JP2009269083A - レーザ加工装置、レーザ加工方法、およびフラットパネルディスプレイの製造方法 - Google Patents

レーザ加工装置、レーザ加工方法、およびフラットパネルディスプレイの製造方法 Download PDF

Info

Publication number
JP2009269083A
JP2009269083A JP2008124353A JP2008124353A JP2009269083A JP 2009269083 A JP2009269083 A JP 2009269083A JP 2008124353 A JP2008124353 A JP 2008124353A JP 2008124353 A JP2008124353 A JP 2008124353A JP 2009269083 A JP2009269083 A JP 2009269083A
Authority
JP
Japan
Prior art keywords
laser beam
laser
irradiation
shape
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008124353A
Other languages
English (en)
Inventor
Mitsuo Sasaki
光夫 佐々木
Ryuichi Togawa
隆一 外川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008124353A priority Critical patent/JP2009269083A/ja
Publication of JP2009269083A publication Critical patent/JP2009269083A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】被処理物の照射対象部分の周辺にレーザ光が照射されるのを精度よく抑制すること。
【解決手段】レーザ光源8と、被処理物の保持手段と、レーザ光が導入される照射手段5と、保持手段と照射手段との相対的な位置を変化させる第1の移動手段4と、照射手段の光軸に交差して設けられたマスク10と、光軸に対するマスクの相対的な位置を変化させる第2の移動手段11と、第2の移動手段を制御する制御手段3とを備え、マスクは、被処理物の照射対象部分の少なくとも一部分と相似形または同一形状を有し、レーザ光の一部を透過させてスポット形状を成形する透過部10aを有し、照射手段は、スポット形状を照射対象部分に転写する結像光学系9を有し、制御手段は、第2の移動手段を制御することで、照射対象部分の形状に基づいてレーザ光が透過する位置を変化させることを特徴とするレーザ加工装置が提供される。
【選択図】図1

Description

本発明は、レーザ加工装置、レーザ加工方法、およびフラットパネルディスプレイの製造方法に関する。
有機EL(Electroluminescence)ディスプレイ・液晶ディスプレイ・プラズマディスプレイ・表面伝導型電子放出素子ディスプレイ(SED)、電解放出ディスプレイ(FED)などのフラットパネルディスプレイにおいては内部に収納した電子素子や回路などを気密封止している。
例えば、フラットパネルディスプレイにおいては、2枚のガラス基板が互いに所定の間隔を開けて平行に対峙され、この2枚のガラス基板の周縁を封止することで、その内部に形成された電極や蛍光体層などを気密封止するようにしている。
このような気密封止においては、紫外線硬化樹脂などによる樹脂封止が行われているが、空気中の水分などが封止部を透過するおそれがある。そのため、水分などによる劣化が懸念されるようなもの(例えば、有機ELディスプレイなど)には、気密の信頼性がより高いフリットによる封止が行われている。
ここで、フリットを用いた封止においては、ガラス基板の表面からフリットに向けてレーザ光を照射して溶融接合させる技術が知られている。そして、フリットが充分に溶融されるように、フリット幅以上のビーム幅を有するレーザ光を照射する技術が提案されている(特許文献1を参照)。
この場合、フリット幅以上のビーム幅を有するレーザ光を照射すれば、フリットの周辺部分にもレーザ光が照射され、封止される電子素子や回路などに熱的影響を与えてしまうおそれがある。そのため、フリット以外の部分をマスクで覆い、フリット部分のみにレーザ光が照射されるようにした技術が開示されている(特許文献2を参照)。
しかしながら、フリットの位置とマスクの透過部の位置とを精度良く合わせることは困難である。そのため、相互にずれが生じて、溶融不良となったり、封止される電子素子や回路などが破損したりするおそれがあった。
特開2007−200839号公報 特開2007−220648号公報
本発明は、被処理物の照射対象部分の周辺にレーザ光が照射されるのを精度よく抑制することができるレーザ加工装置、レーザ加工方法、およびフラットパネルディスプレイの製造方法を提供する。
本発明の一態様によれば、レーザ光源と、被処理物を保持する保持手段と、 前記保持手段に対向して設けられ、前記レーザ光源からのレーザ光が導入される照射手段と、前記保持手段と、前記照射手段と、の相対的な位置を変化させる第1の移動手段と、前記照射手段の光軸に交差して設けられたマスクと、前記光軸に対する前記マスクの相対的な位置を変化させる第2の移動手段と、前記第2の移動手段を制御する制御手段と、を備え、前記マスクは、前記被処理物の照射対象部分の少なくとも一部分と相似形または同一形状を有し前記レーザ光の一部を透過させることで前記レーザ光のスポット形状を成形する透過部を有し、前記照射手段は、前記成形されたスポット形状を前記照射対象部分に転写する結像光学系を有し、前記制御手段は、前記第2の移動手段を制御することで、前記照射対象部分の形状に基づいて前記透過部の前記レーザ光が透過する位置を変化させること、を特徴とするレーザ加工装置が提供される。
また、本発明の他の一態様によれば、マスクに設けられ、被処理物の照射対象部分の少なくとも一部分と相似形または同一形状を有する透過部に、レーザ光の一部を透過させることで前記レーザ光のスポット形状を成形し、前記成形されたスポット形状を被処理物の照射対象部分に転写し、前記照射対象部分の形状に基づいて、前記透過部の前記レーザ光が透過する位置を変化させること、を特徴とするレーザ加工方法が提供される。
また、本発明の他の一態様によれば、上記のレーザ加工方法により、被処理物の照射対象部分を加熱すること、を特徴とするフラットパネルディスプレイの製造方法が提供される。
本発明によれば、被処理物の照射対象部分の周辺にレーザ光が照射されるのを精度よく抑制することができるレーザ加工装置、レーザ加工方法、およびフラットパネルディスプレイの製造方法が提供される。
以下、図面を参照しつつ、本発明の実施の形態について例示をする。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。
図1は、本発明の実施の形態に係るレーザ加工装置の要部を例示するための模式斜視図である。
なお、図1は、本発明の実施の形態に係るレーザ加工装置の一例として、フリットを溶融させることで有機ELディスプレイの封止を行うことができるレーザ加工装置を例示するものである。また、本実施の形態においては、フリットが被処理物の照射対象部分となる。
また、図2は、比較例に係るレーザ加工装置を例示するための模式斜視図である。
まず、比較例に係るレーザ加工装置から説明をする。
図2に示すレーザ加工装置100は、本発明者が発明をするに至った過程で検討を加えたものである。
レーザ加工装置100は、例えば、有機ELディスプレイの製造工程において用いられる。そして、対峙する2枚のガラス基板G1、G2の間に設けられたフリットに向けてレーザ光Lを照射することで、フリットにより画される空間を気密封止する。
図3は、ガラス基板の表面に設けられたフリットを例示するための模式図である。
図3に示すように、一方のガラス基板(図3に例示をするものの場合はガラス基板G1)の表面には、フリットFが設けられている。フリットFは、例えば、ガラス粉末に酸化物粉末などを含ませたものとすることができる。酸化物粉末としては、例えば、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化バリウム(BaO)、酸化リチウム(LiO)、酸化ナトリウム(NaO)、酸化カリウム(KO)などを例示することができる。ただし、これに限定されるわけではなく、適宜変更することができる。
フリットFは、ガラス基板G1の周縁に枠状に設けられている。フリットFにより画されたガラス基板G1の中央側は、電子素子や回路などが設けられるエリア(素子エリア101)となる。なお、ガラス基板G1の周縁であって素子エリア101の外側が、いわゆる額縁102と称されるエリアとなる。額縁102の幅寸法Wを小さくすれば、その分、素子エリア101を大きくすることができるので好ましい。そのため、幅寸法Wが小さくなる傾向にある。しかしながら、幅寸法Wが小さくなれば、その結果としてフリットFの位置と素子エリア101の外縁位置とが接近することになるので、フリットFを溶融する際にレーザ光が電子素子や回路などにも照射されてしまうおそれがある。
図4は、フリットへのレーザ照射を例示するための模式図である。
図3に例示をしたように、フリットFはガラス基板の周縁に枠状に設けられる。そのため、枠状に設けられたフリットFのコーナー部分における方向制御が容易となるように、スポットS1の形状は図4(a)に示すように円形となっている。
ここで、生産性を高めるためには加工速度(レーザ光の相対移動速度)を速くする必要がある。しかしながら、レーザ光の出力を一定にしたまま加工速度(レーザ光の相対移動速度)を速くすれば、フリットFの加熱が不充分となり融着不良を起こすおそれがある。そのため、図4(b)に示すように、低速時における入射エネルギー103と、高速時における入射エネルギー104とが同等となるようにする必要がある。
ところが、高速時における入射エネルギー104を高めるために、単にレーザ光の出力を高くすればフリットやガラス基板が急加熱、急冷却されるので、割れが発生するおそれがある。ここで、図4(c)に示すように、スポットS2の大きさを大きくすれば相対的な照射時間を長くすることができる。そのため、レーザ光の出力を抑えることができるので、フリットやガラス基板が急加熱、急冷却されるのを抑制することができる。
しかしながら、スポットS2の大きさを大きくすれば、素子エリア101の内側にもレーザ光が照射されてしまうおそれがある。前述したように、幅寸法Wが小さくなる傾向にあるので、スポットS2の形状を円形にしたままその大きさを大きくするには限界がある。
そこで、図2(a)に例示をしたレーザ加工装置100においては、スポットの形状をマスクにより成形することで、素子エリア101の内側にレーザ光が照射されるのを抑制するようにしている。図2(a)に例示をしたものの場合には、レーザ光が照射される側のガラス基板(図2(a)に例示をするものの場合はガラス基板G2)の表面にマスク基板105を重ねるようにして設け、フリットFに照射されるスポットの形状を成形するようにしている。
そして、図2(b)に例示をするように、素子エリア101の内側にレーザ光が照射されないような偏平形状のスポットS3とすることで、フリットFを充分に加熱するとともに、素子エリア101の内側へのレーザ光の影響を抑制するようにしている。
しかしながら、ガラス基板の表面にマスク基板105を重ねるようにして設けるようにすれば、ガラス基板とマスク基板105とが接触しガラス基板に傷がはいるおそれがある。また、フリットFの位置とマスク基板105の透過部の位置とを精度よく合わせることも難しい。そのため、相互にずれが生じて、溶融不良となったり、封止される電子素子や回路などが破損したりするおそれがある。また、マスク基板105の位置合わせ手段が必要になるなどして装置構成が複雑化するおそれもある。また、マスク基板105の位置合わせなどのために作業時間が長くなるおそれもある。また、フリットの形状や配置などに合わせて専用のマスク基板が必要となるおそれがある。
次に、図1に戻って本発明の実施の形態に係るレーザ加工装置の要部を例示する。
図1に示すように、レーザ加工装置1は、封止手段2と、制御手段3とを備えている。 レーザ加工装置1は、例えば、有機ELディスプレイの製造工程において用いられる。そして、対峙する2枚のガラス基板G1、G2の間に設けられたフリットFに向けてレーザ光Lを照射することで、フリットFにより画される空間を気密封止する。この際、対峙する2枚のガラス基板G1、G2を窒素ガスやアルゴンガスなどの不活性ガス雰囲気中において重ね合わせ、その状態でフリットFに向けてレーザ光を照射するようにすることができる。そのようにすれば、フリットFにより画される空間に設けられた電子素子や回路などを、不活性ガス雰囲気の密閉空間内に封止することができる。そのような場合には、例えば、封止手段2をチャンバなどの気密容器に収納し、気密容器内を不活性ガス雰囲気とすればよい。
封止手段2には、XYテーブル4、照射手段5が設けられている。照射手段5は、XYテーブル4に設けられた後述する保持手段に対向するようにして設けられ、保持手段に保持された被処理物の照射対象部分(例えば、フリット)に向けてレーザ光を照射できるようになっている。
また、照射手段5に導入するレーザ光を発振させるレーザ光源としてのレーザ電源6、レーザ発振器7が設けられている。そして、照射手段5には、レーザヘッド8、結像光学系9、マスク10、XYテーブル11が設けられている。
XYテーブル4には、図中のY1方向に往復自在な図示しない第1の駆動部と、図示しない第1の駆動部の主面に設けられ、図中のX1方向に往復自在な図示しない第2の駆動部とが設けられている。そして、図示しない第2の駆動部の主面には被処理物(ガラス基板)を保持する図示しない保持手段が設けられている。図示しない保持手段としては、例えば、静電チャックなどを例示することができる。また、対峙する2枚のガラス基板の相互の位置がずれないようにガラス基板の周縁を保持する手段を設けるようにすることもできる。
なお、被処理物を保持する保持手段と、照射手段5と、の相対的な位置を変化させる移動手段として保持手段側を移動させるXYテーブル4を例示したが、照射手段5側を移動させる移動手段とすることもできる。
レーザ電源6には、レーザ発振器7が電気的に接続されている。そして、レーザ電源6からレーザ発振器7に必要な電力が供給できるようになっている。
レーザ発振器7は、例えば、半導体レーザ光やYAGレーザ光などを発振可能なものとすることができる。ただし、これらに限定されるわけではなく、適宜変更することができる。この場合、フリットに吸収されやすい800nm〜1200nm程度の波長を有するレーザ光を発振可能なものとすることが好ましい。そのようなものとしては、例えば、波長が808nm、940nm、976nmなどの半導体レーザ光や、波長が1064nmのNd-YAGレーザ光などを発振可能なレーザ発振器を例示することができる。
また、レーザ発振器7には、光ファイバ14を介してレーザヘッド8が光学的に接続されている。レーザヘッド8は、光ファイバ14を介して伝送されてきたレーザ光を結像光学系9に向けて出射する。
結像光学系9には、レーザ光を集光させるための集光レンズ9a〜9cや、光路を変更させるための反射ミラー9dが設けられている。なお、集光レンズ9a〜9c、反射ミラー9dの数や配設形態などは図示したものに限定されるわけではなく適宜変更することができる。
また、照射手段5(結像光学系9)の光軸と交差するようにしてマスク10が設けられている。
集光レンズ9aは、レーザヘッド8から出射されたレーザ光をマスク10上に集光させる。マスク10には、レーザ光が透過可能な透過部10aとレーザ光が透過できない遮光部10bが設けられている。そして、透過部10aは、被処理物の照射対象部分(例えば、フリット)の少なくとも一部分と相似形または同一形状を有し、レーザ光の一部を透過させることでレーザ光のスポット形状を成形する。例えば、マスク10上に集光された円形のスポット形状を図2(b)において例示をしたような偏平形状のスポット形状に成形する。
なお、図1に例示をしたものの場合には、透過部10aの形状は、照射対象部分(例えば、フリット)と相似形または同一形状である。すなわち、透過部10aの形状は、枠状のとなっている。
結像光学系9は、透過部10aを透過することで成形されたスポット形状を照射対象部分(例えば、フリット)に転写する機能をも有している。図1に例示をしたものの場合には、集光レンズ9b、9cにより転写が行われるようになっている。
集光レンズ9b、9cは、透過部10aを透過することで所定の形状に成形されたレーザ光をフリットF上に転写する。すなわち、フリットF上に照射されたレーザ光のスポットの形状および寸法が、マスク10(透過部10a)で成形された際のスポットと略同一となるようになっている。
この場合、例えば、集光レンズ9b、9cの焦点距離などを適宜選択することで、マスク10(透過部10a)で成形されたレーザ光をフリットF上に転写させることができる。例えば、集光レンズ9b、9cの焦点距離を等しいものとすれば、マスク10(基準点)からフリットF上(投影点)までの間に対称的なビーム軌跡を形成させることができる。そのため、フリットF上(投影点)にマスク10(基準点)で成形されたレーザ光と略同一のスポット形状および寸法を有するものを転写させることができることになる。なお、集光レンズ9b、9cの焦点距離が等しい場合に限定されるわけではない。例えば、焦点距離、マスク10からフリットFまでの間における集光レンズの配設位置などを適宜変更することで、マスク10で成形されたレーザ光をフリットF上に転写するようにしてもよい。
XYテーブル11は、マスク10を保持するとともに、照射手段5(結像光学系9)の光軸に略直交する方向にマスク10を移動させることができるようになっている。XYテーブル11には、図中のZ1方向に往復自在な図示しない第3の駆動部と、図示しない第3の駆動部の主面に設けられ、図中のX2方向に往復自在な図示しない第4の駆動部とが設けられている。そして、図示しない第4の駆動部の主面にはマスク10を保持する図示しない保持手段が設けられている。図示しない保持手段としては、例えば、機械的な把持チャックなどを例示することができる。なお、マスク10を保持する際には、マスク10の外周や遮光部10bを保持し、遮光部10bが遮られないようになっている。
なお、照射手段5(結像光学系9)の光軸に対するマスク10の相対的な位置を変化させる移動手段として、保持手段側(マスク10側)を移動させるXYテーブル11を例示したが、照射手段5側を移動させる移動手段とすることもできる。
制御手段3には、XYテーブル4、レーザ電源6、XYテーブル11などが電気的に接続されている。そして、例えば、レーザ電源6を制御することで、レーザ光源(レーザ発振器7)の出力を所望の値に制御したり、レーザ光の出射と停止(出力の切り替え)が行えるようになっている。
また、XYテーブル4、XYテーブル11の位置制御を行うことで、マスク10(遮光部10b)、ガラス基板(フリットF)の位置制御が行えるようになっている。マスク10(遮光部10b)、ガラス基板(フリットF)の位置制御は、図示しない画像処理手段でこれらの位置を検出し、この検出値に基づいてXYテーブル4、XYテーブル11の位置を制御することで行うようにすることができる。
また、制御手段3は、XYテーブル11を制御することで、照射対象部分(例えば、フリット)の形状に基づいて透過部10aのレーザ光が透過する位置を変化させる。
そして、透過部10aの形状が照射対象部分(例えば、フリット)と相似形または同一形状の場合には、XYテーブル4(照射対象部分)の位置に合わせるようにしてXYテーブル11(透過部10a)の位置が同期制御されるようになっている。また、透過部10aの形状に沿って透過部10aのレーザ光が透過する位置が変化するようになっている。このようにすれば、照射対象部分(例えば、フリット)の照射位置に合わせて、最適なスポット形状のレーザ光を照射することができる。
例えば、枠状のフリットFの照射位置に同期させて枠状の透過部10aを移動させることで、フリットFの照射位置に合わせて、最適なスポット形状のレーザ光が枠状のフリットF上に照射されるようになっている。すなわち、フリットFの直線部分においては、透過部10aの直線部分によりレーザ光のスポット形状が成形される。この場合、図2(b)において例示をしたような偏平形状に成形される。
ここで、この偏平形状のままでは移動方向が変更されるフリットFのコーナー近傍を適切に照射することができない。しかしながら、本実施の形態においては、枠状のフリットFの照射位置に合わせて枠状の透過部10aを同期移動させているので、フリットFのコーナー近傍においてスポットの移動方向を適切に変更することができる。
図5は、フリットのコーナー近傍におけるスポットの成形を例示するための模式斜視図である。
本実施の形態によれば、図5に示すように、フリットFのコーナー形状に沿うようなL字状のスポットに成形をすることができる。また、直線部分における偏平形状のスポットから連続的にL字状のスポットに移行することができる。また、コーナー部分におけるL字状のスポットから連続的に偏平形状のスポットに移行することもできる。そのため、枠状のフリットF上を沿うようにして連続的な照射を行うことができる。また、レーザ光の照射位置に合わせてフリットFを移動させることができるので、照射位置の位置精度を向上させることができる。
そのため、フリット部分にレーザ光を充分に照射することができるとともに、フリット周辺にレーザ光が照射されるのを精度よく抑制することができる。その結果、フリットが溶融不良となったり、封止される電子素子や回路などが破損したりすることを抑制することもできる。
図6は、他の実施の形態に係るマスクを例示するための模式図である。
図6に示すように、マスク12には、レーザ光が透過可能な透過部12aとレーザ光が透過できない遮光部12bが設けられている。そして、透過部12aには、5つの直線部12a1と、4つのコーナー部12a2が設けられている。なお、コーナー部12a2は、照射対象部分(例えば、フリット)のコーナー部と相似形または同一形状となっている。
本実施の形態においては、照射対象部分(例えば、フリット)の直線部分を照射する場合にはマスク12の直線部12a1を用いてスポット形状の成形を行い、照射対象部分(例えば、フリット)のコーナー部を照射する場合にはマスク12のコーナー部12a2を用いてスポット形状の成形を行うようにしている。
この場合、制御手段3は、XYテーブル11を制御することで、照射対象部分(例えば、フリット)の形状に対応する透過部12aの形状を選択するように透過部12aのレーザ光が透過する位置を変化させる。
図7は、図6に例示をしたマスクを用いた照射を例示するための模式図である。
図6に例示をしたマスク12を用いて、図7(a)に示すフリットF1へのレーザ光の照射を行う場合には、以下のようにすることができる。
図7(a)に示すように、照射の開始点からフリットF1のコーナー部A2までの間の直線部A1においては、図7(b)に示すように、透過部12aの直線部12a1に円形のスポットSのレーザ光を照射して、偏平形状のスポットS3に成形し、これをフリットF1に照射するようにする。そして、例えば、XYテーブル4により照射位置を変化させて直線部A1における溶融、封止を行うようにする。
次に、フリットF1のコーナー部A2においては、図7(c)に示すように、透過部12aのコーナー部12a2に円形のスポットSのレーザ光を照射して、フリットF1のコーナー部形状に適合したスポット形状に成形するようにする。そして、これをフリットF1のコーナー部A2に照射することで溶融、封止を行うようにする。なお、透過部12aに対するレーザ光の照射位置の変更は、XYテーブル11によりマスク12を移動させることで行うことができる。
次に、フリットF1の直線部A3においては、図7(d)に示すように、透過部12aの直線部12a1に円形のスポットSのレーザ光を照射して、偏平形状のスポットS3に成形し、これをフリットF1に照射するようにする。この場合、次に溶融、封止を行うコーナー部A4を考慮して、コーナー部12a2の直前の直線部12a1にレーザ光を照射し成形を行うようにすることが好ましい。このようにすれば、直線部A3からコーナー部A4への移行を迅速に行うことができる。
以降、同様にして、直線部A5、コーナー部A6、直線部A7、コーナー部A8、直線部A9の溶融、封止を行うようにする。
そして、次のフリットF1に対する照射を行うためにガラス基板を移動させている間に、透過部12aに対する照射位置を適宜変化させる。例えば、図7(e)に示すように、コーナー部12a2の直前の直線部12a1に照射位置を変化させるようにすることができる。なお、透過部12aのどの部分を用いるかについては制限がないが、なるべく均等に使用されるようにすればマスク12の寿命を延ばすことができる。例えば、図7(b)〜(e)に例示をしたように、透過部12aに対する照射位置を循環させるようにすれば、使用する部分の偏りを抑制することができるので、マスク12の寿命を延ばすことができる。
図8は、透過部のコーナー部における照射の様子を例示するための模式図である。
なお、図中の矢印は、透過位置の変化方向を表している。
図8(a)に示すように、マスク10の透過部10aのコーナー部にスポットSが入る場合には、スポットSの大きさが大きいためコーナー部の出口近傍に先行して照射される部分Bが生じることになる。このように、先行して照射される部分Bが生じると、レーザ光源の出力の大きさなどによってはこの部分が加熱されすぎるおそれがある。
このような場合には、レーザ光源の出力を制御することで先行して照射される部分Bに入射するエネルギーが抑制されるようにすることが好ましい。
例えば、図8(b)に示すように、レーザ光が透過する位置が透過部10aのコーナー部中心に向かうにつれレーザ光源の出力を減少(例えば、漸減)させ、レーザ光が透過する位置がコーナー部中心から離れるにつれレーザ光源の出力を増加(例えば、漸増)させるような制御を例示することができる。
また、図8(c)に示すように、レーザ光が透過する位置が透過部10aのコーナー部中心に向かうにつれレーザ光源の出力を減少(例えば、漸減)させ、所定の間レーザ光源の出力を所定の値に保ち、その後、レーザ光が透過する位置がコーナー部中心から離れるにつれレーザ光源の出力を増加(例えば、漸増)させるような制御をすることもできる。この場合、レーザ光が透過する位置が透過部10aのコーナー部にある時には、レーザ光源の出力を任意に制御することができるようにすることもできる。すなわち、透過部10aのコーナー部を出力可変領域とすることができる。
なお、コーナー部における制御の形態は例示したものに限定されるわけではなく、出力制御のタイミング、量、変化のさせ方などは適宜変更することができる。
このようにすれば、先行して照射される部分Bの過熱を抑制することができるので、フリットやガラス基板の割れなどを抑制することができる。
図9は、他の実施の形態に係るマスクを例示するための模式図である。
図9に示すように、マスク13には、レーザ光が透過可能な透過部13aとレーザ光が透過できない遮光部13bが設けられている。また、透過部13aのコーナー部には、レーザ光が透過する位置が変化する方向と略直角方向の寸法(幅寸法W1)が狭くなる狭隘部13a1が設けられている。
このようにすれば、図8において例示をしたような先行して照射される部分が生じたとしても、先行して照射される部分に入射するエネルギーを抑制することができる。そのため、先行して照射される部分の過熱を抑制することができるので、フリットやガラス基板の割れなどを抑制することができる。なお、狭隘部13a1の幅寸法W1はレーザ光源の出力、移動速度、スポットSの大きさなどを考慮して適宜決定することができる。また、幅寸法W1が変化するようにすることもできる。
また、図9においては、コーナー部の全域に狭隘部13a1を設けるようにしたが、コーナー部の一部に狭隘部13a1を設けてもよい。例えば、コーナー部の出口近傍に狭隘部を設けるようにすることもできる。
図10は、他の実施の形態に係るマスクを例示するための模式図である。なお、図10(a)はマスクの形状を例示するための模式図、図10(b)はフリットへのレーザ照射の形態を例示するための模式図、図10(c)はレーザ光源の出力制御を例示するための模式グラフ図である。
図10(a)に示すように、マスク23には、レーザ光が透過可能な透過部23aとレーザ光が透過できない遮光部23bが設けられている。また、透過部23aにおいて、レーザ光の照射が開始する部分にはレーザ光が透過する位置が変化する方向と略直角方向の寸法(幅寸法)が狭くなる狭隘部23a1が設けられている。また、透過部23aにおいて、レーザ光の照射が終了する部分にはレーザ光が透過する位置が変化する方向と略直角方向の寸法(幅寸法)が狭くなる狭隘部23a2が設けられている。また、必ずしも必要ではないが、狭隘部23a1と狭隘部23a2との間にはレーザ光が透過できない遮光部が設けられている。
狭隘部23a1は、レーザ光が透過する位置が変化する方向に向かって幅寸法が増加する(例えば、漸増する)ようになっている。すなわち、レーザ光が透過する位置がレーザ光の照射を開始する位置から離れるにつれ幅寸法が増加する(例えば、漸増する)ようになっている。
また、狭隘部23a2は、レーザ光が透過する位置が変化する方向に向かって幅寸法が減少する(例えば、漸減する)ようになっている。すなわち、レーザ光が透過する位置がレーザ光の照射を終了させる位置に近づくにつれ幅寸法が減少する(例えば、漸減する)ようになっている。
ここで、環状のマスクを用いてレーザ光を被処理物の照射対象部分(フリット)へ照射するものとすれば、図10(b)に示すように、照射の軌跡も環状となる。この場合、照射の開始点と終了点との近傍において相互に重複してレーザ光が照射される部分(図10(b)におけるレーザ照射重複部分)が生じることになる。
このような重複して照射される部分が生じると、レーザ光源の出力の大きさなどによってはこの部分が加熱されすぎるおそれがある。
そのため、図10(a)に例示をしたマスク23においては、狭隘部23a1、23a2とその間にレーザ光が透過できない遮光部を設けることで、重複してレーザ光が照射される部分が加熱されすぎないようにしている。
このようにすれば、重複して照射される部分の過熱を抑制することができるので、フリットやガラス基板の割れなどを抑制することができる。
なお、狭隘部23a1、23a2や遮光部の寸法などは、レーザ光源の出力、移動速度、スポットSの大きさなどを考慮して適宜決定することができる。また、狭隘部23a1と狭隘部23a2との間に設けられる遮光部は必ずしも必要ではないが、設けるようにすれば狭隘部23a1、23a2の設計の自由度を高めることができる。
また、レーザ光源の出力を制御することで、重複してレーザ光が照射される部分が加熱されすぎないようにすることもできる。
例えば、図10(c)に示すように、レーザ光が透過する位置がレーザ光の照射を開始する位置から離れるにつれレーザ光源の出力を増加させ(例えば、漸増させ)、レーザ光が透過する位置がレーザ光の照射を終了させる位置に近づくにつれレーザ光源の出力を減少させる(例えば、漸減させる)ようにすることができる。
このようにすれば、重複して照射される部分の過熱を抑制することができるので、フリットやガラス基板の割れなどを抑制することができる。
なお、重複して照射される部分における制御の形態は例示したものに限定されるわけではなく、出力制御のタイミング、量、変化のさせ方などは適宜変更することができる。
次に、本発明の実施の形態に係るレーザ加工装置の作用とともに本発明の実施の形態に係るレーザ加工方法について例示をする。
図示しない搬送手段により、重ね合わされた2枚のガラス基板G1、G2がXYテーブル4に載置、保持される。なお、前述したようにガラス基板G2には枠状にフリットが設けられており、枠状のフリットの内側(素子エリア101)には、電子素子や回路などが設けられている。
次に、フリットの所定の位置にレーザが照射され、照射位置を順次変化させることで素子エリア101に設けられた電子素子や回路などが気密封止される。この際、前述したマスクを用い、フリットの照射部分の形状に適合したスポット形状のレーザ光が照射されるようにする。
すなわち、前述したマスクに設けられ、被処理物の照射対象部分(例えば、フリット)の少なくとも一部分と相似形または同一形状を有する透過部を、レーザ光の一部を透過させることでレーザ光のスポット形状を成形し、成形されたスポット形状を被処理物の照射対象部分(例えば、フリット)に転写し、照射対象部分(例えば、フリット)の形状に基づいて、透過部のレーザ光が透過する位置を変化させるようにしてレーザ加工が行われる。
また、照射対象部分(例えば、フリット)の形状に対応する透過部の形状を選択するように透過部のレーザ光が透過する位置を変化させるようにすることができる。
また、透過部の形状に沿って透過部のレーザ光が透過する位置を変化させるようにすることができる。
また、レーザ光が透過する位置が透過部のコーナー部中心に向かうにつれレーザ光の出力を減少(例えば、漸減)させ、レーザ光が透過する位置がコーナー部中心から離れるにつれレーザ光の出力を増加(例えば、漸増)させるようにすることができる。
また、ガラス基板G1、G2を窒素ガスやアルゴンガスなどの不活性ガス雰囲気中において重ね合わせ、その状態でフリットに向けてレーザ光を照射するようにすることができる。そのようにすれば、フリットにより画される空間に設けられた電子素子や回路などを、不活性ガス雰囲気の密閉空間内に封止することができる。
1つのフリットの溶融、封止が終了した場合には、ガラス基板G1、G2がXYテーブル4により移動されて、次のフリットの溶融、封止が行われる。すべてのフリットの溶融、封止が終了した場合には、図示しない搬送手段により封止がされたガラス基板G1、G2が搬出される。
次に、本発明の実施の形態に係るフラットパネルディスプレイの製造方法について例示をする。
なお、本発明の実施の形態に係るフラットパネルディスプレイの製造方法の一例として、有機ELディスプレイの製造方法を例にとり例示をする。
まず、ガラス基板G1の表面にTFTトランジスタ、各種電極配線などを形成し、複数の画素を備えたアレイ基板を作成する。なお、TFTトランジスタ、各種電極配線などの形成は、既知のフォトリソグラフィー技術を用いることができるので、その説明は省略する。
次に、CVD(Chemical Vapor Deposition)法などを用いて、前述の画素の上に透明な絶縁膜(例えば、酸化シリコン膜など)を成膜する。その後、ドライエッチング法などを用いて、絶縁膜にTFTトランジスタのドレイン領域まで貫通するコンタクトホールなどを適宜設ける。なお、CVD法やドライエッチング法などに用いられる技術については、既知の技術を適用することができるので、その説明は省略する。
次に、各画素に対して、透明な電極部材(例えば、ITO(Indium Tin Oxide))を配設することでアノード電極を形成する。アノード電極は、ITOをガラス基板全面に成膜した後、フォトリソグラフィー技術を用いて形成させることもできるし、マスクスパッタ法を用いて直接形成させるようにすることもできる。なお、薄膜形成やフォトリソグラフィー技術などについては、既知の技術を適用することができるので、その説明は省略する。
次に、各画素間の電気的な短絡を防ぐために、各画素を囲むように格子状の隔壁を形成する。隔壁は、例えば、紫外線硬化型アクリル樹脂レジストを配設し、220℃で30分間ベーク処理などをすることで形成させることができる。なお、紫外線硬化型アクリル樹脂レジストによる隔壁の形成やベーク処理などについては、既知の技術を適用することができるので、その説明は省略する。
次に、各画素のアノード電極上に有機EL層を形成する。
有機EL層の形成においては、まず、アノード電極上にホール輸送層が形成される。ホール輸送層は、例えば、芳香族アミン誘導体などの材料を直接蒸着したり、溶媒に溶解した溶液を塗布して乾燥させることにより形成させることができる。
次に、ホール輸送層上に、赤、緑、青の各色を発光する発光層を積層させる。積層は、例えば、ストライプ状のシャドウマスクを用いて行うことができる。この場合、発光層は、材料を直接蒸着することにより形成させることもできるし、インク状の発光材料を用いてスピンコート方式やインクジェット方式により塗布、乾燥させることにより形成させることもできる。
なお、蒸着や、スピンコート方式・インクジェット方式による塗布、乾燥などについては、既知の技術を適用することができるので、その説明は省略する。
次に、有機EL層の上に、カソード電極を形成し、カソード電極の上に保護層を形成する。カソード電極は、例えば、減圧環境下において、バリウム単体を蒸着させることにより形成させることができる。保護層は、例えば、減圧環境下において、アルミニウム単体またはその合金を蒸着させることにより形成させることができる。なお、減圧環境下における蒸着などについては、既知の技術を適用することができるので、その説明は省略する。
一方、ガラス基板G2の表面に所定の形状にフリットを塗布し、これを焼成することで封止基板を作成する。
フリットは、ガラス粉末に酸化物粉末などを含んだものとすることができる。酸化物粉末としては、例えば、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化バリウム(BaO)、酸化リチウム(LiO)、酸化ナトリウム(NaO)、酸化カリウム(KO)などを例示することができる。ただし、これに限定されるわけではなく、適宜変更することができる。
また、フリットの塗布は、ディスペンシング法またはスクリーン印刷法を用いることができる。フリットを焼成する温度は、例えば、300℃〜700℃程度とすることができる。なお、ディスペンシング法、スクリーン印刷法、焼成方法などについては、既知の技術を適用することができるので、その説明は省略する。
次に、前述のようにして有機EL層などが形成されたアレイ基板と、フリットが形成された封止基板とを窒素ガスやアルゴンガスなどの不活性ガス雰囲気中において重ね合わせ、フリットにレーザを照射して封止を行う。これにより、有機EL層、TFTトランジスタ、電極などで構成される有機EL素子は、不活性ガス雰囲気の密閉空間内に封入される。レーザには、波長が808nm、940nm、976nmなどの半導体レーザ、1064nmのNd-YAGレーザなどを用いることができる。
ここで、フリットへのレーザ照射については、前述したレーザ加工装置1を用いることができる。また、レーザ加工装置1の作用とともに例示をしたレーザ加工方法を用いることができる。そのため、封止に関する説明は省略する。
また、不活性ガス雰囲気中におけるガラス基板の重ね合わせに関しても、既知の技術を適用することができるので、その説明も省略する。
以上のようにして形成されたものが複数の有機ELディスプレイパネルの集合体である場合には、分断加工を行い単体の有機ELディスプレイパネルに分断する。分断は、例えば、有機ELディスプレイパネルの集合体を割断予定線に沿って割断し、割断された有機ELディスプレイパネルの集合体をブレーク加工することで分断することができる。なお、割断やブレーク加工については、既知の技術を適用することができるので、その説明は省略する。
次に、以上のようにして製造した有機ELディスプレイパネルに機構部材などを装着する。
機構部材としては、ドライバICと、それに入力する制御信号を生成する駆動回路などを例示することができる。また、必要に応じてカバーなどを適宜設けるようにすることもできる。なお、機構部材、カバーなどに関しては既知の技術を適用させることができるので、その説明は省略する。また、機構部材の装着、カバーなどの取り付けに関しても既知の技術を適用することができるので、その説明は省略する。
なお、本発明の実施の形態に係るフラットパネルディスプレイの製造方法を有機ELディスプレイの製造方法を例にとり例示したが、これに限定されるわけではない。例えば、液晶ディスプレイ・プラズマディスプレイ・表面伝導型電子放出素子ディスプレイ(SED)、電解放出ディスプレイ(FED)などの他のフラットパネルディスプレイの製造においても前述したレーザ加工装置、レーザ加工方法を適用させることができる。
この場合、前述した本発明の実施の形態に係るレーザ加工装置、レーザ加工方法以外のものは、各フラットパネルディスプレイにおける既知の技術を適用させることができるので、他のフラットパネルディスプレイの製造方法の説明は省略する。
以上、本発明の実施の形態について例示をした。しかし、本発明はこれらの記述に限定されるものではない。
前述の実施の形態に関して、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。
例えば、レーザ加工装置1などが備える各要素の形状、寸法、材質、配置などは、例示したものに限定されるわけではなく適宜変更することができる。
また、前述した各実施の形態が備える各要素は、可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
本発明の実施の形態に係るレーザ加工装置の要部を例示するための模式斜視図である。 比較例に係るレーザ加工装置を例示するための模式斜視図である。 ガラス基板の表面に設けられたフリットを例示するための模式図である。 フリットへのレーザ照射を例示するための模式図である。 フリットのコーナー近傍におけるスポットの成形を例示するための模式斜視図である。 他の実施の形態に係るマスクを例示するための模式図である。 図6に例示をしたマスクを用いた照射を例示するための模式図である。 透過部のコーナー部における照射の様子を例示するための模式図である。 他の実施の形態に係るマスクを例示するための模式図である。 他の実施の形態に係るマスクを例示するための模式図である。
符号の説明
1 レーザ加工装置、2 封止手段、3 制御手段、4 XYテーブル、5 照射手段、6 レーザ電源、7 レーザ発振器、8 レーザヘッド、9 結像光学系、10 マスク、10a 透過部、10b 遮光部、11 XYテーブル、12 マスク、12a 透過部、12a1 直線部、12a2 コーナー部、12b 遮光部、13 マスク、13a 透過部、13a1 狭隘部、13b 遮光部、23 マスク、23a 透過部、23a1 狭隘部、23a2 狭隘部、23b 遮光部、F フリット、F1 フリット、G1 ガラス基板、G2 ガラス基板、S スポット、S1〜S3 スポット

Claims (14)

  1. レーザ光源と、
    被処理物を保持する保持手段と、
    前記保持手段に対向して設けられ、前記レーザ光源からのレーザ光が導入される照射手段と、
    前記保持手段と、前記照射手段と、の相対的な位置を変化させる第1の移動手段と、
    前記照射手段の光軸に交差して設けられたマスクと、
    前記光軸に対する前記マスクの相対的な位置を変化させる第2の移動手段と、
    前記第2の移動手段を制御する制御手段と、
    を備え、
    前記マスクは、前記被処理物の照射対象部分の少なくとも一部分と相似形または同一形状を有し前記レーザ光の一部を透過させることで前記レーザ光のスポット形状を成形する透過部を有し、
    前記照射手段は、前記成形されたスポット形状を前記照射対象部分に転写する結像光学系を有し、
    前記制御手段は、前記第2の移動手段を制御することで、前記照射対象部分の形状に基づいて前記透過部の前記レーザ光が透過する位置を変化させること、を特徴とするレーザ加工装置。
  2. 前記透過部の形状は、前記照射対象部分と相似形または同一形状であること、を特徴とする請求項1記載のレーザ加工装置。
  3. 前記制御手段は、前記第2の移動手段を制御することで、前記照射対象部分の形状に対応する前記透過部の形状を選択するように前記透過部のレーザ光が透過する位置を変化させること、を特徴とする請求項1または2に記載のレーザ加工装置。
  4. 前記制御手段は、前記第2の移動手段を制御することで、前記透過部の形状に沿って前記透過部のレーザ光が透過する位置を変化させること、を特徴とする請求項2記載のレーザ加工装置。
  5. 前記透過部のコーナー部には、前記レーザ光が透過する位置が変化する方向と略直角方向の寸法が狭くなる第1の狭隘部が設けられていること、を特徴とする請求項1〜4のいずれか1つに記載のレーザ加工装置。
  6. 前記レーザ光源の出力を制御する出力制御手段をさらに備え、
    前記出力制御手段は、前記レーザ光が透過する位置が前記透過部のコーナー部中心に向かうにつれ前記出力を減少させ、前記レーザ光が透過する位置が前記コーナー部中心から離れるにつれ前記出力を増加させること、を特徴とする請求項1〜4のいずれか1つに記載のレーザ加工装置。
  7. 前記透過部の前記レーザ光の照射が開始する部分に設けられ、前記レーザ光が透過する位置が変化する方向と略直角方向の寸法が狭くなる第2の狭隘部と、
    前記透過部の前記レーザ光の照射が終了する部分に設けられ、前記レーザ光が透過する位置が変化する方向と略直角方向の寸法が狭くなる第3の狭隘部と、が設けられていること、を特徴とする請求項1〜6のいずれか1つに記載のレーザ加工装置。
  8. 前記出力制御手段は、前記レーザ光が透過する位置が前記レーザ光の照射を開始する位置から離れるにつれ前記出力を増加させ、前記レーザ光が透過する位置が前記レーザ光の照射を終了させる位置に近づくにつれ前記出力を減少させること、を特徴とする請求項1〜6のいずれか1つに記載のレーザ加工装置。
  9. マスクに設けられ、被処理物の照射対象部分の少なくとも一部分と相似形または同一形状を有する透過部に、レーザ光の一部を透過させることで前記レーザ光のスポット形状を成形し、
    前記成形されたスポット形状を被処理物の照射対象部分に転写し、
    前記照射対象部分の形状に基づいて、前記透過部の前記レーザ光が透過する位置を変化させること、を特徴とするレーザ加工方法。
  10. 前記照射対象部分の形状に対応する前記透過部の形状を選択するように前記透過部のレーザ光が透過する位置を変化させること、を特徴とする請求項9記載のレーザ加工方法。
  11. 前記透過部の形状に沿って前記透過部のレーザ光が透過する位置を変化させること、を特徴とする請求項9記載のレーザ加工方法。
  12. 前記レーザ光が透過する位置が前記透過部のコーナー部中心に向かうにつれ前記レーザ光の出力を減少させ、前記レーザ光が透過する位置が前記コーナー部中心から離れるにつれ前記レーザ光の出力を増加させること、を特徴とする請求項9〜11のいずれか1つに記載のレーザ加工方法。
  13. 前記レーザ光が透過する位置が前記レーザ光の照射を開始する位置から離れるにつれ前記出力を増加させ、前記レーザ光が透過する位置が前記レーザ光の照射を終了させる位置に近づくにつれ前記出力を減少させること、を特徴とする請求項9〜11のいずれか1つに記載のレーザ加工方法。
  14. 請求項9〜13のいずれか1つに記載のレーザ加工方法により、被処理物の照射対象部分を加熱すること、を特徴とするフラットパネルディスプレイの製造方法。
JP2008124353A 2008-05-12 2008-05-12 レーザ加工装置、レーザ加工方法、およびフラットパネルディスプレイの製造方法 Pending JP2009269083A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008124353A JP2009269083A (ja) 2008-05-12 2008-05-12 レーザ加工装置、レーザ加工方法、およびフラットパネルディスプレイの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008124353A JP2009269083A (ja) 2008-05-12 2008-05-12 レーザ加工装置、レーザ加工方法、およびフラットパネルディスプレイの製造方法

Publications (1)

Publication Number Publication Date
JP2009269083A true JP2009269083A (ja) 2009-11-19

Family

ID=41436092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008124353A Pending JP2009269083A (ja) 2008-05-12 2008-05-12 レーザ加工装置、レーザ加工方法、およびフラットパネルディスプレイの製造方法

Country Status (1)

Country Link
JP (1) JP2009269083A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013223877A (ja) * 2012-04-20 2013-10-31 Samsung Display Co Ltd レーザーシーリング装置及びこれを利用した有機発光表示装置の製造方法
JP2015525135A (ja) * 2012-04-17 2015-09-03 コーニンクレッカ フィリップス エヌ ヴェ 照明装置
JP2016043392A (ja) * 2014-08-25 2016-04-04 株式会社アマダホールディングス レーザ加工機及びレーザ切断加工方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015525135A (ja) * 2012-04-17 2015-09-03 コーニンクレッカ フィリップス エヌ ヴェ 照明装置
JP2013223877A (ja) * 2012-04-20 2013-10-31 Samsung Display Co Ltd レーザーシーリング装置及びこれを利用した有機発光表示装置の製造方法
JP2016043392A (ja) * 2014-08-25 2016-04-04 株式会社アマダホールディングス レーザ加工機及びレーザ切断加工方法

Similar Documents

Publication Publication Date Title
JP2009104841A (ja) 封止装置、封止方法、電子デバイス、および電子デバイスの製造方法
JP4809368B2 (ja) ガラスパッケージをフリット封止するためのシステムおよび方法
JP5853350B2 (ja) 電気装置
US8226448B2 (en) Laser beam irradiation apparatus for substrate sealing, and method of manufacturing organic light emitting display device by using the laser beam irradiation apparatus
EP2745974B1 (en) Laser beam irradiation apparatus and substrate sealing method
WO2019082359A1 (ja) フレキシブルoledデバイスの製造方法および製造装置
JP6674592B1 (ja) フレキシブル発光デバイスの製造方法および製造装置
JP5527877B2 (ja) 光照射装置及びそれを用いた有機電界発光表示装置の製造方法
JP7072225B2 (ja) 表示パネル製造装置および表示パネル製造方法
JP6584748B2 (ja) 密封装置及び基板密封方法
JP2006128105A (ja) 光学系及びレーザ照射装置
WO2019082357A1 (ja) フレキシブルoledデバイスの製造方法および製造装置
WO2019082358A1 (ja) フレキシブルoledデバイスの製造方法および製造装置
JP2009269083A (ja) レーザ加工装置、レーザ加工方法、およびフラットパネルディスプレイの製造方法
KR100746828B1 (ko) 유기 전계발광 소자의 봉지장치 및 방법
JP2010097846A (ja) 封止材、フラットパネルディスプレイ、およびフラットパネルディスプレイの製造方法
US20140308768A1 (en) Laser-induced thermal imaging apparatus, method of laser-induced thermal imaging, and manufacturing method of organic light-emitting display apparatus using the method
KR20090065038A (ko) 유연성 레이저 조사영역을 이용한 평판 디스플레이 패널의실링방법
JP7117773B2 (ja) 表示パネル製造装置および表示パネル製造方法
JP6670425B1 (ja) フレキシブル発光デバイスの製造方法および製造装置
WO2019215833A1 (ja) フレキシブル発光デバイスの製造方法および製造装置
JP2012226978A (ja) 気密容器及び画像表示装置の製造方法
JP5489611B2 (ja) レーザ照射装置、レーザ加工装置、およびフラットパネルディスプレイの製造方法
JP2010032616A (ja) フラットパネルディスプレイ、フラットパネルディスプレイの製造方法、および塗布装置
JP2009216757A (ja) 表示装置及び表示装置の製造方法