10%以上の反射シート1を容易に製造できる。さらには、凹凸パターン21の底部21aの平均深さBが最頻ピッチAを100%とした際の100%以上の反射シート1も容易に製造できる。
ここで、変形率とは、(変形前の長さ−変形後の長さ)/(変形前の長さ)×100(%)のことである。あるいは、(変形した長さ)/(変形前の長さ)×100(%)のことである。
加熱収縮性フィルム11aの厚みは0.3〜500μmであることが好ましい。加熱収縮性フィルム11aの厚みが0.3μm以上であれば、反射シート1が破損しにくくなり、500μm以下であれば、反射シート1を容易に薄型化できる。
表面平滑層12aを構成する樹脂(以下、第2の樹脂という。)のガラス転移温度Tgと、加熱収縮性フィルム11aを構成する樹脂(以下、第1の樹脂という。)のガラス転移温度Tgとの差(Tg−Tg)は10℃以上であることが好ましく、20℃以上であることがより好ましく、30℃以上であることが特に好ましい。
(Tg−Tg)の差が10℃以上であれば、TgとTgの間の温度で容易に加工できる。TgとTgの間の温度を加工温度とすると、加熱収縮性フィルム11aのヤング率が表面平滑層12aのヤング率より高くなる条件で加工でき、その結果、凹凸パターンを容易に形成できる。
また、Tgが400℃を超えるような樹脂を使用することは経済性の面から必要に乏しく、Tgが−150℃より低い樹脂は存在しないことから、(Tg−Tg)は550℃以下であることが好ましく、200℃以下であることがより好ましい。
第1の樹脂の種類にもよるが、第2の樹脂としては、例えば、ポリビニルアルコール、ポリスチレン、アクリル樹脂、スチレン−アクリル共重合体、スチレン−アクリロニトリル共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルスルホン、フッ素樹脂などを使用することができる。これらの中でも、防汚機能を兼ね備えた点で、フッ素樹脂が好ましい。
第2の樹脂は単独でも併用でもよく、配向度を高めるためには樹脂を2種以上併用することが好ましい。
第1の樹脂のガラス転移温度Tgは−150〜300℃であることが好ましく、−120〜200℃であることがより好ましい。ガラス転移温度Tgが−150℃より低い樹脂は存在せず、第1の樹脂のガラス転移温度Tgが300℃以下であれば、加工温度(TgとTgの間の温度)に容易に加熱することができるためである。
加工温度における第1の樹脂のヤング率は0.01〜100MPaであることが好ましく、0.1〜10MPaであることがより好ましい。第1の樹脂のヤング率が0.01MPa以上であれば、基材として使用可能な硬さであり、100MPa以下であれば、表面平滑層12aが変形する際に同時に追従して変形可能な軟らかさである。
ここでいう加工温度は、熱収縮時の加熱温度のことである。また、ヤング率は、JIS K 7113−1995に準拠して測定した値である。
第2の樹脂のガラス転移温度Tgは40〜400℃であることが好ましく、80〜250℃であることがより好ましい。第2の樹脂のガラス転移温度Tgが40℃以上であれば、加工温度を室温またはそれ以上にすることができて有用であり、ガラス転移温度Tgが400℃を超えるような樹脂を第2の樹脂として使用することは経済性の面から必要性に乏しいためである。
加工温度における第2の樹脂のヤング率は0.01〜300GPaであることが好ましく、0.1〜10GPaであることがより好ましい。第2の樹脂のヤング率が0.01GPa以上であれば、第1の樹脂の加工温度におけるヤング率より充分な硬さが得られ、凹凸パターンが形成された後、凹凸パターンを維持するのに充分な硬さであり、ヤング率が300GPaを超えるような樹脂を第2の樹脂として使用することは経済性の面から必要性に乏しいためである。
加工温度における第1の樹脂と第2の樹脂とのヤング率の差は、凹凸パターンを容易に形成できることから、0.01〜300GPaであることが好ましく、0.1〜10GPaであることがより好ましい。
また、表面平滑層12aが樹脂からなる場合、その厚さは、0.05μmを超え5.0μm以下、好ましくは0.1〜1.0μmとする。表面平滑層12aの厚さが前記範囲であれば、凹凸パターン21の最頻ピッチAを、確実に1μmを超え20μm以下にできる。しかし、表面平滑層12aの厚さを0.05μm以下とすると最頻ピッチAが1μm以下になることがあり、5.0μmを超えると、最頻ピッチAが20μmを超えることがある。
また、表面平滑層12aの厚さは連続的に変化していても構わない。表面平滑層12aの厚さが連続的に変化している場合には、圧縮後に形成される凹凸パターン21のピッチおよび深さが連続的に変化するようになる。
表面平滑層12aが金属または金属化合物からなる場合、その厚さは、0.01μmを超え、0.2μm以下、好ましくは0.05〜0.5μmとする。表面平滑層12aの厚さが前記範囲であれば、凹凸パターン21の最頻ピッチAを、確実に1μmを超え20μm以下にできる。しかし、表面平滑層12aの厚さを0.05μm未満であると最頻ピッチAが1μm以下になることがあり、0.5μmを超えると、最頻ピッチAが20μmを超えることがある。
また、表面平滑層12aの厚さは連続的に変化していても構わない。表面平滑層12aの厚さが連続的に変化している場合には、圧縮後に形成される凹凸パターン21のピッチおよび深さが連続的に変化するようになる。
・第2の工程
第2の工程にて、加熱収縮性フィルム11aを熱収縮させることにより、表面平滑層12aに、収縮方向に対して垂直方向に波状の凹凸パターンを形成させる。
加熱収縮性フィルム11aを加熱収縮させる際の加熱方法としては、熱風、蒸気または熱水中に通す方法等が挙げられ、中でも、均一に収縮させることができることから、熱水に通す方法が好ましい。
加熱収縮性フィルム11aを熱収縮させる際の加熱温度は、使用する加熱収縮性フィルムの種類および目的とする凹凸パターン21のピッチならびに底部21aの深さに応じて適宜選択することが好ましい。
この(a−1)の方法では、表面平滑層12aの厚さが薄いほど、表面平滑層12aのヤング率が低いほど、凹凸パターン21の最頻ピッチAが小さくなり、加熱収縮性フィルム11aの変形率が高いほど、平均深さBが深くなる。したがって、凹凸パターン21を所定の最頻ピッチA、平均深さBにするためには、前記条件を適宜選択する必要がある。
このような支持体の製造方法では、表面平滑層12aを構成する第2の樹脂が加熱収縮性フィルム11aを構成する第1の樹脂よりガラス転移温度が10℃以上高いため、第1の樹脂のガラス転移温度と第2の樹脂のガラス転移温度の間の温度では、表面平滑層12aのヤング率が加熱収縮性フィルム11aより高くなる。その上、表面平滑層12aの厚さを0.05μmを超え5.0μm以下としているため、第1の樹脂のガラス転移温度と第2の樹脂のガラス転移温度の間の温度で加工した際には、加熱収縮性フィルム11aの収縮による応力が全体に均一にかかる。そのため、表面平滑層12aは厚みを増すよりも、折り畳まれるようになる。
したがって、本製造方法によれば、表面平滑層12aを折り畳むように変形させることにより、凹凸パターンが形成された支持体10を簡便にかつ大面積に作製できる。しかも、この製造方法によれば、容易に、凹凸パターン21の最頻ピッチAを、1μmを超え20μm以下、凹凸パターン21の底部21aの平均深さBを、最頻ピッチAを100%とした際の10%以上にできる。
なお、上記(a−1)の製造方法では、加熱収縮性フィルム11aに、加熱収縮性フィルム11aよりガラス転移温度が低いプライマー樹脂層を塗工し、該プライマー樹脂層の上に表面平滑層12aを設けて積層シートを形成してもよい。この方法によれば、容易に、凹凸パターン21の平均深さBを、最頻ピッチAを100%とした際の300%にできる。
また、加熱収縮後の加熱収縮性フィルム11aを積層シート10aから剥離し、別の加熱収縮性フィルム11aを貼り合せ、新たな積層シート10aを形成して加熱収縮させてもよい。このようにした場合、表面平滑層12aをより折り畳むことができるから、平均深さBをより大きくでき、この工程を複数回繰り返すことで、凹凸パターン21の平均深さBを、最頻ピッチAを100%とした際の300%にすることができる。
(a)の方法は、上記(a−1)の方法に限定されず、下記(a−2)〜(a−5)の方法であってもよい。
(a−2)樹脂フィルム11aの片面の全部に、樹脂製の表面平滑層12aを設けて積層シート10aを形成し、積層シート10a全体を表面に沿った一方向に圧縮する方法。ここで、樹脂フィルム11aのガラス転移温度が室温未満の場合には、積層シート10aの圧縮は室温で行い、樹脂フィルム11aのガラス転移温度が室温以上の場合には、積層シート10aの圧縮は、樹脂フィルム11aのガラス転移温度以上、樹脂製の表面平滑層12aのガラス転移温度未満で行う。
(a−3)樹脂フィルム11aの片面の全部に、樹脂製の表面平滑層12aを設けて積層シート10aを形成し、積層シート10aを一方向に延伸し、延伸方向に対する直交方向を収縮させて、樹脂製の表面平滑層12aを表面に沿った一方向に圧縮する方法。ここで、樹脂フィルム11aのガラス転移温度が室温未満の場合には、積層シート10aの延伸は室温で行い、樹脂フィルム11aのガラス転移温度が室温以上の場合には、積層シート10aの延伸は、樹脂フィルム11aのガラス転移温度以上、樹脂製の表面平滑層12aのガラス転移温度未満で行う。
(a−4)未硬化の電離放射線硬化性樹脂により形成された加熱収縮性フィルム11aに、樹脂製の表面平滑層12aを積層して積層シート10aを形成し、電離放射線を照射して加熱収縮性フィルム11aを硬化させることにより収縮させて、加熱収縮性フィルム11aに積層された樹脂製の表面平滑層12aを表面に沿った少なくとも一方向に圧縮する方法。
(a−5)溶媒を膨潤させて膨張させた加熱収縮性フィルム11aに、樹脂製の表面平滑層12aを積層して積層シート10aを形成し、加熱収縮性フィルム11a中の溶媒を乾燥し、除去することにより収縮させて、加熱収縮性フィルム11aに積層された樹脂製の表面平滑層12aを表面に沿った少なくとも一方向に圧縮する方法。
(a−2)の方法において、積層シート10aを形成する方法としては、例えば、樹脂フィルム11aの片面に、樹脂の溶液または分散液をスピンコーターやバーコーター等により塗工し、溶媒を乾燥させる方法、樹脂フィルム11aの片面に、あらかじめ作製した表面平滑層12aを積層する方法などが挙げられる。
積層シート10a全体を表面に沿った一方向に圧縮する方法としては、例えば、積層シート10aの一端部とその反対側の端部とを、万力等により挟んで圧縮する方法などが挙げられる。
(a−3)の方法において、積層シート10aを一方向に延伸する方法としては、例えば、積層シート10aの一端部とその反対側の端部とを、引っ張って延伸する方法などが挙げられる。
(a−4)の方法において、電離放射線硬化性樹脂としては紫外線硬化型樹脂や電子線硬化型樹脂などが挙げられる。
(a−5)の方法において、溶媒は第1の樹脂の種類に応じて適宜選択される。溶媒の乾燥温度は溶媒の種類に応じて適宜選択される。
(a−2)〜(a−5)の方法における樹脂製の表面平滑層12aにおいても、(a−1)の方法で用いるものと同様の成分を用いることができ、同様の厚さとすることができる。また、積層シート10aの形成方法は、(a−1)の方法と同様に、加熱収縮性フィルム11aまたは樹脂フィルム11aの片面に樹脂の溶液または分散液を塗工し、溶媒を乾燥させる方法、加熱収縮性フィルム11aまたは樹脂フィルム11aの片面に、あらかじめ作製した樹脂製の表面平滑層12aを積層する方法を適用できる。
[(b)の方法]
支持体を作製する際の上記(b)の方法としては、例えば、下記(b−1)の方法が挙げられる。
(b−1)の方法は、図7に示すように、樹脂フィルム11bの片面に、金属製または金属化合物製の表面平滑層12bを設けて積層シート10bを形成する工程と、樹脂フィルム11bを加熱収縮させて積層シート10bの少なくとも表面平滑層12bを折り畳むように変形させる工程とを有する方法である。
この方法において使用される樹脂フィルム11bは、(a−1)の方法で使用される加熱収縮性フィルム11aと同様である。
本製造方法においては、より容易に凹凸パターンが形成することから、表面平滑層12bのヤング率を0.1〜500GPaにし、1〜150GPaにすることが好ましい。ここで、ヤング率は、JIS Z 2280−1993の「金属材料の高温ヤング率試験方法」にて温度を23℃に変更して測定した値である。
表面平滑層12bのヤング率を前記範囲にするためには、表面平滑層12bを、金、アルミニウム、銀、炭素、銅、ゲルマニウム、インジウム、マグネシウム、ニオブ、パラジウム、鉛、白金、シリコン、スズ、チタン、バナジウム、亜鉛、ビスマスよりなる群から選ばれる少なくとも1種の金属で構成することが好ましい。
または、表面平滑層12bを、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化マグネシウム、酸化スズ、酸化銅、酸化インジウム、酸化カドミウム、酸化鉛、酸化ケイ素、フッ化バリウム、フッ化カルシウム、フッ化マグネシウム、硫化亜鉛、ガリウムヒ素よりなる群から選ばれる少なくとも1種の金属化合物で構成することが好ましい。
また、本製造方法においては、表面平滑層12bの厚さは0.01μmを超え0.2μm以下、好ましくは0.02〜0.1μmとする。表面平滑層12bの厚さを前記範囲とすることにより、凹凸パターン21の最頻ピッチAを、確実に1μmを超え20μm以下にできる。しかし、表面平滑層12bの厚さが0.01μm以下であると最頻ピッチAが1μm以下になることがあり、0.2μmを超えると、最頻ピッチAが20μmを超えることがある。
なお、表面平滑層12bは、層表面が空気酸化されて空気酸化膜が形成されることがあるが、そのような表面平滑層12bの表面が空気酸化された層も、金属からなる層とみなす。
(b−1)の方法では、積層シート10bを変形させる際には、表面平滑層12bを5%以上の変形率で変形させることが好ましい。表面平滑層12bを5%以上の変形率で変形させれば、凹凸パターン21の底部21aの平均深さBを、容易に最頻ピッチAを100%とした際の10%以上にできる。
さらには、表面平滑層12bを50%以上の変形率で変形させることがより好ましい。表面平滑層12bを50%以上の変形率で変形させれば、凹凸パターン21の底部21aの平均深さBを、最頻ピッチAを100%とした際の10%以上にできる。さらには、凹凸パターン21の底部21aの平均深さBを、容易に最頻ピッチAを100%とした際の100%以上にできる。
上記(b−1)の方法でも、樹脂フィルム11bを収縮させた際には、金属製または金属化合物製の表面平滑層12bは厚みを増すよりも、折り畳まれるようになる。したがって、本製造方法によれば、表面平滑層12bを折り畳むように変形させることにより、片面に凹凸パターンが形成された支持体10を簡便にかつ大面積に作製できる。しかも、この製造方法によれば、容易に、凹凸パターン21の最頻ピッチAを、1μmを超え20μm以下、凹凸パターン21の底部21aの平均深さBを、最頻ピッチAを100%とした際の10%以上にできる。
(b−1)の方法においても、樹脂フィルム11bと表面平滑層12bとの間に、密着性を向上させて微細な構造を形成することを目的として、プライマー層を形成してもよい。
また、(b)の方法は、上記(b−1)の方法に限定されず、下記(b−2)〜(b−5)の方法であってもよい。
(b−2)樹脂フィルム11bの片面の全部に、金属製または金属化合物製の表面平滑層12bを設けて積層シート10bを形成し、積層シート10b全体を表面に沿った一方向に圧縮する方法。
(b−3)樹脂フィルム11bの片面の全部に、金属製または金属化合物製の表面平滑層12bを設けて積層シート10bを形成し、積層シート10bを一方向に延伸し、延伸方向に対する直交方向を収縮させて、金属製または金属化合物製の表面平滑層12bを表面に沿った一方向に圧縮する方法。
(b−4)未硬化の電離放射線硬化性樹脂により形成された加熱収縮性フィルム11bに、金属製または金属化合物製の表面平滑層12bを積層して積層シート10bを形成し、電離放射線を照射して加熱収縮性フィルム11bを硬化させることにより収縮させて、加熱収縮性フィルム11bに積層された金属製または金属化合物製の表面平滑層12bを表面に沿った少なくとも一方向に圧縮する方法。
(b−5)溶媒を膨潤させて膨張させた加熱収縮性フィルム11bに、金属製または金属化合物製の表面平滑層12bを積層して積層シート10bを形成し、加熱収縮性フィルム11b中の溶媒を乾燥し、除去することにより収縮させて、加熱収縮性フィルム11bに積層された金属製または金属化合物製の表面平滑層12bを表面に沿った少なくとも一方向に圧縮する方法。
(b−2)の方法において、積層シート10bを形成する方法としては、例えば、樹脂フィルム11bの片面に、樹脂の溶液または分散液をスピンコーターやバーコーター等により塗工し、溶媒を乾燥させる方法、樹脂フィルム11bの片面に、あらかじめ作製した表面平滑層12bを積層する方法などが挙げられる。
積層シート10b全体を表面に沿った一方向に圧縮する方法としては、例えば、積層シート10bの一端部とその反対側の端部とを、万力等により挟んで圧縮する方法などが挙げられる。
(b−3)の方法において、積層シート10bを一方向に延伸する方法としては、例えば、積層シート10bの一端部とその反対側の端部とを、引っ張って延伸する方法などが挙げられる。
(b−4)の方法において、電離放射線硬化性樹脂としては紫外線硬化型樹脂や電子線硬化型樹脂などが挙げられる。
(b−5)の方法において、溶媒は加熱収縮性フィルム11bの種類に応じて適宜選択される。溶媒の乾燥温度は溶媒の種類に応じて適宜選択される。
[(c)の方法]
(c)の方法は、具体的には、(a)の方法または(b)の方法により得た凹凸パターンが形成されたシートを工程シート原版として用いて、凹凸パターンを有する支持体10を新たに作製する方法である。
工程シート原版は、枚葉状であってもよいし、連続したシート状であるウェブ状であってもよい。工程シート原版は、これを支持するための樹脂製または金属製の支持用部材をさらに備えてもよい。
工程シート原版を用いて支持体10を新たに作製する具体的な方法としては、例えば、下記(c−1)〜(c−3)の方法が挙げられる。
(c−1)工程シート原版の凹凸パターンが形成された面に、未硬化の電離放射線硬化性樹脂を塗工する工程と、電離放射線を照射して前記硬化性樹脂を硬化させた後、硬化した塗膜を工程シート原版から剥離する工程とを有する方法。ここで、電離放射線とは、通常、紫外線または電子線のことであるが、本製造方法では、可視光線、X線、イオン線等も含む。
(c−2)工程シート原版の凹凸パターンが形成された面に、未硬化の液状熱硬化性樹脂を塗工する工程と、加熱して前記液状熱硬化性樹脂を硬化させた後、硬化した塗膜を工程シート原版から剥離する工程とを有する方法。
(c−3)工程シート原版の凹凸パターンが形成された面に、シート状の熱可塑性樹脂を接触させる工程と、該シート状の熱可塑性樹脂を工程シート原版に押圧しながら加熱して軟化させた後、冷却する工程と、その冷却したシート状の熱可塑性樹脂を工程シート原版から剥離する工程とを有する方法。
また、工程シート原版を用いて2次工程用成形物を作製し、その2次工程用成形物を用いて支持体を新たに作製することもできる。2次工程用成形物としては、例えば、2次工程シートが挙げられる。また、2次工程用成形物としては、工程シート原版を丸めて円筒の内側に貼り付け、その円筒の内側にロールを挿入した状態でめっきし、円筒からロールを取り出して得ためっきロールが挙げられる。
2次工程用成形物を用いる具体的な方法としては、下記(c−4)〜(c−6)の方法が挙げられる。
(c−4)工程シート原版の凹凸パターンが形成された面に、ニッケル等の金属めっきを行って、めっき層(凹凸パターン転写用材料)を積層する工程と、そのめっき層を工程シート原版から剥離して、金属製の2次工程用成形物を作製する工程と、次いで、2次工程用成形物の凹凸パターンと接していた側の面に、未硬化の電離放射線硬化性樹脂を塗工する工程と、電離放射線を照射して前記硬化性樹脂を硬化させた後、硬化した塗膜を2次工程用成形物から剥離する工程とを有する方法。
(c−5)工程シート原版の凹凸パターンが形成された面に、めっき層(凹凸パターン転写用材料)を積層する工程と、そのめっき層を工程シート原版から剥離して、金属製の2次工程用成形物を作製する工程と、該2次工程用成形物の凹凸パターンと接していた側の面に、未硬化の液状熱硬化性樹脂を塗工する工程と、加熱により該樹脂を硬化させた後、硬化した塗膜を2次工程用成形物から剥離する工程とを有する方法。
(c−6)工程シート原版の凹凸パターンが形成された面に、めっき層(凹凸パターン転写用材料)を積層する工程と、そのめっき層を工程シート原版から剥離して、金属製の2次工程用成形物を作製する工程と、該2次工程用成形物の凹凸パターンと接していた側の面に、シート状の熱可塑性樹脂を接触させる工程と、該シート状の熱可塑性樹脂を2次工程用成形物に押圧しながら加熱して軟化させた後、冷却する工程と、その冷却したシート状の熱可塑性樹脂を2次工程用成形物から剥離する工程とを有する方法。
(c−1)の方法の具体例について説明する。図8に示すように、まず、ウェブ状の工程シート原版110の凹凸パターン112aが形成された面に、コーター120により未硬化の液状電離放射線硬化性樹脂112cを塗工する。次いで、該硬化性樹脂を塗工した工程シート原版110を、ロール130を通すことにより押圧して、前記硬化性樹脂を工程シート原版110の凹凸パターン112a内部に充填する。その後、電離放射線照射装置140により電離放射線を照射して、硬化性樹脂を架橋・硬化させる。そして、硬化後の電離放射線硬化性樹脂を工程シート原版110から剥離させることにより、ウェブ状の支持体150を製造することができる。
(c−1)の方法において、工程シート原版の凹凸パターンが形成された面には、離型性を付与する目的で、未硬化の電離放射線硬化性樹脂塗工前に、シリコーン樹脂、フッ素樹脂等からなる層を1〜10nm程度の厚さで設けてもよい。
工程シート原版の凹凸パターンが形成された面に、未硬化の電離放射線硬化性樹脂を塗工するコーターとしては、Tダイコーター、ロールコーター、バーコーター等が挙げられる。
未硬化の電離放射線硬化性樹脂としては、エポキシアクリレート、エポキシ化油アクリレート、ウレタンアクリレート、不飽和ポリエステル、ポリエステルアクリレート、ポリエーテルアクリレート、ビニル/アクリレート、ポリエン/アクリレート、シリコンアクリレート、ポリブタジエン、ポリスチリルメチルメタクリレート等のプレポリマー、脂肪族アクリレート、脂環式アクリレート、芳香族アクリレート、水酸基含有アクリレート、アリル基含有アクリレート、グリシジル基含有アクリレート、カルボキシ基含有アクリレート、ハロゲン含有アクリレート等のモノマーの中から選ばれる1種類以上の成分を含有するものが挙げられる。未硬化の電離放射線硬化性樹脂は溶媒等で希釈することが好ましい。
また、未硬化の電離放射線硬化性樹脂には、フッ素樹脂、シリコーン樹脂等を添加してもよい。
未硬化の電離放射線硬化性樹脂を紫外線により硬化する場合には、未硬化の電離放射線硬化性樹脂にアセトフェノン類、ベンゾフェノン類等の光重合開始剤を添加することが好ましい。
未硬化の液状電離放射線硬化性樹脂を塗工した後には、樹脂、ガラス等からなる基材を貼り合わせてから電離放射線を照射してもよい。電離放射線の照射は、基材、工程シート原版の電離放射線透過性を有するいずれか一方から行えばよい。
硬化後の電離放射線硬化性樹脂のシートの厚みは0.1〜100μmとすることが好ましい。硬化後の電離放射線硬化性樹脂のシートの厚みが0.1μm以上であれば、充分な強度を確保でき、100μm以上であれば、充分な可撓性を確保できる。
上記図8に示す方法では、工程シート原版がウェブ状であったが、枚葉のシートであってもよい。枚葉のシートを用いる場合、枚葉のシートを平板状の型として使用するスタンプ法、枚葉のシートをロールに巻きつけて円筒状の型として使用するロールインプリント法等を適用できる。また、射出成形機の型の内側に枚葉の工程シート原版を配置させてもよい。
しかし、これら枚葉のシートを用いる方法において、支持体を大量生産するためには、凹凸パターンを形成する工程を多数回繰り返す必要がある。電離放射線硬化性樹脂と工程シート原版との離型性が低い場合には、多数回繰り返した際に凹凸パターンに目詰まりが生じ、凹凸パターンの転写が不完全になる傾向にある。
これに対し、図8に示す方法では、工程シート原版がウェブ状であるため、大面積で連続的に凹凸パターンを形成させることができるため、繰り返し製造しなくても、必要な量の支持体を短時間に製造できる。
(c−2),(c−5)の方法において、液状熱硬化性樹脂としては、例えば、未硬化の、メラミン樹脂、ウレタン樹脂、エポキシ樹脂等が挙げられる。
また、(c−2)の方法における硬化温度は、工程シート原版のガラス転移温度より低いことが好ましい。硬化温度が工程シート原版のガラス転移温度以上であると、硬化時に工程シート原版の凹凸パターンが変形するおそれがあるからである。
(c−3),(c−6)の方法において、熱可塑性樹脂としては、例えば、アクリル樹脂、ポリオレフィン、ポリエステル等が挙げられる。
シート状の熱可塑性樹脂を2次工程用成形物に押圧する際の圧力は1〜100MPaであることが好ましい。押圧時の圧力が1MPa以上であれば、凹凸パターンを高い精度で転写させることができ、100MPa以下であれば、過剰な加圧を防ぐことができる。
また、(c−3)の方法における熱可塑性樹脂の加熱温度は、工程シート原版のガラス転移温度より低いことが好ましい。加熱温度が工程シート原版のガラス転移温度以上であると、加熱時に工程シート原版の凹凸パターンが変形するおそれがあるからである。
加熱後の冷却温度としては、凹凸パターンを高い精度で転写させることができることから、熱可塑性樹脂のガラス転移温度未満であることが好ましい。
(c−1)〜(c−3)の方法の中でも、加熱を省略でき、工程シート原版の凹凸パターンの変形を防止できる点で、電離放射線硬化性樹脂を使用する(c−1)の方法が好ましい。
(c−4)〜(c−6)の方法においては、金属製の2次工程用成形物の厚さを50〜500μm程度とすることが好ましい。金属製の2次工程用成形物の厚さが50μm以上であれば、2次工程用成形物が充分な強度を有し、500μm以下であれば、充分な可撓性を確保できる。
(c−4)〜(c−6)の方法では、熱による変形が小さい金属製シートを工程シートとして用いるため、支持体用の材料として、電離放射線硬化性樹脂、熱硬化性樹脂、熱可塑性樹脂のいずれも使用できる。
なお、(c−4)〜(c−6)では工程シート原版の凹凸パターンを金属に転写させて2次工程用成形物を得たが、樹脂に転写させて2次工程用成形物を得てもよい。その場合に使用できる樹脂としては、例えば、ポリカーボネート、ポリアセタール、ポリスルホン、(c−1)の方法で使用する電離放射線硬化性樹脂などが挙げられる。電離放射線硬化性樹脂を用いる場合には、(c−1)の方法と同様に、電離放射線硬化性樹脂の塗工、硬化、剥離を順次行って、2次工程用成形物を得る。
上述のようにして得た反射シートには、凹凸パターンの形成された面と反対の面に粘着剤層を設けても構わない。
また、工程シート原版として用いた反射シートあるいは2次工程用成形物を剥離せずに保護層として用い、反射シートの使用直前に保護層を剥離してもよい。
<第2の製造方法>
第2の製造方法は、上記第1の製造方法における(b)の方法によって支持体を作製する方法と同様である。ただし、加熱収縮性フィルムまたは樹脂フィルム11bが支持体、折り畳まれた表面平滑層12bが金属層20に該当する。
(b)の方法により得られた支持体は、金属層の表面に蛇行した波状の凹凸パターンが形成されたシートであるから、そのまま反射シートとして使用できる。
「バックライトユニット」
本発明のバックライトユニットの一実施形態について説明する。
図9に、本実施形態のバックライトユニットを示す。本実施形態のバックライトユニット100は、直下型のものであり、反射シート1と、反射シート1に対向して配設された拡散板2と、反射シート1と拡散板2との間に配設された複数の光源3,3と、反射シート1および光源3を収容するハウジング4とを備えるものである。
反射シート1は、金属層20が拡散板2に対向するように配置されているから、光源3は反射シート1の金属層20側に配設されている。
拡散板2としては、例えば、透明な微粒子を含有するシート、表面に凹凸が形成されたシートなどが挙げられる。
光源3としては、例えば、蛍光管、冷陰極管、LEDなどが挙げられる。
このバックライトユニット100では、光源3からの光が直接または一旦反射シート1で反射して拡散板2に達し、拡散板2でさらに拡散されて、バックライトユニット100から出射する。ここで、光源3から反射シート1に達した光は、金属層20の表面で反射される。金属層20の表面には、蛇行した波状の凹凸パターン21が形成されているため、反射の際には、適度な拡散性で光を拡散させることができる。したがって、バックライトユニット100を備えた画像表示装置等では、輝度を均一にしつつ高くできる。
以下の例におけるヤング率は、引っ張り試験機(テスター産業社製TE−7001)を用い、JIS K 7113−1995に準拠して測定した値である。特に温度を記載していない場合には、23℃における値である。
(実施例1)
一軸方向に熱収縮する厚さ50μmでヤング率3GPaのポリエチレンテレフタレート製加熱収縮性フィルム(三菱樹脂株式会社製ヒシペットLX−60S、ガラス転移温度70℃)の片面に、トルエンに希釈したポリメチルメタクリレート(ポリマーソース株式会社製P4831−MMA、ガラス転移温度100℃、表1中では、「PMMA」と表記する。)を厚さが200nmになるようにバーコーターにより塗工し、表面平滑層を形成して積層シートを得た。
次いで、その積層シートを80℃で1分間加熱することにより、加熱前の長さの40%に熱収縮させ(すなわち、変形率60%で変形させ)、片面に、収縮方向に対して直交方向に沿って周期的を有する波状の凹凸パターンを有するシートを得た。
さらに、アルミニウムを厚さが175nmになるように真空蒸着させて、反射シートを得た。
なお、ポリエチレンテレフタレート製加熱収縮性フィルムおよびポリメチルメタクリレートの80℃におけるヤング率はそれぞれ50MPa、1GPaであった。
(実施例2)
トルエンに希釈したポリメチルメタクリレートの代わりにトルエンに希釈したポリスチレン(ポリマーソース株式会社製PS、ガラス転移温度100℃、表1中では、「PS」と表記する。)を塗工した以外は実施例1と同様にして反射シートを得た。
なお、ポリエチレンテレフタレート製加熱収縮性フィルムおよび該ポリスチレンの80℃におけるヤング率はそれぞれ、50MPa、1GPaであった。
(実施例3)
ポリスチレンの塗工厚さを2.5μmにした以外は実施例2と同様にして反射シートを得た。
(実施例4)
ポリスチレンの塗工厚さを3.5μmにした以外は実施例2と同様にして反射シートを得た。
(実施例5)
ポリスチレンの塗工厚さを0.05μmにした以外は実施例2と同様にして反射シートを得た。
(実施例6)
一軸方向に熱収縮する厚さ50μmでヤング率3GPaのポリエチレンテレフタレート製加熱収縮性フィルム(三菱樹脂株式会社製ヒシペットLX−60S、ガラス転移温度70℃)の片面に、アルミニウムを厚さが0.05μmになるように真空蒸着し、表面平滑層を形成して積層シートを得た。
次いで、その積層シートを100℃で1分間加熱することにより、加熱前の長さの40%に熱収縮させ(すなわち、変形率60%で変形させ)、片面に、収縮方向に対して直交方向に沿って周期的を有する波状の凹凸パターンを有するシートを得た。
さらに、アルミニウムを厚さが175nmになるように真空蒸着させ、金属層を形成させて、反射シートを得た。
(実施例7)
表面平滑層のアルミニウムを厚みが0.15μmになるように真空蒸着した以外は実施例5と同様にして反射シートを得た。
(実施例8)
表面平滑層のアルミニウムを厚みが0.015μmになるように真空蒸着した以外は実施例5と同様にして反射シートを得た。
(実施例9)
実施例1で得た凹凸パターンを有するシートを工程シートの原版として用いて、以下のようにして反射シートを得た。
すなわち、工程シート原版の凹凸パターンが形成された面に、エポキシアクリレート系プレポリマー、2−エチルヘキシルアクリレートおよびベンゾフェノン系光重合開始剤を含む未硬化の紫外線硬化性樹脂組成物(表1中では、「UV硬化樹脂」と表記する。)を厚さ2μmになるように塗工した。
次いで、未硬化の紫外線硬化性樹脂組成物の塗膜の工程シート原版と接していない面に、厚さ50μmのトリアセチルセルロースフィルムを重ね合わせ、押圧した。
次いで、トリアセチルセルロースフィルムの上から紫外線を照射し、未硬化の紫外線硬化性樹脂を硬化させ、その硬化物を工程シート原版から剥離し、さらに、アルミニウムを厚さが175nmになるように真空蒸着させ、反射シートを得た。
(実施例10)
アルミニウムを厚さが80nmになるように真空蒸着させて表面平滑層を形成し、アルミニウムを95nm真空蒸着させて金属層を形成した以外は実施例2と同様にして反射シートを得た。この反射シートの耐傷性を調べたところ、他実施例よりも良好であった。
(比較例1)
ポリスチレン塗工厚さを6μmにして表面平滑層を形成した以外は実施例2と同様にして反射シートを得た。
(比較例2)
表面平滑層のアルミニウムの厚さを0.3μmにした以外は実施例5と同様にして反射シートを得た。
(比較例3)
ポリスチレン塗工厚さを0.04μmにして表面平滑層を形成した以外は実施例2と同様にして反射シートを得た。
(比較例4)
表面平滑層のアルミニウムの厚さを0.009μmにした以外は実施例5と同様にして反射シートを得た。
(比較例5)
一軸方向に熱収縮する厚さ50μmでヤング率3GPaのポリエチレンテレフタレート製加熱収縮性フィルム(三菱樹脂株式会社製ヒシペットLX−60S、ガラス転移温度70℃)の片面に、アルミニウムを厚さが0.05μmになるように真空蒸着してアルミニウム蒸着フィルムを得た。該アルミニウム蒸着フィルムを比較用サンプルとした。
(評価)
実施例1〜9および比較例1〜5の反射シートの上面を、原子間力顕微鏡(日本ビーコ社製ナノスコープIII)により撮影した。
実施例1〜10および比較例1〜4の反射シートでは、原子間力顕微鏡の画像にて凹凸パターンの深さを10箇所で測定し、それらを平均して平均深さを求めた。
また、凹凸パターンの配向度を以下のようにして求めた。
まず、表面光学顕微鏡により凹凸パターンの上面を撮影し、その画像をグレースケールのファイルに変換した(図3参照)。次いで、グレースケールのファイルの画像をフーリエ変換する。図4にフーリエ変換後の画像を示す。次いで、図4の画像の中心から水平方向に補助線Lを引き、その補助線上の輝度をプロット(図5参照)した。次いで、図5において、補助線Lと値X(最頻ピッチ)の部分にて直交する補助線Lを引き、その補助線L上の輝度をプロット(図6参照)する。そして、図6のプロットにおけるピークの半値幅Wより凹凸パターンの配向度を求めた。それらの値を表1に示す。
また、実施例1〜10、比較例1〜5の反射シートについて、変角光度計((株)ジェネシア製、GONIO Far Field Profiler)を用いて評価した。その際、反射散乱モード、光源は白色LED、光源用電源は12Vの条件で測定した。この反射面に、入射角45°で光を照射し、受光部を0〜90°の範囲で移動させることにより反射光強度の角度依存性を測定した。その結果を表1に示す。なお、今回、角度依存性を比較するために、各実施例及び比較例のデータにおいてピークの高さを85%に揃えて規格化した。
また、反射シートの輝度を、スガ試験機(株)デジタル変角光沢度計(型式UGV−4D)を用いて測定した。
具体的には、光源を、入射角が試料面の法線に対して45°になるように固定し、入射光と同一平面内で受光角を変化させた。このとき光源と受光器は、試料面の法線を挟んで対峙している。光源側には10mm×15mmのスリットを、受光器側には3mm×6mmのスリットを配置した。なお、比較用の黒色ガラスには一時標準面として用いられている黒色ガラスを用いた。
視野角0°における輝度とは、法線に対して受光角45°における輝度を、また視野角マイナス15°における輝度とは受光角30°における輝度を、視野角プラス15°におけるとは受光角60°における輝度をそれぞれ示す。その評価結果を表2に示す。
直下型のもので、反射シートと、反射シートに対向して配設された拡散板と、反射シートと拡散板との間に配設された複数の冷陰極管と、反射シート及び冷陰極管を収容するハウジングを備えるバックライトユニットを使用し、以下のように評価した。その評価結果を表1に示す。
○:輝度ムラがなく、明るく、最も良好なもの。
△:輝度ムラがなく、明るく、良好なもの。
×:輝度ムラがあり、暗く、不良なもの。
Figure 2009282279
Figure 2009282279
積層シートの表面平滑層を折り畳むように変形させ、金属層を積層した実施例1〜8,10では、反射シートを容易に製造できた。
さらに、実施例1〜8,10の反射シートは、凹凸パターンの最頻ピッチが1μmを超え20μm以下、底部の平均深さが前記最頻ピッチを100%とした際の10%以上になり、反射シートとして適したものであった。実施例1〜8にて、上記のような最頻ピッチおよび平均深さが得られたのは、表面平滑層の厚みが0.05μmを超え5μm以下で、変形率を10%以上としたためである。
また、実施例1で得た凹凸パターンを有するシートを工程シートとして用いた実施例9の製造方法によれば、凹凸パターンを有するシートと同等の最頻ピッチおよび平均深さの凹凸パターンを有する反射シートを簡便に製造できた。
実施例1〜10の反射シートでは、適度の光拡散性を有していたため、反射光強度(輝度)の角度分布が適度に広く、しかも充分な輝度が得られた。
凹凸パターンの最頻ピッチが20μmを超える比較例1および比較例2の反射シートでは、反射光の角度分布(視野角)が広すぎて、正面方向での輝度が低下した。
凹凸パターンの最頻ピッチが1μm以下の比較例3および比較例4の反射シート、反射面が凹凸の無い鏡面である比較例5の反射シートでは、反射の際の光拡散性が低く、反射光の角度分布が狭かった。
本発明の反射シートの一実施形態の一部を拡大して示す拡大斜視図である。 図1の反射シートを、凹凸パターンの形成方向と直交方向に切断した際の断面図である。 凹凸パターンの表面を表面光学顕微鏡により撮影して得た画像の、グレースケール変換画像である。 図3の画像をフーリエ変換した画像である。 図4の画像における円環の中心からの距離に対する輝度をプロットしたグラフである。 図4の画像における補助線L上の輝度をプロットしたグラフである。 反射シートの第1の製造方法における積層シートを示す断面図である。 支持体の製造方法の一例を説明する図である。 本発明のバックライトユニットの一実施形態を示す断面図である。
符号の説明
1 反射シート
10 支持体
10a,10b 積層シート
11a,11b 加熱収縮性フィルム
12a,12b 表面平滑層
20 金属層
21 凹凸パターン
21a 底部

Claims (3)

  1. シート状の支持体と、該支持体の片面に設けられた金属層とを有する反射シートであって、
    金属層の表面に、蛇行した波状の凹凸パターンが形成され、該凹凸パターンの最頻ピッチが1.0μmを超え20μm以下、平均深さが最頻ピッチを100%とした際の10%以上であることを特徴とする反射シート。
  2. 前記支持体の片面に、蛇行した波状の凹凸パターンが形成され、
    前記金属層が、該支持体の凹凸パターンが形成された面に、略均一の厚みで積層されている請求項1に記載の反射シート。
  3. 請求項1または2に記載の反射シートと、該反射シートの金属層側に配設された光源とを具備することを特徴とするバックライトユニット。
JP2008134023A 2008-05-22 2008-05-22 反射シートおよびバックライトユニット Pending JP2009282279A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134023A JP2009282279A (ja) 2008-05-22 2008-05-22 反射シートおよびバックライトユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134023A JP2009282279A (ja) 2008-05-22 2008-05-22 反射シートおよびバックライトユニット

Publications (1)

Publication Number Publication Date
JP2009282279A true JP2009282279A (ja) 2009-12-03

Family

ID=41452796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134023A Pending JP2009282279A (ja) 2008-05-22 2008-05-22 反射シートおよびバックライトユニット

Country Status (1)

Country Link
JP (1) JP2009282279A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070756A1 (en) 2009-12-11 2011-06-16 Canon Kabushiki Kaisha Electromechanical transducer
WO2011148504A1 (ja) * 2010-05-28 2011-12-01 コニカミノルタオプト株式会社 光拡散フィルム、その製造方法、それを用いた偏光板、ロール状偏光板、及び液晶表示装置
KR101540097B1 (ko) * 2011-02-25 2015-07-28 신화인터텍 주식회사 반사 필름, 이를 포함하는 광원 어셈블리 및 액정 표시 장치
WO2017146072A1 (ja) * 2016-02-25 2017-08-31 パナソニックIpマネジメント株式会社 太陽電池モジュール

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070756A1 (en) 2009-12-11 2011-06-16 Canon Kabushiki Kaisha Electromechanical transducer
WO2011148504A1 (ja) * 2010-05-28 2011-12-01 コニカミノルタオプト株式会社 光拡散フィルム、その製造方法、それを用いた偏光板、ロール状偏光板、及び液晶表示装置
KR101540097B1 (ko) * 2011-02-25 2015-07-28 신화인터텍 주식회사 반사 필름, 이를 포함하는 광원 어셈블리 및 액정 표시 장치
WO2017146072A1 (ja) * 2016-02-25 2017-08-31 パナソニックIpマネジメント株式会社 太陽電池モジュール
JPWO2017146072A1 (ja) * 2016-02-25 2018-10-04 パナソニックIpマネジメント株式会社 太陽電池モジュール
CN108701734A (zh) * 2016-02-25 2018-10-23 松下知识产权经营株式会社 太阳能电池组件
CN108701734B (zh) * 2016-02-25 2021-12-10 松下知识产权经营株式会社 太阳能电池组件

Similar Documents

Publication Publication Date Title
TWI530713B (zh) 凹凸圖案形成片及其製造方法
JP5182658B2 (ja) 凹凸パターン形成シートの製造方法、および光学素子の製造方法
JP5211506B2 (ja) 凹凸パターン形成シートならびにその製造方法、反射防止体、位相差板および光学素子製造用工程シート。
JP5098450B2 (ja) 凹凸パターン形成シートの製造方法および凹凸パターン形成シート
JPWO2007097454A1 (ja) 微細凹凸形状を有するフィルム、およびその製造方法
JP5245366B2 (ja) 偏光板およびその製造方法
JP5391529B2 (ja) 凹凸パターン形成シートの製造方法
JP2009282279A (ja) 反射シートおよびバックライトユニット
JP5482401B2 (ja) ナノバックリング形状を有する表面微細凹凸体の製造方法、光学素子の製造方法、及び2次工程シートの製造方法。
JP2009092769A (ja) 光学シートおよび光拡散シート
JP5682841B2 (ja) 光拡散体製造用工程シート原版および光拡散体の製造方法
JP2012022292A (ja) 凹凸パターン形成シート、光拡散体製造用工程シート原版及び光拡散体の製造方法
JP5636907B2 (ja) 凹凸パターン形成シートおよびその製造方法、凹凸パターン形成シート複製用工程シート原版、光学素子、2次工程用成形物、複製シート
JP5135539B2 (ja) 拡散導光体およびバックライトユニット
JP2016075899A (ja) 表面微細凹凸体
JP5621298B2 (ja) 表面微細凹凸体およびその製造方法
JP6255676B2 (ja) 光拡散シートの製造方法および光拡散体の製造方法
JP5884790B2 (ja) 凹凸パターン形成シートの製造方法、光拡散体製造用工程シート原版ならびに光拡散体の製造方法
JP2016167063A (ja) 表面微細凹凸体
JP2010097108A (ja) 光拡散シートおよびその製造方法