JP2009273110A - ポーラ変調送信装置及びポーラ変調送信方法 - Google Patents

ポーラ変調送信装置及びポーラ変調送信方法 Download PDF

Info

Publication number
JP2009273110A
JP2009273110A JP2009015330A JP2009015330A JP2009273110A JP 2009273110 A JP2009273110 A JP 2009273110A JP 2009015330 A JP2009015330 A JP 2009015330A JP 2009015330 A JP2009015330 A JP 2009015330A JP 2009273110 A JP2009273110 A JP 2009273110A
Authority
JP
Japan
Prior art keywords
signal
power
temperature
unit
temperature compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009015330A
Other languages
English (en)
Inventor
Maki Nakamura
真木 中村
Kaoru Ishida
石田  薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009015330A priority Critical patent/JP2009273110A/ja
Priority to US12/421,423 priority patent/US8369802B2/en
Publication of JP2009273110A publication Critical patent/JP2009273110A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C5/00Amplitude modulation and angle modulation produced simultaneously or at will by the same modulating signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/447Indexing scheme relating to amplifiers the amplifier being protected to temperature influence

Abstract

【課題】送信信号の出力電力を広範囲に制御しつつ、かつ、温度変化時の特性劣化を確実に補償すること。
【解決手段】ポーラ変調送信装置100は、温度センサ120と、振幅成分信号を補正し、送信電力増幅部190の温度補償を行う温度補償部160−1と、電力調整信号を補正し、電力調整部180の温度補償を行う第2の温度補償部160−2と、温度補償部160−1及び温度補償部160−2の補正値を設定する補正値設定部130と、を具備し、第1のモードでは、温度センサ120の測定結果に応じて、振幅成分信号のみを補正し、第2のモードでは、温度センサ120の測定結果に応じて、振幅成分信号及び電力調整信号を補正する。
【選択図】図1

Description

本発明は、特にポーラ変調方式を用いた送信装置及びポーラ変調送信方法に関する。
デジタル無線通信の送信変調装置の設計には、一般的に高い効率が求められる。しかし、送信変調装置において最も消費電力が大きい高周波電力増幅器(PA:Power Amplifier)に対しては、効率性に加え、非常に歪みが少ないリニアな特性が要求される。これらの要求に対し、ポーラ変調方式を用いることで、送信変調装置において高効率と線形性とを両立可能とした技術が提案されている。ポーラ変調方式では、高周波電力増幅器を効率の高い飽和領域で利用した場合においても、線形な増幅が可能になる。
ポーラ変調方式の概略を説明する。図11は、ポーラ変調方式を適用した送信変調装置の構成例を示したブロック図である。極座標変換部11は、変調信号を振幅成分(例えば√(I+Q))である振幅成分信号と位相成分(例えば、変調シンボルとI軸のなす角度)である高周波位相変調信号とに分離する。振幅成分信号は、高周波電力増幅器により構成される送信電力増幅部13の電源電圧に供給される。高周波位相変調信号は、高周波位相変調信号の電力を制御するための電力調整信号に基づいて、電力調整部12(例えば、可変利得増幅器や可変利得減衰器により構成される)により電力が調整された後、送信電力増幅部13に出力される。送信電力増幅部13は、振幅成分信号を電源電圧として、高周波位相変調信号の電力を増幅する。このように、送信電力増幅部13を飽和領域で動作させた状態で高周波位相変調信号を増幅しつつ、その電源電圧の変動により高周波位相変調信号に振幅成分を付与して送信信号を生成することで、高い線形性と高効率とを同時に実現する。
一般に、送信変調装置の動作環境を考えた場合、周囲温度が変化すると、送信電力増幅部13を構成する高周波電力増幅器の特性が変動する。例えば、HBT(Heterojunction Bipolar Transistor)によって構成された高周波電力増幅器では、温度の変化により、高周波電力増幅器の電源電圧に供給される電源電圧と出力電力との関係が変動してしまう。つまり、同じ電源電圧を供給した場合においても、温度によって、出力電力が変動してしまう。これに起因して、高周波電力増幅器のリニアな特性が劣化するため、例えば、隣接する周波数帯への妨害信号が発生してしまうという問題が生じる。そのため、このような温度の変化に対し適応的に温度補償を行う必要がある。
特許文献1には、温度補償を実施するポーラ変調送信装置が開示されている。特許文献1のポーラ変調送信装置では、温度センサにより温度情報を取得し、温度情報に応じて振幅成分信号に温度補償を加える。これにより、温度変化時に、高周波電力増幅器の電源電圧と出力電力との関係が変動することに起因する特性劣化を補償することができる。
ところで、UMTS(Universal Mobile Telecommunications System)等の無線通信方式では、非常に広範囲にわたり送信信号の出力電力を制御することが求められる。
特開2007−180782号公報
しかしながら、送信信号の出力電力を広範囲に制御しつつ、かつ、温度変化に起因する信号品質の劣化を抑圧することができるポーラ変調送信装置について十分に検討されているわけではない。
本発明はかかる点に鑑みてなされたものであり、送信信号の出力電力を広範囲に制御しつつ、かつ、温度変化時の特性劣化を確実に補償することができるポーラ変調送信装置及びポーラ変調送信方法を提供することを目的とする。
本発明のポーラ変調送信装置は、電力調整信号に基づいて、変調信号の高周波位相変調信号の電力レベルを調整する電力調整部と、非線形増幅器として動作する第1のモードと、線形増幅器として動作する第2のモードとを有し、前記変調信号の振幅成分信号を電源電圧として、前記高周波位相変調信号を増幅し、送信信号を出力する送信電力増幅部と、前記送信電力増幅部付近の温度を測定する温度検出部と、前記振幅成分信号を補正し、前記送信電力増幅部の温度補償を行う第1の温度補償部と、前記電力調整信号を補正し、前記電力調整部の温度補償を行う第2の温度補償部と、を具備し、前記第1のモードでは、前記温度検出部の測定結果に応じて、前記第1の温度補償部のみが温度補償を行い、前記第2のモードでは、前記温度検出部の測定結果に応じて、前記第1の温度補償部及び前記第2の温度補償部の両方が温度補償を行う構成を採る。
本発明のポーラ変調送信方法は、電力調整信号に基づいて、変調信号の高周波位相変調信号の電力レベルを調整するステップと、非線形増幅器として動作する第1のモードと、線形増幅器として動作する第2のモードとを有し、前記変調信号の振幅成分信号を電源電圧として、前記高周波位相変調信号を増幅し、送信信号を出力するステップと、前記送信電力が出力される場所の温度を測定するステップと、前記第1のモードでは、測定された前記温度に応じて、前記振幅成分信号のみを補正するステップと、前記第2のモードでは、測定された前記温度に応じて、前記振幅成分信号及び前記電力調整信号を補正するステップと、を有するようにした。
本発明のポーラ変調送信装置及びポーラ変調送信方法によれば、非線形増幅器として動作する第1のモードと、線形増幅器として動作する第2のモードとを有し、温度補償を行う方法を、モードに応じて切り換えることにより、出力電力を広範囲に制御しつつ、各モードに応じて最適な温度補償を行うことが可能となり、温度変化時の特性劣化を確実に補償することができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
(実施の形態)
図1に本発明の実施の形態に係るポーラ変調送信装置の要部構成を示す。図1のポーラ変調送信装置100は、極座標変換部110、温度センサ120、補正値設定部130、D/A(Digital to Analog)コンバータ140−1,140−2、振幅調整部150、温度補償部160−1,160−2、周波数シンセサイザ170、電力調整部180、及び、送信電力増幅部190を備えて構成される。
極座標変換部110は、入力される変調信号から振幅成分信号と位相成分信号とを生成する。具体的には、極座標変換部110は、変調信号の振幅情報を含んでいるエンベロープ成分信号(振幅成分信号)、及び、変調信号の位相情報を含んでいる位相成分信号を生成する。極座標変換部110は、振幅成分信号を、D/Aコンバータ140−1を介して振幅調整部150に出力する。また、極座標変換部110は、位相成分信号を周波数シンセサイザ170に出力する。
温度センサ120は、送信電力増幅部190の付近の温度を測定し、測定結果を補正値設定部130に出力する。
補正値設定部130は、温度センサ120によって測定された温度の測定結果と、送信信号の要求出力電力に関する情報(出力電力情報)とに基づいて、温度補償部160−1と160−2の各々で用いる補正値を設定し、温度補償部160−1,160−2を制御する。なお、補正値の設定及び制御方法については、後述する。
D/Aコンバータ140−1は、振幅成分信号に対しデジタルアナログ変換(D/A変換)を施し、D/A変換後の振幅成分信号を振幅調整部150に出力する。又、D/Aコンバータ140−2は、電力調整信号に対しD/A変換を施し、D/A変換後の電力調整信号を温度補償部160−2に出力する。
なお、図1では、後述の温度補償部160−1,160−2がアナログ回路により構成されるとして、D/Aコンバータ140−1,140−2を、温度補償部160−1,160−2の前段に設けている。したがって、温度補償部160−1,160−2がデジタル回路により構成される場合には、D/Aコンバータ140−1を、温度補償部160−1と送信電力増幅部190との間に設け、D/Aコンバータ140−2を、温度補償部160−2と電力調整部180との間に設ければ良い。
振幅調整部150は、振幅調整信号に応じて、D/Aコンバータ140−1から出力される振幅成分信号の振幅レベルを調整する。振幅調整信号とは、送信信号の要求出力電力に応じて、振幅成分信号の振幅レベルを調整するための信号である。振幅調整部150は、例えば、掛け算器により構成される。振幅調整部150は、調整後の振幅成分信号を温度補償部160−1に出力する。
温度補償部160−1は、振幅成分信号を補正することにより、送信電力増幅部190の温度補償を行う。温度補償部160−1は、補正値設定部130から出力される補正値に基づいて、振幅成分信号を補正し、補正後の振幅成分信号を、送信電力増幅部190の電源に供給する。なお、温度補償部160−1の温度補償の具体的な方法については、後述する。
温度補償部160−2は、電力調整信号を補正することにより、電力調整部180の温度補償を行う。電力調整信号とは、送信信号の要求出力電力に応じて、送信電力増幅部190に出力される高周波位相変調信号の電力を調整するための信号である。温度補償部160−2は、補正値設定部130から出力される補正値に基づいて、電力調整信号を補正し、補正後の電力調整信号を、電力調整部180に電源電圧として出力する。なお、温度補償部160−2の温度補償の具体的な方法については、後述する。
周波数シンセサイザ170は、位相成分信号に応じて搬送波信号を位相変調することにより、定エンベロープの高周波位相変調信号を生成する。周波数シンセサイザ170は、高周波位相変調信号を電力調整部180へ出力する。
電力調整部180は、温度補償部160−2から出力される電力調整信号に応じて、変調信号の高周波位相変調信号の電力レベルを調整し、調整後の高周波位相変調信号を、送信電力増幅部190に出力する。電力調整部180は、例えば、可変利得増幅器(VGA:Variable Gain Amplifier)や可変利得減衰器(ATT:Attenuator)により構成される。
なお、電力調整部180は、可変利得増幅器と可変利得減衰器の片方のみを有する構成であってもよいし、両方が直列に接続された構成であってもよい。図2Aは、電力調整部180が可変利得増幅器181のみを有する構成例を示し、図2Bは、電力調整部180が可変利得減衰器182のみを有する構成例を示す。また、図2C又は図2Dに示すように、可変利得増幅器181と可変利得減衰器182の両方が直列に接続された構成にすることで、片方のみを有する構成と比較して、より広い可変利得範囲を得ることができる。
なお、可変利得増幅器と可変利得減衰器の両方が直列に接続される場合、図2Cに示すように、前段に可変利得増幅器181、後段に可変利得減衰器182となるように接続すれば、可変利得増幅器181にて発生するノイズ成分を、可変利得減衰器182にて抑圧できるため、電力調整部180トータルでのノイズを抑制できるという効果がある。逆に、図2Dに示すように、前段に可変利得減衰器182、後段に可変利得増幅器181となるように接続すれば、可変利得増幅器181の出力が減衰されないため、可変利得増幅器181の電源電圧に出力する電力調整信号の電力レベルが低くてすみ、電力調整部180トータルでの電力効率が高くなるという効果がある。低ノイズ化を実現できるという点では、図2Cに示したように、前段に可変利得増幅器、後段に可変利得減衰器が配置される構成にすることが、特に好ましい。なお、電力調整部180が、可変利得増幅器181と可変利得減衰器182の両方を有する場合には、温度補償部160−2は、可変利得増幅器181と可変利得減衰器182とに、電力調整信号を出力する構成とする。
送信電力増幅部190は、温度補償部160−1から出力される補正後の振幅成分信号を電源電圧とし、当該補正後の振幅成分信号に応じて、電力調整部180から出力される高周波位相変調信号を増幅する。送信電力増幅部190は、例えば、高周波電力増幅器により構成される。
次いで、上記のように構成されたポーラ変調送信装置100の動作について説明する。ポーラ変調送信装置100は、送信信号の出力電力に応じて、2種類の電力制御を切り替える。
具体的には、出力電力が比較的高い領域では、送信電力増幅部190へ入力される高周波位相変調信号のレベルを一定に保ったまま、送信電力増幅部190の電源に供給される電源電圧のレベルを振幅調整部150において調整することで電力制御を行う。このような制御方式を、以下では、第1のモードと呼ぶ。第1のモードでは、送信電力増幅部190を飽和領域にて使用することができるため、高い効率が期待できる。このように、第1のモードでは、送信電力増幅部190は、非線形動作する。
これに対し、出力電力が比較的低い領域では、送信電力増幅部190の電源に供給される電源電圧のレベルを一定に保ったまま、つまり、振幅調整部150の調整を一定に保ったまま、送信電力増幅部190へ入力される高周波位相変調信号のレベルを電力調整部180において調整することで電力制御を行う。このような制御方式を、以下では、第2のモードと呼ぶ。第2のモードでは、送信電力増幅部190を線形領域にて使用することができるため、広範囲における電力制御が期待できる。このように、第2のモードでは、送信電力増幅部190は、線形動作する。
なお、第1のモードを、コンプレスドモード(compressed mode)又は飽和動作モードと言い換え、第2のモードを、非コンプレスドモード(uncompressed mode)又は非飽和動作モードと言い換えることもできる。
第1のモード及び第2のモードについて図3及び図4を用いて説明する。
第1のモードでは、図3に示されるように、送信電力増幅部190を非線形増幅器として動作させて、送信電力増幅部190の電源電圧に基づき、高周波位相変調信号を増幅し、送信信号の平均出力レベルを制御する。つまり、第1のモードでは、送信電力増幅部190へ入力される高周波位相変調信号のレベルを一定に保つような電力調整信号が用いられる。また、第1のモードでは、送信信号の要求出力電力が得られるように、送信電力増幅部190の電源に供給される振幅成分信号のレベルを調整することができるような振幅調整信号が用いられる。このようにして、第1のモードでは、送信電力増幅部190へ入力される高周波位相変調信号のレベルを一定に保ったまま、送信電力増幅部190の電源へ供給される振幅成分信号のレベルを調整することで、送信信号の電力制御が行われる。
第2のモードでは、図4に示されるように、送信電力増幅部190を線形増幅器として動作させて、送信電力増幅部190の前段の電力調整部180で送信信号の平均出力レベルを制御し、送信電力増幅部190の電源電圧に基づき、高周波位相変調信号を増幅する。つまり、第2のモードでは、送信電力増幅部190の電源に供給される振幅成分信号のレベルを一定に保つような振幅調整信号が用いられる。また、第2のモードでは、送信信号の要求出力電力が得られるように、送信電力増幅部190へ入力される高周波位相変調信号のレベルを調整することができるような電力調整信号が用いられる。このようにして、第2のモードでは、送信電力増幅部190の電源へ供給される電源電圧のレベルを一定に保ったまま、送信電力増幅部190へ入力される高周波位相変調信号のレベルを調整することで、送信信号の電力制御が行われる。
第1のモードと第2のモードとでは、それぞれ温度変化による影響の受け方が異なる。例えば、第1のモードでは、送信電力増幅部190そのものの温度による特性変動があるものの、送信電力増幅部190を飽和領域で使用しているため入力レベルの変動による出力レベルへの感度は小さく、電力調整部180の温度による特性の変動の影響は限定的である。
これに対し、第2のモードでは、送信電力増幅部190そのものの温度による特性変動に加え、送信電力増幅部190を線形領域で使用しているため入力レベルの変動による出力レベルへの感度が大きく、電力調整部180の温度による特性の変動の影響が大きい。
これらは、送信電力増幅部190を飽和領域で動作させる電力制御(第1のモード)と、送信電力増幅部190を線形領域で動作させる電力制御(第2のモード)とでは、入力レベルの変動に伴う影響の受け方が異なることに起因する。すなわち、送信電力増幅部190が十分に飽和している領域では、入力レベルの微小な変動に伴う特性変動はほとんどないのに対し、送信電力増幅部190が線形で動作している領域では、入力レベルが微小に変動すると、そのまま出力レベルも変動し、特性が大きく変動してしまうからである。
本発明の発明者らはこの点に着目した。つまり、第1のモードでは、電力調整部180の温度による特性の変動の影響は限定的であるため、送信電力増幅部190のみ温度補償を行えば十分である。これに対し、第2のモードでは、電力調整部180の温度による特性の変動の影響が大きいため、温度補償によって、信号品質が改善される可能性が高いと考えた。
これらの考察から、第1のモードでは、送信電力増幅部190のみ温度補償を行い、第2のモードでは、電力調整部180及び送信電力増幅部190双方の温度補償を行うようにした。
以下、本実施の形態に係る補正値設定部130及び温度補償部160−1,160−2について説明する。
図5は、補正値設定部130及び温度補償部160−1,160−2の内部構成例を示す図である。
図5の補正値設定部130は、内部に、温度補償部160−1用の温度補償テーブル131−1と、温度補償部160−2用の温度補償テーブル131−2を有する。
ポーラ変調送信装置100は、送信信号の出力電力に関する情報(出力電力情報)に応じて、第1のモード又は第2のモードのいずれかのモードで動作する。例えば、出力電力が所定値以上(例えば、6dBm以上)の場合、ポーラ変調送信装置100は、第1のモードで動作する。一方、出力電力が所定値未満(例えば、6dBm未満)の場合、ポーラ変調送信装置100は、第2のモードで動作する。
補正値設定部130は、第1のモード時には、温度センサ120の測定結果を用いて、補正値情報M1を温度補償部160−1に出力する。補正値情報M1は、補正値設定部130に保持される温度補償テーブル131−1が用いられて決定される。図6は、温度補償部160−1用の温度補償テーブル131−1の一例である。図6の温度補償テーブル131−1は、第1のモード、第2のモードごとに、異なる補正値を有している。
また、補正値設定部130は、第2のモード時には、温度センサ120の測定結果を用いて、補正値情報M1を温度補償部160−1に出力するとともに、補正値情報M2を温度補償部160−2に出力する。補正値情報M2は、補正値情報M1と同様に、補正値設定部130に保持される温度補償テーブル131−2が用いられて決定される。図7は、温度補償部160−2用の温度補償テーブルの一例である。なお、図7において、第1のモード時の補正値が0となっているのは、第1のモード時には、温度補償部160−2は、電力調整部180の温度補償を行わないからである。
第1のモード時、振幅成分信号は、温度補償部160−1において、補正値情報M1に応じて補正される。補正は、例えば、振幅成分信号に補正値が加算される、又は、振幅成分信号に補正値が乗算される等により行われる。補正後の振幅成分信号は、送信電力増幅部190の電源電圧に供給され、高周波位相変調信号は、電力調整部180に出力される。また、電力調整信号は、温度補償部160−2に出力され、特に補正等の処理はなされずにそのまま電力調整部180に出力される。電力調整部180では、電力調整信号に応じて、高周波位相変調信号のレベルを送信電力増幅部190が飽和動作するように調整され、調整後の高周波位相変調信号は、送信電力増幅部190に出力される。送信電力増幅部190では、補正後の振幅成分信号を電源電圧として、高周波位相変調信号の増幅及び平均出力レベルの制御が行われる。
第2のモード時、振幅成分信号は、温度補償部160−1にて補正値情報M1に応じて補正される。補正は、第1のモード時と同様に、振幅成分信号に補正値が加算される、又は、振幅成分信号に補正値が乗算される等により行われる。補正後の振幅成分信号は、送信電力増幅部190の電源電圧に入力され、高周波位相変調信号は、電力調整部180に出力される。また、電力調整信号は、温度補償部160−2にて補正値情報M2に応じて補正される。補正は、電力調整信号に補正値が加算される、又は、電力調整信号に補正値が乗算される等により行われる。補正後の電力調整信号は、電力調整部180に出力される。電力調整部180では、補正後の電力調整信号に応じて、高周波位相変調信号のレベルを調整することにより、平均出力レベルの制御が行われ、調整後の高周波位相変調信号は、送信電力増幅部190に出力される。送信電力増幅部190では、補正後の振幅成分信号を電源電圧として、高周波位相変調信号が増幅される。
このようにすることで、送信電力増幅部190を線形動作、又は、非線形動作に切り替え、出力電力を広範囲に制御することを可能としつつ、送信電力増幅部190が非線形動作する場合はもちろん、送信電力増幅部190が線形動作する場合においても、温度に応じて補償を行うことができる。そのため、送信電力増幅部190に入力される高周波位相変調信号の電力レベルが、送信電力増幅部190の前段の電力調整部180において、温度変化によって変動してしまうような場合においても、電力調整部180の温度補償を行うことができるので、送信信号の品質を良好に維持することができる。
以上のように、本実施の形態では、ポーラ変調送信装置100は、温度センサ120と、振幅成分信号を補正し、送信電力増幅部190の温度補償を行う温度補償部160−1と、電力調整信号を補正し、電力調整部180の温度補償を行う第2の温度補償部160−2と、温度補償部160−1及び温度補償部160−2の補正値を設定する補正値設定部130とを具備し、第1のモードでは、温度センサ120の測定結果に応じて、振幅成分信号のみを補正し、第2のモードでは、温度センサ120の測定結果に応じて、振幅成分信号及び電力調整信号を補正するようにした。これにより、送信電力増幅部190に入力される高周波位相変調信号のレベルが温度変化に起因して変動するような場合においても、温度変化時の特性劣化を補償することができるようになる。
なお、以上の説明では、図6,図7に示すように、所定値(6dBm)以上と所定値未満の場合について、温度補償テーブルが、温度補正値を有する場合について説明したが、これに限られない。例えば、図8、図9に示すように、温度補償テーブルが、複数の出力電力ごとに、温度補正値を有するようにしても良い。
また、以上の説明では、補正値設定部130が、温度補償テーブルを有する場合について説明したが、温度補償部160−1,160−2が、温度補償テーブルを有し、出力電力情報や温度センサ120の測定結果に基づいて、補正値を決定するようにしても良い。
また、以上の説明では、温度補償部160−1,160−2が、アナログ回路により構成される場合について説明したが、温度補償部160−1,160−2が、デジタル回路により構成され、補正値設定部130が、デジタル用の補償テーブルを備えるようにしても良い。なお、この場合、D/Aコンバータ140−1を、温度補償部160−1と送信電力増幅部190との間に設け、D/Aコンバータ140−2を、温度補償部160−2と電力調整部180との間に設ければ良い。
なお、電力調整部180は、可変利得増幅器、可変利得減衰器、又は、可変利得増幅器及び可変利得減衰器の複合であるとしてもよい。
例えば、電力調整部180が、可変利得増幅器を備え、第2のモードでは、補正値設定部130が、可変利得増幅器の利得を調整するようにしても良い。この構成により、第2のモードにおいて、可変利得増幅器の温度補正を行うことが可能となる。
また、電力調整部180が、可変利得減衰器を備え、第2のモードでは、補正値設定部130が、可変利得減衰器の減衰量を調整するようにしても良い。この構成により、第2のモードにおいて、可変利得減衰器の温度補正を行うことが可能となる。
また、電力調整部180が、可変利得増幅器と、当該可変利得増幅器の後段に配置された可変利得減衰器とを備え、第2のモードでは、補正値設定部130が、可変利得増幅器の利得、可変利得減衰器の減衰量、又は、これら双方を調整するようにしても良い。この構成により、第2のモードにおいて、可変利得増幅器、可変利得減衰器、又は、これら双方の温度補正を行うことが可能となる。
また、電力調整部180が、可変利得増幅器と、当該可変利得増幅器の後段に配置された可変利得減衰器とを備え、第2のモードでは、補正値設定部130が、可変利得増幅器の利得、可変利得減衰器の減衰量、又は、これら双方を調整するようにしても良い。この構成により、第2のモードにおいて、可変利得増幅器、可変利得減衰器、又は、これら双方の温度補正を行うことが可能となる。
また、以上の説明では、補正値設定部130が、温度補償テーブル131−1,131−2を有し、温度補償テーブル131−1,131−2に基づいて、補正値を決定する場合について説明したが、これに限られず、算出式を用いて補正値を決定するようにしても良い。以下、算出式を用いて補正値を決定する場合について説明する。
図10は、算出式を用いて補正値を決定する補正値設定部130の構成例を示し、補正値設定部130は、温度補償テーブル131−1,131−2に代えて、補正値算出部132−1,132−2を備える。なお、図10において、図5と共通する構成部分には、図5と同一の符号を付して説明を省略する。
補正値算出部132−1は、温度補償部160−1の温度補正値yを算出する。例えば、第1のモード時には、式(1−1)を用いて温度補正値yを算出し、第2のモード時には、式(1−2)を用いて温度補正値yを算出する。
=α1−1(x+β1−1) …(1−1)
=α1−2(x+β1−2) …(1−2)
ここで、xは、温度センサ120の測定結果[deg]であり、α1−1,α1−2は、温度補償部160−1によって用いられる温度補正値yを決定するための係数であり、β1−1,β1−2は、室温の場合に、温度補正値yを0とする定数である。
算出された温度補正値yは、温度補償部160−1に出力され、温度補償部160−1は、例えば、振幅成分信号に当該温度補正値yを加算することにより、送信電力増幅部190の温度補償を行う。
補正値算出部132−2は、温度補償部160−2の温度補正値yを算出する。例えば、補正値算出部132−2は、第1のモード時には、式(2−1)のように温度補正値y=0とし、第2のモード時には、式(2−2)を用いて温度補正値yを算出する。
=0 …(2−1)
=α2−2(x+β2−2) …(2−2)
ここで、xは、温度センサ120の測定結果[deg]であり、第2のモードにおいて、α2−2は、温度補償部160−2によって用いられる温度補正値yを決定するための係数である。β2−2は、第2のモードにおいて、室温の場合に、温度補正値yを0とする定数である。
算出された温度補正値yは、温度補償部160−2に出力され、温度補償部160−2は、例えば、電力調整信号に当該温度補正値yを加算することにより、電力調整部180の温度補償を行う。
以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに限定されることはない。その要旨を逸脱しない範囲において、他の種々の形態によっても実施することが可能である。
本発明に係るポーラ変調送信装置及びポーラ変調送信方法は、モードに応じて最適な温度補償を可能とし、温度変化時の特性劣化を確実に補償することができ、特にポーラ変調方式を用いた送信装置及びポーラ変調送信方法として有用である。
本発明の実施の形態に係るポーラ変調送信装置の要部構成を示すブロック図 電力調整部の内部構成の一例を示すブロック図 電力調整部の内部構成の一例を示すブロック図 電力調整部の内部構成の一例を示すブロック図 電力調整部の内部構成の一例を示すブロック図 第1のモードを説明するための図 第2のモードを説明するための図 補正値設定部及び温度補償部の内部構成例を示す図 温度補償部の温度補償テーブルの一例を示す図 温度補償部の温度補償テーブルの一例を示す図 温度補償部の温度補償テーブルの別の例を示す図 温度補償部の温度補償テーブルの別の例を示す図 補正値設定部の別の内部構成例を示す図 従来のポーラ変調送信装置の要部構成を示すブロック図
100 ポーラ変調送信装置
110 極座標変換部
120 温度センサ
130 補正値設定部
131−1,131−2 温度補償テーブル
132−1,132−2 補正値算出部
140−1,140−2 D/Aコンバータ
150 振幅調整部
160−1,160−2 温度補償部
170 周波数シンセサイザ
180 電力調整部
181 可変利得増幅器
182 可変利得減衰器
190 送信電力増幅部

Claims (9)

  1. 電力調整信号に基づいて、変調信号の高周波位相変調信号の電力レベルを調整する電力調整部と、
    非線形増幅器として動作する第1のモードと、線形増幅器として動作する第2のモードとを有し、前記変調信号の振幅成分信号を電源電圧として、前記高周波位相変調信号を増幅し、送信信号を出力する送信電力増幅部と、
    前記送信電力増幅部付近の温度を測定する温度検出部と、
    前記振幅成分信号を補正し、前記送信電力増幅部の温度補償を行う第1の温度補償部と、
    前記電力調整信号を補正し、前記電力調整部の温度補償を行う第2の温度補償部と、
    を具備し、
    前記第1のモードでは、前記温度検出部の測定結果に応じて、前記第1の温度補償部のみが温度補償を行い、前記第2のモードでは、前記温度検出部の測定結果に応じて、前記第1の温度補償部及び前記第2の温度補償部の両方が温度補償を行うポーラ変調送信装置。
  2. 温度と補正値とが対応付けられたテーブルを、前記第1のモードと前記第2のモードのそれぞれについて保持し、前記温度検出部の測定結果に応じて、前記テーブルを参照して、前記振幅成分信号に対する補正値及び前記電力調整信号に対する補正値を決定する補正値設定部を、さらに具備する、
    請求項1に記載のポーラ変調送信装置。
  3. 前記温度検出部の測定結果を用いて、前記振幅成分信号に対する補正値及び前記電力調整信号に対する補正値を算出する補正値設定部を、さらに具備する、
    請求項1に記載のポーラ変調送信装置。
  4. 前記電力調整部は、前記高周波位相変調信号の電力レベルを調整する素子として、可変利得増幅器を有する請求項1から請求項3いずれか一項に記載のポーラ変調送信装置。
  5. 前記電力調整部は、前記高周波位相変調信号の電力レベルを調整する素子として、可変利得減衰器を有する請求項1から請求項3いずれか一項に記載のポーラ変調送信装置。
  6. 前記電力調整部は、前記高周波位相変調信号の電力レベルを調整する素子として、可変利得増幅器と、前記可変利得増幅器の後段に接続された可変利得減衰器とを有する請求項1から請求項3いずれか一項に記載のポーラ変調送信装置。
  7. 前記電力調整部は、前記高周波位相変調信号の電力レベルを調整する素子として、可変利得減衰器と、前記可変利得減衰器の後段に接続された可変利得増幅器とを有する請求項1から請求項3いずれか一項に記載のポーラ変調送信装置。
  8. 電力調整信号に基づいて、変調信号の高周波位相変調信号の電力レベルを調整するステップと、
    非線形増幅器として動作する第1のモードと、線形増幅器として動作する第2のモードとを有し、前記変調信号の振幅成分信号を電源電圧として、前記高周波位相変調信号を増幅し、送信信号を出力するステップと、
    前記送信電力が出力される場所の温度を測定するステップと、
    前記第1のモードでは、測定された前記温度に応じて、前記振幅成分信号のみを補正するステップと、
    前記第2のモードでは、測定された前記温度に応じて、前記振幅成分信号及び前記電力調整信号を補正するステップと、
    を有するポーラ変調送信方法。
  9. 前記温度を測定するステップにおいて測定された前記温度に応じて、前記振幅成分信号の補正値及び前記電力調整信号の補正値を設定するステップをさらに有する請求項8記載のポーラ変調送信方法。
JP2009015330A 2008-04-10 2009-01-27 ポーラ変調送信装置及びポーラ変調送信方法 Pending JP2009273110A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009015330A JP2009273110A (ja) 2008-04-10 2009-01-27 ポーラ変調送信装置及びポーラ変調送信方法
US12/421,423 US8369802B2 (en) 2008-04-10 2009-04-09 Polar modulation transmission apparatus and polar modulation transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008102799 2008-04-10
JP2009015330A JP2009273110A (ja) 2008-04-10 2009-01-27 ポーラ変調送信装置及びポーラ変調送信方法

Publications (1)

Publication Number Publication Date
JP2009273110A true JP2009273110A (ja) 2009-11-19

Family

ID=41164409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009015330A Pending JP2009273110A (ja) 2008-04-10 2009-01-27 ポーラ変調送信装置及びポーラ変調送信方法

Country Status (2)

Country Link
US (1) US8369802B2 (ja)
JP (1) JP2009273110A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148584A1 (ja) * 2010-05-28 2011-12-01 パナソニック株式会社 送信回路及び送信方法

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8854019B1 (en) 2008-09-25 2014-10-07 Rf Micro Devices, Inc. Hybrid DC/DC power converter with charge-pump and buck converter
US9166471B1 (en) 2009-03-13 2015-10-20 Rf Micro Devices, Inc. 3D frequency dithering for DC-to-DC converters used in multi-mode cellular transmitters
US8315576B2 (en) 2009-05-05 2012-11-20 Rf Micro Devices, Inc. Capacitive compensation of cascaded directional couplers
US8774315B2 (en) * 2009-08-25 2014-07-08 The Aerospace Corporation Phase-optimized constant envelope transmission (POCET) method, apparatus and system
US8548398B2 (en) 2010-02-01 2013-10-01 Rf Micro Devices, Inc. Envelope power supply calibration of a multi-mode radio frequency power amplifier
US8538355B2 (en) 2010-04-19 2013-09-17 Rf Micro Devices, Inc. Quadrature power amplifier architecture
US8699973B2 (en) 2010-04-20 2014-04-15 Rf Micro Devices, Inc. PA bias power supply efficiency optimization
US8913971B2 (en) 2010-04-20 2014-12-16 Rf Micro Devices, Inc. Selecting PA bias levels of RF PA circuitry during a multislot burst
US9008597B2 (en) 2010-04-20 2015-04-14 Rf Micro Devices, Inc. Direct current (DC)-DC converter having a multi-stage output filter
US8515361B2 (en) 2010-04-20 2013-08-20 Rf Micro Devices, Inc. Frequency correction of a programmable frequency oscillator by propagation delay compensation
US8571492B2 (en) 2010-04-20 2013-10-29 Rf Micro Devices, Inc. DC-DC converter current sensing
US9048787B2 (en) 2010-04-20 2015-06-02 Rf Micro Devices, Inc. Combined RF detector and RF attenuator with concurrent outputs
US8811921B2 (en) 2010-04-20 2014-08-19 Rf Micro Devices, Inc. Independent PA biasing of a driver stage and a final stage
US9362825B2 (en) 2010-04-20 2016-06-07 Rf Micro Devices, Inc. Look-up table based configuration of a DC-DC converter
US8706063B2 (en) 2010-04-20 2014-04-22 Rf Micro Devices, Inc. PA envelope power supply undershoot compensation
US8942650B2 (en) 2010-04-20 2015-01-27 Rf Micro Devices, Inc. RF PA linearity requirements based converter operating mode selection
US9030256B2 (en) 2010-04-20 2015-05-12 Rf Micro Devices, Inc. Overlay class F choke
US9553550B2 (en) 2010-04-20 2017-01-24 Qorvo Us, Inc. Multiband RF switch ground isolation
US8559898B2 (en) 2010-04-20 2013-10-15 Rf Micro Devices, Inc. Embedded RF PA temperature compensating bias transistor
US8983407B2 (en) * 2010-04-20 2015-03-17 Rf Micro Devices, Inc. Selectable PA bias temperature compensation circuitry
US8542061B2 (en) 2010-04-20 2013-09-24 Rf Micro Devices, Inc. Charge pump based power amplifier envelope power supply and bias power supply
US8831544B2 (en) 2010-04-20 2014-09-09 Rf Micro Devices, Inc. Dynamic device switching (DDS) of an in-phase RF PA stage and a quadrature-phase RF PA stage
US8565694B2 (en) 2010-04-20 2013-10-22 Rf Micro Devices, Inc. Split current current digital-to-analog converter (IDAC) for dynamic device switching (DDS) of an RF PA stage
US9214900B2 (en) 2010-04-20 2015-12-15 Rf Micro Devices, Inc. Interference reduction between RF communications bands
US9900204B2 (en) 2010-04-20 2018-02-20 Qorvo Us, Inc. Multiple functional equivalence digital communications interface
US9184701B2 (en) 2010-04-20 2015-11-10 Rf Micro Devices, Inc. Snubber for a direct current (DC)-DC converter
US8947157B2 (en) 2010-04-20 2015-02-03 Rf Micro Devices, Inc. Voltage multiplier charge pump buck
US9077405B2 (en) 2010-04-20 2015-07-07 Rf Micro Devices, Inc. High efficiency path based power amplifier circuitry
US8913967B2 (en) 2010-04-20 2014-12-16 Rf Micro Devices, Inc. Feedback based buck timing of a direct current (DC)-DC converter
US8958763B2 (en) 2010-04-20 2015-02-17 Rf Micro Devices, Inc. PA bias power supply undershoot compensation
US9577590B2 (en) 2010-04-20 2017-02-21 Qorvo Us, Inc. Dual inductive element charge pump buck and buck power supplies
US9214865B2 (en) 2010-04-20 2015-12-15 Rf Micro Devices, Inc. Voltage compatible charge pump buck and buck power supplies
US8731498B2 (en) 2010-04-20 2014-05-20 Rf Micro Devices, Inc. Temperature correcting an envelope power supply signal for RF PA circuitry
US8842399B2 (en) 2010-04-20 2014-09-23 Rf Micro Devices, Inc. ESD protection of an RF PA semiconductor die using a PA controller semiconductor die
US8712349B2 (en) 2010-04-20 2014-04-29 Rf Micro Devices, Inc. Selecting a converter operating mode of a PA envelope power supply
US8942651B2 (en) 2010-04-20 2015-01-27 Rf Micro Devices, Inc. Cascaded converged power amplifier
US8989685B2 (en) 2010-04-20 2015-03-24 Rf Micro Devices, Inc. Look-up table based configuration of multi-mode multi-band radio frequency power amplifier circuitry
US8811920B2 (en) 2010-04-20 2014-08-19 Rf Micro Devices, Inc. DC-DC converter semiconductor die structure
US8892063B2 (en) 2010-04-20 2014-11-18 Rf Micro Devices, Inc. Linear mode and non-linear mode quadrature PA circuitry
US8983410B2 (en) 2010-04-20 2015-03-17 Rf Micro Devices, Inc. Configurable 2-wire/3-wire serial communications interface
US9065505B2 (en) 2012-01-31 2015-06-23 Rf Micro Devices, Inc. Optimal switching frequency for envelope tracking power supply
US9065507B2 (en) * 2013-09-05 2015-06-23 Infineon Technologies Ag Mixing stage, modulator circuit and a current control circuit
US9369161B1 (en) * 2014-08-12 2016-06-14 Sprint Communications Company L.P. Mitigation of radio-frequency interference at a remote radio head
US10056874B1 (en) 2017-02-28 2018-08-21 Psemi Corporation Power amplifier self-heating compensation circuit
US10305433B2 (en) 2017-02-28 2019-05-28 Psemi Corporation Power amplifier self-heating compensation circuit
US10439563B2 (en) 2017-02-28 2019-10-08 Psemi Corporation Positive temperature coefficient bias compensation circuit
US10439562B2 (en) 2017-02-28 2019-10-08 Psemi Corporation Current mirror bias compensation circuit
CN109412617B (zh) * 2018-11-19 2020-12-04 成都康特电子高新科技有限责任公司 射频宽带放大设备及射频增益调控方法
US11177847B2 (en) * 2019-03-22 2021-11-16 Mediatek Singapore Pte. Ltd. Method for compensating for degradation of signal during transmission of the signal and transmitter utilizing the same

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936677A (ja) * 1995-07-24 1997-02-07 Fujitsu Ltd 可変利得増幅・減衰器及びそれを有するモノリシックic
JP2856250B2 (ja) * 1997-06-27 1999-02-10 日本電気株式会社 コード多重通信方式における増幅部利得補償装置
US6043707A (en) * 1999-01-07 2000-03-28 Motorola, Inc. Method and apparatus for operating a radio-frequency power amplifier as a variable-class linear amplifier
JP2000201088A (ja) 1999-01-08 2000-07-18 Toyota Autom Loom Works Ltd 無線通信のために使用される送信機
US6798843B1 (en) * 1999-07-13 2004-09-28 Pmc-Sierra, Inc. Wideband digital predistortion linearizer for nonlinear amplifiers
US7010276B2 (en) * 2001-04-11 2006-03-07 Tropian, Inc. Communications signal amplifiers having independent power control and amplitude modulation
US6744314B2 (en) * 2002-06-20 2004-06-01 Harris Corporation Wideband power amplifier linearization technique
JP2005167541A (ja) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd 送信機
JP4199181B2 (ja) * 2004-01-27 2008-12-17 パナソニック株式会社 送信装置及び無線通信装置
US7363014B2 (en) * 2004-03-09 2008-04-22 Matsushita Electric Industrial Co., Ltd. Transmitting apparatus and radio communication apparatus
US20050208907A1 (en) * 2004-03-18 2005-09-22 Ryo Yamazaki Detecting and maintaining linearity in a power amplifier system through envelope power comparisons
US7193459B1 (en) * 2004-06-23 2007-03-20 Rf Micro Devices, Inc. Power amplifier control technique for enhanced efficiency
DE102005013881A1 (de) * 2005-03-24 2006-09-28 Infineon Technologies Ag Verfahren zur Signalverarbeitung und Sendeeinrichtung mit digitaler Vorverzerrung, insbesondere für den Mobilfunk
US7792214B2 (en) * 2005-04-27 2010-09-07 Panasonic Corporation Polar modulation transmitter circuit and communications device
WO2006118318A1 (en) * 2005-04-27 2006-11-09 Matsushita Electric Industrial Co., Ltd. Polar modulation transmission circuit and communication device
US20070014382A1 (en) * 2005-07-15 2007-01-18 Nokia Corporation Reconfigurable transmitter
JP4951238B2 (ja) * 2005-12-27 2012-06-13 パナソニック株式会社 極座標変調送信装置及び適応歪補償処理システム並びに極座標変調送信方法及び適応歪補償処理方法
US20100189193A1 (en) * 2006-08-23 2010-07-29 Panasonic Corporation Polar modulation transmitter and polar modulation transmission method
US7830220B2 (en) * 2006-09-26 2010-11-09 Infineon Technologies Ag Modulator arrangement and method for signal modulation
WO2008091325A1 (en) * 2007-01-25 2008-07-31 Skyworks Solutions, Inc. Multimode amplifier for operation in linear and saturated modes
US7466195B2 (en) * 2007-05-18 2008-12-16 Quantance, Inc. Error driven RF power amplifier control with increased efficiency
US7782133B2 (en) * 2008-09-03 2010-08-24 Infineon Technologies Ag Power amplifier with output power control

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148584A1 (ja) * 2010-05-28 2011-12-01 パナソニック株式会社 送信回路及び送信方法
JP2011250285A (ja) * 2010-05-28 2011-12-08 Panasonic Corp 送信回路及び送信方法
US8515367B2 (en) 2010-05-28 2013-08-20 Panasonic Corporation Transmission circuit and transmission method

Also Published As

Publication number Publication date
US8369802B2 (en) 2013-02-05
US20090258611A1 (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP2009273110A (ja) ポーラ変調送信装置及びポーラ変調送信方法
JP5742186B2 (ja) 増幅装置
US8022763B2 (en) Amplifier failure detection apparatus
KR101067099B1 (ko) 왜곡 보상 장치 및 방법
JP4641715B2 (ja) 歪補償装置及び無線基地局
JP2008177899A (ja) 増幅回路及び無線通信装置
US8514019B2 (en) Distortion compensation amplifier
JP2015026968A (ja) 歪補償装置および歪補償方法
JP5049562B2 (ja) 電力増幅器
US8755757B2 (en) Amplifier apparatus, radio transmitting apparatus including same, and method of adjusting gain of amplifier apparatus
JP2015076720A (ja) 歪補償装置および歪補償方法
JP2010278992A (ja) Rf増幅装置
KR20120123288A (ko) 증폭 장치 및 신호 처리 장치
JP5441817B2 (ja) 送信回路及び送信方法
JP2007221613A (ja) 歪補償方法および装置
JP2015099972A (ja) 送信機モジュール
US8742865B2 (en) Polar modulation transmission circuit and polar modulation transmission method
JP2010045507A (ja) 増幅回路及び無線通信装置
WO2002027921A1 (fr) Procede et circuit de compensation de la distorsion et de controle des sorties
JP2017188734A (ja) 増幅装置
JP2006279775A (ja) 歪み補償装置及び歪み補償方法
KR101134072B1 (ko) 이동통신 기지국 및 중계기용 고출력 증폭기의 디지털 전치왜곡 또는 아날로그 전치왜곡을 통한 최적화된 출력 송출 방법 및 그 고출력 증폭기
JP2012175573A (ja) マイクロ波送信装置
KR20120070143A (ko) 포락선 왜곡 감소 전력 증폭 장치
JP2008193665A (ja) 周波数変調回路