JP2017084913A - Printed wiring board and method of manufacturing the same - Google Patents

Printed wiring board and method of manufacturing the same Download PDF

Info

Publication number
JP2017084913A
JP2017084913A JP2015210227A JP2015210227A JP2017084913A JP 2017084913 A JP2017084913 A JP 2017084913A JP 2015210227 A JP2015210227 A JP 2015210227A JP 2015210227 A JP2015210227 A JP 2015210227A JP 2017084913 A JP2017084913 A JP 2017084913A
Authority
JP
Japan
Prior art keywords
hole
layer
wiring board
printed wiring
core layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015210227A
Other languages
Japanese (ja)
Other versions
JP6846862B2 (en
Inventor
石岡 卓
Taku Ishioka
卓 石岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2015210227A priority Critical patent/JP6846862B2/en
Publication of JP2017084913A publication Critical patent/JP2017084913A/en
Application granted granted Critical
Publication of JP6846862B2 publication Critical patent/JP6846862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a printed wiring board having a build-up layer formed of an insulation material having high thermal conductivity, in which a through hole can be formed easily in the build-up layer containing a high thermal conductivity filler, and a lamination void is not generated during lamination, and to provide a method of manufacturing the same.SOLUTION: A printed wiring board includes a core layer 10 where a conductor circuit 2 is formed in an insulator 1, a build-up layer 30 formed of an insulation material, having a heat conductivity of 3 W/mK or more, on at least one surface of the core layer 10, and a through hole 5 penetrating the build-up layer 30 and core layer 10.SELECTED DRAWING: Figure 1

Description

本発明は、電気特性、機械特性および加工性の違う複数種の材料を用いるハイブリッド構造を有する印刷配線板およびその製造方法に関する。   The present invention relates to a printed wiring board having a hybrid structure using a plurality of types of materials having different electrical characteristics, mechanical characteristics, and processability, and a method for manufacturing the same.

近年、電子機器の高機能化・高性能化に伴い、これに用いられる印刷配線板の高密度実装化、薄形化が求められている。そこで、高耐熱・低熱膨張基材と、高熱伝導基材の組み合わせによる半導体実装に適合した高性能ビルドアップ基板の開発・実用化が進んでいる。
このような印刷配線板としては、電気特性、機械特性および加工性の違う複数種の材料を用いるハイブリッド構造基板がよく、ハイブリッド構造基板としては以下に示すようなものが挙げられる。
2. Description of the Related Art In recent years, with the increase in functionality and performance of electronic devices, there has been a demand for high-density mounting and thinning of printed wiring boards used therefor. Therefore, development and commercialization of high-performance build-up substrates suitable for semiconductor mounting using a combination of a high heat-resistant and low thermal expansion base material and a high heat conductive base material are progressing.
As such a printed wiring board, a hybrid structure board using a plurality of kinds of materials having different electrical characteristics, mechanical characteristics, and workability is preferable, and examples of the hybrid structure board include the following.

例えば、特許文献1には、2層以上のプリント配線板に関し、内層のシールド板のスルホールランドを最外層のビアホール形成の接続用パッドに用い、テーパ角を設ける薄物多層プリント配線板の製造方法が記載されている。このプリント配線板の製造方法によれば、ビアホールにおける導通不良が起きなく、薄形化が図れるとしている。   For example, Patent Document 1 relates to a printed wiring board having two or more layers, and a manufacturing method of a thin multilayer printed wiring board in which a through hole land of an inner shield plate is used as a connection pad for forming an outer via hole and a taper angle is provided. Have been described. According to this method of manufacturing a printed wiring board, no conduction failure occurs in the via hole, and the thickness can be reduced.

また、特許文献2には、コア基板および下層層間樹脂絶縁層を貫通するようにスルーホールを形成し、このスルーホールの直上にバイアホール(ビアホール)を形成した多層プリント配線板が記載されている。この多層プリント配線板では、スルーホールとバイアホールとは直線状になって配線長さが短縮しているため、信号の伝送速度を高めることができると共に、スルーホールと、半田バンプ(導電性接続ピン)へ接続されるバイアホールとを直接接続しているので、接続信頼性に優れるとしている。
このとき、特許文献2に示すプリント配線板では、高熱伝導の特性をもたらすアルミナフィラーを含有した基板材料(樹脂フィルム)を貼り付けたコア材に対してドリルにより加工を行い、コア材を貫通するスルーホールの下穴加工をする。
Patent Document 2 describes a multilayer printed wiring board in which a through hole is formed so as to penetrate the core substrate and the lower interlayer resin insulation layer, and a via hole (via hole) is formed immediately above the through hole. . In this multilayer printed wiring board, the through hole and via hole are linear and the wiring length is shortened, so that the signal transmission speed can be increased and the through hole and the solder bump (conductive connection) Since the via hole connected to the pin) is directly connected, it is said that the connection reliability is excellent.
At this time, in the printed wiring board shown in Patent Document 2, a core material on which a substrate material (resin film) containing an alumina filler that provides high thermal conductivity is attached is processed by a drill and penetrates the core material. Prepare the through hole for the through hole.

しかしながら、アルミナフィラーが非常に硬いため、一般ドリルによる下孔加工はドリルが急激に摩耗するため、一般ドリルでの量産加工は不可能であった。
そこで、このようなスルーホールの下孔加工に用いるドリルは、超硬刃ドリルまたはダイヤモンドコーティングドリルが用いられるが、超硬刃ドリルでも100hits程度で摩耗し、下孔加工ができなくなる。また、ダイヤモンドコーティングドリルは高価であり、かつ加工径の精度が低く、部品実装スルーホール形成の加工が難しいという問題があった。
However, since the alumina filler is very hard, drilling with a general drill causes rapid wear of the drill, so mass production with a general drill is impossible.
Accordingly, a carbide blade drill or a diamond coating drill is used as a drill for preparing a through hole for such a through hole. However, even a carbide blade drill is worn in about 100 hits, and the drilling cannot be performed. In addition, the diamond coating drill is expensive, has a low processing diameter accuracy, and has a problem that it is difficult to form a component mounting through hole.

また、ドリル加工では、摩耗した刃の影響で内層の導体がだれてスルーホール下孔内壁に付着してしまう場合がある。図5(a)に示す写真は、最外層に熱伝導性向上フィラーとしてアルミナを大量充填した樹脂層9を有する印刷配線板101に対して、φ1.3mmのドリル径を有する超硬刃ドリル(図示せず)を用いて、800hitsして、印刷配線板101を貫通するスルーホール下孔91を開けた状態を示すものである。なお、超硬刃ドリルはDLC(ダイヤモンドライクカーボン)等のコーティングドリルではない。
このとき、図5(a)の部分拡大図に示すように、印刷配線板101の内層導体92がだれてしまい、スルーホール下孔91の内壁に付着していることがわかる。このため、層間がショートしてしまう問題があった。
Further, in drilling, the inner layer conductor may be spilled and adhered to the inner wall of the through hole pilot hole due to the worn blade. The photograph shown in FIG. 5 (a) shows a carbide blade drill having a drill diameter of φ1.3 mm with respect to a printed wiring board 101 having a resin layer 9 filled with a large amount of alumina as a thermal conductivity improving filler in the outermost layer ( This shows a state in which a through-hole lower hole 91 penetrating the printed wiring board 101 is opened for 800 hours using a not-shown). The carbide drill is not a coating drill such as DLC (Diamond Like Carbon).
At this time, as shown in the partial enlarged view of FIG. 5A, it can be seen that the inner layer conductor 92 of the printed wiring board 101 has fallen and is attached to the inner wall of the through hole lower hole 91. For this reason, there was a problem that the layers are short-circuited.

さらに、印刷配線板の最外層(ビルドアップ層)に用いる樹脂は、積層時に樹脂の樹脂フロー不足で積層ボイド(空隙)が発生し、導体の埋め込み不良が起こってしまうという問題もあった。
図6(a)は従来の印刷配線板102の層構成を示す全体写真であり、図6(b)および(c)は、その最外絶縁層93の導体周囲に発生した積層ボイドを示す拡大写真である。図6(b)および(c)は、図に円で示すように、最外絶縁層93の導体94の周囲に樹脂が埋め込めず、積層ボイド(樹脂ボイド)95が発生している。
Furthermore, the resin used for the outermost layer (build-up layer) of the printed wiring board has a problem that a lamination void (void) is generated due to insufficient resin flow of the resin during lamination, resulting in poor conductor embedding.
6A is an overall photograph showing the layer structure of the conventional printed wiring board 102, and FIGS. 6B and 6C are enlarged views showing laminated voids generated around the conductor of the outermost insulating layer 93. FIG. It is a photograph. 6B and 6C, as indicated by circles in the drawing, the resin cannot be embedded around the conductor 94 of the outermost insulating layer 93, and a laminated void (resin void) 95 is generated.

特開平11−251746号公報JP-A-11-251746 特開2001−127434号公報JP 2001-127434 A

本発明は、高熱伝導性を有する絶縁材料でビルドアップ層を形成した印刷配線板に関して、ビルドアップ層におけるスルーホールの形成が容易であり、かつ積層時に積層ボイドが発生しない印刷配線板およびその製造方法を提供することを課題とする。   The present invention relates to a printed wiring board in which a build-up layer is formed of an insulating material having high thermal conductivity, and a printed wiring board that can easily form a through hole in the build-up layer and that does not generate a laminated void during lamination, and its manufacture. It is an object to provide a method.

本発明は、上記課題を解決するべく完成されたものであって、以下の構成からなる。
(1)絶縁体に導体回路を形成したコア層と、このコア層の少なくとも一方の面に熱伝導率が3W/mK以上の絶縁材料で形成したビルドアップ層と、このビルドアップ層および前記コア層を貫通するスルーホールとを含むことを特徴とする印刷配線板
(2)前記ビルドアップ層およびコア層を貫通するスルーホールは、コア層のスルーホールとビルドアップ層のビアホールが連結している(1)に記載の印刷配線板。
(3)前記ビルドアップ層の絶縁材料がアルミナフィラーを含有する(1)または(2)に記載の印刷配線板。
(4)前記ビルドアップ層の絶縁材料の最低溶融粘度が77Pa・s以上である(1)〜(3)のいずれかに記載の印刷配線板。
(5)前記ビルドアップ層は前記コア層より熱伝導性が高い(1)〜(4)のいずれかに記載の印刷配線板。
(6)絶縁体に導体回路を形成し、コア層を形成する工程と、前記コア層の表裏面を貫通するスルーホールを形成する工程と、前記コア層の表面に、熱伝導率が3W/mK以上の絶縁材料でビルドアップ層を形成する工程と、前記コア層のスルーホールの直上のビルドアップ層に、レーザで前記スルーホールの延長部分となるビアホール下穴を形成する工程と、前記ビアホール下穴をめっき処理して、印刷配線板の外層の表面から裏面へ、前記スルーホールと直接接続して貫通するスルーホールを形成する工程とを含むことを特徴とする印刷配線板の製造方法。
The present invention has been completed in order to solve the above problems, and has the following configuration.
(1) A core layer in which a conductor circuit is formed on an insulator, a buildup layer formed of an insulating material having a thermal conductivity of 3 W / mK or more on at least one surface of the core layer, and the buildup layer and the core A printed wiring board comprising a through hole penetrating the layer (2) The through hole penetrating the buildup layer and the core layer is connected to the via hole of the core layer and the via hole of the buildup layer The printed wiring board according to (1).
(3) The printed wiring board according to (1) or (2), wherein the insulating material of the buildup layer contains an alumina filler.
(4) The printed wiring board according to any one of (1) to (3), wherein a minimum melt viscosity of the insulating material of the buildup layer is 77 Pa · s or more.
(5) The printed wiring board according to any one of (1) to (4), wherein the buildup layer has higher thermal conductivity than the core layer.
(6) forming a conductor circuit on an insulator and forming a core layer; forming a through-hole penetrating the front and back surfaces of the core layer; and a surface with a thermal conductivity of 3 W / forming a build-up layer with an insulating material of mK or more, forming a via-hole pilot hole serving as an extension of the through-hole with a laser in the build-up layer immediately above the through-hole in the core layer, and the via hole A method of manufacturing a printed wiring board, comprising: plating a pilot hole to form a through hole that is directly connected to and through the through hole from the front surface to the back surface of the outer layer of the printed wiring board.

本発明によれば、ビルドアップ層を形成する高熱伝導性を有する絶縁材料は、最低溶融粘度が高いため、積層プレス時に流動しないので、コア層のスルーホールを塞ぐことがない。
さらに、ビルドアップ層は、高熱伝導性を有する絶縁材料で形成されているが、レーザ加工による加工性は一般的な材料と遜色ないため、スルーホールを容易に形成することができる。
According to the present invention, since the insulating material having high thermal conductivity forming the buildup layer has a high minimum melt viscosity, it does not flow during the laminating press, and therefore does not block the core layer through hole.
Furthermore, although the build-up layer is formed of an insulating material having high thermal conductivity, the workability by laser processing is not inferior to that of general materials, so that a through hole can be easily formed.

本発明に係る印刷配線板の一実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the printed wiring board which concerns on this invention. (a)〜(e)は、本発明に係る印刷配線板の製造方法の一実施形態を示す工程説明図である。(A)-(e) is process explanatory drawing which shows one Embodiment of the manufacturing method of the printed wiring board concerning this invention. (f)〜(i)は、本発明に係る印刷配線板の製造方法の一実施形態を示す工程説明図である。(F)-(i) is process explanatory drawing which shows one Embodiment of the manufacturing method of the printed wiring board concerning this invention. 図3(g)の部分拡大上面図である。FIG. 4 is a partially enlarged top view of FIG. (a)はアルミナフィラーを大量充填した樹脂層をドリル加工してスルーホールを設けた状態を示す断面の研磨面に焦点を合わせた写真と、そのドリル加工面に焦点を合わせた部分写真であり、(b)は(a)をデスミア加工後の状態を示す断面の研磨面に焦点を合わせた写真と、そのドリル加工面に焦点を合わせた部分写真である。(A) is a photograph focusing on a polished surface of a cross section showing a state where a through hole is provided by drilling a resin layer filled with a large amount of alumina filler, and a partial photograph focusing on the drilled surface. (B) is the photograph which focused on the grinding | polishing surface of the cross section which shows the state after a desmear process of (a), and the partial photograph which focused on the drilling surface. (a)は従来の印刷配線板の層構成を示す全体写真であり、(b)および(c)は、(a)の最外絶縁層の導体周囲に発生した積層ボイドを示す拡大写真である。(A) is a whole photograph which shows the layer structure of the conventional printed wiring board, (b) And (c) is an enlarged photograph which shows the laminated void produced | generated around the conductor of the outermost insulating layer of (a). .

印刷配線板100は、図1に示すように、絶縁体1上に導体回路2を形成したコア層10と、このコア層10の少なくとも一方の面に高熱伝導性を有する絶縁材料で形成したビルドアップ層30と、コア層10およびビルドアップ層30を貫通するスルーホール5とを含む。
また、スルーホール5は、後述するコア層のスルーホール6とビルドアップ層のビアホール7とが連結したものであり、内部に樹脂は充填されず、印刷配線板100の表裏面を貫通する。
As shown in FIG. 1, the printed wiring board 100 includes a core layer 10 in which a conductor circuit 2 is formed on an insulator 1, and a build formed of an insulating material having high thermal conductivity on at least one surface of the core layer 10. The up layer 30 and the through hole 5 penetrating the core layer 10 and the buildup layer 30 are included.
The through hole 5 is formed by connecting a through hole 6 in a core layer, which will be described later, and a via hole 7 in a buildup layer, and does not fill with resin inside, and penetrates the front and back surfaces of the printed wiring board 100.

絶縁体1は、絶縁性を有する素材で形成されていれば特に限定されない。このような絶縁性を有する素材としては、例えば、エポキシ樹脂、ビスマレイミド−トリアジン樹脂、ポリイミド樹脂、ポリフェニレンエーテル(PPE)樹脂などの有機樹脂などが挙げられる。これらの有機樹脂は2種以上を混合して用いてもよい。絶縁体1として有機樹脂を使用する場合、有機樹脂に補強材を配合して使用するのが好ましい。補強材としては、例えば、ガラス繊維、ガラス不織布、アラミド不織布、アラミド繊維、ポリエステル繊維などが挙げられる。これらの補強材は2種以上を併用してもよい。絶縁体1は、好ましくはガラス繊維などのガラス材入り有機樹脂から形成される。さらに、絶縁体1には、シリカ、硫酸バリウム、タルク、クレー、ガラス、炭酸カルシウム、酸化チタンなどの無機充填材が含まれていてもよい。   The insulator 1 will not be specifically limited if it is formed with the raw material which has insulation. Examples of such an insulating material include organic resins such as epoxy resin, bismaleimide-triazine resin, polyimide resin, and polyphenylene ether (PPE) resin. These organic resins may be used in combination of two or more. When using an organic resin as the insulator 1, it is preferable to mix and use a reinforcing material in the organic resin. Examples of the reinforcing material include glass fiber, glass nonwoven fabric, aramid nonwoven fabric, aramid fiber, and polyester fiber. Two or more of these reinforcing materials may be used in combination. The insulator 1 is preferably formed from an organic resin containing a glass material such as glass fiber. Furthermore, the insulator 1 may contain inorganic fillers such as silica, barium sulfate, talc, clay, glass, calcium carbonate, and titanium oxide.

絶縁体1の少なくとも片面には、導体回路2が形成される。導体回路2は、他の部品や基材と電気的に接続する導電回路であれば特に制限はなく、例えば、導電性樹脂や金属めっき等が挙げられるが、エッチング等の加工のしやすさから銅めっきであるのが特に好ましい。この銅めっきは、化学銅めっき(無電解銅めっき)でもよいが、電解銅めっきであるのがよい。   A conductor circuit 2 is formed on at least one surface of the insulator 1. The conductor circuit 2 is not particularly limited as long as it is a conductive circuit that is electrically connected to other components or a substrate, and examples thereof include conductive resin and metal plating. Particularly preferred is copper plating. The copper plating may be chemical copper plating (electroless copper plating), but is preferably electrolytic copper plating.

導体回路2は、ドリル加工またはレーザ加工によって絶縁体1に孔部2aを形成し、この孔部2aにめっき処理にて導体を設けて形成される。めっき処理後、孔内を必要に応じて、樹脂で充填する。   The conductor circuit 2 is formed by forming a hole 2a in the insulator 1 by drilling or laser processing, and providing a conductor in the hole 2a by plating. After plating, the inside of the hole is filled with resin as necessary.

本実施形態において、コア層10は多層構造であってもよく、複数の絶縁層11を積層した積層板20としてもよい。絶縁層11はコア層10と同様に、絶縁性布材4´を有する絶縁体1´と、導体回路2と電気的に接続されるビア3とを備える。このコア層10と絶縁層11とは同じ部材で形成されていてもよい。ビア3は、穴部3aに導体材料を充填して形成されているが、穴部3aの内壁面に導体層を設けたものであってもよい。
また、印刷配線板全体としての加工性の観点から、コア層10はビルドアップ層30より熱伝導性が低いものであるのがよく、具体的には、0.3〜0.7W/mKであるのがよい。さらに、コア層10はガラス転移温度(Tg>175℃)、低熱膨張6ppm(x,y)/K以下であってもよい。
In the present embodiment, the core layer 10 may have a multilayer structure, or may be a laminated plate 20 in which a plurality of insulating layers 11 are laminated. Similar to the core layer 10, the insulating layer 11 includes an insulator 1 ′ having an insulating cloth material 4 ′ and a via 3 electrically connected to the conductor circuit 2. The core layer 10 and the insulating layer 11 may be formed of the same member. The via 3 is formed by filling the hole 3a with a conductive material. However, the via 3 may be formed by providing a conductor layer on the inner wall surface of the hole 3a.
In addition, from the viewpoint of workability as a whole printed wiring board, the core layer 10 should have a lower thermal conductivity than the buildup layer 30, specifically 0.3 to 0.7 W / mK. There should be. Furthermore, the core layer 10 may have a glass transition temperature (Tg> 175 ° C.) and a low thermal expansion of 6 ppm (x, y) / K or less.

コア層10を含む積層板20には、コア層10とその上に積層された絶縁層11とを貫通するコア層のスルーホール6が設けられる。このコア層のスルーホール6は、後述するスルーホール5の一部であり、その内壁面には、例えば、銅めっきなどの金属めっきからなる導体層60が形成される。   The laminated plate 20 including the core layer 10 is provided with a through hole 6 in the core layer that penetrates the core layer 10 and the insulating layer 11 laminated thereon. The through hole 6 in the core layer is a part of the through hole 5 described later, and a conductor layer 60 made of metal plating such as copper plating is formed on the inner wall surface thereof.

積層板20の少なくとも片面には、ビルドアップ層30が設けられる。このビルドアップ層30は、高熱伝導性を有する絶縁樹脂で形成され、下層の積層板20の導体回路2と電気的に接続されるビア3´と、コア層10のスルーホール6と連結するビアホール7とを有する。
また、ビルドアップ層30の外層には、ソルダーレジスト8が設けられる。このソルダーレジスト8は、スルーホール5およびその開口部周縁の導体層70の周囲に設けられる。
A buildup layer 30 is provided on at least one side of the laminate 20. The build-up layer 30 is formed of an insulating resin having high thermal conductivity, and is a via hole 3 ′ that is electrically connected to the conductor circuit 2 of the lower laminate 20 and a via hole that is connected to the through hole 6 of the core layer 10. 7.
A solder resist 8 is provided on the outer layer of the buildup layer 30. The solder resist 8 is provided around the through hole 5 and the conductor layer 70 at the periphery of the opening.

ビルドアップ層30を形成する絶縁樹脂が高熱伝導性を有するには高熱伝導性フィラーを含有させればよい。この高熱伝導性フィラーは、例えば、アルミナフィラー、窒化珪素フィラー、サファイアフィラーなどの無機フィラーがよく、絶縁樹脂に対する高熱伝導性フィラー含有率は、例えば、50vol%以上がよい。この高熱伝導性フィラーは、1種類または複数種の組み合わせであってもよい。   In order for the insulating resin forming the buildup layer 30 to have high thermal conductivity, a high thermal conductive filler may be contained. The high thermal conductive filler is preferably an inorganic filler such as an alumina filler, a silicon nitride filler, or a sapphire filler, and the high thermal conductive filler content relative to the insulating resin is preferably 50 vol% or more, for example. This high thermal conductive filler may be one kind or a combination of plural kinds.

ビルドアップ層30の絶縁樹脂は、最低溶融粘度が77pa・s以上であるのがよい。そのため、ビルドアップ層30は積層板20への公知のプレス処理(加熱・加圧)による積層時の熱や圧力で流動しにくく、コア層のスルーホール6に連結するビアホール7を形成する際、積層時の熱でビルドアップ層30を形成する絶縁樹脂が溶融しても、下層のコア層10または絶縁層11に形成済みのコア層のスルーホール6内に、ビルドアップ層30の樹脂が流れ込むことが無い。   The insulating resin of the buildup layer 30 may have a minimum melt viscosity of 77 pa · s or more. Therefore, the build-up layer 30 is less likely to flow due to heat or pressure during lamination by known press processing (heating / pressurization) to the laminated plate 20, and when forming the via hole 7 connected to the through hole 6 of the core layer, Even if the insulating resin forming the build-up layer 30 is melted by the heat at the time of lamination, the resin of the build-up layer 30 flows into the through-hole 6 of the core layer already formed in the lower core layer 10 or the insulating layer 11. There is nothing.

積層板20にビルドアップ層30が積層された印刷配線板100には、印刷配線板100の表裏面を貫通するスルーホール5が設けられる。このスルーホール5は、コア層のスルーホール6とビルドアップ層30のビアホール7とが連結されてなる。スルーホール5の内壁面には、例えば、銅めっきなどの金属めっきからなる導体が形成され、印刷配線板100の表裏面にある図示しない配線パターンに接続される。   The printed wiring board 100 in which the buildup layer 30 is laminated on the laminated board 20 is provided with through-holes 5 that penetrate the front and back surfaces of the printed wiring board 100. The through hole 5 is formed by connecting the through hole 6 in the core layer and the via hole 7 in the buildup layer 30. A conductor made of metal plating such as copper plating is formed on the inner wall surface of the through hole 5 and connected to a wiring pattern (not shown) on the front and back surfaces of the printed wiring board 100.

次に、本発明に係る印刷配線板の一実施形態の製造方法を説明する。本発明に係る印刷配線板の製造方法は、下記の工程(I)〜(VIII)を含む。
(I)絶縁性布材を含む絶縁体を用意し、この絶縁体に導体回路を設けてコア層を形成する工程。
(II)コア層の表面に、絶縁層を積層して積層板を形成し、絶縁層にビアを設ける工程。
(III)積層板を貫通するスルーホール下孔をドリル加工またはレーザ加工により形成する工程。
(IV)スルーホール下孔の開口周縁部および内壁面に、導体材料にて導体層を形成(めっき処理)した後、エッチングレジストを形成し露光および現像し、導体層の回路部以外の部分をエッチングして、積層板にスルーホールを形成する工程
(V)積層板の表面に、高熱伝導性を有する絶縁材料でビルドアップ層を形成する工程。
(VI)積層板のスルーホールの直上のビルドアップ層に、導体回路形成用孔部および前記スルーホールと連結した延長部分となるビアホール下穴をレーザ加工で形成し、デスミア処理を行う工程。
(VII)ビアホール下穴の開口周縁部および内壁面に、導体材料にて導体層を形成(めっき処理)した後、エッチングレジストを形成し露光および現像し、導体層の回路部以外の部分をエッチングして、前記積層板のスルーホールとビルドアップ層のビアホールとが連結したスルーホールを形成する工程。
(VIII)ビルドアップ層の表面にソルダーレジストを形成する工程。
Next, the manufacturing method of one Embodiment of the printed wiring board concerning this invention is demonstrated. The method for producing a printed wiring board according to the present invention includes the following steps (I) to (VIII).
(I) A step of preparing an insulator including an insulating cloth material and providing a conductor circuit on the insulator to form a core layer.
(II) A step of laminating an insulating layer on the surface of the core layer to form a laminate, and providing a via in the insulating layer.
(III) The process of forming the through-hole pilot hole which penetrates a laminated board by drill processing or laser processing.
(IV) After forming a conductor layer (plating treatment) with a conductor material on the opening peripheral edge and inner wall surface of the through hole pilot hole, an etching resist is formed, exposed and developed, and portions other than the circuit portion of the conductor layer are formed. Etching to form through holes in the laminate (V) Forming a build-up layer on the surface of the laminate with an insulating material having high thermal conductivity.
(VI) A step of forming a via hole for conductor circuit and a via hole pilot hole connected to the through hole by laser processing in a buildup layer immediately above the through hole of the laminated plate, and performing a desmear process.
(VII) After forming a conductor layer (plating treatment) with a conductor material on the opening peripheral edge and inner wall surface of the via hole pilot hole, an etching resist is formed, exposed and developed, and portions other than the circuit portion of the conductor layer are etched. And a step of forming a through hole in which the through hole of the laminate is connected to the via hole of the buildup layer.
(VIII) A step of forming a solder resist on the surface of the build-up layer.

本発明に係る印刷配線板の製造方法を、図2および3に基づいて説明する。なお、上述した部材についての説明は省略する。   A method for manufacturing a printed wiring board according to the present invention will be described with reference to FIGS. In addition, the description about the member mentioned above is abbreviate | omitted.

図2(a)は、銅箔などの導電性金属箔1aを形成済みの前述した絶縁性布材4を含む絶縁体1を示している。
この絶縁体1をドリル加工により貫通させ、導体回路形成用の孔部2aを形成する(図2(b))。
さらに、孔部2aに銅めっきなどの導体材料を形成した後、絶縁体1の表面に、公知の方法でドライフィルム(図示せず)を貼付して露光および現像し、エッチング後、導体回路2を形成した場所以外のドライフィルムを剥離すると、図2(c)に示すような導体回路2を有するコア層10となる。
FIG. 2A shows the insulator 1 including the above-described insulating cloth material 4 on which a conductive metal foil 1a such as a copper foil has been formed.
This insulator 1 is penetrated by drilling to form a hole 2a for forming a conductor circuit (FIG. 2B).
Further, after a conductor material such as copper plating is formed in the hole 2a, a dry film (not shown) is attached to the surface of the insulator 1 by a known method, exposed and developed, and after etching, the conductor circuit 2 When the dry film other than the place where the film is formed is peeled, the core layer 10 having the conductor circuit 2 as shown in FIG.

次に、コア層10の少なくとも片面に、絶縁性布材4´を含む絶縁体1´からなる絶縁層11を積層して積層板20を形成した後、レーザ加工により、コア層10の導体回路2と電気的に接続するビア3形成用の穴部3aと、レーザ加工またはドリル加工により、積層板20の表裏面を貫通するコア層のスルーホール6形成用のスルーホール下孔6aを形成する。   Next, an insulating layer 11 made of an insulator 1 'including an insulating cloth material 4' is laminated on at least one surface of the core layer 10 to form a laminated plate 20, and then a conductor circuit of the core layer 10 is formed by laser processing. A through hole lower hole 6a for forming a through hole 6 in the core layer that penetrates the front and back surfaces of the laminated plate 20 is formed by laser processing or drilling. .

次に、穴部3a、スルーホール下孔6aのそれぞれの孔(穴)内および積層板20の両面に導体材料にて、導体層を形成する(めっき処理)。この導体材料としては、導体回路2を形成したものと同じものであるのがよく、例えば、銅めっきがよく、銅めっきは化学銅めっき(無電解銅めっき)でもよく、電解銅めっきでもよい。なお、ビア3の形成方法は導体回路2と同じため省略する。
穴部3aおよびスルーホール下孔6aをめっき処理した後、積層板20の表面の穴部3aおよびスルーホール下孔6の形成位置に、公知の方法でドライフィルムを貼付し、露光および現像し、エッチング後に導体回路を形成した場所のドライフィルムを剥離すると、図2(e)に示すように、内壁面に導体層60を形成し積層板20の表裏面を貫通したコア層のスルーホール6と、導体材料を形成した導体回路2と電気的に接続したビア3とを得ることができる。
なお、絶縁層11は、任意の数を積層し形成することができ、絶縁層11を形成するたびにビア3も形成する。
Next, a conductor layer is formed with a conductor material in each hole (hole) of the hole 3a and the through-hole lower hole 6a and on both surfaces of the laminated plate 20 (plating treatment). The conductor material is preferably the same as that on which the conductor circuit 2 is formed. For example, copper plating may be used, and the copper plating may be chemical copper plating (electroless copper plating) or electrolytic copper plating. The method for forming the via 3 is the same as that of the conductor circuit 2 and is omitted.
After plating the hole 3a and the through-hole lower hole 6a, a dry film is applied to the formation position of the hole 3a and the through-hole lower hole 6 on the surface of the laminate 20 by a known method, exposed and developed, When the dry film in the place where the conductor circuit is formed after the etching is peeled off, as shown in FIG. 2 (e), the conductor layer 60 is formed on the inner wall surface, and the core layer through-hole 6 penetrating the front and back surfaces of the laminate 20 Thus, the conductor circuit 2 formed with the conductor material and the via 3 electrically connected can be obtained.
The insulating layer 11 can be formed by stacking an arbitrary number, and the via 3 is formed every time the insulating layer 11 is formed.

次に、図3(f)に示すように、積層板20の少なくとも片面にビルドアップ層30を形成する。このビルドアップ層30は、絶縁材料の樹脂に高熱伝導性フィラー(例えば、アルミナフィラー)を含有し、熱伝導率が3W/mK以上、より好ましくは5W/mK以上の高熱伝導性を有するものからなる。このビルドアップ層30を形成する絶縁材料として、例えば、絶縁性接着樹脂と銅箔を一体化した樹脂つき銅箔であるCD-7200TY(利昌工業株式会社製)などを使用してもよい。   Next, as shown in FIG. 3 (f), a buildup layer 30 is formed on at least one side of the laminate 20. This buildup layer 30 contains a high thermal conductivity filler (for example, alumina filler) in the resin of the insulating material and has a thermal conductivity of 3 W / mK or more, more preferably 5 W / mK or more. Become. As an insulating material for forming the build-up layer 30, for example, CD-7200TY (manufactured by Risho Kogyo Co., Ltd.), which is a resin-coated copper foil obtained by integrating an insulating adhesive resin and a copper foil, may be used.

次に、図3(g)に示すように、ビルドアップ層30において、積層板20のコア層のスルーホール6の直上に、コア層のスルーホール6の延長部分となるビアホール7のビアホール下穴7aと、ビア3と接続するための穴部3a´をそれぞれレーザ加工により形成する。   Next, as shown in FIG. 3G, in the buildup layer 30, a via hole pilot hole of a via hole 7 that is an extended portion of the through hole 6 of the core layer is directly above the through hole 6 of the core layer of the laminate 20. 7a and hole 3a 'for connecting to via 3 are formed by laser processing.

ビアホール下穴7aを形成するレーザ加工は、図4に示すように行われる。すなわち、レーザLを、コア層のスルーホール6の内周面に沿って照射し(レーザの軌跡をLで示す)、コア層のスルーホール6の径よりビアホール下穴7aの径が大きくなるように開口させて、ビアホール下穴7aはコア層のスルーホール6の上端および下端の開口部と連結する。
このレーザ加工で用いられるレーザ光としては、CO2レーザ、UV−YAGレーザなどが挙げられる。
なお、レーザ加工により、ビアホール下穴7aは開口部や孔壁等に、開口時の絶縁材1、1’の残渣(図示せず)が残ることがある。その場合は、デスミア処理により残渣を除去する。
Laser processing for forming the via hole prepared hole 7a is performed as shown in FIG. That is, the laser L is irradiated along the inner peripheral surface of the through hole 6 in the core layer (laser trajectory is indicated by L) so that the diameter of the via hole prepared hole 7a is larger than the diameter of the through hole 6 in the core layer. The via hole pilot hole 7a is connected to the upper and lower openings of the through hole 6 in the core layer.
Examples of laser light used in this laser processing include a CO 2 laser and a UV-YAG laser.
In addition, the residue (not shown) of the insulating materials 1 and 1 ′ at the time of opening may remain in the opening portion, the hole wall, or the like due to the laser processing. In that case, the residue is removed by desmear treatment.

次に、ビアホール下穴7aの開口周縁部および内壁面に、導体材料にて導体層70を形成(めっき処理)した後、エッチングレジストを形成し露光および現像し、導体層70の回路部以外の部分をエッチングして、図3(h)に示すように、積層板20のコア層のスルーホール6とビルドアップ層30のビアホール7とが連結したスルーホール5を形成する。このスルーホール5は積層板20およびビルドアップ層30の両方を貫通する。
このとき、積層板20のコア層のスルーホール6の導体層60は、2回目のめっき処理となるため、ビアホール7の内壁面の導体層70よりもめっき厚が厚くなる。
また、穴部3a´は、前述したビア3と同様の方法で、ビア3´を形成する。
Next, a conductive layer 70 is formed (plating treatment) with a conductive material on the opening peripheral edge and inner wall surface of the via hole pilot hole 7a, and then an etching resist is formed, exposed and developed, and other than the circuit portion of the conductive layer 70 The portion is etched to form a through hole 5 in which the through hole 6 in the core layer of the laminated plate 20 and the via hole 7 in the buildup layer 30 are connected as shown in FIG. This through hole 5 penetrates both the laminate 20 and the buildup layer 30.
At this time, since the conductor layer 60 of the through hole 6 in the core layer of the laminated plate 20 is subjected to the second plating process, the plating thickness is thicker than the conductor layer 70 on the inner wall surface of the via hole 7.
The hole 3a ′ forms the via 3 ′ by the same method as the via 3 described above.

最後に、ビルドアップ層30の表面に、絶縁樹脂層としてソルダーレジスト8を形成すると、図3(i)に示す印刷配線板100が完成する。
以上、積層板20の構造をビルドアップ多層配線板で説明しているが、通常の多層印刷配線板だけでなく、多重多層印刷配線板、貼り合わせ多層印刷配線板等で適用できることは言うまでもない。
Finally, when the solder resist 8 is formed as an insulating resin layer on the surface of the buildup layer 30, the printed wiring board 100 shown in FIG. 3 (i) is completed.
The structure of the laminated board 20 has been described with the build-up multilayer wiring board. Needless to say, the laminated board 20 can be applied not only to a normal multilayer printed wiring board but also to a multilayer printed wiring board, a laminated multilayer printed wiring board, or the like.

以上のように、レーザ加工によって、高熱伝導性を有する絶縁材料で形成した上層(ビルドアップ層)にビアホールを容易に形成することができるので、このビアホールと下層(コア層)に設けたスルーホールとを連結して、印刷配線板の表裏面を貫通するスルーホールを形成することができる。
また、上層(ビルドアップ層)を形成する高熱伝導性を有する樹脂は、最低溶融粘度が77Pa・s以上と高いので、樹脂が積層プレス時に流動せず、下層(コア層)のスルーホールを塞ぐことがない。
As described above, a via hole can be easily formed in the upper layer (build-up layer) formed of an insulating material having high thermal conductivity by laser processing. Therefore, the via hole and the through hole provided in the lower layer (core layer) And a through hole penetrating the front and back surfaces of the printed wiring board can be formed.
In addition, the resin having high thermal conductivity forming the upper layer (build-up layer) has a minimum melt viscosity as high as 77 Pa · s or higher, so that the resin does not flow during the laminating press and blocks the through hole in the lower layer (core layer). There is nothing.

1,1´ 絶縁体
1a 導電性金属箔
2 導体回路
3,3´ ビア
3a,3a´ 穴部
2a 孔部
4,4´ 絶縁性布材
5 スルーホール
6 コア層のスルーホール
6a スルーホール下孔
7 ビアホール
7a ビアホール下穴
8 ソルダーレジスト
9 樹脂層
10 コア層
11 絶縁層
20 積層板
30 ビルドアップ層
60,70 導体層
91 スルーホール下孔
92 内層導体
93 最外絶縁層
94 導体
95 積層ボイド
100.101,102 印刷配線板
L レーザ
DESCRIPTION OF SYMBOLS 1,1 'Insulator 1a Conductive metal foil 2 Conductor circuit 3, 3' Via 3a, 3a 'Hole 2a Hole 4, 4' Insulating cloth material 5 Through hole 6 Core layer through hole 6a Through hole lower hole 7 Via hole 7a Via hole pilot hole 8 Solder resist 9 Resin layer 10 Core layer 11 Insulating layer 20 Laminated plate 30 Build-up layer 60, 70 Conductor layer 91 Through hole lower hole 92 Inner layer conductor 93 Outermost insulating layer 94 Conductor 95 Laminated void 100. 101,102 Printed wiring board L Laser

Claims (6)

絶縁体に導体回路を形成したコア層と、このコア層の少なくとも一方の面に熱伝導率が3W/mK以上の絶縁材料で形成したビルドアップ層と、このビルドアップ層および前記コア層を貫通するスルーホールとを含むことを特徴とする印刷配線板   A core layer in which a conductor circuit is formed on an insulator, a buildup layer formed of an insulating material having a thermal conductivity of 3 W / mK or more on at least one surface of the core layer, and the buildup layer and the core layer are penetrated Printed wiring board comprising a through-hole 前記ビルドアップ層およびコア層を貫通するスルーホールは、コア層のスルーホールとビルドアップ層のビアホールが連結している請求項1に記載の印刷配線板。   The printed wiring board according to claim 1, wherein the through hole penetrating the buildup layer and the core layer is formed by connecting a through hole in the core layer and a via hole in the buildup layer. 前記ビルドアップ層の絶縁材料がアルミナフィラーを含有する請求項1または2に記載の印刷配線板。   The printed wiring board according to claim 1, wherein the insulating material of the buildup layer contains an alumina filler. 前記ビルドアップ層の絶縁材料の最低溶融粘度が77Pa・s以上である請求項1〜3のいずれかに記載の印刷配線板。   The printed wiring board according to claim 1, wherein a minimum melt viscosity of the insulating material of the buildup layer is 77 Pa · s or more. 前記ビルドアップ層は前記コア層より熱伝導性が高い請求項1〜4のいずれかに記載の印刷配線板。   The printed wiring board according to claim 1, wherein the buildup layer has higher thermal conductivity than the core layer. 絶縁体に導体回路を形成し、コア層を形成する工程と、
前記コア層の表裏面を貫通するスルーホールを形成する工程と、
前記コア層の表面に、熱伝導率が3W/mK以上の絶縁材料でビルドアップ層を形成する工程と、
前記コア層のスルーホールの直上のビルドアップ層に、レーザで前記スルーホールの延長部分となるビアホール下穴を形成する工程と、
前記ビアホール下穴をめっき処理して、印刷配線板の外層の表面から裏面へ、前記スルーホールと直接接続して貫通するスルーホールを形成する工程とを含むことを特徴とする印刷配線板の製造方法。
Forming a conductor circuit on an insulator and forming a core layer;
Forming a through hole penetrating the front and back surfaces of the core layer;
Forming a buildup layer with an insulating material having a thermal conductivity of 3 W / mK or more on the surface of the core layer;
Forming a via-hole pilot hole, which is an extension of the through-hole, with a laser in a build-up layer immediately above the through-hole of the core layer;
Manufacturing the printed wiring board, comprising: plating the via hole pilot hole to form a through hole that is directly connected to and through the through hole from the front surface to the back surface of the outer layer of the printed wiring board Method.
JP2015210227A 2015-10-26 2015-10-26 Printed wiring board and its manufacturing method Active JP6846862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015210227A JP6846862B2 (en) 2015-10-26 2015-10-26 Printed wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015210227A JP6846862B2 (en) 2015-10-26 2015-10-26 Printed wiring board and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017084913A true JP2017084913A (en) 2017-05-18
JP6846862B2 JP6846862B2 (en) 2021-03-24

Family

ID=58714316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015210227A Active JP6846862B2 (en) 2015-10-26 2015-10-26 Printed wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6846862B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020088321A (en) * 2018-11-30 2020-06-04 京セラ株式会社 Printed-circuit board and method for manufacturing printed-circuit board
CN112549725A (en) * 2020-11-09 2021-03-26 广东科翔电子科技股份有限公司 UV laser depth-control cover uncovering method for ultra-thick rigid-flex printed circuit board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183260A (en) * 1991-12-28 1993-07-23 Kanegafuchi Chem Ind Co Ltd Printed wiring board and manufacture thereof
JP2001189559A (en) * 1999-12-28 2001-07-10 Matsushita Electric Works Ltd Method of manufacturing built-up printed wiring board
JP2004047588A (en) * 2002-07-09 2004-02-12 Sharp Corp Multilayer printed wiring board and its manufacturing method
JP2008277407A (en) * 2007-04-26 2008-11-13 Matsushita Electric Ind Co Ltd Printed wiring board, manufacturing method thereof, and module using the board
WO2013187303A1 (en) * 2012-06-12 2013-12-19 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate and printed wiring board
WO2015056523A1 (en) * 2013-10-17 2015-04-23 住友ベークライト株式会社 Epoxy-resin composition, carrier material with resin layer, metal-based circuit board, and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183260A (en) * 1991-12-28 1993-07-23 Kanegafuchi Chem Ind Co Ltd Printed wiring board and manufacture thereof
JP2001189559A (en) * 1999-12-28 2001-07-10 Matsushita Electric Works Ltd Method of manufacturing built-up printed wiring board
JP2004047588A (en) * 2002-07-09 2004-02-12 Sharp Corp Multilayer printed wiring board and its manufacturing method
JP2008277407A (en) * 2007-04-26 2008-11-13 Matsushita Electric Ind Co Ltd Printed wiring board, manufacturing method thereof, and module using the board
WO2013187303A1 (en) * 2012-06-12 2013-12-19 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate and printed wiring board
WO2015056523A1 (en) * 2013-10-17 2015-04-23 住友ベークライト株式会社 Epoxy-resin composition, carrier material with resin layer, metal-based circuit board, and electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020088321A (en) * 2018-11-30 2020-06-04 京セラ株式会社 Printed-circuit board and method for manufacturing printed-circuit board
JP7336845B2 (en) 2018-11-30 2023-09-01 京セラ株式会社 Method for manufacturing printed wiring board
CN112549725A (en) * 2020-11-09 2021-03-26 广东科翔电子科技股份有限公司 UV laser depth-control cover uncovering method for ultra-thick rigid-flex printed circuit board

Also Published As

Publication number Publication date
JP6846862B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
US7705247B2 (en) Built-up printed circuit board with stack type via-holes
JP4906462B2 (en) Electronic component built-in substrate and method for manufacturing electronic component built-in substrate
WO2015151512A1 (en) Interposer, semiconductor device, interposer manufacturing method, and semiconductor device manufacturing method
JP5598212B2 (en) Hybrid core substrate and manufacturing method thereof, semiconductor integrated circuit package, build-up substrate and manufacturing method thereof
JP2011228676A (en) Wiring board and mounting structure of the same
WO2008004382A1 (en) Method for manufacturing multilayer printed wiring board
CN101409985A (en) Method of producing substrate
US20150257268A1 (en) Printed wiring board and method for manufacturing printed wiring board
JP6643956B2 (en) Printed wiring board and manufacturing method thereof
KR100965341B1 (en) Method of Fabricating Printed Circuit Board
JP2007288055A (en) Printed wiring board, and method of manufacturing same
JP6846862B2 (en) Printed wiring board and its manufacturing method
JP2015198094A (en) Interposer, semiconductor device, and method of manufacturing them
JP6674016B2 (en) Printed wiring board and manufacturing method thereof
JP2020057767A (en) Printed wiring board
KR101089923B1 (en) Manufacturing method of printed circuit board
JP4912234B2 (en) Composite board, wiring board and mounting structure
JP4705261B2 (en) Build-up multilayer printed wiring board
JP4591181B2 (en) Printed wiring board
JP2013187458A (en) Method for manufacturing multilayer printed wiring board and multilayer printed wiring board
JP2014090079A (en) Printed wiring board
JP2015220354A (en) Method for manufacturing wiring board
JP2004289006A (en) Carbon aluminum core substrate
KR101077336B1 (en) Fabricating Method of Printed Circuit Board
KR101005491B1 (en) Electronic components embedded pcb and method of manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191216

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191216

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191227

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200107

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200207

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200212

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200610

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200911

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20201002

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201211

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210105

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210209

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210302

R150 Certificate of patent or registration of utility model

Ref document number: 6846862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150