JP2009260382A - Wiring substrate - Google Patents

Wiring substrate Download PDF

Info

Publication number
JP2009260382A
JP2009260382A JP2009180541A JP2009180541A JP2009260382A JP 2009260382 A JP2009260382 A JP 2009260382A JP 2009180541 A JP2009180541 A JP 2009180541A JP 2009180541 A JP2009180541 A JP 2009180541A JP 2009260382 A JP2009260382 A JP 2009260382A
Authority
JP
Japan
Prior art keywords
inorganic powder
hole
conductor
wiring board
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009180541A
Other languages
Japanese (ja)
Other versions
JP5127790B2 (en
Inventor
Katsura Hayashi
桂 林
Hidetoshi Yugawa
英敏 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009180541A priority Critical patent/JP5127790B2/en
Publication of JP2009260382A publication Critical patent/JP2009260382A/en
Application granted granted Critical
Publication of JP5127790B2 publication Critical patent/JP5127790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring substrate excellent in reliability by raising adhesiveness between a through-hole formed in an insulating substrate and a through conductor provided in the through-hole in the wiring substrate constituted by being equipped with the insulating substrate. <P>SOLUTION: In the wiring substrate 17 constituted by being equipped with: the insulating substrate 1; the through-hole 3 formed on the insulating substrate 1; and the through conductor 5 consisting of a first metal phase 5 formed in the through-hole 3, it is characterized that an inner wall of the through-hole 3 and the through conductor 5 are connected with each other via an intermediate region 6 constituted by containing a second metal layer 6a and inorganic powder 6b. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、有機材料系の配線基板、特に、大規模半導体(LSI)を実装するための配線基板に関し、特に貫通孔のピッチが狭く、高密度に貫通孔を形成した配線基板に関するものである。   The present invention relates to an organic material-based wiring board, and more particularly to a wiring board for mounting a large-scale semiconductor (LSI), and more particularly to a wiring board in which through-holes are narrow and the through-holes are formed at high density. .

LSIは微細配線加工技術の進歩と動作周波数の増加により、大量の情報を短時間で処理することが可能になっている。半導体に大量の情報とそれを処理するための電力を供給するのがI/Oと呼ばれる端子である。このI/OはLSI技術の進歩と共に近年急激な増加が見込まれている。一方、従来、半導体素子等の電子部品を搭載するための有機材料系の配線基板は、例えばガラス−エポキシ板の上面から下面にかけて貫通する貫通孔を形成し、この貫通孔にめっきを施して上下両面の配線導体同士を接続したものであった。   LSIs can process a large amount of information in a short time due to advances in fine wiring processing technology and an increase in operating frequency. A terminal called I / O supplies a large amount of information and power for processing it to a semiconductor. This I / O is expected to increase rapidly in recent years as LSI technology advances. On the other hand, conventionally, an organic material-based wiring board for mounting electronic components such as semiconductor elements has a through-hole penetrating from the upper surface to the lower surface of a glass-epoxy plate, for example. The wiring conductors on both sides were connected to each other.

このような配線基板は、ガラス−エポキシ板からなる絶縁基体の上下両面に銅箔が被着された両面銅張板を準備するとともに、この両面銅張板を上下に貫通する貫通孔をドリル加工により穿孔し、次に前記上下両面の銅箔上および貫通孔内面に銅からなるめっき層を無電解めっき法および電解めっき法により析出させて前記上下両面の銅箔の上にめっき層を被着するとともに貫通孔の内面にめっき層からなる貫通導体を形成し、次に、前記絶縁基体の上下両面に被着された銅箔およびその銅箔に被着しためっき層をフォトリソグラフィー技術を採用して部分的にエッチングして配線導体を形成することによって製作されている。さらに、より微細な配線を形成するために、ビルドアップ法と呼ばれ一般に知られている方法でビルドアップ層を形成することも行われている。   For such a wiring board, a double-sided copper-clad plate with copper foils attached to both upper and lower surfaces of an insulating base made of glass-epoxy plate is prepared, and a through-hole penetrating vertically through the double-sided copper-clad plate is drilled. Then, a plating layer made of copper is deposited on the upper and lower copper foils and on the inner surface of the through hole by electroless plating and electrolytic plating, and the plating layers are deposited on the upper and lower copper foils. In addition, a through conductor made of a plating layer is formed on the inner surface of the through hole, and then a photolithography technique is applied to the copper foil deposited on the upper and lower surfaces of the insulating base and the plating layer deposited on the copper foil. It is manufactured by partially etching to form a wiring conductor. Furthermore, in order to form finer wiring, a buildup layer is also formed by a generally known method called a buildup method.

ところで、LSIのI/O数の増加に伴い、このような有機材料系の多層配線基板においては、貫通導体の間隔(貫通導体のピッチ)を狭くすることによって、貫通導体の密度を高くすることが求められている。   By the way, as the number of I / Os of LSI increases, in such an organic material-based multilayer wiring board, the density of the through conductors is increased by narrowing the interval between the through conductors (pitch of the through conductors). Is required.

この理由は、貫通導体の密度が高くなければ、I/O端子と接続するための配線の密度を上げることができなくなり、その結果I/O端子の密度は、配線可能な密度まで下げざるを得ないためである。   This is because if the density of the through conductors is not high, the density of the wiring for connecting to the I / O terminal cannot be increased, and as a result, the density of the I / O terminal must be lowered to a density capable of wiring. This is because it cannot be obtained.

また、貫通導体の密度が高くなければ、LSIの端子からの配線を大きく外部に引き出してからマザーボード側に配線する必要が生じ、配線長を短くすることができなくなる。配線長を短くすることは、GHzレベルに達する信号の伝送による劣化を防ぐためには、不可欠な要素である。   Further, if the density of the through conductors is not high, it is necessary to draw the wiring from the LSI terminal to the outside and then to the mother board side, and the wiring length cannot be shortened. Shortening the wiring length is an indispensable element for preventing deterioration due to transmission of a signal reaching the GHz level.

この様な理由で貫通導体の密度を高くする必要が増大しているが、貫通導体の間隔を狭くすると、貫通導体間の電気的絶縁を確保することが困難になっている。絶縁を確保するためには、貫通孔の直径を極力細くする必要があり、現在、75〜130μm程度の小さなものとする試みがなされているが、従来のドリル加工では困難な問題もあり、炭酸ガスレーザによる穿孔方法が検討されている(特許文献1、2、3参照)。   For this reason, it is necessary to increase the density of the through conductors. However, if the interval between the through conductors is narrowed, it is difficult to ensure electrical insulation between the through conductors. In order to ensure insulation, it is necessary to reduce the diameter of the through hole as much as possible. At present, attempts have been made to make the diameter of the through hole as small as about 75 to 130 μm. A drilling method using a gas laser has been studied (see Patent Documents 1, 2, and 3).

特開平9−051172号公報JP-A-9-05172 特開平8−323488号公報JP-A-8-323488 特開平6−334301号公報JP-A-6-334301

しかしながら、特許文献1、2、3の方法を用いた場合でも、貫通導体の密度を高くするために貫通導体の間隔(ピッチ)を狭くすると貫通導体間の電気的絶縁性が劣化するという問題があった。   However, even when the methods of Patent Documents 1, 2, and 3 are used, there is a problem that the electrical insulation between the through conductors deteriorates if the interval (pitch) between the through conductors is narrowed in order to increase the density of the through conductors. there were.

この原因は、貫通導体として形成した銅めっきと絶縁基体とが、十分な接続信頼性を有しておらず、そのための貫通導体と絶縁基体との間に隙間が発生しやすくなるためである。   This is because the copper plating formed as the through conductor and the insulating base do not have sufficient connection reliability, and a gap is easily generated between the through conductor and the insulating base.

この部分に隙間ができると長時間一般の室内に放置された場合、貫通導体と絶縁基体との間の隙間に水分が凝縮され、水分に起因する電気化学的なショートが発生する。また、この隙間に製造工程で用いる各種薬液が残留する場合があり、この薬液残留は、少量であったとしても、たとえば塩素などのイオン成分であるため、容易に電気化学的な腐食の起点となり、絶縁性の劣化を促進していた。   If there is a gap in this part, when left in a general room for a long time, moisture is condensed in the gap between the through conductor and the insulating base, and an electrochemical short circuit due to the moisture occurs. In addition, various chemicals used in the manufacturing process may remain in this gap, and even if this chemical solution remains in a small amount, it is an ionic component such as chlorine, so that it easily becomes a starting point for electrochemical corrosion. It was promoting the deterioration of insulation.

本発明は、かかる従来の問題点に鑑み案出されたものであり、その目的は、貫通導体を形成する銅メッキと絶縁基体との密着力を向上させることにより、貫通導体と絶縁基体との隙間をなくし、絶縁性低下を生じない信頼性に優れた配線基板を提供し、貫通導体のピッチを狭くすることを可能にし、これによって、LSIの小型化や高周波領域での電気特性の改善を可能にすることにある。   The present invention has been devised in view of such conventional problems, and an object of the present invention is to improve the adhesion between the copper plating forming the through conductor and the insulating base, thereby improving the contact between the through conductor and the insulating base. Providing a highly reliable wiring board that eliminates gaps and does not cause a decrease in insulation, and enables the pitch of through conductors to be reduced, thereby reducing LSI size and improving electrical characteristics in the high-frequency region. There is in making it possible.

本発明の一形態に係る配線基板は、絶縁基体と、該絶縁基体に形成された貫通孔と、該貫通孔に形成された第一の金属相からなる貫通導体と、を具備してなる配線基板において、前記貫通孔の内壁と前記貫通導体とが、第二の金属相と無機粉末とを含有した中間領域を介して接続されてなることを特徴とする。   A wiring board according to an aspect of the present invention includes an insulating base, a through hole formed in the insulating base, and a through conductor made of a first metal phase formed in the through hole. In the substrate, the inner wall of the through hole and the through conductor are connected via an intermediate region containing a second metal phase and an inorganic powder.

本発明の一形態に係る配線基板は、絶縁層と、該絶縁層に形成された貫通孔と、該貫通孔に形成された第一の金属相からなる貫通導体と、を具備してなる配線基板において、前記貫通孔の内壁と前記貫通導体とが、第二の金属相と無機粉末とを含有した中間領域を介して接続されてなることを特徴とする。   A wiring board according to an embodiment of the present invention includes an insulating layer, a through hole formed in the insulating layer, and a through conductor made of a first metal phase formed in the through hole. In the substrate, the inner wall of the through hole and the through conductor are connected via an intermediate region containing a second metal phase and an inorganic powder.

本発明の配線基板によれば、第二の金属相と無機粉末とを含有する中間領域、即ち、貫通導体とも、貫通孔とも接続親和性の高い中間領域を介して、貫通孔の内壁と、貫通導体とを、接続することで、貫通導体と貫通孔との間に隙間が生じることがなくなり、配線基板の信頼性が向上する。   According to the wiring board of the present invention, the intermediate region containing the second metal phase and the inorganic powder, i.e., through the intermediate region of the through-conductor and the through-hole and the through-hole both have high connection affinity, By connecting the through conductor, there is no gap between the through conductor and the through hole, and the reliability of the wiring board is improved.

本発明の配線基板の一形態を説明する断面図である。It is sectional drawing explaining one form of the wiring board of this invention. 本発明の配線基板の要部拡大断面図である。It is a principal part expanded sectional view of the wiring board of this invention. 本発明の配線基板の他の形態の要部拡大断面図である。It is a principal part expanded sectional view of the other form of the wiring board of this invention. 本発明の配線基板の製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the wiring board of this invention. 本発明の配線基板の他の形態を説明する断面図である。It is sectional drawing explaining the other form of the wiring board of this invention.

本発明の配線基板は、例えば、図1に示すように、ガラスクロスと第一の樹脂と第一の無機粉末とを含有してなる絶縁基体1と、絶縁基体1を貫通して形成された貫通孔3と、貫通孔3内に形成された貫通導体5と、貫通孔3の内壁と貫通導体5とを接続する中間層6と、絶縁基体1の両面に形成されたコア配線層7と、絶縁基体1の主面に形成された絶縁層9と、絶縁層9を貫通して形成された貫通孔11と、貫通孔11内に形成されたビア導体13と、絶縁層9の主面に形成された配線導体層15とで構成されている。   For example, as shown in FIG. 1, the wiring board of the present invention is formed by penetrating an insulating substrate 1 containing a glass cloth, a first resin, and a first inorganic powder, and the insulating substrate 1. A through hole 3, a through conductor 5 formed in the through hole 3, an intermediate layer 6 connecting the inner wall of the through hole 3 and the through conductor 5, and a core wiring layer 7 formed on both surfaces of the insulating substrate 1. The insulating layer 9 formed on the main surface of the insulating substrate 1, the through hole 11 formed through the insulating layer 9, the via conductor 13 formed in the through hole 11, and the main surface of the insulating layer 9 The wiring conductor layer 15 is formed on the wiring conductor layer 15.

このような配線基板において、絶縁基体1、絶縁層9は、それぞれを挟持するように配置されたコア配線層7、配線導体層15並びに、それぞれを貫通して設けられた貫通導体5、ビア導体13と、を支持し、電気的に絶縁する機能を有している。   In such a wiring board, the insulating substrate 1 and the insulating layer 9 are composed of the core wiring layer 7 and the wiring conductor layer 15 disposed so as to sandwich the insulating substrate 1 and the insulating layer 9, and the through conductor 5 and the via conductor provided so as to penetrate each of them. 13 and has a function of electrically insulating.

そして、コア配線層7、配線導体層15、貫通導体5、ビア導体13は、それぞれが任意に接続され、配線回路を形成している。   The core wiring layer 7, the wiring conductor layer 15, the through conductor 5, and the via conductor 13 are arbitrarily connected to each other to form a wiring circuit.

本発明の配線基板17においては、貫通孔3の内壁と貫通導体5との間に、少なくとも第二の金属相と第二の無機粉末とを含有してなる中間層6を形成することが、重要であり、従来、剥離しやすく、配線基板17の信頼性を低下させる大きな要因の一つであった貫通孔3の内壁と貫通導体5との間に、中間層6を形成することで、両者の剥離を効果的に抑制し、配線基板の信頼性を格段に向上させるものである。   In the wiring board 17 of the present invention, forming the intermediate layer 6 containing at least the second metal phase and the second inorganic powder between the inner wall of the through hole 3 and the through conductor 5, By forming the intermediate layer 6 between the inner wall of the through hole 3 and the through conductor 5, which has been important and has been conventionally easy to peel off and is one of the major factors that reduce the reliability of the wiring board 17, The separation of both is effectively suppressed, and the reliability of the wiring board is remarkably improved.

この中間層6は、例えば、図2に示すように、少なくとも第二の金属相6aと第二の無機粉末6bとからなっている。この第二の金属相6aは貫通導体1を構成している第一の金属相5と同様のものであり、また、第二の無機粉末6bは絶縁基体1を構成している第一の無機粉末1bに由来するもので、第二の金属相6aのマトリックス中に第二の無機粉末6bが分散しているが、言い換えると、貫通導体5を形成する第一の金属層5に第一の無機粉末1bが分散した形態となっている。そのため、中間層6は、絶縁基体1並びに貫通導体5との親和性に優れ、従来、剥離の発生しやすかった絶縁基体1と貫通導体5とを強固に接合している。また、中間層6の熱膨張係数が、絶縁基体1と貫通導体5との間になった場合には、絶縁基体1と貫通導体5の間に発生する熱応力を緩和する機能も発現し、さらに配線基板17の信頼性を向上させることができる。   For example, as shown in FIG. 2, the intermediate layer 6 includes at least a second metal phase 6a and a second inorganic powder 6b. The second metal phase 6 a is the same as the first metal phase 5 constituting the through conductor 1, and the second inorganic powder 6 b is the first inorganic phase constituting the insulating substrate 1. It is derived from the powder 1b, and the second inorganic powder 6b is dispersed in the matrix of the second metal phase 6a. In other words, the first metal layer 5 forming the through conductor 5 has the first metal layer 5 formed therein. The inorganic powder 1b is dispersed. Therefore, the intermediate layer 6 is excellent in affinity with the insulating base 1 and the through conductor 5, and firmly bonds the insulating base 1 and the through conductor 5, which have conventionally been easily peeled off. In addition, when the thermal expansion coefficient of the intermediate layer 6 is between the insulating base 1 and the through conductor 5, a function to relieve the thermal stress generated between the insulating base 1 and the through conductor 5 is also expressed. Furthermore, the reliability of the wiring board 17 can be improved.

なお、図2では、中間層6の第二の無機粉末6bは孤立しているように描写しているが、第二の無機粉末6b同士はそれぞれ、接触していてもよいことは勿論であり、さらに、構造物としての強度の点や後述する製造上の理由から第二の無機粉末6b同士が、その接触点においてネックを形成し、3次元の網目状の構造を有することが最も望ましい。   In FIG. 2, the second inorganic powder 6b of the intermediate layer 6 is depicted as being isolated, but it is needless to say that the second inorganic powder 6b may be in contact with each other. Furthermore, it is most desirable that the second inorganic powders 6b form a neck at the contact point and have a three-dimensional network structure from the viewpoint of strength as a structure and manufacturing reasons described later.

そして、第一の無機粉末1b、並びに第二の無機粉末6bとしては、SiO、Alなどの一般的な結晶質の無機粉末や、非晶質SiO、Eガラス、Sガラスなどの非結晶の無機粉末を用いることができる。なお、無機粉末においては、誘電率などの電気的な特性に優れた結晶質あるいは非晶質のSiOが好適に用いられる。 The first inorganic powder 1b, and as the second inorganic powder 6b, and inorganic powders of a general crystalline, such as SiO 2, Al 2 O 3, amorphous SiO 2, E glass, S glass, etc. Amorphous inorganic powder can be used. In the inorganic powder, crystalline or amorphous SiO 2 excellent in electrical characteristics such as dielectric constant is preferably used.

また、第二の無機粉末6b同士のネックを形成するためには、融点の低い非晶質の無機粉末を用いることが望ましく、さらに、電気特性に優れ、低熱膨張の非晶質SiOが最も好適に用いられる。また、SiOを主成分とし、ガラス化するためにBなどを少量含有するガラスも同様に用いることができる。 In order to form a neck between the second inorganic powders 6b, it is desirable to use an amorphous inorganic powder having a low melting point, and amorphous SiO 2 having excellent electrical characteristics and low thermal expansion is the most desirable. Preferably used. Further, glass containing SiO 2 as a main component and containing a small amount of B 2 O 3 or the like for vitrification can be used as well.

この第二の無機粉末6bの平均粒径は、3μm以下とすることで、第二の無機粉末6bと第二の金属相6aとの熱膨張係数に差がある場合でも、第二の無機粉末6bと第二の金属相6aとの間に過剰な熱応力が集中することを抑制できるため、貫通導体5が断線するなどの不具合を効果的に防止することができる。また、2μm以下、さらに、1μm以下とすることで、上記の効果に加え、同じ量の第二の無機粉末6bを用いた場合には第二の無機粉末6bの数が増えることから、第二の無機粉末6b同士の接触点が増加し、第二の無機粉末6b同士がネックを形成して強固な構造体となるため、中間層6の強度も増し、配線基板17の信頼性を向上させることができる。   By setting the average particle size of the second inorganic powder 6b to 3 μm or less, even if there is a difference in the thermal expansion coefficient between the second inorganic powder 6b and the second metal phase 6a, the second inorganic powder 6b Since excessive thermal stress can be prevented from concentrating between 6b and the second metal phase 6a, problems such as breakage of the through conductor 5 can be effectively prevented. In addition to the above effects, the number of the second inorganic powders 6b increases when the same amount of the second inorganic powder 6b is used. The contact points between the inorganic powders 6b increase and the second inorganic powders 6b form a neck to form a strong structure, so that the strength of the intermediate layer 6 also increases and the reliability of the wiring board 17 is improved. be able to.

また、中間層6を構成する第二の金属相6aには、貫通導体5を構成する第一の金属相5を用いることにより、中間層6と貫通導体5との接合強度を向上させることができる。また、中間層6の第二の金属相6aも配線基板17の回路の一部であることから、回路の抵抗を小さくするために低抵抗の銅や銀により形成することが望ましい。   Further, by using the first metal phase 5 constituting the through conductor 5 for the second metal phase 6a constituting the intermediate layer 6, the bonding strength between the intermediate layer 6 and the through conductor 5 can be improved. it can. Further, since the second metal phase 6a of the intermediate layer 6 is also a part of the circuit of the wiring board 17, it is desirable to form it with low resistance copper or silver in order to reduce the resistance of the circuit.

また、図3に示すように、中間層6には、第二の金属相6a、第二の無機粉末6bに加えて、第二の樹脂6cを含有させることで、中間層6と絶縁基体1との親和性をさらに向上させることができる。なお、第二の樹脂6cは、第一の樹脂1aと同様のものを用いることが中間層6と絶縁基体1との親和性を向上させる点で望ましい。   As shown in FIG. 3, the intermediate layer 6 contains the second resin 6c in addition to the second metal phase 6a and the second inorganic powder 6b. The affinity with can be further improved. The second resin 6c is preferably the same as the first resin 1a in terms of improving the affinity between the intermediate layer 6 and the insulating substrate 1.

また、第二の樹脂6cは、絶縁基体1側により多く存在することが望ましい。従って、中間層6においては、第二の金属相6aは、絶縁基体1側では徐々に存在量を減少させることが特に望ましい。   Further, it is desirable that the second resin 6c is present more on the insulating base 1 side. Accordingly, in the intermediate layer 6, it is particularly desirable that the second metal phase 6 a is gradually reduced in amount on the insulating base 1 side.

このような構造を有する中間層6は、その厚みを3μm以上とすることで、強固に貫通導体5と絶縁基体1とを接続することができ、配線基板17の信頼性を向上させることができる。さらに、中間層6の厚みを5μm以上、特に、10μm以上とすることで、格段に信頼性に優れた配線基板17とすることができる。   By setting the thickness of the intermediate layer 6 having such a structure to 3 μm or more, the through conductor 5 and the insulating base 1 can be firmly connected, and the reliability of the wiring board 17 can be improved. . Furthermore, by setting the thickness of the intermediate layer 6 to 5 μm or more, particularly 10 μm or more, the wiring board 17 having remarkably excellent reliability can be obtained.

また、中間層6の厚みを30μm以下とすることで、必要以上に貫通孔3を大きくする必要がなくなり、配線密度を高くすることができる。また、貫通導体5の大きさを必要以上に小さくする必要もなくなるため、貫通導体5の電気的抵抗を小さくすることができ、配線基板17の特性を向上させることができる。これらの点から、さらに、中間層6の厚みは、20μm以下、特に、15μm以下とすることが望ましい。   Further, by setting the thickness of the intermediate layer 6 to 30 μm or less, it is not necessary to make the through holes 3 larger than necessary, and the wiring density can be increased. In addition, since it is not necessary to reduce the size of the through conductor 5 more than necessary, the electrical resistance of the through conductor 5 can be reduced, and the characteristics of the wiring board 17 can be improved. From these points, it is further desirable that the thickness of the intermediate layer 6 is 20 μm or less, particularly 15 μm or less.

以下に本発明の配線基板17の製造方法について詳細に説明する。   The manufacturing method of the wiring board 17 of the present invention will be described in detail below.

まず、図4(a)に示すように、例えば、ガラスクロス(図示せず)と第一の樹脂1aと第一の無機粉末1bとを含有する絶縁基体1を準備する。この絶縁基体1は、ガラスクロスに例えば、第一の無機粉末1bと、エポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂、イミド系樹脂等の熱硬化性樹脂との混合樹脂である第一の樹脂1aを含浸させた厚みが0.05〜2.0mmのものである。   First, as shown to Fig.4 (a), the insulating base | substrate 1 containing a glass cloth (not shown), the 1st resin 1a, and the 1st inorganic powder 1b is prepared, for example. This insulating substrate 1 is a first resin that is a mixed resin of, for example, a first inorganic powder 1b and a thermosetting resin such as an epoxy resin, a bismaleimide triazine resin / polyphenylene ether resin, or an imide resin on a glass cloth. The thickness impregnated with 1a is 0.05 to 2.0 mm.

なお、絶縁基体1には、第一の無機粉末1bを20体積%以上、さらに、40体積%以上、特に、50体積%以上含有させることが、中間層6において、無機粉末6a同士のネ
ックを形成させるために望ましい。また、無機粉末6a同士が結合して形成する3次元の網目状構造体の強度を向上させるためには、さらに、55体積%以上含有させることが望ましい。
The insulating base 1 contains the first inorganic powder 1b in an amount of 20% by volume or more, further 40% by volume or more, particularly 50% by volume or more. Desirable to form. Further, in order to improve the strength of the three-dimensional network structure formed by combining the inorganic powders 6a, it is desirable to further include 55% by volume or more.

また、第一の無機粉末1bとしては、SiO、Alなどの一般的な結晶質の無機粉末や、非晶質SiO、Eガラス、Sガラスなどの非晶質の無機粉末を用いることができる。結晶質の無機粉末においては、誘電率などの電気的な特性に優れたSiOが好適に用いられる。また、フォルステライトやスピネルなどの複合酸化物を用いてもよいことはいうまでもない。なお、図中においては第一の無機粉末1bは球形として記載されており、勿論、球形であることが成形性の点などから望ましいが、例えば、破砕して作製された非球状の第一の無機粉末1bを用いてもかまわない。また、第一の無機粉末1bの混合は均一であることが望ましいが、巨視的に見て均一であれば良く、微視的に不均一な部分があっても問題は無い。このように微視的に不均一な場合であっても、中間層6を形成することができ、絶縁基体1と貫通導体5との密着を強化することができる。 Further, as the first inorganic powder 1b, general crystalline inorganic powder such as SiO 2 and Al 2 O 3 and amorphous inorganic powder such as amorphous SiO 2 , E glass, and S glass are used. Can be used. In the crystalline inorganic powder, SiO 2 excellent in electrical characteristics such as dielectric constant is preferably used. Needless to say, complex oxides such as forsterite and spinel may be used. In the figure, the first inorganic powder 1b is described as a spherical shape. Of course, a spherical shape is desirable from the viewpoint of moldability. For example, the first non-spherical first powder produced by crushing is used. Inorganic powder 1b may be used. Further, the mixing of the first inorganic powder 1b is desirably uniform, but it may be uniform when viewed macroscopically, and there is no problem even if there is a microscopically nonuniform portion. Even in such a microscopically non-uniform case, the intermediate layer 6 can be formed, and the adhesion between the insulating substrate 1 and the through conductor 5 can be enhanced.

次に、図4(b)に示すように、絶縁基体1にレーザ光を用いて、貫通孔3を形成する。このとき、貫通孔3の中心部においては、絶縁基体1の第一の樹脂1aも、第一の無機粉末1bも、完全に除去されてしまうが、貫通孔3の壁面から貫通孔3の中心に向けて、わずかではあるが第一の無機粉末1bに由来する第二の無機粉末6bが除去されずに、貫通孔3の壁面から露出した状態で残存し、中間層前駆体7を形成している。   Next, as shown in FIG. 4B, the through hole 3 is formed in the insulating substrate 1 using laser light. At this time, although the first resin 1a and the first inorganic powder 1b of the insulating base 1 are completely removed at the central portion of the through hole 3, the center of the through hole 3 from the wall surface of the through hole 3 is removed. The second inorganic powder 6b derived from the first inorganic powder 1b is not removed but remains exposed from the wall surface of the through-hole 3 to form an intermediate layer precursor 7. ing.

中間層前駆体7を形成するには、樹脂1aを除去し、第一の無機粉末1bに由来する第二の無機粉末6bを残存させることが必要である。本発明の配線基板17の製造方法によれば、貫通孔3の形成に際して、特に、後に中間層6が形成される貫通孔3の内側の部分において、熱により樹脂1aを除去することが重要である。   In order to form the intermediate layer precursor 7, it is necessary to remove the resin 1a and leave the second inorganic powder 6b derived from the first inorganic powder 1b. According to the method for manufacturing the wiring board 17 of the present invention, when the through hole 3 is formed, it is important to remove the resin 1a by heat particularly in a portion inside the through hole 3 where the intermediate layer 6 is to be formed later. is there.

例えば、レーザ光を用いる場合には、絶縁基体1から熱により樹脂1aと無機粉末1bとを除去して、貫通孔3を形成するのであるが、後に、中間層6となる貫通孔3の壁面付近において、樹脂1aのみを除去できる程度に照射間隔を調節したり、照射エネルギーを弱くするなどして適宜調整することで、図4(b)に示すように、貫通孔3の壁面に無機粉末6aと空隙6dとから形成された中間層前駆体7を容易に形成できるのである。   For example, when laser light is used, the resin 1a and the inorganic powder 1b are removed from the insulating substrate 1 by heat to form the through holes 3. Later, the wall surfaces of the through holes 3 to be the intermediate layer 6 are formed. In the vicinity, by adjusting the irradiation interval to such an extent that only the resin 1a can be removed, or by adjusting the irradiation energy as appropriate, the inorganic powder is formed on the wall surface of the through hole 3 as shown in FIG. The intermediate layer precursor 7 formed from 6a and the gap 6d can be easily formed.

なお、絶縁基体1を貫通して直径が75〜130μmの貫通孔3を形成することが望ましく、貫通孔3の孔径を75〜130μmと微細にした場合には、貫通孔3の大きさが小さくなるため、貫通導体5を高密度で配置することができ、極めて高密度な配線を有する配線基板を得ることができる。   In addition, it is desirable to form the through hole 3 having a diameter of 75 to 130 μm through the insulating substrate 1. When the diameter of the through hole 3 is made as fine as 75 to 130 μm, the size of the through hole 3 is small. Therefore, the through conductors 5 can be arranged with high density, and a wiring board having extremely high density wiring can be obtained.

なお、絶縁基体1および絶縁基体1の主面に形成された金属相箔(図示せず)に貫通孔3を形成するには、金属相箔の主面に例えばレーザ光のエネルギーを良好に吸収する黒色もしくは黒色に近い色を有する樹脂からなるレーザ加工用シートを貼着し、このレーザ加工用シートの上から炭酸ガスレーザ光を照射する方法、もしくは金属相箔の主面を算術平均粗さRaで0.2〜2μmの範囲で表面を粗化した後、その金属相箔に酸化雰囲気150℃で30分程度の熱処理を施し、その表面をレーザ光のエネルギーを良好に吸収する黒色もしくは茶色等の黒色に近い色を有する色として炭酸ガスレーザ光を照射する方法のどちらかの方法を使用し、6〜30mJの出力の炭酸ガスレーザ光を40〜240μ秒のパルス幅で所定の位置に照射して貫通孔3を穿孔する方法が採用される。   In order to form the through holes 3 in the insulating base 1 and the metal phase foil (not shown) formed on the main surface of the insulating base 1, for example, the main surface of the metal phase foil absorbs laser light energy well. A method of applying a laser processing sheet made of a resin having a black color or a color close to black and irradiating a carbon dioxide laser beam on the laser processing sheet, or an arithmetic average roughness Ra of the main surface of the metal phase foil After the surface is roughened in the range of 0.2 to 2 μm, the metal phase foil is heat-treated at an oxidizing atmosphere of 150 ° C. for about 30 minutes, and the surface absorbs the laser beam energy well, such as black or brown Either one of the methods of irradiating carbon dioxide laser light as a color having a color close to black is used, and a predetermined position is irradiated with carbon dioxide laser light having an output of 6 to 30 mJ with a pulse width of 40 to 240 μsec. Penetrating A method of drilling the through hole 3 is employed.

このとき、炭酸ガスレーザ光の出力を6mJ以上とすることで、貫通孔3を十分な大きさに穿孔することが可能となる。また、30mJ以下とすることで絶縁基体1における貫通孔3の孔径を精度よく形成することができる。したがって、照射する炭酸ガスレーザ光
は、その出力が6〜30mJでパルス幅が40〜240μ秒の範囲ですることが好ましい。
At this time, by setting the output of the carbon dioxide laser beam to 6 mJ or more, the through hole 3 can be drilled to a sufficient size. Moreover, the hole diameter of the through-hole 3 in the insulating base | substrate 1 can be accurately formed by setting it as 30 mJ or less. Therefore, it is preferable that the carbon dioxide laser light to be irradiated has an output of 6 to 30 mJ and a pulse width of 40 to 240 μsec.

なお、レーザ光の最適な出力は絶縁基体1に含まれる第一の無機粉末1bの含有量や特性によって変化することは言うまでもない。例えば、修飾酸化物を含有するガラスなどの場合には、出力は小さい方が望ましい。同じ非晶質の粉末であっても、修飾酸化物を含まない、あるいはほとんど含まない無機粉末の場合には、若干、出力を大きくする必要があり、結晶質の無機粉末の場合にはさらに大きな出力が必要となる。   Needless to say, the optimum output of the laser light varies depending on the content and characteristics of the first inorganic powder 1b contained in the insulating substrate 1. For example, in the case of a glass containing a modified oxide, a smaller output is desirable. Even in the case of the same amorphous powder, it is necessary to slightly increase the output in the case of an inorganic powder that contains no or almost no modified oxide, and in the case of a crystalline inorganic powder, it is even larger. Output is required.

また、無機粉末の粒径や表面状態も、ネックの形成に影響を与えることは言うまでもない。   Needless to say, the particle size and surface state of the inorganic powder also affect the formation of the neck.

なお、貫通孔3を上下両面側に向けて拡径する形状とするには、レーザ加工により穿孔する場合、レーザ光の1パルス当たりのエネルギーやショット数を調整すればよい。   In addition, in order to make the through-hole 3 have a shape that expands toward both the upper and lower surfaces, when drilling by laser processing, the energy per laser beam and the number of shots may be adjusted.

また、レーザ加工では炭酸ガスレーザがコスト上優位であるが、より微細加工が可能なYAGレーザを用いることも可能である。また、YAGレーザの3倍以上の高調波を用いたレーザは一般に加工時の熱影響が少ないと言われているが、その様な場合でも、絶縁基板1に熱影響を与えるため、本発明の中間層6の形成は可能である。   In laser processing, a carbon dioxide laser is advantageous in terms of cost, but it is also possible to use a YAG laser capable of finer processing. In addition, it is said that a laser using a harmonic higher than three times that of a YAG laser is generally less affected by heat during processing, but even in such a case, the insulating substrate 1 is affected by heat. The intermediate layer 6 can be formed.

以上説明したように、貫通孔3を形成する際に、第一の無機粉末1bの周囲の第一の樹脂1aを除去する際に加熱された第一の無機粉末1bは、互いに接触し、十分に加熱された場合には、その接触点においてネックを形成し、3次元の網目状構造を有する中間層前駆体7を形成する。   As described above, when the through-hole 3 is formed, the first inorganic powder 1b heated when removing the first resin 1a around the first inorganic powder 1b is in contact with each other and is sufficiently When heated, the neck is formed at the contact point, and the intermediate layer precursor 7 having a three-dimensional network structure is formed.

なお、絶縁基体1に用いる第一の無機粉末1bとして、結晶質の第一の無機粉末1bよりも軟化しやすいガラス質の第一の無機粉末1bを用いた場合には、容易に第二の無機粉末6b間にネックを形成することができ、中間層前駆体7が強固な構造体となるため、製造過程において中間層前駆体7が剥離するなどの不具合を抑制でき、任意の厚みの中間層前駆体7を形成できるため、厚い中間層6であっても容易に精度よく作製することができる。   In addition, when the 1st inorganic powder 1b used as the 1st inorganic powder 1b used for the insulation base | substrate 1 is easy to soften rather than the crystalline 1st inorganic powder 1b, it is easily 2nd. Since a neck can be formed between the inorganic powders 6b and the intermediate layer precursor 7 becomes a strong structure, problems such as separation of the intermediate layer precursor 7 during the manufacturing process can be suppressed, and an intermediate thickness of any thickness Since the layer precursor 7 can be formed, even the thick intermediate layer 6 can be easily and accurately manufactured.

また、同様に第二の無機粉末6b間にネックを形成するためには、焼結性の高い平均粒径3μm以下の第一の無機粉末1bを用いて絶縁基体1を作製することが重要である。さらに、中間層前駆体7の高強度化のためには、2μm以下、特に、1μm以下の第一の無機粉末1bを用いることが望ましい。   Similarly, in order to form a neck between the second inorganic powders 6b, it is important to produce the insulating substrate 1 using the first inorganic powder 1b having a high sinterability and an average particle diameter of 3 μm or less. is there. Furthermore, in order to increase the strength of the intermediate layer precursor 7, it is desirable to use the first inorganic powder 1b of 2 μm or less, particularly 1 μm or less.

なお、中間層6の第二の無機粉末6bは、それぞれが均一に分散し、分離した形態であってもよく、また、複数の第二の無機粉末6bが凝集して、複数の3次元の骨格が不均一に存在する形態であってもよいのは言うまでもない。   In addition, the second inorganic powder 6b of the intermediate layer 6 may be uniformly dispersed and separated, or a plurality of second inorganic powders 6b may aggregate to form a plurality of three-dimensional Needless to say, the skeleton may be present in a non-uniform manner.

また、図1や図4(b)の例では、貫通孔3の壁面は直線として描かれているが、絶縁基体1においては、第一の無機粉末1bは必ずしも均一に分散しておらず、特に、微視的に見た場合には不均一な分散となっている。このような形態の絶縁基体1に貫通孔3を形成する場合には、第一の樹脂1aの存在も均一とは言えず、微視的に見ると絶縁基体1は構造的にも、熱伝導の観点から見ても不均一なものであり、貫通孔3を形成する工程において、図3に示すように貫通孔3の壁面には凹凸が形成される。   Moreover, in the example of FIG.1 and FIG.4 (b), although the wall surface of the through-hole 3 is drawn as a straight line, in the insulation base | substrate 1, the 1st inorganic powder 1b is not necessarily disperse | distributed uniformly, In particular, when viewed microscopically, the dispersion is non-uniform. When the through-hole 3 is formed in the insulating base 1 having such a configuration, the presence of the first resin 1a is not uniform, and when viewed microscopically, the insulating base 1 is structurally and thermally conductive. From the viewpoint of the above, it is non-uniform, and in the process of forming the through-hole 3, as shown in FIG.

従って、中間層6の絶縁基体1側において、第二の金属相6aが減少する図3のような形態の中間層6を形成することができるのである。   Therefore, the intermediate layer 6 having the form as shown in FIG. 3 in which the second metal phase 6a is reduced can be formed on the insulating substrate 1 side of the intermediate layer 6.

第一の無機粉末1bとして、特に、誘電率、誘電正接の低いSiOを用いることで、高周波特性に優れた高性能の配線基板17を作製できる。また、非晶質のSiOを用いた場合には、電気特性に加え、結晶質のSiOよりも低い温度でネックを形成できることから頑強な中間層前駆体7を形成できるという利点がある。 By using SiO 2 having a low dielectric constant and dielectric loss tangent as the first inorganic powder 1b, a high-performance wiring board 17 having excellent high frequency characteristics can be produced. In addition, when amorphous SiO 2 is used, there is an advantage that a robust intermediate layer precursor 7 can be formed because a neck can be formed at a temperature lower than that of crystalline SiO 2 in addition to electrical characteristics.

また、これらの第一の無機粉末1bとしては、例えば、高熱膨張係数の結晶質SiOや低熱膨張係数の非晶質のSiOを用いることができることから、中間層6の熱膨張係数が貫通導体5と絶縁基体1との中間になるよう適宜、調整することが望ましい。 Moreover, as these first inorganic powder 1b, for example, since it is possible to use amorphous SiO 2 crystalline SiO 2 and low thermal expansion coefficient of the high thermal expansion coefficient, thermal expansion coefficient of the intermediate layer 6 through It is desirable to adjust appropriately so as to be intermediate between the conductor 5 and the insulating substrate 1.

以上説明した第二の無機粉末6b間に形成されるネックの強さ、即ち、結合の度合いは第二の無機粉末6bの耐熱性と大きさによるため、材質および粒子径を調整することによって、最適化できる。例えば、無機成分がSiOの場合には、第一の樹脂1aに平均粒子径3μm以下のSiOが20体積%以上含まれることが望ましい。無機成分がAlの場合には、SiOよりも耐熱性が高く、軟化温度が高いため、平均粒子径2μm以下など、更に微細な粉末を使用することが望ましい。また、SiOにBなどを混合したガラス粉末の場合には、軟化点が低いため、粒子経は大きくてもよく、平均粒子径5μm程度のものも使用できる。 Since the strength of the neck formed between the second inorganic powders 6b described above, that is, the degree of bonding depends on the heat resistance and size of the second inorganic powder 6b, by adjusting the material and particle diameter, Can be optimized. For example, when the inorganic component is SiO 2 , it is desirable that 20% by volume or more of SiO 2 having an average particle diameter of 3 μm or less is contained in the first resin 1a. When the inorganic component is Al 2 O 3 , it is desirable to use a finer powder having an average particle diameter of 2 μm or less because it has higher heat resistance and higher softening temperature than SiO 2 . In the case of glass powder in which B 2 O 3 or the like is mixed with SiO 2 , since the softening point is low, the particle diameter may be large, and those having an average particle diameter of about 5 μm can be used.

次に、貫通孔3内に順次、パラジウム触媒、無電解めっき、電解めっきを形成することで、図5(c)に示すように、第二の無機粉末6bにより囲まれていた空隙が、無電解めっき、電解めっきにより形成される金属相6aにより充填され、中間層6が形成される。   Next, by sequentially forming a palladium catalyst, electroless plating, and electrolytic plating in the through hole 3, as shown in FIG. 5 (c), the void surrounded by the second inorganic powder 6b becomes non-filled. The intermediate layer 6 is formed by filling with the metal phase 6a formed by electrolytic plating or electrolytic plating.

さらに、電解めっきを施すことにより、図5(d)に示すような貫通導体5を形成することができる。   Furthermore, through-plating conductors 5 as shown in FIG. 5D can be formed by performing electrolytic plating.

そして、さらに必要に応じて貫通孔3、貫通導体5、中間層6を形成した絶縁基体1の主面に絶縁層9を形成し、さらに従来周知の方法でビア導体13や配線導体層15を形成することですることで、例えば、図1に示す本発明の配線基板17を作製することができる。   Further, if necessary, an insulating layer 9 is formed on the main surface of the insulating base 1 on which the through hole 3, the through conductor 5, and the intermediate layer 6 are formed, and the via conductor 13 and the wiring conductor layer 15 are formed by a conventionally known method. By being formed, for example, the wiring board 17 of the present invention shown in FIG. 1 can be manufactured.

また、例えば、図6に示すように貫通導体3の形成する空間に埋め込み樹脂19を充填してもよく、また、埋め込み樹脂19に換えて導電性ペーストを充填してもよい。   Further, for example, as shown in FIG. 6, the space formed by the through conductor 3 may be filled with the embedded resin 19, or the conductive paste may be filled instead of the embedded resin 19.

なお、樹脂系の配線基板17には、難燃性を付与するため、臭素系、燐系などの樹脂系の難燃剤が一般的に添加されている。これらの添加剤は、樹脂成分の一部としての挙動をするため、本発明の無機粉末と金属相との中間層の形成には影響を及ぼさない。このため、本発明で用いる基板材料には各種の難燃剤を添加することができる。   Note that a resin-based flame retardant such as bromine or phosphorus is generally added to the resin-based wiring board 17 in order to impart flame retardancy. Since these additives behave as part of the resin component, they do not affect the formation of the intermediate layer of the inorganic powder and metal phase of the present invention. For this reason, various flame retardants can be added to the substrate material used in the present invention.

また、以上説明した例では、ガラスクロスを具備する、いわゆるコア基板について記載したが、無機粉末と樹脂とを含有した絶縁層であれば、本発明を適用できるのは自明であり、コア基板の表面に絶縁層を積層して作製されるいわゆるビルドアップ基板のビルドアップ層に適用することもできるのは言うまでもない。   In the example described above, a so-called core substrate having a glass cloth has been described. However, it is obvious that the present invention can be applied to an insulating layer containing an inorganic powder and a resin. Needless to say, the present invention can also be applied to a build-up layer of a so-called build-up substrate produced by laminating an insulating layer on the surface.

なお、中間層6は、貫通孔3の内壁の全面に形成されることが望ましいが、一部に中間層6が存在しない領域が形成されていたとしても貫通導体5と貫通孔3と剥離を抑制できればよい。また、ガラスクロスが中間層を形成する要素として含有された構造であってもよいのは言うまでもない。   The intermediate layer 6 is desirably formed on the entire inner wall of the through-hole 3, but the through-conductor 5 and the through-hole 3 are separated even if a region where the intermediate layer 6 does not exist is formed in part. It only has to be suppressed. Needless to say, the glass cloth may have a structure containing an intermediate layer.

また、以上説明した例では、第一の金属相5と第二の金属相6aとは同じ金属で形成し
、第一の無機粉末1bと第二の無機粉末6bとは同じ無機材料として説明したが、これらを異なる金属、異なる無機材料で形成してもよいのは言うまでもない。異なる材料で無機粉末、金属層を形成した場合には、例えば、熱膨張率などを高い自由度で制御することが可能となる。なお、金属相を異なる金属で形成する場合には、めっきされる金属の種類をかえればよい。また、無機粉末の場合には、同じ無機材料であっても、貫通孔を形成する工程で、結晶質の無機粉末を非晶質に変化させることもできる。また、中間層を形成する際に、めっきしながらめっき液に第二の無機粉末6bとなる無機粉末を混合することで、第二の無機粉末6bを含有する中間層6を形成することができる。
In the example described above, the first metal phase 5 and the second metal phase 6a are formed of the same metal, and the first inorganic powder 1b and the second inorganic powder 6b are described as the same inorganic material. However, it goes without saying that these may be formed of different metals and different inorganic materials. When the inorganic powder and the metal layer are formed of different materials, for example, the coefficient of thermal expansion can be controlled with a high degree of freedom. In addition, what is necessary is just to change the kind of metal plated, when forming a metal phase with a different metal. In the case of inorganic powder, even if the same inorganic material is used, the crystalline inorganic powder can be changed to amorphous in the step of forming the through holes. Moreover, when forming an intermediate | middle layer, the intermediate | middle layer 6 containing the 2nd inorganic powder 6b can be formed by mixing the inorganic powder used as the 2nd inorganic powder 6b with a plating solution, plating. .

本発明の配線基板を評価するために、評価基板を作製し、これを用いて信頼性評価を行なった。   In order to evaluate the wiring board of the present invention, an evaluation board was prepared, and reliability evaluation was performed using this board.

(1)絶縁基体の作製:シアネート系、エポキシ系、ポリイミド系、PPE系の各種樹脂よりなる4種類のワニスを準備した。さらに、SiO、Al、非晶質SiO、Eガラス、Sガラスよりなる表1に示す平均粒子径を有する各種粉末を準備した。なお、非晶質、あるいはガラスと記載していないものは結晶質の無機粉末である。そして、これらの粉末をシラン系カップリング剤でカップリング処理した後、樹脂に対する体積分率が表1に示す含有量となるよう、混合を行った。樹脂と無機粉末とを混合した後のワニスを、「2116」と呼ばれる規格のガラスクロスに含浸させた後、乾燥し、厚さ約0.1mmのプリプレグを作製した。このプリプレグを4枚重ね、この積層体の表裏に厚さ12μmの銅箔を設置し、所定温度(200℃)で約1時間ホットプレスを行って、全体の厚みが0.4mmの表裏面に銅箔を形成した絶縁基体を作製した。 (1) Production of insulating substrate: Four types of varnish made of various resins such as cyanate, epoxy, polyimide, and PPE were prepared. Furthermore, various powders having an average particle diameter shown in Table 1 made of SiO 2 , Al 2 O 3 , amorphous SiO 2 , E glass, and S glass were prepared. Note that amorphous or powder not described as glass is crystalline inorganic powder. Then, these powders were subjected to a coupling treatment with a silane coupling agent, and then mixed so that the volume fraction relative to the resin became the content shown in Table 1. The varnish after mixing the resin and the inorganic powder was impregnated into a standard glass cloth called “2116” and then dried to prepare a prepreg having a thickness of about 0.1 mm. Four prepregs are stacked, and a copper foil having a thickness of 12 μm is placed on the front and back of the laminate, and hot pressing is performed at a predetermined temperature (200 ° C.) for about 1 hour. An insulating substrate on which a copper foil was formed was produced.

(2)評価基板の作製:上記の方法で作製した銅箔付き絶縁基体の表裏面に形成された銅箔の表面を約9μm、エッチング除去した後、レーザ光の吸収を良くするため、160℃、10分の条件で、銅箔表面の酸化処理を行った後、炭酸ガスレーザにより95μmの孔径の貫通孔を形成した。なお、炭酸ガスレーザ、YAGレーザの穿孔条件は、特に記載のない場合にはパルス幅を75μs、出力を6mJでショット数を8ショットとした。   (2) Production of evaluation substrate: After removing the surface of the copper foil formed on the front and back surfaces of the insulating substrate with copper foil produced by the above method by about 9 μm, etching is performed at 160 ° C. in order to improve laser light absorption. The copper foil surface was oxidized under conditions of 10 minutes, and then a through hole having a hole diameter of 95 μm was formed by a carbon dioxide gas laser. Note that the carbon dioxide laser and YAG laser drilling conditions were a pulse width of 75 μs, an output of 6 mJ, and a shot count of 8 shots unless otherwise specified.

また、試料No.28では、炭酸ガスレーザを用いて貫通孔を形成したが、穿孔条件はパルス幅を75μs、出力を4mJでショット数を12ショットとした。   Sample No. In No. 28, a through-hole was formed using a carbon dioxide laser, but the drilling conditions were a pulse width of 75 μs, an output of 4 mJ, and a shot count of 12 shots.

また、試料No.29では、炭酸ガスレーザを用いて貫通孔を形成したが、穿孔条件はパルス幅を75μs、出力を32mJでショット数を4ショットとした。   Sample No. In No. 29, a through-hole was formed using a carbon dioxide laser, but the drilling conditions were a pulse width of 75 μs, an output of 32 mJ, and a shot count of 4 shots.

また、試料No.25では、90μmの直径のマイクロドリルを毎分30万回転の回転数として穿孔した。   Sample No. In No. 25, a 90 μm diameter microdrill was drilled at a rotational speed of 300,000 revolutions per minute.

その後、貫通孔を形成した絶縁基体を過マンガン酸カリウム溶液からなる80℃の粗化液に浸漬させ、10分間の粗化処理を行い、順次、パラジウム触媒、無電解銅めっきおよび電解銅めっきを貫通孔の壁面に形成して、貫通孔の壁面に中間層と貫通導体を形成した。   After that, the insulating substrate in which the through holes are formed is immersed in a 80 ° C. roughening solution made of a potassium permanganate solution and subjected to a roughening treatment for 10 minutes. In this order, a palladium catalyst, an electroless copper plating, and an electrolytic copper plating are sequentially applied. An intermediate layer and a through conductor were formed on the wall surface of the through hole.

なお、無機粉末の含有量が20体積%に満たない試料では、中間層は確認されなかった。   In addition, the intermediate layer was not confirmed in the sample in which the content of the inorganic powder was less than 20% by volume.

その後、貫通孔の内部に穴埋め樹脂を埋め込み、研磨により穴埋め樹脂の不要部分を除去し、絶縁基体の表裏面に形成された銅箔とめっき層とからなる配線導体を所定の厚みにし、従来周知のサブトラクティブ法により配線パターンを形成し、ピッチ175μmで格
子状に貫通導体が形成されたものを、横方向に電気的に連結した構造の評価用基板を作製した。
Thereafter, filling resin is filled in the through holes, unnecessary portions of the filling resin are removed by polishing, and the wiring conductor composed of the copper foil and the plating layer formed on the front and back surfaces of the insulating base is set to a predetermined thickness. An evaluation substrate having a structure in which wiring patterns are formed by the subtractive method and through conductors formed in a lattice shape at a pitch of 175 μm are electrically connected in the horizontal direction is manufactured.

なお、それぞれの評価基板には、1000個の貫通孔を形成して、それぞれが電気的に直列につながるように配線を形成した。   In addition, 1000 through-holes were formed in each evaluation board, and wiring was formed so that each was electrically connected in series.

(3)評価:上記の評価基板は、貫通孔の断面を研摩して、走査型電子顕微鏡(SEM)を用いて200倍及び1000倍の倍率で貫通導体10孔分の中間層を観察した。それによって観察できる最大の厚さの中間層について、10,000倍の倍率で最大厚さを測定して、中間層の厚さとした。絶縁信頼性の評価は、試験投入前に全ての評価基板をJEDEC Level 3の条件で前処理を行った。次いで、130℃、85%、5.5V、168時間のHASTを実施した。168時間後に試料を取り出し、それぞれ10個の評価基板について、貫通導体間の絶縁抵抗を測定し、10の8乗オーム以下となったものを不良とした。測定はそれぞれのピッチでの絶縁抵抗について実施したが、表1には代表例として175μmピッチの結果を示した。   (3) Evaluation: In the evaluation substrate, the cross section of the through hole was polished, and an intermediate layer of 10 through conductor holes was observed using a scanning electron microscope (SEM) at 200 × and 1000 × magnification. The maximum thickness of the intermediate layer observable thereby was measured at a magnification of 10,000 times to obtain the thickness of the intermediate layer. For the evaluation of the insulation reliability, all the evaluation substrates were pretreated under the conditions of JEDEC Level 3 before the test was input. Subsequently, HAST of 130 degreeC, 85%, 5.5V, and 168 hours was implemented. A sample was taken out after 168 hours, and the insulation resistance between the through conductors was measured for each of 10 evaluation boards, and those that were 10 8 ohms or less were regarded as defective. The measurement was carried out for the insulation resistance at each pitch, and Table 1 shows the result of a 175 μm pitch as a representative example.

Figure 2009260382
Figure 2009260382

本発明の範囲外である中間層のない試料No.1、2、15、25、28、29は、いずれも絶縁信頼性が著しく悪く、信頼性が低かった。また、HAST後の試料の断面を観察したところ、貫通孔と貫通導体との界面で剥離が確認され、ガラスクロスに沿って銅のマイグレーションが発生しているのが観察された。また、無機粉末を80体積%添加した試料No.10においては、無機粉末の量が多すぎて絶縁基体自体を形成することができなかった。   Sample No. without an intermediate layer, which is outside the scope of the present invention. 1, 2, 15, 25, 28, and 29 all had extremely poor insulation reliability and low reliability. Further, when the cross section of the sample after HAST was observed, peeling was confirmed at the interface between the through hole and the through conductor, and it was observed that copper migration occurred along the glass cloth. Sample No. 80 containing 80% by volume of inorganic powder was added. In No. 10, the amount of inorganic powder was too large to form the insulating substrate itself.

これらの試料のうち、試料No.1、2、15では、絶縁基体に含まれる無機粉末の量が少ないために中間層が形成されなかったものと考えられる。また、ドリルで貫通孔を形成した試料No.25では、熱の発生が不足したために中間層が形成されなかったものと
考えられる。また、レーザ光の出力を変化させた試料No.28、29では、レーザ光の出力が適切な範囲にないために中間層が形成されなかったものと考えられる。
Of these samples, Sample No. In 1, 2, and 15, it is considered that the intermediate layer was not formed because the amount of inorganic powder contained in the insulating substrate was small. In addition, Sample No. in which a through-hole was formed by a drill was used. In No. 25, it is considered that the intermediate layer was not formed due to insufficient heat generation. In addition, the sample No. in which the output of the laser beam was changed. In Nos. 28 and 29, it is considered that the intermediate layer was not formed because the output of the laser beam was not in an appropriate range.

一方、本発明の試料No.3〜9、11〜14、16〜24、26、27では、一部に信頼性の若干、劣る試料もあるが中間層のない試料No.1、2、15、25、28、29と比較すると格段に貫通孔間のマイグレーションが減少し、絶縁信頼性も向上している。   On the other hand, sample no. 3 to 9, 11 to 14, 16 to 24, 26, and 27, there are some samples that are slightly inferior in reliability, but there are sample Nos. With no intermediate layer. Compared with 1, 2, 15, 25, 28, and 29, migration between the through holes is remarkably reduced, and insulation reliability is also improved.

以下に本発明の試料について詳細に説明する。   Hereinafter, the sample of the present invention will be described in detail.

絶縁基体に平均粒子径1μmのSiO粉末を20〜70体積%の範囲で添加した試料No.3〜9では、無機粉末の量が増加するのに伴って中間層の厚みが増加し、3〜30μmの中間層が観察され、マイグレーションもなく、信頼性に優れた配線基板が得られた。 Sample No. 2 in which SiO 2 powder having an average particle diameter of 1 μm was added to the insulating substrate in the range of 20 to 70 vol% In 3-9, the thickness of the intermediate layer increased as the amount of the inorganic powder increased, and an intermediate layer of 3-30 μm was observed, and there was no migration, and a wiring board excellent in reliability was obtained.

また、SiO粉末の粒径を0.5〜5.0μmの範囲で変化させた試料No.11〜14の結果から粒径の小さい無機粉末を用いた方が容易に厚い中間層を形成できることがわかる。この試料のうち、SiO粉末の粒径を5.0μmとした試料No.14では、中間層は形成されてはいるものの、無機粉末の粒径が大きいために十分な厚み、強度を持つ無機粉末の3次元の骨格構造が形成されず、絶縁信頼性においては問題ないものの、ごくわずかではあるが、貫通孔と貫通導体の間に剥離が認められた。 Sample No. 1 in which the particle size of the SiO 2 powder was changed in the range of 0.5 to 5.0 μm. From the results of 11 to 14, it can be seen that a thick intermediate layer can be easily formed by using an inorganic powder having a small particle size. Among these samples, sample No. 1 in which the particle size of the SiO 2 powder was 5.0 μm. In FIG. 14, although the intermediate layer is formed, since the inorganic powder has a large particle size, a three-dimensional skeleton structure of the inorganic powder having sufficient thickness and strength is not formed, and there is no problem in insulation reliability. However, separation was observed between the through hole and the through conductor, though only slightly.

結晶質のAlを用いた試料No.16、17では、0.3μmと微粒の無機粉末を用い、絶縁基体に20体積%以上含有させることで、中間層を形成することが可能となった。また、結晶性無機粉末や修飾酸化物を含有しない非晶質SiO粉末と比べ、軟化点の低いEガラス、Sガラスを用いた試料No.18、19では、容易に厚く、強固な構造を有する中間層が形成され、優れた絶縁信頼性の配線基板が得られた。 Sample No. using crystalline Al 2 O 3 In Nos. 16 and 17, it was possible to form an intermediate layer by using a fine inorganic powder of 0.3 μm and containing 20% by volume or more in an insulating substrate. Further, sample Nos. Using E glass and S glass having a low softening point compared to crystalline inorganic powder and amorphous SiO 2 powder containing no modified oxide. In Nos. 18 and 19, an intermediate layer having a thick and strong structure was easily formed, and a wiring board having excellent insulation reliability was obtained.

また、0.3μmの非晶質SiO粉末を用いた試料No.20〜22では、絶縁基体に用いる樹脂を変更しても、何ら影響なく優れた特性が得られた。また、貫通孔の形成にYAGレーザ光を用いた試料No.23、24では、若干、中間層の厚みが薄くなるものの良好な特性が得られた。 Further, Sample No. using 0.3 μm amorphous SiO 2 powder was used. In 20-22, even if the resin used for the insulating substrate was changed, excellent characteristics were obtained without any influence. In addition, the sample No. using YAG laser light for forming the through hole was used. In 23 and 24, good characteristics were obtained although the thickness of the intermediate layer was slightly reduced.

また、結晶質のSiO粉末を用いた試料No.26、27では非晶質のSiO粉末を用いた場合に比べ、中間層の厚みは薄くなるものの、十分な厚みの中間層が形成されており、高い絶縁信頼性を有することがわかる。 Sample No. using crystalline SiO 2 powder was used. As compared with the case of using amorphous SiO 2 powder, the thicknesses of the intermediate layers 26 and 27 are thin, but the intermediate layers are sufficiently thick and have high insulation reliability.

1・・・絶縁基体
1a・・・第一の樹脂
1b・・・第一の無機粉末
3・・・貫通孔
5・・・貫通導体、第一の金属相
6・・・中間層
6a・・・第二の金属相
6b・・・第二の無機粉末
6c・・・第二の樹脂
7・・・中間層前駆体
DESCRIPTION OF SYMBOLS 1 ... Insulation base | substrate 1a ... 1st resin 1b ... 1st inorganic powder 3 ... Through-hole 5 ... Through-conductor, 1st metal phase 6 ... Intermediate | middle layer 6a ... Second metal phase 6b ... second inorganic powder 6c ... second resin 7 ... intermediate layer precursor

Claims (14)

絶縁基体と、該絶縁基体に形成された貫通孔と、該貫通孔に形成された第一の金属相からなる貫通導体と、を具備してなる配線基板において、
前記貫通孔の内壁と前記貫通導体とが、第二の金属相と無機粉末とを含有した中間領域を介して接続されてなることを特徴とする配線基板。
In a wiring board comprising an insulating base, a through hole formed in the insulating base, and a through conductor made of a first metal phase formed in the through hole,
The wiring board, wherein an inner wall of the through hole and the through conductor are connected via an intermediate region containing a second metal phase and an inorganic powder.
前記中間領域の前記絶縁基体側において前記第二の金属相が前記中間領域の前記貫通導体側よりも減少していることを特徴とする請求項1に記載の配線基板。   2. The wiring board according to claim 1, wherein the second metal phase is reduced on the insulating base side of the intermediate region than on the through conductor side of the intermediate region. 前記中間領域の厚みが3〜30μmであることを特徴とする請求項1又は2に記載の配線基板。   The wiring substrate according to claim 1, wherein the intermediate region has a thickness of 3 to 30 μm. 前記無機粉末の平均粒子径が、3μm以下であることを特徴とする請求項1乃至3のうちいずれかに記載の配線基板。   The wiring substrate according to claim 1, wherein an average particle diameter of the inorganic powder is 3 μm or less. 前記無機粉末が、ガラス質であることを特徴とする請求項1乃至4のうちいずれかに記載の配線基板。   The wiring board according to claim 1, wherein the inorganic powder is glassy. 前記無機粉末が、SiOを主成分とすることを特徴とする請求項1乃至5のうちいずれかに記載の配線基板。 The wiring board according to claim 1, wherein the inorganic powder contains SiO 2 as a main component. 前記第二の金属相と前記第一の金属相とが同一の金属からなることを特徴とする請求項1乃至6のうちいずれかに記載の配線基板。   The wiring board according to claim 1, wherein the second metal phase and the first metal phase are made of the same metal. 絶縁層と、該絶縁層に形成された貫通孔と、該貫通孔に形成された第一の金属相からなる貫通導体と、を具備してなる配線基板において、
前記貫通孔の内壁と前記貫通導体とが、第二の金属相と無機粉末とを含有した中間領域を介して接続されてなることを特徴とする配線基板。
In a wiring board comprising: an insulating layer; a through hole formed in the insulating layer; and a through conductor made of a first metal phase formed in the through hole.
The wiring board, wherein an inner wall of the through hole and the through conductor are connected via an intermediate region containing a second metal phase and an inorganic powder.
前記中間領域の前記絶縁基体側において前記第二の金属相が前記中間領域の前記貫通導体側よりも減少していることを特徴とする請求項8に記載の配線基板。   The wiring board according to claim 8, wherein the second metal phase is reduced on the insulating base side of the intermediate region than on the through conductor side of the intermediate region. 前記中間領域の厚みが3〜30μmであることを特徴とする請求項8又は9に記載の配線基板。   The wiring substrate according to claim 8 or 9, wherein the intermediate region has a thickness of 3 to 30 µm. 前記無機粉末の平均粒子径が、3μm以下であることを特徴とする請求項8乃至10のうちいずれかに記載の配線基板。   The wiring substrate according to claim 8, wherein an average particle diameter of the inorganic powder is 3 μm or less. 前記無機粉末が、ガラス質であることを特徴とする請求項8乃至11のうちいずれかに記載の配線基板。   The wiring board according to claim 8, wherein the inorganic powder is glassy. 前記無機粉末が、SiOを主成分とすることを特徴とする請求項8乃至12のうちいずれかに記載の配線基板。 The wiring board according to claim 8, wherein the inorganic powder contains SiO 2 as a main component. 前記第二の金属相と前記第一の金属相とが同一の金属からなることを特徴とする請求項8乃至13のうちいずれかに記載の配線基板。   The wiring board according to claim 8, wherein the second metal phase and the first metal phase are made of the same metal.
JP2009180541A 2009-08-03 2009-08-03 Wiring board Expired - Lifetime JP5127790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009180541A JP5127790B2 (en) 2009-08-03 2009-08-03 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009180541A JP5127790B2 (en) 2009-08-03 2009-08-03 Wiring board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004045457A Division JP4395388B2 (en) 2004-02-20 2004-02-20 Wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009260382A true JP2009260382A (en) 2009-11-05
JP5127790B2 JP5127790B2 (en) 2013-01-23

Family

ID=41387297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009180541A Expired - Lifetime JP5127790B2 (en) 2009-08-03 2009-08-03 Wiring board

Country Status (1)

Country Link
JP (1) JP5127790B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203521A1 (en) * 2013-06-18 2014-12-24 株式会社デンソー Electronic apparatus
JP2016086057A (en) * 2014-10-24 2016-05-19 富士通株式会社 Wiring structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513951A (en) * 1991-07-02 1993-01-22 Japan Gore Tex Inc Electronic circuit board and semiconductor chip carrier sheet
JPH05235544A (en) * 1992-02-19 1993-09-10 Ibiden Co Ltd Manufacture of composite printed circuit board
JPH08130377A (en) * 1994-10-31 1996-05-21 Kyocera Corp Multilayer wiring board
JP2001068818A (en) * 1999-08-31 2001-03-16 Kyocera Corp Wiring board and its manufacture
JP2004140005A (en) * 2002-08-23 2004-05-13 Kyocera Corp Wiring board
JP4395388B2 (en) * 2004-02-20 2010-01-06 京セラ株式会社 Wiring board and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513951A (en) * 1991-07-02 1993-01-22 Japan Gore Tex Inc Electronic circuit board and semiconductor chip carrier sheet
JPH05235544A (en) * 1992-02-19 1993-09-10 Ibiden Co Ltd Manufacture of composite printed circuit board
JPH08130377A (en) * 1994-10-31 1996-05-21 Kyocera Corp Multilayer wiring board
JP2001068818A (en) * 1999-08-31 2001-03-16 Kyocera Corp Wiring board and its manufacture
JP2004140005A (en) * 2002-08-23 2004-05-13 Kyocera Corp Wiring board
JP4395388B2 (en) * 2004-02-20 2010-01-06 京セラ株式会社 Wiring board and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203521A1 (en) * 2013-06-18 2014-12-24 株式会社デンソー Electronic apparatus
JP2015026820A (en) * 2013-06-18 2015-02-05 株式会社デンソー Electronic apparatus
JP2016086057A (en) * 2014-10-24 2016-05-19 富士通株式会社 Wiring structure

Also Published As

Publication number Publication date
JP5127790B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP4199198B2 (en) Multilayer wiring board and manufacturing method thereof
US7794820B2 (en) Printed circuit board and fabricating method of the same
JPWO2016136222A1 (en) Printed wiring board and manufacturing method thereof
JP4395388B2 (en) Wiring board and manufacturing method thereof
JP5127790B2 (en) Wiring board
JP6674016B2 (en) Printed wiring board and manufacturing method thereof
JP6301812B2 (en) Wiring board and manufacturing method thereof
JP2006228871A (en) Wiring board
KR100861616B1 (en) Printed circuit board and manufacturing method thereof
JP2000068648A (en) Manufacture of multi-layered printed substrate
JP7011946B2 (en) Wiring board
JP2005123547A (en) Interposer and multilayer printed wiring board
JP2004342871A (en) Multilayer printed wiring board and its manufacturing method
JP2000138457A (en) Multilayer interconnection board and its manufacture
JP2000216521A (en) Manufacture of wiring board and wiring board using the same
JP2017084913A (en) Printed wiring board and method of manufacturing the same
JP2005191113A (en) Wiring board and electrical device, and method of manufacturing wiring board
JP3694601B2 (en) Multilayer wiring board
JP3236812B2 (en) Multilayer wiring board
KR102459414B1 (en) Printed circuit board and manufacturing method thereof
JP4328196B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND ELECTRIC DEVICE
WO2022270339A1 (en) Wiring board
JP4328195B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND ELECTRIC DEVICE
JP2003008222A (en) High-density multilayer build-up wiring board and method of manufacturing the same
JP2005191115A (en) Wiring board and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5127790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250