JP2009267400A - 補正フィルター、照明光学系、露光装置、およびデバイス製造方法 - Google Patents

補正フィルター、照明光学系、露光装置、およびデバイス製造方法 Download PDF

Info

Publication number
JP2009267400A
JP2009267400A JP2009093950A JP2009093950A JP2009267400A JP 2009267400 A JP2009267400 A JP 2009267400A JP 2009093950 A JP2009093950 A JP 2009093950A JP 2009093950 A JP2009093950 A JP 2009093950A JP 2009267400 A JP2009267400 A JP 2009267400A
Authority
JP
Japan
Prior art keywords
light
correction filter
region
illumination
pupil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009093950A
Other languages
English (en)
Other versions
JP5201061B2 (ja
Inventor
Koji Muramatsu
浩二 村松
Osamu Tanitsu
修 谷津
Norio Miyake
範夫 三宅
Hirohisa Tanaka
裕久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JP2009267400A publication Critical patent/JP2009267400A/ja
Application granted granted Critical
Publication of JP5201061B2 publication Critical patent/JP5201061B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 被照射面上の各点での瞳強度分布をそれぞれほぼ均一に調整することのできる照明光学系。
【解決手段】 光源(1)からの光で被照射面(M;W)を照明する照明光学系は、オプティカルインテグレータ(8)を有し、このオプティカルインテグレータよりも後側の照明瞳に瞳強度分布を形成する分布形成光学系(3,4,7,8)と、上記後側の照明瞳を含む照明瞳空間に配置された補正フィルター(9)とを備えている。補正フィルターは、光軸(AX)に沿って所定の厚さを有する光透過性の基板を備え、基板の入射面には第1減光パターンが形成され、射出面には第2減光パターンが形成されている。
【選択図】 図1

Description

本発明は、補正フィルター、照明光学系、露光装置、およびデバイス製造方法に関する。さらに詳細には、本発明は、例えば半導体素子、撮像素子、液晶表示素子、薄膜磁気ヘッド等のデバイスをリソグラフィー工程で製造するための露光装置に好適な照明光学系に関するものである。
この種の典型的な露光装置においては、光源から射出された光が、オプティカルインテグレータとしてのフライアイレンズを介して、多数の光源からなる実質的な面光源としての二次光源(一般には照明瞳における所定の光強度分布)を形成する。以下、照明瞳での光強度分布を、「瞳強度分布」という。また、照明瞳とは、照明瞳と被照射面(露光装置の場合にはマスクまたはウェハ)との間の光学系の作用によって、被照射面が照明瞳のフーリエ変換面となるような位置として定義される。
二次光源からの光は、コンデンサーレンズにより集光された後、所定のパターンが形成されたマスクを重畳的に照明する。マスクを透過した光は投影光学系を介してウェハ上に結像し、ウェハ上にはマスクパターンが投影露光(転写)される。マスクに形成されたパターンは高集積化されており、この微細パターンをウェハ上に正確に転写するにはウェハ上において均一な照度分布を得ることが不可欠である。
マスクの微細パターンをウェハ上に正確に転写するために、例えば輪帯状や複数極状(2極状、4極状など)の瞳強度分布を形成し、投影光学系の焦点深度や解像力を向上させる技術が提案されている(特許文献1を参照)。
米国特許公開第2006/0055834号公報
マスクの微細パターンをウェハ上に忠実に転写するには、瞳強度分布を所望の形状に調整するだけでなく、最終的な被照射面としてのウェハ上の各点に関する瞳強度分布をそれぞれほぼ均一に調整する必要がある。ウェハ上の各点での瞳強度分布の均一性にばらつきがあると、ウェハ上の位置毎にパターンの線幅がばらついて、マスクの微細パターンを露光領域の全体に亘って所望の線幅でウェハ上に忠実に転写することができない。
本発明は、被照射面上の各点での瞳強度分布をそれぞれほぼ均一に調整することのできる照明光学系を提供することを目的とする。また、本発明は、被照射面上の各点での瞳強度分布をそれぞれほぼ均一に調整する照明光学系を用いて、適切な照明条件のもとで良好な露光を行うことのできる露光装置を提供することを目的とする。
前記課題を解決するために、本発明の第1形態では、照明光学系の照明瞳に形成される瞳強度分布を補正する補正フィルターであって、
前記照明瞳の前側に隣接してパワーを有する光学素子と前記照明瞳の後側に隣接してパワーを有する光学素子との間の照明瞳空間に配置されて、前記照明光学系の光軸に沿って所定の厚さを有する光透過性の基板を備え、
前記基板は、光の入射側の面に形成された第1減光パターンと、光の射出側の面に形成された第2減光パターンとを有することを特徴とする補正フィルターを提供する。
本発明の第2形態では、光源からの光で被照射面を照明する照明光学系において、
オプティカルインテグレータを有し、該オプティカルインテグレータよりも後側の照明瞳に瞳強度分布を形成する分布形成光学系と、
前記後側の照明瞳を含む前記照明瞳空間に配置された第1形態の補正フィルターとを備えていることを特徴とする照明光学系を提供する。
本発明の第3形態では、所定のパターンを照明するための第2形態の照明光学系を備え、前記所定のパターンを感光性基板に露光することを特徴とする露光装置を提供する。
本発明の第4形態では、第3形態の露光装置を用いて、前記所定のパターンを前記感光性基板に露光する露光工程と、
前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成する現像工程と、
前記マスク層を介して前記感光性基板の表面を加工する加工工程とを含むことを特徴とするデバイス製造方法を提供する。
本発明の照明光学系では、オプティカルインテグレータよりも後側の照明瞳の位置またはその近傍に、瞳強度分布を補正する補正フィルターが配置されている。この補正フィルターは、例えば平行平面板の入射面に形成された第1減光パターンと射出面に形成された第2減光パターンとを有し、光の入射角度に応じて減光率が変化する減光率特性を有する。その結果、補正フィルターの減光作用により、被照射面上の各点に関する瞳強度分布をそれぞれ独立的に調整することができ、ひいては各点に関する瞳強度分布を互いにほぼ同じ性状の分布に調整することが可能である。
こうして、本発明の照明光学系では、例えば被照射面上の各点での瞳強度分布を一律に調整する濃度フィルターと、各点に関する瞳強度分布をそれぞれ独立的に調整する補正フィルターとの協働作用により、被照射面上の各点での瞳強度分布をそれぞれほぼ均一に調整することができる。また、本発明の露光装置では、被照射面上の各点での瞳強度分布をそれぞれほぼ均一に調整する照明光学系を用いて、適切な照明条件のもとで良好な露光を行うことができ、ひいては良好なデバイスを製造することができる。
本発明の実施形態にかかる露光装置の構成を概略的に示す図である。 照明瞳に形成される4極状の二次光源を示す図である。 ウェハ上に形成される矩形状の静止露光領域を示す図である。 静止露光領域内の中心点P1に入射する光が形成する4極状の瞳強度分布の性状を説明する図である。 静止露光領域内の周辺点P2,P3に入射する光が形成する4極状の瞳強度分布の性状を説明する図である。 (a)は中心点P1に関する瞳強度分布のZ方向に沿った光強度分布を、(b)は周辺点P2,P3に関する瞳強度分布のZ方向に沿った光強度分布を模式的に示す図である。 本実施形態にかかる補正フィルターの単位減光領域として、入射面に円形状の遮光性ドットが形成され、射出面に円環状の遮光性ドットが形成されている様子を示す図である。 本実施形態にかかる補正フィルターの単位減光領域の減光作用を説明する図である。 本実施形態の補正フィルターの減光率特性を示す図である。 本実施形態の補正フィルターの作用を説明する第1の図である。 本実施形態の補正フィルターの作用を説明する第2の図である。 中心点P1に関する瞳強度分布が本実施形態の補正フィルターにより調整される様子を模式的に示す図である。 周辺点P2,P3に関する瞳強度分布が本実施形態の補正フィルターにより調整される様子を模式的に示す図である。 補正フィルターの単位減光領域の組み合わせの変形例として、入射面に円形状の遮光性ドットが形成され、射出面に一対の円形状の遮光性ドットが形成されている様子を示す図である。 図14の変形例にかかる補正フィルターの単位減光領域の減光作用を説明する図である。 濃度フィルターを用いることなく各点に関する瞳強度分布をほぼ均一に調整する変形例にかかる補正フィルターを構成する4つのフィルター領域を示す図である。 図16の変形例の新たな一対のフィルター領域において、入射面および射出面に円形状の遮光性ドットが形成されている様子を示す図である。 図17のフィルター領域における単位減光領域の減光作用を説明する図である。 図17のフィルター領域の減光率特性を示す図である。 図7の実施形態のフィルター領域により調整された中心点P1に関する瞳強度分布が図17のフィルター領域によりほぼ均一に調整される様子を模式的に示す図である。 図7の実施形態のフィルター領域により調整された周辺点P2,P3に関する瞳強度分布が図17のフィルター領域によりほぼ均一に調整される様子を模式的に示す図である。 図7の実施形態および図14の変形例に対応した構成において、単位減光領域として散乱領域または回折領域を用いる例を示す図である。 図17の変形例に対応した構成において、単位減光領域として散乱領域または回折領域を用いる例を示す図である。 半導体デバイスの製造工程を示すフローチャートである。 液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。
本発明の実施形態を、添付図面に基づいて説明する。図1は、本発明の実施形態にかかる露光装置の構成を概略的に示す図である。図1において、感光性基板であるウェハWの露光面(転写面)の法線方向に沿ってZ軸を、ウェハWの露光面内において図1の紙面に平行な方向にY軸を、ウェハWの露光面内において図1の紙面に垂直な方向にX軸をそれぞれ設定している。
図1を参照すると、本実施形態の露光装置では、光源1から露光光(照明光)が供給される。光源1として、たとえば193nmの波長の光を供給するArFエキシマレーザ光源や248nmの波長の光を供給するKrFエキシマレーザ光源などを用いることができる。光源1から射出された光束は、整形光学系2により所要の断面形状の光束に変換された後、例えば輪帯照明用の回折光学素子3を介して、アフォーカルレンズ4に入射する。
アフォーカルレンズ4は、その前側焦点位置と回折光学素子3の位置とがほぼ一致し且つその後側焦点位置と図中破線で示す所定面5の位置とがほぼ一致するように設定されたアフォーカル系(無焦点光学系)である。回折光学素子3は、基板に露光光(照明光)の波長程度のピッチを有する段差を形成することによって構成され、入射ビームを所望の角度に回折する作用を有する。具体的には、輪帯照明用の回折光学素子3は、矩形状の断面を有する平行光束が入射した場合に、ファーフィールド(またはフラウンホーファー回折領域)に輪帯状の光強度分布を形成する機能を有する。
したがって、回折光学素子3に入射したほぼ平行光束は、アフォーカルレンズ4の瞳面に輪帯状の光強度分布を形成した後、輪帯状の角度分布でアフォーカルレンズ4から射出される。アフォーカルレンズ4の前側レンズ群4aと後側レンズ群4bとの間の光路中において、その瞳位置またはその近傍には、濃度フィルター6が配置されている。濃度フィルター6は平行平面板の形態を有し、その一方の光学面(入射側の面または射出側の面)にクロムや酸化クロム等からなる遮光性ドットの濃密パターンが形成されている。すなわち、濃度フィルター6は、光の入射位置に応じて透過率の異なる透過率分布を有する。濃度フィルター6の具体的な作用については後述する。
アフォーカルレンズ4を介した光は、σ値(σ値=照明光学系のマスク側開口数/投影光学系のマスク側開口数)可変用のズームレンズ7を介して、オプティカルインテグレータとしてのマイクロフライアイレンズ(またはフライアイレンズ)8に入射する。マイクロフライアイレンズ8は、例えば縦横に且つ稠密に配列された多数の正屈折力を有する微小レンズからなる光学素子であって、平行平面板にエッチング処理を施して微小レンズ群を形成することによって構成されている。
マイクロフライアイレンズを構成する各微小レンズは、フライアイレンズを構成する各レンズエレメントよりも微小である。また、マイクロフライアイレンズは、互いに隔絶されたレンズエレメントからなるフライアイレンズとは異なり、多数の微小レンズ(微小屈折面)が互いに隔絶されることなく一体的に形成されている。しかしながら、正屈折力を有するレンズ要素が縦横に配置されている点でマイクロフライアイレンズはフライアイレンズと同じ波面分割型のオプティカルインテグレータである。なお、マイクロフライアイレンズ8として、例えばシリンドリカルマイクロフライアイレンズを用いることもできる。シリンドリカルマイクロフライアイレンズの構成および作用は、例えば米国特許第6913373号公報に開示されている。
所定面5の位置はズームレンズ7の前側焦点位置またはその近傍に配置され、マイクロフライアイレンズ8の入射面はズームレンズ7の後側焦点位置またはその近傍に配置されている。換言すると、ズームレンズ7は、所定面5とマイクロフライアイレンズ8の入射面とを実質的にフーリエ変換の関係に配置し、ひいてはアフォーカルレンズ4の瞳面とマイクロフライアイレンズ8の入射面とを光学的にほぼ共役に配置している。
したがって、マイクロフライアイレンズ8の入射面上には、アフォーカルレンズ4の瞳面と同様に、たとえば光軸AXを中心とした輪帯状の照野が形成される。この輪帯状の照野の全体形状は、ズームレンズ7の焦点距離に依存して相似的に変化する。マイクロフライアイレンズ8における各微小レンズの入射面(すなわち単位波面分割面)は、例えばZ方向に沿って長辺を有し且つX方向に沿って短辺を有する矩形状であって、マスクM上において形成すべき照明領域の形状(ひいてはウェハW上において形成すべき露光領域の形状)と相似な矩形状である。
マイクロフライアイレンズ8に入射した光束は二次元的に分割され、その後側焦点面またはその近傍の位置(ひいては照明瞳の位置)には、マイクロフライアイレンズ8の入射面に形成される照野とほぼ同じ光強度分布を有する二次光源、すなわち光軸AXを中心とした輪帯状の実質的な面光源からなる二次光源(瞳強度分布)が形成される。マイクロフライアイレンズ8の後側焦点面またはその近傍には、補正フィルター9が配置されている。補正フィルター9の構成および作用については後述する。
また、マイクロフライアイレンズ8の後側焦点面またはその近傍には、必要に応じて、輪帯状の二次光源に対応した輪帯状の開口部(光透過部)を有する照明開口絞り(不図示)が配置されている。照明開口絞りは、照明光路に対して挿脱自在に構成され、且つ大きさおよび形状の異なる開口部を有する複数の開口絞りと切り換え可能に構成されている。開口絞りの切り換え方式として、たとえば周知のターレット方式やスライド方式などを用いることができる。照明開口絞りは、後述する投影光学系PLの入射瞳面と光学的にほぼ共役な位置に配置され、二次光源の照明に寄与する範囲を規定する。
マイクロフライアイレンズ8および補正フィルター9を経た光は、コンデンサー光学系10を介して、マスクブラインド11を重畳的に照明する。こうして、照明視野絞りとしてのマスクブラインド11には、マイクロフライアイレンズ8の微小レンズの形状と焦点距離とに応じた矩形状の照野が形成される。マスクブラインド11の矩形状の開口部(光透過部)を経た光は、前側レンズ群12aと後側レンズ群12bとからなる結像光学系12を介して、所定のパターンが形成されたマスクMを重畳的に照明する。すなわち、結像光学系12は、マスクブラインド11の矩形状開口部の像をマスクM上に形成することになる。
マスクステージMS上に保持されたマスクMには転写すべきパターンが形成されており、パターン領域全体のうちY方向に沿って長辺を有し且つX方向に沿って短辺を有する矩形状(スリット状)のパターン領域が照明される。マスクMのパターン領域を透過した光は、投影光学系PLを介して、ウェハステージWS上に保持されたウェハ(感光性基板)W上にマスクパターンの像を形成する。すなわち、マスクM上での矩形状の照明領域に光学的に対応するように、ウェハW上においてもY方向に沿って長辺を有し且つX方向に沿って短辺を有する矩形状の静止露光領域(実効露光領域)にパターン像が形成される。
こうして、いわゆるステップ・アンド・スキャン方式にしたがって、投影光学系PLの光軸AXと直交する平面(XY平面)内において、X方向(走査方向)に沿ってマスクステージMSとウェハステージWSとを、ひいてはマスクMとウェハWとを同期的に移動(走査)させることにより、ウェハW上には静止露光領域のY方向寸法に等しい幅を有し且つウェハWの走査量(移動量)に応じた長さを有するショット領域(露光領域)に対してマスクパターンが走査露光される。
本実施形態では、上述したように、マイクロフライアイレンズ8により形成される二次光源を光源として、照明光学系(2〜12)の被照射面に配置されるマスクMをケーラー照明する。このため、二次光源が形成される位置は投影光学系PLの開口絞りASの位置と光学的に共役であり、二次光源の形成面を照明光学系(2〜12)の照明瞳面と呼ぶことができる。典型的には、照明瞳面に対して被照射面(マスクMが配置される面、または投影光学系PLを含めて照明光学系と考える場合にはウェハWが配置される面)が光学的なフーリエ変換面となる。
なお、瞳強度分布とは、照明光学系(2〜12)の照明瞳面または当該照明瞳面と光学的に共役な面における光強度分布(輝度分布)である。マイクロフライアイレンズ8による波面分割数が比較的大きい場合、マイクロフライアイレンズ8の入射面に形成される大局的な光強度分布と、二次光源全体の大局的な光強度分布(瞳強度分布)とが高い相関を示す。このため、マイクロフライアイレンズ8の入射面および当該入射面と光学的に共役な面における光強度分布についても瞳強度分布と称することができる。図1の構成において、回折光学素子3、アフォーカルレンズ4、ズームレンズ7、およびマイクロフライアイレンズ8は、マイクロフライアイレンズ8よりも後側の照明瞳に瞳強度分布を形成する分布形成光学系を構成している。
輪帯照明用の回折光学素子3に代えて、複数極照明(2極照明、4極照明、8極照明など)用の回折光学素子(不図示)を照明光路中に設定することによって、複数極照明を行うことができる。複数極照明用の回折光学素子は、矩形状の断面を有する平行光束が入射した場合に、ファーフィールドに複数極状(2極状、4極状、8極状など)の光強度分布を形成する機能を有する。したがって、複数極照明用の回折光学素子を介した光束は、マイクロフライアイレンズ8の入射面に、たとえば光軸AXを中心とした複数の所定形状(円弧状、円形状など)の照野からなる複数極状の照野を形成する。その結果、マイクロフライアイレンズ8の後側焦点面またはその近傍にも、その入射面に形成された照野と同じ複数極状の二次光源が形成される。
また、輪帯照明用の回折光学素子3に代えて、円形照明用の回折光学素子(不図示)を照明光路中に設定することによって、通常の円形照明を行うことができる。円形照明用の回折光学素子は、矩形状の断面を有する平行光束が入射した場合に、ファーフィールドに円形状の光強度分布を形成する機能を有する。したがって、円形照明用の回折光学素子を介した光束は、マイクロフライアイレンズ8の入射面に、たとえば光軸AXを中心とした円形状の照野を形成する。その結果、マイクロフライアイレンズ8の後側焦点面またはその近傍にも、その入射面に形成された照野と同じ円形状の二次光源が形成される。また、輪帯照明用の回折光学素子3に代えて、適当な特性を有する回折光学素子(不図示)を照明光路中に設定することによって、様々な形態の変形照明を行うことができる。回折光学素子3の切り換え方式として、たとえば周知のターレット方式やスライド方式などを用いることができる。
以下の説明では、本実施形態の作用効果の理解を容易にするために、マイクロフライアイレンズ8の後側焦点面またはその近傍の照明瞳には、図2に示すような4つの円弧状の実質的な面光源(以下、単に「面光源」という)20a,20b,20cおよび20dからなる4極状の瞳強度分布(二次光源)20が形成されるものとする。また、補正フィルター9は、4極状の瞳強度分布20の形成面よりも後側(マスク側)に配置されているものとする。また、以下の説明において単に「照明瞳」という場合には、マイクロフライアイレンズ8の後側焦点面またはその近傍の照明瞳を指すものとする。
図2を参照すると、照明瞳に形成される4極状の瞳強度分布20は、光軸AXを挟んでX方向に間隔を隔てた一対の面光源20aおよび20bと、光軸AXを挟んでZ方向に間隔を隔てた一対の円弧状の実質的な面光源20cおよび20dとを有する。なお、照明瞳におけるX方向はマイクロフライアイレンズ8の矩形状の微小レンズの短辺方向であって、ウェハWの走査方向に対応している。また、照明瞳におけるZ方向は、マイクロフライアイレンズ8の矩形状の微小レンズの長辺方向であって、ウェハWの走査方向と直交する走査直交方向(ウェハW上におけるY方向)に対応している。
ウェハW上には、図3に示すように、Y方向に沿って長辺を有し且つX方向に沿って短辺を有する矩形状の静止露光領域ERが形成され、この静止露光領域ERに対応するように、マスクM上には矩形状の照明領域(不図示)が形成される。ここで、静止露光領域ER内の1点に入射する光が照明瞳に形成する4極状の瞳強度分布は、入射点の位置に依存することなく、互いにほぼ同じ形状を有する。しかしながら、4極状の瞳強度分布を構成する各面光源の光強度は、入射点の位置に依存して異なる傾向がある。
具体的には、図4に示すように、静止露光領域ER内の中心点P1に入射する光が形成する4極状の瞳強度分布21の場合、Z方向に間隔を隔てた面光源21cおよび21dの光強度の方が、X方向に間隔を隔てた面光源21aおよび21bの光強度よりも大きくなる傾向がある。一方、図5に示すように、静止露光領域ER内の中心点P1からY方向に間隔を隔てた周辺の点P2,P3に入射する光が形成する4極状の瞳強度分布22の場合、Z方向に間隔を隔てた面光源22cおよび22dの光強度の方が、X方向に間隔を隔てた面光源22aおよび22bの光強度よりも小さくなる傾向がある。
一般に、照明瞳に形成される瞳強度分布の外形形状にかかわらず、ウェハW上の静止露光領域ER内の中心点P1に関する瞳強度分布(中心点P1に入射する光が照明瞳に形成する瞳強度分布)のZ方向に沿った光強度分布は、図6(a)に示すように、中央において最も小さく周辺に向かって増大する凹曲線状の分布を有する。一方、ウェハW上の静止露光領域ER内の周辺点P2,P3に関する瞳強度分布のZ方向に沿った光強度分布は、図6(b)に示すように、中央において最も大きく周辺に向かって減少する凸曲線状の分布を有する。
そして、瞳強度分布のZ方向に沿った光強度分布は、静止露光領域ER内のX方向(走査方向)に沿った入射点の位置にはあまり依存しないが、静止露光領域ER内のY方向(走査直交方向)に沿った入射点の位置に依存して変化する傾向がある。このように、ウェハW上の静止露光領域ER内の各点に関する瞳強度分布(各点に入射する光が照明瞳に形成する瞳強度分布)がそれぞれほぼ均一でない場合、ウェハW上の位置毎にパターンの線幅がばらついて、マスクMの微細パターンを露光領域の全体に亘って所望の線幅でウェハW上に忠実に転写することができない。
本実施形態では、上述したように、アフォーカルレンズ4の瞳位置またはその近傍に、光の入射位置に応じて透過率の異なる透過率分布を有する濃度フィルター6が配置されている。また、アフォーカルレンズ4の瞳位置は、その後側レンズ群4bとズームレンズ7とにより、マイクロフライアイレンズ8の入射面と光学的に共役である。したがって、濃度フィルター6の作用により、マイクロフライアイレンズ8の入射面に形成される光強度分布が調整(補正)され、ひいてはマイクロフライアイレンズ8の後側焦点面またはその近傍の照明瞳に形成される瞳強度分布も調整される。
ただし、濃度フィルター6は、ウェハW上の静止露光領域ER内の各点に関する瞳強度分布を、各点の位置に依存することなく一律に調整する。その結果、濃度フィルター6の作用により、例えば中心点P1に関する4極状の瞳強度分布21がほぼ均一になるように、ひいては各面光源21a〜21dの光強度が互いにほぼ等しくなるように調整することはできるが、その場合には周辺点P2、P3に関する4極状の瞳強度分布22の面光源22a,22bと面光源22c,22dとの光強度の差は却って大きくなってしまう。
すなわち、濃度フィルター6の作用により、ウェハW上の静止露光領域ER内の各点に関する瞳強度分布をそれぞれほぼ均一に調整するには、濃度フィルター6とは別の手段により、各点に関する瞳強度分布を互いに同じ性状の分布に調整する必要がある。具体的には、例えば中心点P1に関する瞳強度分布21および周辺点P2,P3に関する瞳強度分布22において、面光源21a,21bと面光源21c,21dとの光強度の大小関係と面光源22a,22bと面光源22c,22dとの光強度の大小関係とをほぼ同じ比率で一致させる必要がある。
本実施形態では、中心点P1に関する瞳強度分布の性状と周辺点P2,P3に関する瞳強度分布の性状とをほぼ一致させるために、中心点P1に関する瞳強度分布21において面光源21a,21bの光強度の方が面光源21c,21dの光強度よりも小さくなるように調整するための補正フィルター9を備えている。補正フィルター9は、図1に示すように、光軸AXに沿って所定の厚さを有する光透過性の基板の形態を有する。具体的には、補正フィルター9は、例えば石英または蛍石のような光学材料により形成された平行平面板の形態を有する。
図7を参照すると、補正フィルター9の光の入射側(光源側)の面9aには、例えばクロムや酸化クロム等からなる円形状の遮光性ドット9aaが、所定の分布にしたがって形成されている。一方、補正フィルター9の光の射出側(マスク側)の面9bには、例えばクロムや酸化クロム等からなる円環状の遮光性ドット9bbが、円形状の遮光性ドット9aaに一対一対応するように分布形成されている。
以下、説明の理解を容易にするために、円形状の遮光性ドット9aaの中心と円環状の遮光性ドット9bbの中心とを結ぶ線分は、光軸AXに平行であるものとする。また、円環状の遮光性ドット9bbの内径は円形状の遮光性ドット9aaの外径と等しく、円環状の遮光性ドット9bbの外径は円形状の遮光性ドット9aaの外径の2倍であるものとする。すなわち、円形状の遮光性ドット9aaと円環状の遮光性ドット9bbとは、光軸AX方向に見て補完的な形状を有し、互いに重なり合うことがない。
この場合、円形状の遮光性ドット9aaと円環状の遮光性ドット9bbとの組み合わせからなる単位減光領域に対して光軸AXに平行な光が入射すると、補正フィルター9の直後であって射出面9bに平行な面において、図8(a)に示すように、円形状の遮光性ドット9aaにより減光(遮光を含む広い概念)された領域90aaと、円環状の遮光性ドット9bbにより減光された領域90bbとは互いに重なり合う部分がない。すなわち、補正フィルター9の直後において、円形状の減光領域90aaと円環状の減光領域90bbとは、円環状の減光領域90bbと同じ外径を有する円形状の減光領域を形成する。
円形状の遮光性ドット9aaと円環状の遮光性ドット9bbとからなる単位減光領域に入射する光の光軸AXに対する角度が例えばYZ平面に沿って0度から単調に増大すると、補正フィルター9の直後において、円形状の減光領域90aaがZ方向に移動して円環状の減光領域90bbと重なり合う領域が単調に増大し、やがて図8(b)に示すように円形状の減光領域90aaが円環状の減光領域90bbの内側へ入り込む。光軸AXに対する入射光の角度がXY平面に沿ってさらに単調に増大すると、円形状の減光領域90aaと円環状の減光領域90bbとの重なり合う領域が単調に減少し、やがて図8(c)に示すように円形状の減光領域90aaが円環状の減光領域90bbの外側へ出てしまう。
本実施形態では、4極状の瞳強度分布20からの補正フィルター9への光のYZ平面に沿った最大入射角度が、図8(b)に示すように円形状の減光領域90aaが円環状の減光領域90bbの内側へ入り込むときの光の入射角度以下になるように構成されているものとする。この場合、円形状の遮光性ドット9aaと円環状の遮光性ドット9bbとからなる単位減光領域は、光の入射角度が大きくなるにつれて減光率が減少する減光作用を発揮することになる。その結果、遮光性ドット9aaと9bbとからなる単位減光領域が所定の分布にしたがって多数形成された補正フィルター9は、図9に示すように、補正フィルター9に対する光の入射角度θが大きくなるにつれて減光率が減少する減光率特性を有する。
また、補正フィルター9は、図2に示すように、光軸AXを挟んでZ方向に間隔を隔てた一対の面光源20c,20dに対応して配置された一対のフィルター領域9cおよび9dを有する。したがって、4極状の瞳強度分布20のうち、面光源20cからの光はフィルター領域9cを通過し、面光源20dからの光はフィルター領域9dを通過するが、面光源20a,20bからの光は補正フィルター9の作用を受けない。
この場合、図10に示すように、ウェハW上の静止露光領域ER内の中心点P1に達する光、すなわちマスクブラインド11の開口部の中心点P1’に達する光は、補正フィルター9に対して入射角度0で入射する。換言すれば、中心点P1に関する瞳強度分布21の面光源21cおよび21dからの光は、入射角度0で一対のフィルター領域9cおよび9dに入射する。一方、図11に示すように、ウェハW上の静止露光領域ER内の周辺点P2,P3に達する光、すなわちマスクブラインド11の開口部の周辺点P2’,P3’に達する光は、補正フィルター9に対して入射角度±θで入射する。換言すれば、周辺点P2,P3に関する瞳強度分布22の面光源22cおよび22dからの光は、入射角度±θで一対のフィルター領域9cおよび9dにそれぞれ入射する。
なお、図10および図11において、参照符号B1は面光源20c(21c,22c)のZ方向に沿った最外縁の点(図2を参照)を示し、参照符号B2は面光源20d(21d,22d)のZ方向に沿った最外縁の点(図2を参照)を示している。さらに、図10および図11に関連する説明の理解を容易するために、面光源20a(21a,22a)のX方向に沿った最外縁の点を参照符号B3で示し、面光源20b(21b,22b)のX方向に沿った最外縁の点を参照符号B4で示している。ただし、上述したように、面光源20a(21a,22a)および面光源20b(21b,22b)からの光は、補正フィルター9の作用を受けない。
こうして、中心点P1に関する瞳強度分布21のうち、面光源21cおよび21dからの光は、補正フィルター9のフィルター領域9cおよび9dの減光作用を受けて、その光強度は比較的大きく低下する。面光源21aおよび21bからの光は、補正フィルター9の作用を受けないため、その光強度は変化しない。その結果、中心点P1に関する瞳強度分布21は、図12に示すように、補正フィルター9の作用を受けて、元の分布21とは異なる性状の瞳強度分布21’に調整される。すなわち、補正フィルター9により調整された瞳強度分布21’では、X方向に間隔を隔てた面光源21a,21bの光強度の方がZ方向に間隔を隔てた面光源21c’,21d’の光強度よりも大きい性状に変化する。
一方、周辺点P2、P3に関する瞳強度分布22のうち、面光源22cおよび22dからの光は、補正フィルター9のフィルター領域9cおよび9dの作用を受けて、その光強度は比較的小さく低下する。面光源22aおよび22bからの光は、補正フィルター9の作用を受けないため、その光強度は変化しない。その結果、周辺点P2、P3に関する瞳強度分布22は、図13に示すように、補正フィルター9の作用により、元の分布22と同様の性状の瞳強度分布22’に調整される。すなわち、補正フィルター9により調整された瞳強度分布22’においても、X方向に間隔を隔てた面光源22a,22bの光強度の方がZ方向に間隔を隔てた面光源22c’,22d’の光強度よりも大きい性状は維持される。
こうして、補正フィルター9の作用により、中心点P1に関する瞳強度分布21は、周辺点P2、P3に関する瞳強度分布22’とほぼ同じ性状の分布21’に調整される。同様に、中心点P1と周辺点P2、P3との間でY方向に沿って並んだ各点に関する瞳強度分布、ひいてはウェハW上の静止露光領域ER内の各点に関する瞳強度分布も、互いにほぼ同じ性状の分布に調整される。換言すれば、補正フィルター9の作用により、ウェハW上の静止露光領域ER内の各点に関する瞳強度分布は互いにほぼ同じ性状の分布に調整される。
さらに別の表現をすれば、補正フィルター9の一対のフィルター領域9cおよび9dは、各点に関する瞳強度分布を互いにほぼ同じ性状の分布に調整するために必要な所要の減光率特性、すなわち光の入射角度が大きくなるにつれて減光率が減少する所要の減光率特性を有する。一対のフィルター領域9cおよび9dの所要の減光率特性は、補正フィルター9を構成する基板の厚さ、フィルター領域9cおよび9dにおける円形状の遮光性ドット9aaと円環状の遮光性ドット9bbとからなる単位減光領域の分布などを適宜設定することにより実現される。
以上のように、本実施形態の補正フィルター9では、平行平面板の形態を有する光透過性の基板の入射面に多数の円形状の遮光性ドット9aaが所定の分布にしたがって形成され、基板の射出面には多数の円形状の遮光性ドット9aaと一対一対応するように多数の円環状の遮光性ドット9bbが形成されている。換言すれば、補正フィルター9の入射面には多数の円形状の遮光性ドット9aaからなる第1減光パターンが形成され、射出面には多数の円環状の遮光性ドット9bbからなる第2減光パターンが形成されている。そして、円形状の遮光性ドット9aaと円環状の遮光性ドット9bbとは、光軸AX方向に見て補完的な形状を有する。したがって、円形状の遮光性ドット9aaと円環状の遮光性ドット9bbとからなる単位減光領域は、いわゆる視差の効果により、光の入射角度が大きくなるにつれて減光率が減少する減光作用を発揮する。
その結果、遮光性ドット9aaと9bbとからなる単位減光領域が所定の分布にしたがって多数形成された補正フィルター9は、光の入射角度が大きくなるにつれて減光率が減少する減光率特性を有する。また、補正フィルター9は、照明瞳の近傍の位置、すなわち被照射面であるマスクM(またはウェハW)における光の位置情報が光の角度情報に変換される位置に配置されている。したがって、本実施形態の補正フィルター9の減光作用により、被照射面上の各点に関する瞳強度分布をそれぞれ独立的に調整することができ、ひいては各点に関する瞳強度分布を互いにほぼ同じ性状の分布に調整することが可能である。特に、本実施形態の補正フィルター9では、1つの基板の入射面に第1減光パターンを設け且つ射出面に第2減光パターンを設ける構造を採用しているので、第1減光パターンと第2減光パターンとの位置合わせ(アライメント)が容易である。
また、本実施形態の照明光学系では、光の入射角度が大きくなるにつれて減光率が減少する所要の減光率特性を有する一対のフィルター領域9cおよび9dを備え、ウェハW上の静止露光領域ER内の各点に関する瞳強度分布をそれぞれ独立的に調整する補正フィルター9と、光の入射位置に応じて変化する所要の透過率特性を有し、各点に関する瞳強度分布を一律に調整する濃度フィルター6との協働作用により、各点に関する瞳強度分布をそれぞれほぼ均一に調整することができる。したがって、本実施形態の露光装置(1〜WS)では、ウェハW上の静止露光領域ER内の各点での瞳強度分布をそれぞれほぼ均一に調整する照明光学系(2〜12)を用いて、マスクMの微細パターンに応じた適切な照明条件のもとで良好な露光を行うことができ、ひいてはマスクMの微細パターンを露光領域の全体に亘って所望の線幅でウェハW上に忠実に転写することができる。
本実施形態において、ウェハ(被照射面)W上の光量分布が、例えば補正フィルター9の調整作用の影響を受けることが考えられる。この場合、必要に応じて、公知の構成を有する光量分布調整部の作用により、静止露光領域ER内の照度分布を変更する、または静止露光領域(照明領域)ERの形状を変更して露光量分布を変更することができる。具体的に、照度分布を変更する光量分布調整部としては、特開2001−313250号および特開2002−100561号(並びにそれらに対応する米国特許第6771350号および第6927836号)に記載された構成および手法を用いることができる。また、照明領域の形状を変更する光量分布調整部としては、国際特許公開第WO2005/048326号パンフレット(およびそれに対応する米国特許公開第2007/0014112号公報)に記載された構成および手法を用いることができる。
なお、上述の実施形態では、補正フィルター9の入射面に分布形成される第1単位減光領域としての円形状の遮光性ドット9aaと、射出面に分布形成される第2単位減光領域としての円環状の遮光性ドット9bbとが、光軸AX方向に見て補完的な形状を有する。しかしながら、これに限定されることなく、補正フィルター9の入射面に分布形成される第1単位減光領域の形状、射出面に分布形成される第2単位減光領域の形状、第1単位減光領域と第2単位減光領域との位置関係などについて、様々な形態が可能である。
一例として、図14に示すように、入射面9aに形成された円形状の遮光性ドット9aaと、射出面9bに間隔を隔てて形成された一対の円形状の遮光性ドット9bcとを組み合わせて、補正フィルター9のフィルター領域9cおよび9dを構成することも可能である。以下、説明の理解を容易にするために、各遮光性ドット9aaと9bcとは互いに同じ大きさを有し、X方向に沿って直線状に並んで配置されているものとする。また、遮光性ドット9aaの中心と、対応する一対の遮光性ドット9bcの中心を結ぶ線分の中点とは、光軸AX方向に見て一致しているものとする。すなわち、円形状の遮光性ドット9aaと一対の円形状の遮光性ドット9bcとは、光軸AX方向に見て互いに重なり合っていない。
この場合、円形状の遮光性ドット9aaと一対の円形状の遮光性ドット9bcとの組み合わせからなる単位減光領域に対して光軸AXに平行な光が入射すると、補正フィルター9の直後であって射出面9bに平行な面において、図15(a)に示すように、円形状の遮光性ドット9aaにより減光された領域91aaと、一対の円形状の遮光性ドット9bcにより減光された領域91bcとは重なり合う部分がない。すなわち、補正フィルター9の直後において、円形状の減光領域91aaと一対の円形状の減光領域91bcとは、円形状の減光領域91aaの3個分の面積を有する減光領域を形成する。
円形状の遮光性ドット9aaと一対の円形状の遮光性ドット9bcとからなる単位減光領域に入射する光の光軸AXに対する角度が例えばYZ平面に沿って0度から単調に増大すると、補正フィルター9の直後において、減光領域91aaがZ方向に移動して一方の減光領域91bcと重なり合う領域が単調に増大し、やがて図15(b)に示すように減光領域91aaが一方の減光領域91bcと完全に重なり合う。この状態では、円形状の減光領域91aaと一対の円形状の減光領域91bcとが、円形状の減光領域91aaの2個分の面積を有する減光領域を形成する。
こうして、円形状の遮光性ドット9aaと一対の円形状の遮光性ドット9bcとからなる単位減光領域は、光の入射角度が大きくなるにつれて減光率が減少する減光作用を発揮する。その結果、図14の変形例においても、遮光性ドット9aaと9bcとからなる単位減光領域が所定の分布にしたがって多数形成された補正フィルター9のフィルター領域9cおよび9dは、光の入射角度が大きくなるにつれて減光率が減少する減光率特性を有し、図7の実施形態の場合と同様の効果が得られる。なお、図14の変形例にかかるフィルター領域9cおよび9dでは、図7の実施形態にかかるフィルター領域9cおよび9dよりも光量の損失が小さく抑えられる。
また、上述の実施形態では、補正フィルター9と濃度フィルター6との協働作用により、各点に関する瞳強度分布をそれぞれほぼ均一に調整している。しかしながら、濃度フィルター6を用いることなく、フィルター領域9c,9dとは異なる減光率特性を有する新たなフィルター領域を補正フィルター9に追加することにより、各点に関する瞳強度分布をそれぞれほぼ均一に調整する変形例も可能である。この変形例にかかる補正フィルター9は、図16に示すように、Z方向に間隔を隔てた一対の面光源20c,20dに対応して配置された一対のフィルター領域9cおよび9dに加えて、X方向に間隔を隔てた一対の面光源20a,20bに対応して配置された一対のフィルター領域9eおよび9fを備えている。
したがって、4極状の瞳強度分布20のうち、面光源20cからの光はフィルター領域9cを通過し、面光源20dからの光はフィルター領域9dを通過し、面光源20aからの光はフィルター領域9eを通過し、面光源20bからの光はフィルター領域9fを通過する。フィルター領域9eおよび9fでは、図17に示すように、入射面9aに円形状の遮光性ドット9abが形成され、射出面9bには円形状の遮光性ドット9abに対応するように円形状の遮光性ドット9bdが形成されている。
以下、説明の理解を容易にするために、遮光性ドット9abと9bdとは互いに同じ大きさを有し、遮光性ドット9abの中心と遮光性ドット9bdの中心とが光軸AX方向に見て一致しているものとする。すなわち、円形状の遮光性ドット9abと円形状の遮光性ドット9bdとは、光軸AX方向に見て互いに重なり合っている。この場合、円形状の遮光性ドット9abと9bdとの組み合わせからなる単位減光領域に対して光軸AXに平行な光が入射すると、補正フィルター9の直後であって射出面9bに平行な面において、図18(a)に示すように、円形状の遮光性ドット9abにより減光された領域92abと、円形状の遮光性ドット9bdにより減光された領域92bdとは互いに重なり合う。すなわち、補正フィルター9の直後において、円形状の減光領域92abと92bdとは、円形状の減光領域92abの1個分の面積を有する減光領域を形成する。
円形状の遮光性ドット9abと9bdとからなる単位減光領域に入射する光の光軸AXに対する角度が例えばYZ平面に沿って0度から単調に増大すると、補正フィルター9の直後において、減光領域92abがZ方向に移動して減光領域92bdと重なり合う領域が単調に減少し、やがて図18(b)に示すように減光領域92abが一方の減光領域92bdと全く重なり合わなくなる。この状態では、円形状の減光領域92abと92bdとが、円形状の減光領域92abの2個分の面積を有する減光領域を形成する。
こうして、円形状の遮光性ドット9abと9bdとからなる単位減光領域は、光の入射角度が大きくなるにつれて減光率が増大する減光作用を発揮する。その結果、遮光性ドット9abと9bdとからなる単位減光領域が所定の分布にしたがって多数形成された補正フィルター9のフィルター領域9eおよび9fは、フィルター領域9cおよび9dとは逆に、図19に示すように、光の入射角度θが大きくなるにつれて減光率が増大する減光率特性を有する。
こうして、中心点P1に関する瞳強度分布21のうち、面光源21aおよび21bからの光は、補正フィルター9のフィルター領域9eおよび9fの減光作用を受けて、その光強度は比較的小さく低下する。その結果、図20に示すように、フィルター領域9cおよび9dにより調整された中心点P1に関する瞳強度分布21’(図12の右側の分布21’を参照)は、フィルター領域9eおよび9fの作用を受けて、ほぼ均一な性状の瞳強度分布21''に調整される。すなわち、補正フィルター9により調整された瞳強度分布21''では、X方向に間隔を隔てた面光源21a',21b'の光強度とZ方向に間隔を隔てた面光源21c’,21d’の光強度とがほぼ一致する。
一方、周辺点P2、P3に関する瞳強度分布22のうち、面光源22aおよび22bからの光は、補正フィルター9のフィルター領域9eおよび9fの作用を受けて、その光強度は比較的大きく低下する。その結果、図21に示すように、フィルター領域9cおよび9dにより調整された周辺点P2、P3に関する瞳強度分布22’ (図13の右側の分布22’を参照)は、フィルター領域9eおよび9fの作用を受けて、ほぼ均一な性状の瞳強度分布22''に調整される。すなわち、補正フィルター9により調整された瞳強度分布22''では、X方向に間隔を隔てた面光源22a',22b'の光強度とZ方向に間隔を隔てた面光源22c’,22d’の光強度とがほぼ一致する。
こうして、図16の変形例では、フィルター領域9cおよび9d並びに9eおよび9fを備えた補正フィルター9の作用により、中心点P1に関する瞳強度分布21および周辺点P2、P3に関する瞳強度分布22がともにほぼ均一な性状の瞳強度分布21''および22''に調整される。同様に、中心点P1と周辺点P2、P3との間でY方向に沿って並んだ各点に関する瞳強度分布、ひいてはウェハW上の静止露光領域ER内の各点に関する瞳強度分布も、ほぼ均一な性状の分布に調整される。換言すれば、濃度フィルター6を用いることなく、補正フィルター9だけの減光作用により、ウェハW上の静止露光領域ER内の各点に関する瞳強度分布がほぼ均一な性状の分布に調整される。
なお、図16の変形例にかかるフィルター領域9eおよび9fでは、図14の変形例にかかるフィルター領域9cおよび9dよりも光量の損失が小さく抑えられる。また、場合によっては、図16の変形例にかかるフィルター領域9eおよび9fのみを備えた補正フィルターを用いて、被照射面上の各点に関する瞳強度分布をそれぞれ独立的に調整し、ひいては各点に関する瞳強度分布を互いにほぼ同じ性状の分布に調整することも可能である。
なお、上述の説明では、補正フィルター9の本体を構成する光透過性の基板として、平行平面板を用いている。しかしながら、平行平面板に限定されることなく、例えば少なくとも一方の面が曲率を有するような基板を用いて、本発明の補正フィルターを構成することもできる。
また、上述の説明では、照明瞳に4極状の瞳強度分布が形成される変形照明、すなわち4極照明を例にとって、本発明の作用効果を説明している。しかしながら、4極照明に限定されることなく、例えば輪帯状の瞳強度分布が形成される輪帯照明、4極状以外の他の複数極状の瞳強度分布が形成される複数極照明などに対しても、同様に本発明を適用して同様の作用効果を得ることができることは明らかである。
また、上述の説明では、マイクロフライアイレンズ8の後側焦点面またはその近傍の照明瞳に形成される瞳強度分布20の形成面よりも後側(マスク側)に、補正フィルター9を配置している。しかしながら、これに限定されることなく、瞳強度分布20の形成面の位置、またはその前側(光源側)に、補正フィルター9を配置することもできる。また、マイクロフライアイレンズ8よりも後側の別の照明瞳の位置またはその近傍、例えば結像光学系12の前側レンズ群12aと後側レンズ群12bとの間の照明瞳の位置またはその近傍に、補正フィルター9を配置することもできる。
一般的には、オプティカルインテグレータよりも後側の照明瞳の前側に隣接するパワーを持つ光学素子と当該照明瞳の後側に隣接するパワーを持つ光学素子との間の照明瞳空間において、当該照明瞳の一部の領域のみを通過する光または当該照明瞳の一部の領域のみを通過した光が入射する位置に、光の入射角度に応じて変化する透過率特性を有する透過フィルターを配置することができる。すなわち、この「照明瞳空間」内には、パワーを持たない平行平面板や平面鏡が存在していても良い。
また、上述の説明では、ウェハWのショット領域にマスクMのパターンを走査露光するステップ・アンド・スキャン方式の露光装置に対して本発明を適用している。しかしながら、これに限定されることなく、ウェハWの各露光領域にマスクMのパターンを一括露光する動作を繰り返すステップ・アンド・リピート方式の露光装置に対して本発明を適用することもできる。特に、図7の実施形態にかかるフィルター領域9cおよび9dを有する補正フィルター9、および図16の変形例にかかるフィルター領域9cおよび9d並びに9eおよび9fを有する補正フィルター9は、一括露光型の露光装置にも適用可能である。
また、上述の説明では、図7の実施形態、図14の変形例、および図17の変形例において、補正フィルター9の入射面9aに分布形成される第1単位減光領域および射出面9bに分布形成される第2単位減光領域が、例えばクロムや酸化クロム等からなる遮光性ドット(9aa,9bb;9aa,9bc;9ab,9bd)により、入射光を遮る遮光領域として形成されている。しかしながら、これに限定されることなく、第1単位減光領域および第2単位減光領域については、遮光領域の形態以外の形態も可能である。
例えば、第1単位減光領域および第2単位減光領域のうちの少なくとも一方を、入射光を散乱させる散乱領域として、あるいは入射光を回折させる回折領域として形成することも可能である。一般に、光透過性の基板の所要領域に粗面化加工を施すことにより散乱領域が形成され、所要領域に回折面形成加工を施すことにより回折領域が形成される。
具体的には、図7の実施形態に対応する構成において、図22に示すように、第1単位減光領域として円形状の散乱領域(または回折領域)9acを補正フィルター9の入射面9aに分布形成し、第2単位減光領域として円環状の散乱領域(または回折領域)9beを射出面9bに分布形成することにより、図7の実施形態と同様の効果を達成することができる。
また、図14の変形例に対応する構成において、図22に示すように、第1単位減光領域として円形状の散乱領域(または回折領域)9acを補正フィルター9の入射面9aに分布形成し、第2単位減光領域として一対の円形状の散乱領域(または回折領域)9bfを射出面9bに分布形成することにより、図14の変形例と同様の効果を達成することができる。
また、図17の変形例に対応する構成において、図23に示すように、第1単位減光領域として円形状の散乱領域(または回折領域)9adを補正フィルター9の入射面9aに分布形成し、第2単位減光領域として円形状の散乱領域(または回折領域)9bgを射出面9bに分布形成することにより、図17の変形例と同様の効果を達成することができる。
上述の実施形態の露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
次に、上述の実施形態にかかる露光装置を用いたデバイス製造方法について説明する。図24は、半導体デバイスの製造工程を示すフローチャートである。図24に示すように、半導体デバイスの製造工程では、半導体デバイスの基板となるウェハWに金属膜を蒸着し(ステップS40)、この蒸着した金属膜上に感光性材料であるフォトレジストを塗布する(ステップS42)。つづいて、上述の実施形態の露光装置を用い、マスク(レチクル)Mに形成されたパターンをウェハW上の各ショット領域に転写し(ステップS44:露光工程)、この転写が終了したウェハWの現像、つまりパターンが転写されたフォトレジストの現像を行う(ステップS46:現像工程)。その後、ステップS46によってウェハWの表面に生成されたレジストパターンをマスクとし、ウェハWの表面に対してエッチング等の加工を行う(ステップS48:加工工程)。
ここで、レジストパターンとは、上述の実施形態の露光装置によって転写されたパターンに対応する形状の凹凸が生成されたフォトレジスト層であって、その凹部がフォトレジスト層を貫通しているものである。ステップS48では、このレジストパターンを介してウェハWの表面の加工を行う。ステップS48で行われる加工には、例えばウェハWの表面のエッチングまたは金属膜等の成膜の少なくとも一方が含まれる。なお、ステップS44では、上述の実施形態の露光装置は、フォトレジストが塗布されたウェハWを、感光性基板つまりプレートPとしてパターンの転写を行う。
図25は、液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。図25に示すように、液晶デバイスの製造工程では、パターン形成工程(ステップS50)、カラーフィルター形成工程(ステップS52)、セル組立工程(ステップS54)およびモジュール組立工程(ステップS56)を順次行う。
ステップS50のパターン形成工程では、プレートPとしてフォトレジストが塗布されたガラス基板上に、上述の実施形態の露光装置を用いて回路パターンおよび電極パターン等の所定のパターンを形成する。このパターン形成工程には、上述の実施形態の露光装置を用いてフォトレジスト層にパターンを転写する露光工程と、パターンが転写されたプレートPの現像、つまりガラス基板上のフォトレジスト層の現像を行い、パターンに対応する形状のフォトレジスト層を生成する現像工程と、この現像されたフォトレジスト層を介してガラス基板の表面を加工する加工工程とが含まれている。
ステップS52のカラーフィルター形成工程では、R(Red)、G(Green)、B(Blue)に対応する3つのドットの組をマトリックス状に多数配列するか、またはR、G、Bの3本のストライプのフィルターの組を水平走査方向に複数配列したカラーフィルターを形成する。
ステップS54のセル組立工程では、ステップS50によって所定パターンが形成されたガラス基板と、ステップS52によって形成されたカラーフィルターとを用いて液晶パネル(液晶セル)を組み立てる。具体的には、例えばガラス基板とカラーフィルターとの間に液晶を注入することで液晶パネルを形成する。ステップS56のモジュール組立工程では、ステップS54によって組み立てられた液晶パネルに対し、この液晶パネルの表示動作を行わせる電気回路およびバックライト等の各種部品を取り付ける。
また、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグラフィ工程を用いて製造する際の、露光工程(露光装置)にも適用することができる。
なお、上述の実施形態では、露光光としてArFエキシマレーザ光(波長:193nm)やKrFエキシマレーザ光(波長:248nm)を用いているが、これに限定されることなく、他の適当なレーザ光源、たとえば波長157nmのレーザ光を供給するF2レーザ光源などに対して本発明を適用することもできる。
また、上述の実施形態では、露光装置においてマスクまたはウェハを照明する照明光学系に対して本発明を適用しているが、これに限定されることなく、マスクまたはウェハ以外の被照射面を照明する一般的な照明光学系に対して本発明を適用することもできる。
1 光源
3 回折光学素子
4 アフォーカルレンズ
6 濃度フィルター
7 ズームレンズ
8 マイクロフライアイレンズ(オプティカルインテグレータ)
9 補正フィルター
10 コンデンサー光学系
11 マスクブラインド
12 結像光学系
M マスク
PL 投影光学系
AS 開口絞り
W ウェハ

Claims (18)

  1. 照明光学系の照明瞳に形成される瞳強度分布を補正する補正フィルターであって、
    前記照明瞳の前側に隣接してパワーを有する光学素子と前記照明瞳の後側に隣接してパワーを有する光学素子との間の照明瞳空間に配置されて、前記照明光学系の光軸に沿って所定の厚さを有する光透過性の基板を備え、
    前記基板は、光の入射側の面に形成された第1減光パターンと、光の射出側の面に形成された第2減光パターンとを有することを特徴とする補正フィルター。
  2. 前記基板は、平行平面板の形態を有することを特徴とする請求項1に記載の補正フィルター。
  3. 前記第1減光パターンは、前記入射側の面に分布形成された複数の第1単位減光領域を有し、
    前記第2減光パターンは、前記複数の第1単位減光領域に対応して前記射出側の面に分布形成された複数の第2単位減光領域を有することを特徴とする請求項1または2に記載の補正フィルター。
  4. 前記第1単位減光領域および前記第2単位減光領域のうちの少なくとも一方は、入射光を遮る遮光領域を有することを特徴とする請求項3に記載の補正フィルター。
  5. 前記第1単位減光領域および前記第2単位減光領域のうちの少なくとも一方は、入射光を散乱させる散乱領域を有することを特徴とする請求項3に記載の補正フィルター。
  6. 前記第1単位減光領域および前記第2単位減光領域のうちの少なくとも一方は、入射光を回折させる回折領域を有することを特徴とする請求項3に記載の補正フィルター。
  7. 前記第1単位減光領域と前記第2単位減光領域とは、前記光軸方向に見て実質的に重なり合わない形状を有することを特徴とする請求項3乃至6のいずれか1項に記載の補正フィルター。
  8. 前記第1単位減光領域と前記第2単位減光領域とは、前記光軸方向に見て補完的な形状を有することを特徴とする請求項7に記載の補正フィルター。
  9. 前記第1単位減光領域と前記第2単位減光領域とは、前記光軸方向に見てほぼ重なり合う形状を有することを特徴とする請求項3乃至6のいずれか1項に記載の補正フィルター。
  10. 前記補正フィルターに対する光の入射角度が大きくなるにつれて減光率が減少する減光率特性を有する第1補正フィルター領域と、光の入射角度が大きくなるにつれて減光率が増大する減光率特性を有する第2補正フィルター領域とのうちの少なくとも一方の補正フィルター領域を有することを特徴とする請求項1乃至9のいずれか1項に記載の補正フィルター。
  11. 光源からの光で被照射面を照明する照明光学系において、
    オプティカルインテグレータを有し、該オプティカルインテグレータよりも後側の照明瞳に瞳強度分布を形成する分布形成光学系と、
    前記後側の照明瞳を含む前記照明瞳空間に配置された請求項1乃至10のいずれか1項に記載の補正フィルターとを備えていることを特徴とする照明光学系。
  12. 前記オプティカルインテグレータは、所定方向に沿って細長い矩形状の単位波面分割面を有し、
    前記補正フィルターは、前記補正フィルターに対する光の入射角度が大きくなるにつれて減光率が減少する減光率特性を有する第1補正フィルター領域を有し、
    前記第1補正フィルター領域は、前記照明瞳において前記照明光学系の光軸を挟んで前記所定方向に間隔を隔てた一対の領域に対応して配置されていることを特徴とする請求項11に記載の照明光学系。
  13. 前記オプティカルインテグレータは、所定方向に沿って細長い矩形状の単位波面分割面を有し、
    前記補正フィルターは、前記補正フィルターに対する光の入射角度が大きくなるにつれて減光率が増大する減光率特性を有する第2補正フィルター領域を有し、
    前記第2補正フィルター領域は、前記照明瞳において前記照明光学系の光軸を挟んで前記所定方向と直交する方向に間隔を隔てた一対の領域に対応して配置されていることを特徴とする請求項11または12に記載の照明光学系。
  14. 前記被照射面と光学的に共役な面を形成する投影光学系と組み合わせて用いられ、前記照明瞳は前記投影光学系の開口絞りと光学的に共役な位置であることを特徴とする請求項11乃至13のいずれか1項に記載の照明光学系。
  15. 所定のパターンを照明するための請求項11乃至14のいずれか1項に記載の照明光学系を備え、前記所定のパターンを感光性基板に露光することを特徴とする露光装置。
  16. 前記所定のパターンの像を前記感光性基板上に形成する投影光学系を備え、該投影光学系に対して前記所定のパターンおよび前記感光性基板を走査方向に沿って相対移動させて、前記所定のパターンを前記感光性基板へ投影露光することを特徴とする請求項15に記載の露光装置。
  17. 前記オプティカルインテグレータにおける前記所定方向は、前記走査方向と直交する方向に対応していることを特徴とする請求項16に記載の露光装置。
  18. 請求項15乃至17のいずれか1項に記載の露光装置を用いて、前記所定のパターンを前記感光性基板に露光する露光工程と、
    前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成する現像工程と、
    前記マスク層を介して前記感光性基板の表面を加工する加工工程とを含むことを特徴とするデバイス製造方法。
JP2009093950A 2008-04-29 2009-04-08 補正フィルター、照明光学系、露光装置、およびデバイス製造方法 Active JP5201061B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US7144408P 2008-04-29 2008-04-29
US61/071,444 2008-04-29
US13604408P 2008-08-08 2008-08-08
US61/136,044 2008-08-08

Publications (2)

Publication Number Publication Date
JP2009267400A true JP2009267400A (ja) 2009-11-12
JP5201061B2 JP5201061B2 (ja) 2013-06-05

Family

ID=41392782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009093950A Active JP5201061B2 (ja) 2008-04-29 2009-04-08 補正フィルター、照明光学系、露光装置、およびデバイス製造方法

Country Status (1)

Country Link
JP (1) JP5201061B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260342A (ja) * 2008-04-14 2009-11-05 Nikon Corp 照明光学系、露光装置、およびデバイス製造方法
CN112601071A (zh) * 2020-11-13 2021-04-02 苏州华兴源创科技股份有限公司 光轴校准方法、光轴校准装置和成像设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124870A (ja) * 1992-10-09 1994-05-06 Nikon Corp 投影露光装置及び露光方法
JPH0778753A (ja) * 1993-09-07 1995-03-20 Canon Inc 投影露光装置及びそれを用いた半導体素子の製造方法
JPH07297110A (ja) * 1994-04-27 1995-11-10 Nikon Corp 投影露光装置
JPH10270345A (ja) * 1997-03-24 1998-10-09 Nikon Corp 走査露光方法及び走査型露光装置
JP2004247527A (ja) * 2003-02-14 2004-09-02 Nikon Corp 照明光学装置、露光装置および露光方法
US20060055834A1 (en) * 2002-12-03 2006-03-16 Nikon Corporation Illumination optical system, exposure apparatus, and exposure method
JP2009260342A (ja) * 2008-04-14 2009-11-05 Nikon Corp 照明光学系、露光装置、およびデバイス製造方法
JP2009267390A (ja) * 2008-04-29 2009-11-12 Nikon Corp オプティカルインテグレータ、照明光学系、露光装置、およびデバイス製造方法
JP2010517310A (ja) * 2007-01-30 2010-05-20 カール・ツァイス・エスエムティー・アーゲー マイクロリソグラフィ投影露光装置の照明システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124870A (ja) * 1992-10-09 1994-05-06 Nikon Corp 投影露光装置及び露光方法
JPH0778753A (ja) * 1993-09-07 1995-03-20 Canon Inc 投影露光装置及びそれを用いた半導体素子の製造方法
JPH07297110A (ja) * 1994-04-27 1995-11-10 Nikon Corp 投影露光装置
JPH10270345A (ja) * 1997-03-24 1998-10-09 Nikon Corp 走査露光方法及び走査型露光装置
US20060055834A1 (en) * 2002-12-03 2006-03-16 Nikon Corporation Illumination optical system, exposure apparatus, and exposure method
JP2004247527A (ja) * 2003-02-14 2004-09-02 Nikon Corp 照明光学装置、露光装置および露光方法
JP2010517310A (ja) * 2007-01-30 2010-05-20 カール・ツァイス・エスエムティー・アーゲー マイクロリソグラフィ投影露光装置の照明システム
JP2009260342A (ja) * 2008-04-14 2009-11-05 Nikon Corp 照明光学系、露光装置、およびデバイス製造方法
JP2009267390A (ja) * 2008-04-29 2009-11-12 Nikon Corp オプティカルインテグレータ、照明光学系、露光装置、およびデバイス製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260342A (ja) * 2008-04-14 2009-11-05 Nikon Corp 照明光学系、露光装置、およびデバイス製造方法
CN112601071A (zh) * 2020-11-13 2021-04-02 苏州华兴源创科技股份有限公司 光轴校准方法、光轴校准装置和成像设备

Also Published As

Publication number Publication date
JP5201061B2 (ja) 2013-06-05

Similar Documents

Publication Publication Date Title
JP2011040716A (ja) 露光装置、露光方法、およびデバイス製造方法
TWI489219B (zh) 照明光學系統、曝光裝置以及元件製造方法
JP5541604B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP5688672B2 (ja) 光伝送装置、照明光学系、露光装置、およびデバイス製造方法
JP2010097975A (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5182588B2 (ja) オプティカルインテグレータ、照明光学系、露光装置、およびデバイス製造方法
JP5326733B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP5387893B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP5201061B2 (ja) 補正フィルター、照明光学系、露光装置、およびデバイス製造方法
JP2009071011A (ja) オプティカルインテグレータ、照明光学系、露光装置、およびデバイス製造方法
JP5190804B2 (ja) 減光ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2010067943A (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
WO2010032585A1 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP5366019B2 (ja) 伝送光学系、照明光学系、露光装置、およびデバイス製造方法
JP2010040617A (ja) オプティカルインテグレータ、照明光学系、露光装置、およびデバイス製造方法
JP5531518B2 (ja) 偏光変換ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5187631B2 (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5187636B2 (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5187632B2 (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2010182703A (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5672424B2 (ja) 投影光学系、露光装置、およびデバイス製造方法
JP2010027876A (ja) 減光ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5604813B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2011171563A (ja) 調整ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2007158271A (ja) 照明光学装置、露光装置、およびデバイスの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

R150 Certificate of patent or registration of utility model

Ref document number: 5201061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250