JP2009260993A - 無線通信機 - Google Patents

無線通信機 Download PDF

Info

Publication number
JP2009260993A
JP2009260993A JP2009170183A JP2009170183A JP2009260993A JP 2009260993 A JP2009260993 A JP 2009260993A JP 2009170183 A JP2009170183 A JP 2009170183A JP 2009170183 A JP2009170183 A JP 2009170183A JP 2009260993 A JP2009260993 A JP 2009260993A
Authority
JP
Japan
Prior art keywords
transmission
modulation
circuit
reception
demodulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009170183A
Other languages
English (en)
Other versions
JP5018838B2 (ja
Inventor
Kenichi Maruhashi
建一 丸橋
Hidenori Shimawaki
秀徳 嶋脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2009170183A priority Critical patent/JP5018838B2/ja
Publication of JP2009260993A publication Critical patent/JP2009260993A/ja
Application granted granted Critical
Publication of JP5018838B2 publication Critical patent/JP5018838B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】消費電力を抑制しながら高速伝送し、マルチパス干渉による通信途絶が発生し難く、小型化された無線通信機を提供する。
【解決手段】本発明の無線通信機は、変調部105で送信データを変調して複数の送信信号を生成する送信信号処理回路104、複数の送信信号に基づいて、電波を発射する複数の送信アンテナ102−1〜3の各々に送信RF信号を供給する送信回路101−1〜3と、前記電波を感受した受信アンテナ108−1〜3から出力された受信RF信号に基づく受信信号を復調部120で復調して受信データを生成する受信信号処理回路110とを有し、前記電波の伝搬状態から判定されたマルチパス干渉の強弱に基づいて、変調部105及び復調部120のシンボル速度を設定するとともに、変復調の多値数を変える。
【選択図】図2

Description

本発明は、空間多重方式を利用した無線通信システムに関する。
近年、マイクロ波を利用した携帯電話、無線LAN(Local Area Network)等の無線通信システムにおいては、変復調の多値化や搬送波のマルチキャリア化により高速化が図られている。しかしながら使用できる周波数帯域が狭いため、高速化には限界がある。例えば、多値PSK(Phase―shift Keying)を用いた場合は、誤り率の劣化が生じる他、発振器の位相雑音や周波数安定性などに極めて高い性能レベルが必要とされる。一方、OFDM(Orthogonal Frequency Division Multiplexing:直交波周波数分割多重)によりマルチキャリア化を行った場合、帯域は、サブキャリア数にシンボル速度を乗じたもので規定され、高速化に伴い広帯域が必要になる。また、ピーク電力と平均電力の差が大きく、一般には低歪な送信増幅器が必要になるという問題が知られている。
そこで、マイクロ波帯でMIMO(Multi−Input Multi−Output)技術を適用した無線通信システムが開発されている。図1は、この方式を利用した無線通信機のブロック図である。送信機500は、送信回路501−1〜3とアンテナ502−1〜3と送信信号処理回路504とを備える。送信データは、送信信号処理回路504で信号処理され、送信回路501−1〜3によりアンテナ502−1〜3から電波として発射される。受信機506は、アンテナ508−1〜3と受信回路507−1〜3と受信信号処理回路510とを備える。アンテナ508−1〜3により感受された電波を受信回路507−1〜3で受信信号に変換し、受信信号処理回路510により信号処理されて受信データが出力される。また、受信信号処理回路510は、チャネル行列を出力する。即ち、MIMO方式の無線通信機は、アンテナと送信機およびアンテナと受信機とで構成される、あるいは、複数のアンテナと複数の送受信機とで構成される無線通信機であり、空間多重方式により通信を行う。
マルチパスを含め、直交化できる通信路(独立な空間伝送路)の数の範囲において、伝送速度はアンテナの数(送信アンテナ数と受信アンテナ数の少ない方)に比例する。したがって、同一周波数、同一の時間を用いながら伝送速度を向上させることができる。また、時空間符号化を利用することにより、空間ダイバーシチー効果を生じ、良好なSNR(Signal to Noise Ratio:信号対雑音比)が得られる。
また、一般に周波数が高くなると、電波の直進性が強くなり、伝搬環境が異なってくる。この伝搬環境が変わる周波数は、およそ10GHz前後といわれており、それ以上の周波数では見通し外通信が困難になる。例えば、国際電気通信連合の勧告("Propagation data and prediction methods for the planning of indoor radio communication systems and radio local area networks in the frequency range 900 MHz to 100 GHz" ITU−R, P.1238−3, 2003年4月)によれば、伝搬時の距離に対する電波の減衰量を表す電力損失係数(power loss coefficients)は、オフィス内では0.9〜5.2GHzにおいて28〜32であるのに対し、60GHzにおいては22となっている。自由空間損失の場合は20であるから、60GHzというような高い周波数では散乱や回折などの影響が少ないものと考えられる。マルチパスに関しては、電波強度が強い場合があるが、経路としては比較的少ないものと考えられている。なお、ミリ波(例えば60GHz帯)を利用した無線システムとしては、非特許文献1などに記載されている。用いられている変調方式はASK(デジタル振幅変調)であり、無線通信として高速な1.25Gビット/秒が実現されている。
K.Ohataらによる文献(IEEE MTT−S International Microwave Symposium. Digest, June 2003, pp.373−376) 唐沢らの文献(2003年電子情報通信学会ソサイエティ大会講演論文集1、SS−30、講演番号TB−2−1) D. Gesbertらによる文献(IEEE Journal on Selected Areas in Communications, Vol.21, No.3, April, 2003)
MIMO技術を取り入れた無線通信機は、送受信回路を複数動作させるために消費電力が大きくなる。送信信号処理回路は、チャネル行列を推定し、複数の送信回路に送信信号を変換・分配し、また、受信信号処理回路は、複数の受信回路からの受信信号を合成・変換する機能を有し消費電力が大きい。また、高速のD/A変換回路(DAC)、A/D変換回路(ADC)、時空間符号化回路などによっても消費電力が増大する。
非特許文献2によれば、アンテナ間隔が半波長以上あれば、マルチパスが広い角度範囲で到来する場合、チャネル応答行列の構成要素は無相関に変動する。このときに伝送容量が増大するが、例えば2.4GHzでは半波長は約6cmとなってしまう。さらに、見通し内通信で局所的な散乱がない場合、アンテナ間隔は相当距離広げることが望ましい。非特許文献3には、このような場合の携帯電話システムにおける基地局用4素子アンテナの素子間隔として10波長が例示されている。このようなアンテナ間隔は、携帯端末やオフィスや家庭で用いるマイクロ波無線通信機に適用することは、大きさの観点から現実的ではない。
ミリ波(例えば60GHz帯)を利用した無線システムでは、変調指数の低いASK(Amplitude Shift Keying)、FSK(Frequency Shift Keying)、BPSK(Binary Phase Shift Keying)が用いられ、主としてアンテナビームを絞ったポイント間(Point−to−Point)通信が多く利用されている。一方アンテナビームを広げた場合、特に屋内通信においてはマルチパス干渉の影響で、信号品質の劣化、あるいは伝送不能に陥るなどの問題が生じる。これはシンボル速度を上げると、遅延時間(直接波と反射波の到来時間の差)の広がりがシンボル長に比較して相対的に大きくなり、シンボル間干渉を引き起こすためである。また、シンボル速度を下げて、シンボル間干渉を回避しながら高速性を保つために、多値QAM(Quadrature Amplitude Modulation)やQAMを1次変調とし、OFDMを2次変調として用いた無線通信機が用いられる。しかしながら、発振器の低位相雑音特性、周波数安定性、送信増幅器の高線形性が必要となり、特にミリ波の無線機を構成するためには、複雑、高価格、大型サイズになることなどが、実用上の問題となっていた。
本発明の目的は、消費電力を抑制しながら高速伝送し、マルチパス干渉による通信途絶が発生し難く、小型化された無線通信機を提供することにある。
本発明の第1の態様によれば、無線通信機は、送信データを変調して複数の送信信号を生成する変調手段と、前記複数の送信信号に基づいて、電波を発射する複数の送信アンテナの各々に送信RF信号を供給する送信手段と、前記電波を感受した受信アンテナから出力された受信RF信号に基づく受信信号を復調して受信データを生成する復調手段とを有し、電波の伝搬状態から判定されたマルチパス干渉の強弱に基づいて、変調手段及び復調手段のシンボル速度を設定するとともに、変復調の多値数を変える。
本発明の第2の態様によれば、無線通信機は、送信データを変調して複数の送信信号を生成する変調手段と、前記複数の送信信号に基づいて、電波を発射する複数の送信アンテナの各々に送信RF信号を供給する送信手段とを有し、前記電波の伝搬状態から判定されたマルチパス干渉の強弱に基づいて、変調手段のシンボル速度を設定するとともに、変調の多値数を変える。
マルチパス干渉の強弱に応じて、シンボル速度を制御することにより、消費電力を最適にしながらの高速伝送が可能となる。また、周波数10GHz以上、特にミリ波(30GHz〜300GHz)を利用した無線通信機の場合、アンテナを複数アレイ状に並べたとしても、無線通信機を小型に構成できる。さらにマルチパス干渉が弱い場合、直接変復調モードで動作させることにより、高速化、低消費電力化が実現できる。一方マルチパス干渉が強い場合では、消費電力は増加するものの、マルチパス干渉による通信途絶の可能性が減少でき、ある程度の伝送速度を維持しながら通信を継続することが可能となる。
図1は従来の無線通信機のブロック図である。 図2は本発明の第1の実施の形態による無線通信機のブロック図である。 図3は第1の実施の形態におけるシンボル速度を決める処理のフローチャートである。 図4はマルチパス干渉の強弱を規定する受信電力と誤り率の関係の例を示すグラフである。 図5はMIMOにおける独立な空間伝送路数とマルチパスの度合いの関係を示すグラフである。 図6は第1の変形例におけるシンボル速度を決める処理のフローチャートである。 図7は第2の変形例におけるシンボル速度と変調の多値数を決める処理のフローチャートである。 図8は第3の変形例におけるシンボル速度と変調の多値数を決める処理のフローチャートである。 図9は第4の変形例におけるシンボル速度を決める処理を含む処理のフローチャートである。 図10は第5の変形例におけるシンボル速度と変調の多値数を決める処理を含む処理のフローチャートである。 図11は本発明の第2の実施の形態による無線通信機のブロック図である。 図12は第2の実施の形態における送受信機の設定に関わる処理のフローチャートである。 図13は本発明の第2の実施の形態の変形例の無線通信機のブロック図である。 図14は本発明の第3の実施の形態による無線通信機のブロック図である。 図15は第3の実施の形態における送受信機の設定に関わる処理のフローチャートである。 図16は本発明の第4の実施の形態による無線通信機のブロック図である。 図17は本発明の第5の実施の形態による無線通信機のブロック図である。 図18は本発明の第5の実施の形態の変形例による無線通信機のブロック図である。 図19は本発明の第6の実施の形態による無線通信機のブロック図である。
[第1の実施の形態]
図2を参照すると、本発明の第1の実施の形態による無線通信機は送信機100と受信機106と具備する。通常、通信は双方向であるため、この無線通信機が複数対向して通信を行う。ここでは、送信機100と受信機106とはそれぞれ、対向する無線通信機の送信機と受信機である。
送信機100は、アンテナ102−1〜3と、アンテナ102−1〜3にそれぞれ接続された送信回路101−1〜3と、電源制御回路103と、送信信号処理回路104と、制御回路119とを具備する。
電源制御回路103は、制御回路119からの電源制御信号に基づいて、送信回路101−1〜3に供給される電源を制御する。送信信号処理回路104は、変調の他に、MIMO処理に関わる符号化、重み付け/マッピングの少なくとも1つの機能を備える。また、送信信号処理回路104はシンボル速度設定部117と変調速度設定部118と変調部105を備え、制御回路119からの制御信号によりシンボル速度や変調の多値数を変更することが可能である。この送信信号処理回路104は、送信機100に入力されたデータを変調部105で変調して、送信信号として送信回路101−1〜3に出力する。
受信機106は、アンテナ108−1〜3と、アンテナ108−1〜3にそれぞれ接続された受信回路107−1〜3と、電源制御回路109と、受信信号処理回路110と、レベル検出器111と、誤り率測定器112、伝搬検知回路123と、制御回路124とを具備する。
電源制御回路109は、制御回路124からの電源制御信号に基づいて、受信回路107−1〜3に供給される電源を制御する。受信信号処理回路110はシンボル速度設定部122と復調モード設定部123と復調部120を備え、復調の他に、MIMO処理に関わる復号、重み付け/デマッピングの少なくとも1つの機能を備える。受信信号処理回路110は、受信回路107−1〜3から入力される受信信号を復調部120で復調して、受信データとして出力する。また、受信信号処理回路110は、受信回路107−1〜3から入力される受信信号に基づいてチャネル行列を推定し、出力する。レベル検出器111は、受信回路107−1〜3から入力される受信レベル信号に基づいて受信レベルを検出し、出力する。誤り率測定器112は、受信信号処理回路110から出力される受信データに基づいて、ビットエラーレートまたはフレームエラーレートを測定し、誤り率を出力する。伝搬検知回路125は受信レベル、誤り率、チャネル行列を入力し、マルチパス干渉の強弱を判定し、変調制御信号と、これと等価な伝搬状況通信信号を出力する。制御回路124は電源制御回路109に電源制御信号を出力するとともに、変調制御信号に基づきシンボル速度設定部122と復調モード設定部123にそれぞれシンボル速度、復調モードを設定する。また、伝搬状況通信信号は通信装置106の制御回路119に送られ、制御回路119はシンボル速度設定部117と変調モード設定部118にシンボル速度、変調モードをそれぞれ設定する。
この無線通信機において、シンボル速度は、図3に示されるようにして決定される。まず、伝搬検知回路125は、ステップ1011に、レベル検出器111から出力される受信レベル、誤り率測定器112から出力される誤り率、受信信号処理回路110から出力されるチャネル行列などに基づいて、マルチパス干渉の強弱を推定する。ステップ1002に、マルチパス干渉が強いかどうか判定する。干渉が強いと判定された場合、伝搬検知回路123は、シンボル速度を低く設定する変調制御信号および伝搬状況通信信号を出力する。制御回路119は伝搬状況通信信号を受けて、シンボル速度設定部117により、ステップ1003に、変調部105のシンボル速度を下げる。また、制御回路124は、シンボル速度設定部122により、復調部120のシンボル速度を下げる。ステップ1002において、干渉が弱いと判定された場合、伝搬検知回路125は、シンボル速度を高く設定する変調制御信号および伝搬状況通信信号を出力する。制御回路119は、ステップ1004に、シンボル速度設定部117により変調部105のシンボル速度を上げる。また、制御回路124は、シンボル速度設定部122により復調部120のシンボル速度を上げる。シンボル速度が決定されると、以降通常のデータ伝送である通信が行なわれる。
本実施の形態では、信号伝搬状態に基づいてマルチパス干渉の度合いを判定することが重要な特徴である。ここでは明示しないが、自局または他局の信号伝搬状態を、他局との同期確立を行うプリアンブル期間、またはデータ伝送が行われている通信中の期間に知ることができる。通信中においては、データ伝送されるデータの一部として送信される他局の信号伝搬状態を受信することができる。また、自局の信号伝搬状態を他局に送信する。
信号伝搬状態は、レベル検出器111から出力される受信レベル、誤り率測定器112から出力される誤り率、受信信号処理回路110から出力されるチャネル行列から計算される。信号伝搬状態は、通信に寄与できる独立した空間伝送路の数、誤りによる再送信要求の率、などで表すことができる。例えば、図4に示されるように、受信電力と誤り率の関係からマルチパス干渉の強弱を規定しておき、受信電力が高いにも関わらず誤り率(または誤りによる再送信要求の率)が高い場合をマルチパス干渉が強いと規定しておくことが可能である。また、図5に示されるように、推定されるチャネル行列から計算される固有値から通信に寄与できる独立した空間伝送路の数を判断し、マルチパス干渉の度合いを決めることも可能である。これらの方法を組合せたり、マルチパス干渉の度合いを段階的に規定したりすることもできる。さらに当然ながら最初にシンボル速度を低く設定し、その後段階的に高く設定していく方法も使用可能である。
本実施の形態では、マルチパス干渉の度合いが小さいときには、シンボル速度を高く設定することにより高速伝送が可能になる。なお、このような場合には、相関帯域幅が広くなることが多く、高シンボル速度、すなわち広帯域な伝送に有利となっている。
また、周波数10GHz以上、特にミリ波(30GHz〜300GHz)を利用した無線通信機の場合、複数のアンテナをアレイ状に並べたとしても、マイクロ波帯を利用した場合に比べてアンテナサイズは小さい。例えば、60GHzを利用した場合、アンテナ間隔は、半波長ならば約2.5mm、10波長ならば約2.5cmであり、大きさの点からは、携帯端末、オフィスや家庭で用いる無線通信機に適用可能である。
次に、第1の実施の形態の第1の変形例を、図6を参照して説明する。第1の変形例では、シンボル速度を決める処理の別の例を示す。第1の変形例では、無線通信機は、構成としては第1の実施の形態と同様であり、変調制御信号および伝搬状況通信信号によりシンボル速度を変化させることができる。
まず、初期状態として、ステップ2001に、シンボル速度設定部117,122にシンボル速度を高く設定する。即ち、変調部105、復調部120を高いシンボル速度に設定する。ステップ2002に、誤り率測定器112により誤り率を測定する。ステップ2003に、伝播検知回路125は、この誤り率が通信に十分許容できる範囲にあるか否かを判断する。誤り率が十分許容できるものでなければ、ステップ2004に、変調制御信号および伝搬状況通信信号によりシンボル速度を一段低く設定する。即ち、変復調部105、120のシンボル速度を一段下げる。その後、ステップ2002に戻って、新しい条件で再度誤り率を測定し、誤り率が十分許容できる範囲になるまでシンボル速度は引き下げられる。したがって、シンボル速度は誤り率が十分低くなるまで下げられる。
このプロセスは、通信の前に行うこともできるが、データ通信の途中でもビット誤り率、フレーム誤り率、パケット誤り率、再送要求率(再送率)などを監視し、これらの数値が十分低くなるように適宜シンボル速度を低くすることもできる。また、誤り率等が十分低くなればマルチパス干渉が低減したと判断し、再度伝送速度が高くなるようシンボル速度を上げるプロセスも含むことができる。本変形例では、第1の実施の形態と同様な効果が得られるが、高速伝送のためのより状況に応じた条件設定が可能となる。
第1の実施の形態の第2の変形例を、図7を参照して説明する。第2の変形例では、シンボル速度と変調の多値数を決める手続きの例を示す。無線通信機は、構成としては第1の実施の形態と同様であり、変調制御信号および伝搬状況通信信号により、変調の多値数やシンボル速度を変化させることができる。
まず、ステップ3001に、伝搬検知回路125はマルチパス干渉の強弱を推定する。ステップ3002で、干渉が弱いと判定された場合には、ステップ3003に、シンボル速度を高く、変調の多値数を小さく設定する。即ち、シンボル速度設定部117、122、変調モード設定部118、123をそのように設定する。干渉が強いと判定された場合には、ステップ3004に、シンボル速度を低く、変調の多値数を大きく設定する。即ち、シンボル速度設定部117、122、変調モード設定部118、復調モード設定部123をそのように設定する。このようにして設定されたシンボル速度と変調の多値数とを用いて、以降の通信を行う。
マルチパス干渉の判定としては、第1の実施の形態で説明したものと同様に行うことができる。本変形例においては、マルチパス干渉の度合いが小さいときには、シンボル速度を高くすることにより高速伝送が可能となる。一方、マルチパス干渉が強くて相関帯域幅が狭いときでも、シンボル速度を低くし、信号帯域を狭くすることにより効率よく伝送することができる。
次に、第1の実施の形態の第3の変形例を、図8を参照して説明する。第3の変形例では、シンボル速度と変調の多値数を決める他の処理の例を示す。第3の変形例の無線通信機は、構成としては第1の実施の形態と同様であり、変調制御信号および伝搬状況通信信号により、変調の多値数やシンボル速度を変化させることができる。
まず、ステップ4001に、シンボル速度設定部117、122に初期状態としてシンボル速度を高く設定し、変調の多値数を小さく設定する。ステップ4002に、誤り率測定器112により誤り率を測定する。ステップ4003に、この誤り率が通信に十分許容できる範囲にあるか否かを判断する。誤り率が十分許容できるものでなければ、ステップ4004に、変調の多値数を上げ、シンボル速度を低く設定する。ステップ4002に戻って新しい条件で誤り率を測定する。誤り率が十分許容できる範囲になるまで、シンボル速度は引き下げられ、多値数は上げられる。したがって、シンボル速度は、誤り率が十分低くなるまで下げられ、多値数は上げられる。
このプロセスは、通信の前に行うこともできるが、データ通信の途中でもビット誤り率、フレーム誤り率、パケット誤り率、再送要求率などを監視し、これらの数値が十分低くなるようにシンボル速度を適宜低くし、多値数を適宜上げることもできる。また、誤り率等が十分低くなればマルチパス干渉が低減したと判断し、再度伝送速度が高くなるようシンボル速度を上げるプロセスも含むことができる。本変形例では、第2の変形例と同様な効果が得られるが、高速伝送のためのより状況に応じた条件設定が可能となる。
第1の実施の形態の第4の変形例を、図9を参照して説明する。第4の変形例では、シンボル速度を決める手続きを含む動作プロセスの例を示す。無線通信機は、構成としては第1の実施の形態と同様であり、変調制御信号および伝搬状況通信信号によりシンボル速度を変化させることができる。
まず、ステップ5001に、例えば第1の実施の形態に記載した方法に従ってマルチパス干渉の強弱を推定する。ステップ5002で、干渉が強いと判定された場合には、ステップ5005に、シンボル速度を低く設定する。一方、干渉が弱いと判定された場合には、ステップ5003に、シンボル速度を高く設定する。この場合には、ステップ5004に、消費電力を抑えるために伝送速度に寄与しない送信回路および受信回路の電源を電源制御回路103、109によりオフにする。即ち、動作していない回路の電源を落として消費電力を抑制する。
マルチパス干渉が少なく、見通しが利く環境では、アンテナ素子間の相関が強まるため、MIMO技術を採用しても、伝送容量の増大や空間ダイバーシチー効果が得られない。また、周波数としておよそ10GHz以上、特にミリ波(30〜300GHz)帯における無線通信では、局所的な散乱が期待できないため、この傾向が特に強い。したがって消費電力の低減を優先させても、通信品質(伝送速度、SNRなど)の点で大きな劣化とはならない。本変形例では、第1の実施の形態と同様な効果が得られると同時に、マルチパス干渉が少ない場合においては不必要な電力を消費することを避けることができる。
第1の実施の形態の第5の変形例を、図10を参照して説明する。第5の変形例では、シンボル速度と変調の多値数を決める処理を含む動作プロセスの別の例を説明する。無線通信機は、構成としては第1の実施の形態と同様であり、変調制御信号および伝搬状況通信信号により、変調の多値数やシンボル速度を変化させることができる。
まず、ステップ6001に、例えば第1の実施の形態に記載した方法に従ってマルチパス干渉の強弱を推定する。ステップ6002で、干渉が強いと判定された場合には、ステップ6003に、シンボル速度を低く設定し、変調の多値数を大きく設定する。一方、干渉が弱いと判定された場合には、ステップ6004に、シンボル速度を高く設定し、変調の多値数を大きく設定する。この場合には、ステップ6005に、消費電力を抑えるために伝送速度に寄与しない送信回路および受信回路の電源をオフにする。即ち、動作していない回路の電源を落として消費電力を抑制する。
本変形例は、第4の変形例とは、干渉が弱いと判定された場合には、シンボル速度を高く、変調の多値数を小さく設定し、干渉が強いと判定された場合にはシンボル速度を低く、変調の多値数を大きく設定するところが異なっている。本変形例では、第4の変形例と同様な効果が得られ、高速伝送のためのより状況に応じた条件設定が可能となる。
[第2の実施の形態]
図11は本発明の第2の実施の形態の無線通信機のブロック図を示している。第2の実施の形態では、直接変復調/非直接変復調モードを使用する。直接変調モードとは、直接送信データを送信キャリアに変調する方式であり、非直接変調モードは、信号処理を施した後に変調し、無線周波数帯にアップコンバートする方式である。また、直接復調モードは、受信信号から直接受信データに復調する方式であり、非直接復調モードは、無線周波数帯からダウンコンバートし、復調した後に信号処理を施して受信データを生成する方式である。
本無線通信機は送信機200と受信機206と具備する。通常、通信は双方向であるため、この無線通信機が複数対向して通信を行う。ここでは、送信機200と受信機206とは対向する無線通信装置の送信機と受信機である。
送信機200は、アンテナ202−1〜4と、アンテナ202−1に接続された非直接変調モードの送信回路201−1と、アンテナ202−2に接続された非直接変調モードの送信回路201−2と、アンテナ202−3に接続された非直接変調モードの送信回路201−3と、アンテナ202−4に接続され、変調部224を内蔵した、直接変調モードの送信回路201−4と、電源制御回路203と、送信信号処理回路204と、制御回路219とを具備する。送信回路201−1〜3は、送信信号処理回路204を介して送信信号が入力され、送信回路201−4は、送信信号処理回路204を介さずに送信信号が直接入力される。
電源制御回路203は、制御回路219からの電源制御信号に基づいて、送信回路201−1〜4に供給される電源を制御する。送信信号処理回路204は、変調の他に、MIMO処理に関わる符号化、変調、重み付け/マッピングの少なくとも1つの機能を備える。また、送信信号処理回路204は変調部205とシンボル速度設定部217と変調モード設定部218とを備え、変調制御信号によりシンボル速度や変調の多値数を変更することが可能である。この送信信号処理回路204は、送信装置200に入力されたデータを変調部205で変調して、送信信号として送信回路201−1〜3に出力する。
受信機206は、アンテナ208−1〜4と、アンテナ208−1に接続された非直接復調モードの受信回路207−1と、アンテナ208−2に接続された非直接復調モードの受信回路207−2と、アンテナ208−3に接続された非直接復調モードの受信回路207−3と、アンテナ208−4に接続され、復調部225を内蔵した、直接復調モードの受信回路207−4と、電源制御回路209と、受信信号処理回路210と、レベル検出器211と、誤り率測定器212と、伝搬検知回路224と、制御回路222とを具備する。電源制御回路209は、制御回路224からの電源制御信号に基づいて、受信回路207−1〜4に供給される電源を制御する。受信信号処理回路210は、復調の他に、MIMO処理に関わる復号、重み付け/デマッピングの少なくとも1つの機能を備える。受信信号処理回路210は、受信回路207−1〜3から入力される受信信号を復調部220で復調して、受信データとして出力する。また、受信信号処理回路210は、チャネル行列を推定する機能を有し、受信回路207−1〜3から入力される受信信号に基づいてチャネル行列を推定し、出力する。レベル検出器211は、受信回路207−1〜3から入力される受信レベル信号に基づいて、受信レベル信号を検出し、出力する。誤り率測定器212は、受信信号処理回路210と受信回路207−4から出力される受信データに基づいて、ビットエラーレート、またはフレームエラーレートを測定し、誤り率を出力する。伝搬検知回路225は受信レベル、誤り率、チャネル行列を入力し、マルチパス干渉の強弱を判定し、変調制御信号と、これと等価な伝搬状況通信信号を出力する。制御回路224は電源制御回路209に電源制御信号を出力するとともに、変調制御信号に基づきシンボル速度設定部222と復調モード設定部223にそれぞれシンボル速度、復調モードを設定する。また、伝搬状況通信信号は送信装置206の制御回路219に送られ、制御回路219はシンボル速度設定部217と変調モード設定部218にシンボル速度、変調モードをそれぞれ設定する。
送信回路201−4、受信回路207−4での変復調方式としては、ASK、FSK、BPSK、QPSK、DQPSKなどのいずれかを用いる。送信回路201−4は入力されたデータを送信キャリアに変調し、受信回路207−4は受信信号からデータを直接復調する。このように変復調することを直接変復調と呼ぶことにする。また、送信回路201−4、受信回路207−4で用いるシンボル速度は、非直接変復調モードの送信回路201−1〜3、受信回路207−1〜3に比べて高く設定する。非直接変復調モードとしては、多値PSK、多値QAMなどのいずれか、またはこれらを1次変調としたOFDMなどを利用することができる。
この無線通信機では、図12に示されるように、送受信回路の動作設定が行われる。まず、ステップ7001に、電源制御回路203の制御により送信回路201−4の電源、電源制御回路209の制御により受信回路207−4の電源をそれぞれ投入する。ステップ7002に、電源制御回路203の制御により送信回路201−1〜3の電源、電源制御回路209の制御により受信回路207−1〜3の電源を切断する。次に、ステップ7003に、誤り率測定器212により誤り率を測定する。ステップ7004に、伝搬検知回路223は、この誤り率が通信に十分許容できる範囲にあるか否かを判断する。十分許容できる誤り率が得られた場合、以降の通信をこの構成で行う。即ち、送信回路201−4、受信回路207−4を使用して通信を行う。誤り率が十分低くないと判断される場合、ステップ7005に、電源制御回路203の制御により送信回路201−4の電源を切断し、電源制御回路209の制御により受信回路207−4の電源を切断する。したがって、送信回路201−4と受信回路207−4は動作しない。ステップ7006に、電源制御回路203の制御により送信回路201−1〜201−3の電源を投入し、電源制御回路209の制御により受信回路207−1〜207−3の電源を投入し、動作可能状態にする。最後に、ステップ7007に、設定動作を行う。設定動作は、通常のMIMO技術による無線通信の設定を行うか、または第1の実施の形態およびその変形例に記載した手続きを利用して、シンボル速度や変調の多値数を決める。
本実施の形態では、マルチパス干渉が弱い場合、高速のD/A変換回路(DAC)、A/D変換回路(ADC)や、MIMO処理回路、時空間符号処理回路など、特に消費電力が大きい部分の電源をオフとすることができ、低消費電力化が実現できる。なお、直接変復調としてASKを用いた場合、先に述べたK. Ohataらの文献に記載された通り、60GHz帯を用いて無線での1.25Gビット/秒の伝送速度が実現されている。このとき変復調に必要な素子として高速のスイッチと検波器が必要であるが、上記回路に比べ一般に消費電力は小さい。したがって、特に広帯域通信が可能なミリ波通信においては、マルチパス干渉が弱い場合、直接変復調モードにより高速化、低消費電力化を実現できる。一方、マルチパス干渉が強い場合では、消費電力は増加するものの、マルチパス干渉による通信途絶の可能性が減少でき、ある程度の伝送速度を維持しながら通信を継続できる利点は大きい。
図13を参照して、第2の実施の形態の変形例を説明する。図13は、本変形例に係る無線通信機の構成を示すブロック図である。構成は、第2の実施の形態で説明した図11とほぼ等しく、符号を読み替えればよい。即ち、本無線通信機は、送信機300と受信機306と具備する。
送信機300は、アンテナ302−1〜3と、アンテナ302−1に接続された非直接変調モードの送信回路301−1と、アンテナ302−2に接続された非直接変調モードの送信回路301−2と、非直接変調モードの送信回路301−3と、変調部324を内蔵した、直接変調モードの送信回路301−4と、電源制御回路303と、送信信号処理回路304と、制御回路319を具備する。送信回路301−3と送信回路301−4はスイッチ313を介してアンテナ302−3に接続される。送信回路301−1〜3には、送信信号処理回路304を介して送信データが入力され、送信回路301−4には、送信信号処理回路304を介さずに送信データが直接入力される。
電源制御回路303は、制御回路319からの電源制御信号に基づいて、送信回路301−1〜4に供給される電源を制御する。送信信号処理回路304は、変調の他に、MIMO処理に関わる符号化、変調、重み付け/マッピングの少なくとも1つの機能を備える。また、送信信号処理回路304は変調部305とシンボル速度設定部317と変調モード設定部318を備え、変調制御信号によりシンボル速度や変調の多値数を変更することが可能である。この送信信号処理回路304は、送信装置300に入力されたデータを変調部305によって変調して、送信信号として送信回路301−1〜3に出力する。
受信機306は、アンテナ308−1〜3と、アンテナ308−1に接続された非直接復調モードの受信回路307−1と、アンテナ308−2に接続された非直接復調モードの受信回路307−2と、非直接復調モードの受信回路307−3と、復調部325を内蔵した、直接復調モードの受信回路307−4と、電源制御回路309と、受信信号処理回路310と、レベル検出器311と、誤り率測定器312と、伝搬検知回路325と、制御回路324とを具備する。受信回路307−3と受信回路307−4はスイッチ314を介してアンテナ308−3に接続される。電源制御回路309は、制御回路324からの電源制御信号に基づいて、受信回路307−1〜4に供給される電源を制御する。受信信号処理回路310は、復調の他に、MIMO処理に関わる復号、重み付け/デマッピングの少なくとも1つの機能を備える。受信信号処理回路310は、受信回路307−1〜3から入力される受信信号を復調部320で復調して、受信データとして出力する。また、受信信号処理回路310は、受信回路307−1〜3から入力される受信信号に基づいてチャネル行列を推定し、出力する。レベル検出器311は、受信回路307−1〜4から入力される受信レベル信号に基づいて、受信レベルを検出し、出力する。誤り率測定器312は、受信信号処理回路310と受信回路307−4から出力される受信データに基づいて、ビットエラーレートまたはフレームエラーレートを測定し、誤り率を出力する。伝搬検知回路325は受信レベル、誤り率、チャネル行列を入力し、マルチパス干渉の強弱を判定し、変調制御信号と、これと等価な伝搬状況通信信号を出力する。制御回路324は電源制御回路309に電源制御信号を出力するとともに、変調制御信号に基づきシンボル速度設定部322と復調モード設定部323にそれぞれシンボル速度、復調モードを設定する。また、伝搬状況通信信号は送信装置300の制御回路319に送られ、制御回路319はシンボル速度設定部317と変調モード設定部318にシンボル速度、変調モードをそれぞれ設定する。
送信回路301−4、受信回路307−4での変復調方式としては、ASK、FSK、BPSK、QPSK、DQPSKなどのいずれかを用いる。送信回路301−4は送信キャリアに変調し、受信回路307−4は受信信号から直接データを復調する構成となる。また、送信回路301−4、受信回路307−4で用いるシンボル速度は、非直接変復調モードの送信回路301−1〜3、受信回路307−1〜3に比べて高く設定する。
本変形例の図11の無線通信装置との相違点は、アンテナの共用にある。送信回路301−3と送信回路301−4はスイッチ313を介してアンテナ302−3に接続される。受信回路307−3と送信回路307−4はスイッチ314を介してアンテナ308−3に接続される。アンテナ302−3とアンテナ308−3はそれぞれ共用となっており、電源制御信号と連動したスイッチ313、314が各々送信機300、受信機306に設けられている。
本変形例では、第2の実施の形態で述べたものと同様な効果が得られることに加え、アンテナを共用することで装置の小型化を図ることができる。なお、ここでの説明ではスイッチを用いたが、一般的な共用器を用いることも可能である。
[第3の実施の形態]
図14は、本発明の第3の実施の形態による無線通信機の構成を示すブロック図である。本無線通信機は、送信機400と受信機406と具備する。通常、通信は双方向であるため、この無線通信機が複数対向して通信を行う。ここでは、送信機400と受信機406はそれぞれ対向する無線通信機の送信機と受信機である。
送信機400は、アンテナ402−1〜3と、それぞれアンテナ402−1〜3に接続された送信回路401−1〜3と、電源制御回路403と、送信信号処理回路404と、制御回路419と、セレクタ428とを具備する。送信回路401−1〜3は各々直接変調モードと非直接変調モードの変調方式を選択できる。送信回路401−1〜3は、送信信号処理回路404を介して送信信号が、セレクタ428を介してデータ信号が入力され、どちらの信号を使用するかはセレクタ428により設定される。送信回路401−1〜3は、セレクタ428を介して入力するデータ信号でキャリアを変調する変調部426-1〜3をそれぞれ備えている。
電源制御回路403は、制御回路419からの電源制御信号に基づいて、送信回路401−1〜3に供給される電源を制御する。送信信号処理回路404は変調の他に、MIMO処理に関わる符号化、変調、重み付け/マッピングの少なくとも1つの機能を備える。また、送信信号処理回路404は変調部405とシンボル速度設定部417と変調モード設定部418を備え、変調制御信号によりシンボル速度や変調の多値数を変更することが可能である。この送信信号処理回路404は、入力されたデータを変調部405によって変調し、送信信号として送信回路401−1〜3に出力する。セレクタ428は、送信回路401−1〜3へのデータの配分や、直接変調モードと非直接変調モードの変調方式を選択する機能を有する。
受信機406は、アンテナ408−1〜3と、それぞれアンテナ408−1〜3に接続され、各々直接復調モードと非直接復調モードを選択できる受信回路407−1〜3と、電源制御回路409と、受信信号処理回路410と、レベル検出器411と、誤り率測定器412と、セレクタ429と、伝搬検知回路423と、制御回路424とを具備する。受信回路407−1〜3は、アンテナ408−1〜3を介して入力する受信信号を復調する復調部427-1〜3をそれぞれ備えている。電源制御回路409は、制御回路424からの電源制御信号に基づいて、受信回路407−1〜3に供給される電源を制御する。受信信号処理回路410は復調の他に、復号、重み付け/デマッピングの少なくとも1つの機能を備える。受信信号処理回路410は、受信回路407−1〜3から入力された受信信号を復調部420で復調して、受信データとして出力する。また、受信信号処理回路410は、受信回路407−1〜3から入力される受信信号に基づいてチャネル行列を推定し、出力する。レベル検出器411は、受信回路407−1〜3から入力される受信レベル信号に基づいて、受信レベルを検出し、出力する。誤り率測定器412は、受信信号処理回路410とセレクタ429から出力される受信データに基づいて、ビットエラーレート、またはフレームエラーレートを測定し、誤り率を出力する。セレクタ429は、受信回路407−1〜3から出力されるデータの配分や、直接復調モードと非直接復調モードの復調方式を選択する機能を有する。伝搬検知回路423は受信レベル、誤り率、チャネル行列を入力し、マルチパス干渉の強弱を判定し、変調制御信号と、これと等価な伝搬状況通信信号を出力する。制御回路424は電源制御回路409に電源制御信号を出力するとともに、変調制御信号に基づきシンボル速度設定部422と復調モード設定部423にそれぞれシンボル速度、復調モードを設定する。また、伝搬状況通信信号は送信装置400の制御回路419に送られ、制御回路419はシンボル速度設定部417と変調モード設定部418にシンボル速度、変調モードをそれぞれ設定する。
直接変復調モードとしては、ASK、FSK、BPSK、QPSK、DQPSKなどのいずれかを用いる。送信機400では送信キャリアに変調し、受信機406では受信信号から直接データを復調する構成となる。また、シンボル速度は、非直接変調モードの送信回路、受信回路に比べて高く設定する。非直接変復調モードとしては、多値PSK、多値QAMなどのいずれか、またはこれらを1次変調としたOFDMなどを利用することができる。
本無線通信機では、図15に示されるように、送受信回路の設定に関わる手続きが行われる。まず、ステップ8001に、制御回路419、424により、セレクタ428を直接変調モードに、セレクタ429を直接復調モードに設定する。この状態では、通信は直接変復調モードで行われる。ステップ8002に、電源制御回路403の制御により送信回路401−1に電源を供給し、電源制御回路409の制御により受信回路407−1に電源を供給する。したがって、送信回路401−1と受信回路407−1は、通信可能な状態となる。ステップ8003に、誤り率測定器412により誤り率を測定する。伝搬検知回路423は、送信回路と受信回路の組み合せとこの誤り率とを対応させて記録しておく。誤り率の測定が終了したら、電源制御回路403、409の制御により送信回路401−1と受信回路407−1への電源供給を停止する。ステップ8004に、伝搬検知回路425により、全ての送信回路と受信回路の組み合せで誤り率の測定を完了したかを判定する。まだ測定されていない組み合せがある場合、ステップ8005に、送信回路と受信回路の組み合せを変え、送信回路と受信回路に電源を供給して動作させる。ステップ8003に戻り、誤り率を測定する。全ての送信回路と受信回路の組み合せの誤り率の測定が完了した場合、ステップ8006に、伝搬検知回路425は、送信回路と受信回路の組み合せに対応させて記録してある誤り率から、最もよい誤り率であった送信回路と受信回路の組み合せを探す。その最もよい誤り率が通信する上で十分によい誤り率(低い誤り率)と判断される場合、ステップ8007に、その送信回路と受信回路の組み合せで以降の通信を行うことにする。最もよい誤り率でも、通信する上で十分によい誤り率ではない場合、ステップ8008に、マルチパス干渉の影響が強いと制御回路419、422は判断し、セレクタ428を非直接変調モードに、セレクタ429を非直接復調モードに設定する。最後に、ステップ8009に、非直接変復調モードによる設定動作を行う。設定動作では、通常のMIMO技術による無線通信の設定を行うか、または第1の実施の形態およびその変形例に記載した手続きを利用して、シンボル速度や変調の多値数を設定する。
本実施の形態では、送信回路と受信回路の全ての組み合せで誤り率を測定するとしたが、全ての組合せで誤り率を測定しなくてもよい。測定した誤り率で、十分良い値が得られたと判定されるときには、以降の誤り率測定をスキップし、その組合せでの通信を設定することも可能である。また、使用しない送信回路および受信回路の電源をオフとすれば、消費電力を削減することができる。
本実施の形態では、第2の実施の形態および変形例で述べたと同様な効果が得られる。また、送信回路と受信回路がやや複雑になるが、第2の実施の形態に比べてアンテナの数を低減できるし、第2の実施の形態の変形例に比べてスイッチが不要になる。さらに、一つのアンテナに接続される送信回路の送信増幅器や、受信回路の受信増幅器なども、一つにできる利点もある。
[第4の実施の形態]
図16は本発明の第4の実施の形態による無線通信機のブロック図である。本実施の形態による無線通信機は、図2に示された第1の実施の形態による送信機100における変調部105、シンボル速度設定部117、変調モード設定部118の代わりに複数の変調部105−1〜nとセレクタ116を備え、受信機106における復調部120、シンボル速度設定部122、変調モード設定部123の代わりに複数の復調部120−1〜nとセレクタ117を備えたものである。
変調部105−1〜nはそれぞれ相異なるシンボル速度と変調モードの組み合わせを有し、そのうちの1つの出力が制御回路119の制御によりセレクタ116によって選択される。復調部120−1〜nはそれぞれ相異なるシンボル速度と復調モードの組み合わせを有し、そのうちの1つの出力が制御回路124の制御によりセレクタ113によって選択される。本実施の形態の無線通信機のその他の構成および動作は第1の実施の形態の無線通信機と同じである。
[第5の実施の形態]
図17は本発明の第5の実施の形態による無線通信機のブロック図である。本実施の形態による無線通信機は、図11に示された第2の実施の形態による送信装置200における変調部205、シンボル速度設定部217、変調モード設定部218の代わりに複数の変調部205−1〜nとセレクタ216を備え、受信機206における復調部220、シンボル速度設定部222、変調モード設定部223の代わりに複数の復調部220−1〜nとセレクタ213を備えたものである。
変調部205−1〜nはそれぞれ相異なるシンボル速度と変調モードの組み合わせを有し、そのうちの1つの出力が制御回路219の制御によりセレクタ216によって選択される。復調部220−1〜nはそれぞれ相異なるシンボル速度と復調モードの組み合わせを有し、そのうちの1つの出力が制御回路224の制御によりセレクタ217によって選択される。本実施の形態の無線通信機のその他の構成および動作は第2の実施の形態の無線通信機と同じである。
図18は本発明の第5の実施の形態による無線通信機の変形例のブロック図である。本実施の形態による無線通信機は、図13に示された第2の実施の形態の変形例の送信機300における変調部305、シンボル速度設定部317、変調モード設定部318の代わりに複数の変調部305−1〜nとセレクタ316を備え、受信機306における復調部320、シンボル速度設定部322、変調モード設定部323の代わりに複数の復調部320−1〜nとセレクタ317を備えたものである。
変調部305−1〜nはそれぞれ相異なるシンボル速度と変調モードの組み合わせを有し、そのうちの1つの出力が制御回路319の制御によりセレクタ316によって選択される。復調部320−1〜nはそれぞれ相異なるシンボル速度と復調モードの組み合わせを有し、そのうちの1つの出力が制御回路324の制御によりセレクタ315によって選択される。本変形例の無線通信機のその他の構成および動作は第2の実施の形態の変形例の無線通信機と同じである。
[第6の実施の形態]
図19は本発明の第6の実施の形態による無線通信機のブロック図である。本実施の形態による無線通信機は、図14に示された第3の実施の形態による送信機400における変調部405、シンボル速度設定部417、変調モード設定部418の代わりに複数の変調部405−1〜nとセレクタ416を備え、受信機406における復調部420、シンボル速度設定部422、変調モード設定部423の代わりに複数の復調部420−1〜nとセレクタ413を備えたものである。
変調部405−1〜nはそれぞれ相異なるシンボル速度と変調モードの組み合わせを有し、そのうちの1つの出力が制御回路419の制御によりセレクタ416によって選択される。復調部420−1〜nはそれぞれ相異なるシンボル速度と復調モードの組み合わせを有し、そのうちの1つの出力が制御回路424の制御によりセレクタ413によって選択される。本実施の形態の無線通信機のその他の構成および動作は第3の実施の形態の無線通信機と同じである。
以上のように、MIMOシステムにおいて、マルチパス干渉の影響等、信号伝搬の状態を検知し、シンボル速度を変更することにより高速な無線通信を行い、また消費電力を削減する機能を有する無線通信装置を提供することができる。
以上に述べた実施の形態で示したブロック図では、説明上対向する無線通信機がそれぞれ送信機、受信機を備えるものを記載したが、通常、無線通信機は送信機と受信機を両方備える。その場合、送受信機のアンテナは共用器またはスイッチで共通化することが可能である。また、送信信号/受信信号処理回路には、データのシリアル−パラレル変換(またはその逆変換)の機能が備えられているが、この機能には外部にあってもよく、さらにデータがパラレルであればそのものを扱ってもよい。また上記の実施の形態には誤り率測定器を記載しているが、これはハードウェアで構成しなくとも、代わりにソフトウェアなどで誤り率、再送率、または誤り率と相関する指標が検出できればよい。ここで記載した複数の伝搬検知部、即ちレベル検知器、誤り率測定器、チャネル行列出力の機能などは必要に応じて設けられるもので、すべてを具備する必要はない。さらに、ここで具体的な記載はしていないが、通常のMIMO技術で得られる空間多重による伝送容量の増大、時空間符号化による空間ダイバーシチー効果、独立した空間伝送路の情報を利用した送信機間の最適な電力配分などは本実施の形態にも適用することができる。また、すべての実施の形態では、説明のため送受信機がそれぞれ3つまたは4つの場合についてのみ記載したが、この数については複数であればよく、特に限定されるものではない。
100 送信機
101−1〜3 送信回路
102−1〜3 アンテナ
103 電源制御回路
104 送信信号処理回路
105 変調部
105−1〜n 変調部
106 受信機
107−1〜3 受信回路
108−1〜3 アンテナ
109 電源制御回路
110 受信信号処理回路
111 レベル検出器
112 誤り率測定器
113、116 セレクタ
117 シンボル速度設定部
118 変調モード設定部
119 制御回路
120 復調部
122 シンボル速度設定部
123 復調モード設定部
124 制御回路
125 伝搬検知回路
200 送信機
201−1〜3 送信回路
202−1〜3 アンテナ
203 電源制御回路
204 送信信号処理回路
205 変調部
205−1〜n 変調部
206 受信機
207−1〜3 受信回路
208−1〜3 アンテナ
209 電源制御回路
210 受信信号処理回路
211 レベル検出器
212 誤り率測定器
213、216 セレクタ
217 シンボル速度設定部
218 変調モード設定部
219 制御回路
220 復調部
222 シンボル速度設定部
223 復調モード設定部
224 制御回路
225 伝搬検知回路
226 変調部
227 復調部
300 送信機
301−1〜3 送信回路
302−1〜3 アンテナ
303 電源制御回路
304 送信信号処理回路
305 変調部
305−1〜n 変調部
306 受信機
307−1〜3 受信回路
308−1〜3 アンテナ
309 電源制御回路
310 受信信号処理回路
311 レベル検出器
312 誤り率測定器
313、314 スイッチ
315、316 セレクタ
317 シンボル速度設定部
318 変調モード設定部
319 制御回路
320 復調部
320−1〜n 復調部
322 シンボル速度設定部
323 復調モード設定部
324 制御回路
325 伝搬検知回路
326 変調部
327 復調部
400 送信機
401−1〜3 送信回路
402−1〜3 アンテナ
403 電源制御回路
404 送信信号処理回路
405 変調部
405−1〜n 変調部
406 受信機
407−1〜3 受信回路
408−1〜3 アンテナ
409 電源制御回路
410 受信信号処理回路
411 レベル検出器
412 誤り率測定器
413、416 セレクタ
417 シンボル速度設定部
418 変調モード設定部
419 制御回路
420 復調部
420−1〜n 復調部
422 シンボル速度設定部
423 復調モード設定部
424 制御回路
425 伝搬検知回路
426−1〜3 変調部
427−1〜3 復調部
428、429 セレクタ
1001〜1004、2001〜2004、3001〜3004 ステップ
4001〜4004、5001〜5004、6001〜6005 ステップ
7001〜7007、8001〜8009 ステップ

Claims (6)

  1. 送信データを変調して複数の送信信号を生成する変調手段と、前記複数の送信信号に基づいて、電波を発射する複数の送信アンテナの各々に送信RF信号を供給する送信手段と、前記電波を感受した受信アンテナから出力された受信RF信号に基づく受信信号を復調して受信データを生成する復調手段とを有し、
    前記電波の伝搬状態から判定されたマルチパス干渉の強弱に基づいて、前記変調手段及び前記復調手段のシンボル速度を設定するとともに、変復調の多値数を変える無線通信機。
  2. 前記変調手段及び前記復調手段に設定するシンボル速度は複数のシンボル速度から選択的に設定する、請求項1記載の無線通信機。
  3. 前記変調手段及び前記復調手段へのシンボル速度の設定は、他の変調手段及び前記復調手段への切り替えによりなされる、請求項2記載の無線通信機。
  4. 前記マルチパス干渉が弱いと判定した場合には速いシンボル速度を、前記マルチパス干渉が強いと判定した場合には遅いシンボル速度を前記変調手段及び前記復調手段に設定するとともに、速いシンボル速度が設定される場合には変復調の多値数を下げ、遅いシンボル速度が設定される場合には変復調の多値数を上げる、請求項1ないし3のいずれか一に記載の無線通信機。
  5. 前記送信アンテナと前記受信アンテナとは共用される、請求項1ないし請求項4のいずれか一に記載の無線通信機。
  6. 送信データを変調して複数の送信信号を生成する変調手段と、前記複数の送信信号に基づいて、電波を発射する複数の送信アンテナの各々に送信RF信号を供給する送信手段とを有し、
    前記電波の伝搬状態から判定されたマルチパス干渉の強弱に基づいて、前記変調手段のシンボル速度を設定するとともに、変調の多値数を変える無線通信機。

JP2009170183A 2004-03-26 2009-07-21 無線通信機 Active JP5018838B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009170183A JP5018838B2 (ja) 2004-03-26 2009-07-21 無線通信機

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004093549 2004-03-26
JP2004093549 2004-03-26
JP2009170183A JP5018838B2 (ja) 2004-03-26 2009-07-21 無線通信機

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006511423A Division JP4367659B2 (ja) 2004-03-26 2005-03-09 無線通信機

Publications (2)

Publication Number Publication Date
JP2009260993A true JP2009260993A (ja) 2009-11-05
JP5018838B2 JP5018838B2 (ja) 2012-09-05

Family

ID=35056538

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2006511423A Active JP4367659B2 (ja) 2004-03-26 2005-03-09 無線通信機
JP2009170183A Active JP5018838B2 (ja) 2004-03-26 2009-07-21 無線通信機

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2006511423A Active JP4367659B2 (ja) 2004-03-26 2005-03-09 無線通信機

Country Status (3)

Country Link
US (1) US7924799B2 (ja)
JP (2) JP4367659B2 (ja)
WO (1) WO2005093982A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8755450B2 (en) 2011-06-16 2014-06-17 International Business Machines Corporation Adaptation to millimeter-wave communication link using different frequency carriers
JP2017506031A (ja) * 2014-01-17 2017-02-23 クゥアルコム・インコーポレイテッドQualcomm Incorporated トランシーバにおける電力消費低減

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7680469B2 (en) * 2006-07-06 2010-03-16 Hewlett-Packard Development Company, L.P. Electronic device power management system and method
JP4452731B2 (ja) * 2007-08-08 2010-04-21 シャープ株式会社 デジタル復調装置、その制御方法、プログラム、そのプログラムを記録した記録媒体、及び、デジタル受信装置。
JP4754637B2 (ja) * 2009-03-24 2011-08-24 株式会社トヨタIt開発センター 車載無線機
JP5531338B2 (ja) * 2009-03-30 2014-06-25 日本電気通信システム株式会社 干渉検出装置、干渉回避装置、無線通信装置、無線ネットワークシステム、干渉検出方法、干渉回避方法及びプログラム
JP5603647B2 (ja) * 2009-05-13 2014-10-08 キヤノン株式会社 給電装置、給電装置の制御方法及び給電通信システム
JP5316305B2 (ja) * 2009-08-13 2013-10-16 ソニー株式会社 無線伝送システム、無線伝送方法
JP2011039340A (ja) * 2009-08-13 2011-02-24 Sony Corp 撮像装置
US8831073B2 (en) 2009-08-31 2014-09-09 Sony Corporation Wireless transmission system, wireless communication device, and wireless communication method
JP5672684B2 (ja) * 2009-09-29 2015-02-18 ソニー株式会社 無線伝送システム、無線通信装置、無線伝送方法
JP5672683B2 (ja) * 2009-09-29 2015-02-18 ソニー株式会社 無線伝送システム、無線通信装置
JP5446671B2 (ja) * 2009-09-29 2014-03-19 ソニー株式会社 無線伝送システム及び無線通信方法
US8965455B2 (en) * 2010-01-11 2015-02-24 Qualcomm Incorporated Apparatus and method for reducing energy consumption by cellular base stations
CN102870475B (zh) * 2010-03-12 2016-12-07 日升微器件公司 功率高效的通信
US11791925B2 (en) * 2021-11-08 2023-10-17 Huawei Technologies Co., Ltd. Method, apparatus and system for determining multipath interference (MPI) on an optical link

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093650A (ja) * 1996-09-11 1998-04-10 Kokusai Electric Co Ltd 変調パラメータ可変適応変調方式の送受信機
JPH10303849A (ja) * 1997-04-01 1998-11-13 Lucent Technol Inc 動的に増減調節が可能な動作パラメータを有する周波数分割多重化システムとその方法
JP2001103032A (ja) * 1999-07-23 2001-04-13 Nippon Telegr & Teleph Corp <Ntt> Ofdm変復調回路
JP2001168788A (ja) * 1999-12-13 2001-06-22 Toshiba Corp 無線通信システムおよび無線通信装置
JP2002016577A (ja) * 2000-06-28 2002-01-18 Sony Corp 通信方法および通信装置
JP2003087191A (ja) * 2001-08-18 2003-03-20 Samsung Electronics Co Ltd 移動通信システムでのアンテナアレイを利用したデータ送/受信装置及び方法
JP2003318999A (ja) * 2002-04-25 2003-11-07 Matsushita Electric Ind Co Ltd 変調回路、復調回路及び無線装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2736067B2 (ja) 1988-02-29 1998-04-02 株式会社東芝 無線電話装置
US5109390A (en) 1989-11-07 1992-04-28 Qualcomm Incorporated Diversity receiver in a cdma cellular telephone system
US5265119A (en) 1989-11-07 1993-11-23 Qualcomm Incorporated Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
JPH05335975A (ja) 1992-05-29 1993-12-17 Nec Corp 無線送信装置
JPH0730453A (ja) 1993-07-12 1995-01-31 Nippondenso Co Ltd 受信機の飽和防止装置
JPH07154376A (ja) 1993-12-01 1995-06-16 Hitachi Ltd ダイバーシティ受信装置
JPH07162350A (ja) 1993-12-07 1995-06-23 Hitachi Ltd ダイバーシティ受信装置
JP3059058B2 (ja) 1994-09-14 2000-07-04 エヌ・ティ・ティ移動通信網株式会社 周波数ダイバーシチ通信方式
JPH08139632A (ja) 1994-11-15 1996-05-31 Uniden Corp 狭帯域通信装置
JP3598609B2 (ja) 1995-09-20 2004-12-08 双葉電子工業株式会社 スペクトル拡散通信システムにおける受信装置
JPH09219672A (ja) 1996-02-09 1997-08-19 Nippon Telegr & Teleph Corp <Ntt> 無線通信装置
US5861781A (en) * 1997-09-16 1999-01-19 Lucent Technologies Inc. Single sideband double quadrature modulator
JP3407708B2 (ja) 2000-02-25 2003-05-19 セイコーエプソン株式会社 無線通信システム
US6771706B2 (en) * 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
US7688899B2 (en) 2001-05-17 2010-03-30 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
DE10132492A1 (de) * 2001-07-03 2003-01-23 Hertz Inst Heinrich Adaptives Signalverarbeitungsverfahren zur bidirektionalen Funkübertragung in einem MIMO-Kanal und MIMO-System zur Verfahrensdurchführung
US6920504B2 (en) * 2002-05-13 2005-07-19 Qualcomm, Incorporated Method and apparatus for controlling flow of data in a communication system
DE10254384B4 (de) * 2002-11-17 2005-11-17 Siemens Ag Bidirektionales Signalverarbeitungsverfahren für ein MIMO-System mit einer rangadaptiven Anpassung der Datenübertragungsrate
CA2415668A1 (en) * 2003-01-06 2004-07-06 Sirific Wireless Corporation Integrated, configurable multi-mode transmitter
US7295960B2 (en) * 2003-01-22 2007-11-13 Wireless Valley Communications, Inc. System and method for automated placement or configuration of equipment for obtaining desired network performance objectives
WO2004088910A1 (en) * 2003-03-31 2004-10-14 Telecom Italia S.P.A. Method of ofdm transmission_in a millimetre-wave wland and corresponding system
US20050058114A1 (en) * 2003-09-15 2005-03-17 John Santhoff Ultra-wideband communication protocol
US6917821B2 (en) * 2003-09-23 2005-07-12 Qualcomm, Incorporated Successive interference cancellation receiver processing with selection diversity
US7315563B2 (en) * 2003-12-03 2008-01-01 Ut-Battelle Llc Multicarrier orthogonal spread-spectrum (MOSS) data communications
US7230991B2 (en) * 2003-12-10 2007-06-12 Nec Laboratories America, Inc. Scheduling method with tunable throughput maximization and fairness guarantees in resource allocation
KR100546800B1 (ko) * 2003-12-27 2006-01-26 한국전자통신연구원 양방향 위성 통신 시스템에서 적응형 전송 기법을 이용한순방향 강우감쇠 보상 장치 및 그 방법
US7986676B2 (en) * 2004-12-31 2011-07-26 Intel Corporation Techniques to manage communication rates in a wireless network

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093650A (ja) * 1996-09-11 1998-04-10 Kokusai Electric Co Ltd 変調パラメータ可変適応変調方式の送受信機
JPH10303849A (ja) * 1997-04-01 1998-11-13 Lucent Technol Inc 動的に増減調節が可能な動作パラメータを有する周波数分割多重化システムとその方法
JP2001103032A (ja) * 1999-07-23 2001-04-13 Nippon Telegr & Teleph Corp <Ntt> Ofdm変復調回路
JP2001168788A (ja) * 1999-12-13 2001-06-22 Toshiba Corp 無線通信システムおよび無線通信装置
JP2002016577A (ja) * 2000-06-28 2002-01-18 Sony Corp 通信方法および通信装置
JP2003087191A (ja) * 2001-08-18 2003-03-20 Samsung Electronics Co Ltd 移動通信システムでのアンテナアレイを利用したデータ送/受信装置及び方法
JP2003318999A (ja) * 2002-04-25 2003-11-07 Matsushita Electric Ind Co Ltd 変調回路、復調回路及び無線装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8755450B2 (en) 2011-06-16 2014-06-17 International Business Machines Corporation Adaptation to millimeter-wave communication link using different frequency carriers
US8811515B2 (en) 2011-06-16 2014-08-19 International Business Machines Corporation Adaptation to millimeter-wave communication link using different frequency carriers
JP2017506031A (ja) * 2014-01-17 2017-02-23 クゥアルコム・インコーポレイテッドQualcomm Incorporated トランシーバにおける電力消費低減

Also Published As

Publication number Publication date
JP4367659B2 (ja) 2009-11-18
JPWO2005093982A1 (ja) 2008-02-14
JP5018838B2 (ja) 2012-09-05
WO2005093982A1 (ja) 2005-10-06
US20070133493A1 (en) 2007-06-14
US7924799B2 (en) 2011-04-12

Similar Documents

Publication Publication Date Title
JP5018838B2 (ja) 無線通信機
EP2422542B1 (en) Method and apparatus for determining channel quality index in multiple user-mimo communication networks
US8144797B2 (en) CQI table for wireless MIMO networks
CN102946265B (zh) 宽带无线网络中用于切换天线和信道分配的方法和系统
EP1841092B1 (en) Wireless communication method and system
US20080117961A1 (en) Method and apparatus of adaptively allocating transmission power for beamforming combined with orthogonal space-time block codes based on symbol error rate in distributed wireless communication system
JP2004515176A (ja) 無線通信システム
WO1999052229A1 (fr) Appareil pour station de base radio, et procede de radiocommunications
WO2010126784A1 (en) Method for multi-antenna uplink transmission
US20120320898A1 (en) Method of selecting antennas and transmitting data in multi-input multi-output wireless local area network environments
JP2003204317A (ja) 無線送信装置および無線通信方法
JP4133531B2 (ja) 無線通信装置及び無線通信システム
US8712341B2 (en) Method and apparatus for transmitting and receiving a signal in a communication system
US11764490B2 (en) Operating a modal antenna system for point to multipoint communications
US8503565B2 (en) Multi-antenna communication method and system thereof
KR101231912B1 (ko) 빔 포밍 벡터의 반복적 갱신 방법 및 이를 지원하는 송신기
CA2722869A1 (en) Methods and systems for hybrid mimo schemes in ofdm/a systems
KR100866615B1 (ko) 통신 시스템에서 신호 송수신 방법 및 장치
US8711965B2 (en) Method and apparatus for optimizing transmission diversity
KR100710891B1 (ko) 차세대 휴대 인터넷에서의 적응형 다중 송수신 방법 및 그장치
Wang et al. BER minimization for cognitive radio systems with difference antenna selection
CN109479222B (zh) 确定第一和第二节点之间的关系

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5018838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3