JP2014090079A - Printed wiring board - Google Patents

Printed wiring board Download PDF

Info

Publication number
JP2014090079A
JP2014090079A JP2012239200A JP2012239200A JP2014090079A JP 2014090079 A JP2014090079 A JP 2014090079A JP 2012239200 A JP2012239200 A JP 2012239200A JP 2012239200 A JP2012239200 A JP 2012239200A JP 2014090079 A JP2014090079 A JP 2014090079A
Authority
JP
Japan
Prior art keywords
resin
hole
opening
layer
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012239200A
Other languages
Japanese (ja)
Inventor
Masahiro Kaneko
昌弘 金子
Toshimasu Chin
利益 陳
Takashi Kariya
隆 苅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2012239200A priority Critical patent/JP2014090079A/en
Publication of JP2014090079A publication Critical patent/JP2014090079A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a printed wiring board excellent in flatness.SOLUTION: A through hole for a filling resin is formed by a first opening part formed on a first face side of an insulating base material and a second opening part formed on a second face side of the insulating base material. The first opening part has a first opening in a first face of the insulating base material, and the second opening part has a second opening in a second face of the insulating base material. The through hole for a filling resin has a third opening at a portion where the first opening part and the second opening part cross each other. The diameter of the third opening is smaller than those of the first opening and the second opening. A resin included in an upper side interlayer resin insulation layer enters the through hole for a filling resin, and thereby the filling resin is formed.

Description

本発明は、スルーホール導体を有するコア基板とそのコア基板上に形成されているビルドアップ層とを有するプリント配線板に関する。 The present invention relates to a printed wiring board having a core substrate having a through-hole conductor and a buildup layer formed on the core substrate.

特許文献1の図6に示されているように、特許文献1の製造方法は、上面とその上面と反対側の下面とを有する配線基板の上面にレーザを照射することで上面から下面に向かって細くなっている第1開口部を形成することと配線基板の下面にレーザを照射することで下面から上面に向かって細くなっている第2開口部を形成することで配線基板を貫通するスルーホールを形成することとスルーホールの内壁にスルーホール導体を形成することを有している。そして、特許文献1の図4に示されているように、スルーホール導体を形成することで、第1開口部と第2開口部の接続領域はめっきで充填される。これにより、凹状の領域が形成される。特許文献1の図4では、凹状の領域はRで示されている。その後、特許文献1の図7(a)によれば、凹状の領域に樹脂が充填されている。 As shown in FIG. 6 of Patent Document 1, the manufacturing method of Patent Document 1 is directed from the upper surface to the lower surface by irradiating a laser on the upper surface of a wiring board having an upper surface and a lower surface opposite to the upper surface. A through-hole penetrating the wiring board by forming a first opening that is thin and forming a second opening that is narrowed from the bottom to the top by irradiating the lower surface of the wiring board with a laser. Forming a hole and forming a through-hole conductor on the inner wall of the through-hole. And as FIG. 4 of patent document 1 shows, the connection area | region of a 1st opening part and a 2nd opening part is filled with plating by forming a through-hole conductor. Thereby, a concave region is formed. In FIG. 4 of Patent Document 1, the concave region is indicated by R. Then, according to Fig.7 (a) of patent document 1, resin is filled into the concave area | region.

特開2009−54689号公報JP 2009-54689 A

特許文献1の図4によれば、凹状の領域の底はめっきで閉じられている。そのような領域にボイドを含まず樹脂を充填することは難しいと考えられる。そのため、凹状の領域の上に形成される絶縁層や導体層、ビア導体の信頼性が低下すると考えられる。また、底が閉じているので、凹状の領域に形成される樹脂の上面を平坦にすることが難しいと予想される。 According to FIG. 4 of Patent Document 1, the bottom of the concave region is closed by plating. It is considered difficult to fill such regions without containing voids. For this reason, it is considered that the reliability of the insulating layer, the conductor layer, and the via conductor formed on the concave region is lowered. Further, since the bottom is closed, it is expected that it is difficult to flatten the upper surface of the resin formed in the concave region.

本発明の目的は、平坦性に優れるプリント配線板を提供することである。 An object of the present invention is to provide a printed wiring board excellent in flatness.

本発明に係るプリント配線板は、第1面と前記第1面と反対側の第2面を有するとともに前記第1面から第2面に至るスルーホール導体用の貫通孔を有する絶縁性基材と、前記絶縁性基材の第1面上に形成されている第1導体層と、前記絶縁性基材の第2面上に形成されている第2導体層と、前記スルーホール導体用の貫通孔の壁面に形成されていて前記第1導体層と前記第2導体層とを接続しているスルーホール導体と、前記絶縁性基材の第1面から第2面に至り前記スルーホール導体の内側に形成されている充填樹脂用の貫通孔に形成されている充填樹脂と、前記絶縁性基材の第1面と前記第1導体層上に形成されている上側の層間樹脂絶縁層と前記上側の層間樹脂絶縁層上の上側の導体層と前記上側の層間樹脂絶縁層を貫通し前記上側の導体層と前記第1導体層を接続している上側のビア導体で形成されている上側のビルドアップ層と、前記絶縁性基材の第2面と前記第2導体層上に形成されている下側の層間樹脂絶縁層と前記下側の層間樹脂絶縁層上の下側の導体層と前記下側の層間樹脂絶縁層を貫通し前記下側の導体層と前記第2導体層を接続している下側のビア導体で形成されている下側のビルドアップ層と、を有する。そして、前記充填樹脂用の貫通孔は前記絶縁性基材の第1面側に形成されている第1開口部と前記絶縁性基材の第2面側に形成されている第2開口部で形成されていて、前記第1開口部は前記絶縁性基材の第1面に第1開口を有し、前記第2開口部は前記絶縁性基材の第2面に第2開口を有し、前記充填樹脂用の貫通孔は前記第1開口部と前記第2開口部が交わる部分に第3開口を有し、前記第3開口の径は前記第1開口の径及び前記第2開口の径より小さい。また、前記上側の層間樹脂絶縁層に含まれている樹脂が前記充填樹脂用の貫通孔に入りこむことで前記充填樹脂は形成されている。 The printed wiring board according to the present invention has a first surface and a second surface opposite to the first surface, and has an insulating base material having a through hole for a through-hole conductor extending from the first surface to the second surface. A first conductor layer formed on the first surface of the insulating substrate, a second conductor layer formed on the second surface of the insulating substrate, and the through-hole conductor A through-hole conductor formed on the wall surface of the through-hole and connecting the first conductor layer and the second conductor layer; and the through-hole conductor extending from the first surface to the second surface of the insulating substrate. A filling resin formed in a through-hole for filling resin formed on the inner side, an upper interlayer resin insulation layer formed on the first surface of the insulating substrate and the first conductor layer, and The upper conductor layer on the upper interlayer resin insulation layer and the upper interlayer resin insulation layer penetrate through the upper interlayer resin insulation layer. An upper buildup layer formed of an upper via conductor connecting the conductor layer and the first conductor layer, and formed on the second surface of the insulating substrate and the second conductor layer. A lower interlayer resin insulation layer, a lower conductor layer on the lower interlayer resin insulation layer, and the lower interlayer resin insulation layer are penetrated to connect the lower conductor layer and the second conductor layer. And a lower buildup layer formed of the lower via conductor. The through hole for the filling resin includes a first opening formed on the first surface side of the insulating base material and a second opening formed on the second surface side of the insulating base material. The first opening has a first opening on the first surface of the insulating substrate, and the second opening has a second opening on the second surface of the insulating substrate. The through hole for the filling resin has a third opening at a portion where the first opening and the second opening intersect, and the diameter of the third opening is equal to the diameter of the first opening and the second opening. Smaller than the diameter. The filling resin is formed by the resin contained in the upper interlayer resin insulation layer entering the through hole for the filling resin.

本発明の第1実施形態に係るプリント配線板の製造方法を示す工程図。Process drawing which shows the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention. 第1実施形態のプリント配線板の製造方法を示す工程図。Process drawing which shows the manufacturing method of the printed wiring board of 1st Embodiment. 第1実施形態のプリント配線板の製造方法を示す工程図。Process drawing which shows the manufacturing method of the printed wiring board of 1st Embodiment. 第1実施形態のプリント配線板の製造方法を示す工程図。Process drawing which shows the manufacturing method of the printed wiring board of 1st Embodiment. 第1実施形態のプリント配線板の製造方法を示す工程図。Process drawing which shows the manufacturing method of the printed wiring board of 1st Embodiment. 第1実施形態のプリント配線板の断面図。Sectional drawing of the printed wiring board of 1st Embodiment. 第1実施形態のプリント配線板のスルーホール導体の拡大図。The enlarged view of the through-hole conductor of the printed wiring board of 1st Embodiment. 第2実施形態のプリント配線板のスルーホール導体の拡大図。The enlarged view of the through-hole conductor of the printed wiring board of 2nd Embodiment.

[第1実施形態]
本発明の第1実施形態に係るプリント配線板が図6の断面図を参照して説明される。
第1実施形態のプリント配線板10は、第1面Fとその第1面と反対側の第2面Sとを有するコア基板30とコア基板の第1面上の上側のビルドアップ層500Fと上側のビルドアップ層上に形成されていて開口71Fを有する上側のソルダーレジスト層70Fと開口71Fから露出するC4パッドCP上に形成されている上側の半田バンプ(C4バンプ)76Fとコア基板の第2面上の下側のビルドアップ層500Sと下側のビルドアップ層上に形成されていて開口71Sを有する下側のソルダーレジスト層70Sと開口71Sから露出するBGAパッドBP上に形成されている下側の半田バンプ(BGAバンプ)76Sを有する。上側の半田バンプ76Fを介してICチップがプリント配線板10に実装される。下側の半田バンプ76Sを介してプリント配線板10とマザーボードは接続される。
ICチップが半田バンプ76Sを介してプリント配線板に搭載され、半田バンプ76Fを介してプリント配線板がマザーボードに搭載されてもよい。
[First embodiment]
A printed wiring board according to a first embodiment of the present invention will be described with reference to the cross-sectional view of FIG.
The printed wiring board 10 of the first embodiment includes a core substrate 30 having a first surface F and a second surface S opposite to the first surface, and an upper buildup layer 500F on the first surface of the core substrate. An upper solder resist layer 70F having an opening 71F formed on the upper buildup layer, an upper solder bump (C4 bump) 76F formed on the C4 pad CP exposed from the opening 71F, and the core substrate first The lower buildup layer 500S on the second surface and the lower buildup layer are formed on the lower solder resist layer 70S having the opening 71S and the BGA pad BP exposed from the opening 71S. A lower solder bump (BGA bump) 76S is provided. An IC chip is mounted on the printed wiring board 10 via the upper solder bumps 76F. The printed wiring board 10 and the mother board are connected via the lower solder bumps 76S.
The IC chip may be mounted on the printed wiring board via the solder bumps 76S, and the printed wiring board may be mounted on the mother board via the solder bumps 76F.

コア基板30は、第1面Fと、第1面Fとは反対側の第2面Sとを有する絶縁性基材20と絶縁性基材20の第1面上の第1導体層34Fと絶縁性基材の第2面上の第2導体層34Sと絶縁性基材20を貫通し第1導体層34Fと第2導体層34Sとを接続しているスルーホール導体36で形成されている。コア基板の第1面と絶縁性基材の第1面は同じ面であり、コア基板の第2面と絶縁性基材の第2面は同じ面である。 The core substrate 30 includes an insulating base material 20 having a first surface F and a second surface S opposite to the first surface F, and a first conductor layer 34F on the first surface of the insulating base material 20 The second conductor layer 34S on the second surface of the insulating base material and the through-hole conductor 36 that penetrates the insulating base material 20 and connects the first conductor layer 34F and the second conductor layer 34S are formed. . The first surface of the core substrate and the first surface of the insulating substrate are the same surface, and the second surface of the core substrate and the second surface of the insulating substrate are the same surface.

上側のビルドアップ層500Fはコア基板30の第1面Fと第1導体層34F上に形成されている上側の層間樹脂絶縁層50Fと層間樹脂絶縁層50F上の上側の導体層58Fと層間樹脂絶縁層50Fを貫通し導体層58Fと第1導体層34Fとを接続する上側のビア導体60Fとを有する。更に、導体層58Fと上側の層間樹脂絶縁層上に形成されている最上の層間樹脂絶縁層150Fと層間樹脂絶縁層150F上の最上の導体層158Fと層間樹脂絶縁層150Fを貫通し導体層158Fと導体層58Fとを接続する最上のビア導体160Fとを有する。 The upper buildup layer 500F includes an upper interlayer resin insulation layer 50F formed on the first surface F of the core substrate 30 and the first conductor layer 34F, an upper conductor layer 58F on the interlayer resin insulation layer 50F, and an interlayer resin. An upper via conductor 60F that penetrates the insulating layer 50F and connects the conductor layer 58F and the first conductor layer 34F is provided. Further, the uppermost interlayer resin insulation layer (150F) formed on the conductor layer (58F) and the upper interlayer resin insulation layer, the uppermost conductor layer (158F) on the interlayer resin insulation layer (150F), and the interlayer resin insulation layer (150F) are penetrated. And the uppermost via conductor (160F) connecting the conductor layer (58F).

下側のビルドアップ層500Sはコア基板30の第2面Sと第2導体層34S上に形成されている下側の層間樹脂絶縁層50Sと層間樹脂絶縁層50S上の下側の導体層58Sと層間樹脂絶縁層50Sを貫通し導体層58Sと第2導体層とを接続する下側のビア導体60Sとを有する。更に、導体層58Sと下側の層間樹脂絶縁層上に形成されている最下の層間樹脂絶縁層150Sと層間樹脂絶縁層150S上の最下の導体層158Sと層間樹脂絶縁層150Sを貫通し導体層158Sと導体層58Sとを接続する最下のビア導体160Sとを有する。 The lower buildup layer 500S includes a lower interlayer resin insulation layer 50S formed on the second surface S of the core substrate 30 and the second conductor layer 34S, and a lower conductor layer 58S on the interlayer resin insulation layer 50S. And a lower via conductor 60S that penetrates the interlayer resin insulation layer 50S and connects the conductor layer 58S and the second conductor layer. Furthermore, the lowermost interlayer resin insulation layer (150S) formed on the conductor layer (58S) and the lower interlayer resin insulation layer, the lowermost conductor layer (158S) on the interlayer resin insulation layer (150S), and the interlayer resin insulation layer (150S) are penetrated. It has a lowermost via conductor (160S) connecting the conductor layer (158S) and the conductor layer (58S).

図7(A)は、図6中の貫通孔やスルーホール導体、充填樹脂等の拡大図である。
絶縁性基材20はスルーホール導体用の貫通孔28を有する。図7(A)では、貫通孔28の形状は略円柱である。但し、貫通孔の形状は砂時計の形でもよい。貫通孔28の壁面に無電解めっき膜31と無電解めっき上の電解めっき膜33から成るスルーホール導体36が形成されている。スルーホール導体の周りにスルーホールランド36Fr、36Srが形成されている。スルーホールランド36Frは第1導体層に含まれ、スルーホール導体に直接接続されていて、スルーホールランド36Srは第2導体層に含まれ、スルーホール導体に直接接続されている。スルーホールランド36Fr、36Sr及び導体層34F、34Sは、金属箔(銅箔)22Sと金属箔上の無電解めっき膜31と無電解めっき膜上の電解めっき膜33から成る。
FIG. 7A is an enlarged view of the through hole, the through hole conductor, the filling resin, and the like in FIG.
The insulating substrate 20 has a through hole 28 for a through-hole conductor. In FIG. 7A, the shape of the through hole 28 is a substantially cylindrical shape. However, the shape of the through hole may be an hourglass shape. A through-hole conductor 36 made of an electroless plating film 31 and an electroplating film 33 on electroless plating is formed on the wall surface of the through hole 28. Through-hole lands 36Fr and 36Sr are formed around the through-hole conductor. The through hole land 36Fr is included in the first conductor layer and is directly connected to the through hole conductor, and the through hole land 36Sr is included in the second conductor layer and is directly connected to the through hole conductor. The through-hole lands 36Fr, 36Sr and the conductor layers 34F, 34S are composed of a metal foil (copper foil) 22S, an electroless plating film 31 on the metal foil, and an electrolytic plating film 33 on the electroless plating film.

スルーホール導体の膜厚は絶縁性基材の両面(第1面F、第2面S)から絶縁性基材の断面方向の中央部36aに向けて概ね厚くなっていっている。但し、スルーホール導体でスルーホール導体用の貫通孔28は閉じられていない。つまり、スルーホール導体の内側に充填樹脂用の貫通孔360が形成されている。充填樹脂用の貫通孔360は絶縁性基材の第1面側に形成されている第1開口部360aと絶縁性基材の第2面側に形成されている第2開口部360bで形成されている。また、第1開口部360aは絶縁性基材の第1面に第1開口3600aを有し、第2開口部は絶縁性基材の第2面に第2開口3600bを有している。さらに、充填樹脂用の貫通孔は第1開口部と第2開口部が交わる部分に第3開口3600cを有し、第3開口の径は第1開口の径及び第2開口の径より小さい。 The film thickness of the through-hole conductor is generally increased from both surfaces (first surface F, second surface S) of the insulating base toward the central portion 36a in the cross-sectional direction of the insulating base. However, the through hole 28 for the through hole conductor is not closed by the through hole conductor. That is, the through hole 360 for filling resin is formed inside the through-hole conductor. The through hole 360 for filling resin is formed by a first opening 360a formed on the first surface side of the insulating base material and a second opening 360b formed on the second surface side of the insulating base material. ing. The first opening 360a has a first opening 3600a on the first surface of the insulating base material, and the second opening has a second opening 3600b on the second surface of the insulating base material. Furthermore, the through hole for the filling resin has a third opening 3600c at a portion where the first opening and the second opening intersect, and the diameter of the third opening is smaller than the diameter of the first opening and the diameter of the second opening.

図7(b)に示されている充填樹脂用の貫通孔360は絶縁性基材の第1面から第2面に向かってテーパーしている第1開口部360aと絶縁性基材の第2面から第1面に向かってテーパーしている第1開口部360bが絶縁性基材内で繋がることで形成されている。図7(b)に示されている充填樹脂用の貫通孔360の形状は略砂時計の形である。
充填樹脂用の貫通孔360に充填樹脂が形成されている。充填樹脂50は上側の層間樹脂絶縁層と下側の層間樹脂絶縁層の少なくとも一方の層間樹脂絶縁層由来の樹脂で形成されている。上側の層間樹脂絶縁層に含まれている樹脂もしくは下側の層間樹脂絶縁層に含まれている樹脂が充填樹脂用の貫通孔に入りこむことで充填樹脂は形成されている。上側の層間樹脂絶縁層に含まれている樹脂と下側の層間樹脂絶縁層に含まれている樹脂が充填樹脂用の貫通孔に入りこむことで充填樹脂が形成されることが好ましい。
The through hole 360 for the filling resin shown in FIG. 7B has a first opening 360a that is tapered from the first surface of the insulating substrate toward the second surface and the second hole of the insulating substrate. A first opening 360b that is tapered from the surface toward the first surface is formed by being connected in the insulating base material. The shape of the through hole 360 for the filling resin shown in FIG. 7B is substantially an hourglass shape.
Filling resin is formed in the through hole 360 for filling resin. Filling resin 50 is formed of a resin derived from at least one interlayer resin insulation layer of the upper interlayer resin insulation layer and the lower interlayer resin insulation layer. The filling resin is formed by the resin contained in the upper interlayer resin insulation layer or the resin contained in the lower interlayer resin insulation layer entering the through hole for the filling resin. Preferably, the filling resin is formed by the resin contained in the upper interlayer resin insulation layer and the resin contained in the lower interlayer resin insulation layer entering the through hole for the filling resin.

層間樹脂絶縁層は未硬化のフィルム(層間樹脂絶縁層用のフィルム)を加熱プレスで形成される。未硬化のフィルムはエポキシ等の樹脂とシリカ等の無機粒子を含む。未硬化のフィルムは、さらに、ガラスクロス等の補強材を含むことが好ましい。加熱プレスによりフィルムの樹脂と無機粒子が充填樹脂用の貫通孔に入りこむ。
層間樹脂絶縁層用のフィルムが硬化すると、無機粒子と樹脂を含む層間樹脂絶縁層が形成される。層間樹脂絶縁層はさらに補強材を含むことができる。層間樹脂絶縁層用のフィルム由来の樹脂が硬化することで樹脂と無機粒子を含む充填樹脂50が充填樹脂用の貫通孔に形成される。
The interlayer resin insulation layer is formed by heating a non-cured film (film for interlayer resin insulation layer). The uncured film contains a resin such as epoxy and inorganic particles such as silica. The uncured film preferably further contains a reinforcing material such as glass cloth. The resin and inorganic particles of the film enter the through hole for the filling resin by the heating press.
When the film for the interlayer resin insulation layer is cured, an interlayer resin insulation layer containing inorganic particles and a resin is formed. The interlayer resin insulation layer can further include a reinforcing material. When the resin derived from the film for the interlayer resin insulation layer is cured, the filling resin 50 including the resin and the inorganic particles is formed in the through hole for the filling resin.

絶縁性基材20のZ方向(絶縁性基材の厚み方向)の熱膨張係数は10ppm/℃から25ppm/℃である。絶縁性基材のZ方向の熱膨張係数がこの段落に示されている範囲であって、充填樹脂用の貫通孔が上述の形状であると、充填樹脂の熱膨張係数と絶縁性基材の熱膨張係数の差に起因する層間樹脂絶縁層のクラックやソルダーレジスト層のクラックが防止される。絶縁性基材のX−Y方向の熱膨張係数は3ppm/℃から13ppm/℃である。充填樹脂の熱膨張係数と絶縁性基材の熱膨張係数の差に起因する充填樹脂のクラックが防止される。 The thermal expansion coefficient of the insulating base material 20 in the Z direction (thickness direction of the insulating base material) is 10 ppm / ° C. to 25 ppm / ° C. If the thermal expansion coefficient in the Z direction of the insulating base material is in the range indicated in this paragraph and the through hole for the filling resin has the above-mentioned shape, the thermal expansion coefficient of the filling resin and the insulating base material The crack of the interlayer resin insulation layer and the crack of the solder resist layer caused by the difference in thermal expansion coefficient are prevented. The thermal expansion coefficient in the XY direction of the insulating base material is 3 ppm / ° C. to 13 ppm / ° C. The crack of the filling resin due to the difference between the thermal expansion coefficient of the filling resin and the thermal expansion coefficient of the insulating substrate is prevented.

絶縁性基材20の厚みM1は、100μm〜500μmである。絶縁性基材の厚みが100μm未満であると、充填樹脂用の貫通孔上の層間樹脂絶縁層の上面が凸になりやすい。その理由は、充填樹脂用の貫通孔の体積が少ないからと考えられる。上面が凸であると、ヒートサイクルで充填樹脂により充填樹脂上の層間樹脂絶縁層やソルダーレジスト層が押される。それらにクラックが発生し易い。絶縁性基材の厚みが500μmを越えると、充填樹脂用の貫通孔上の層間樹脂絶縁層の上面が凹になりやすい。その理由は、充填樹脂用の貫通孔の体積が多いからと考えられる。また、充填樹脂内にボイドが入りやすい。充填樹脂用の貫通孔上の層間樹脂絶縁層の上面が平坦でないので、充填樹脂用の貫通孔の直上に位置する層間樹脂絶縁層上に形成されている導体層に断線が発生しやすい。充填樹脂内のボイドにより、充填樹脂や層間樹脂絶縁層にクラックが発生しやすい。 The thickness M1 of the insulating substrate 20 is 100 μm to 500 μm. When the thickness of the insulating substrate is less than 100 μm, the upper surface of the interlayer resin insulating layer on the through hole for filling resin tends to be convex. The reason is considered that the volume of the through hole for the filling resin is small. If the upper surface is convex, the interlayer resin insulating layer and the solder resist layer on the filling resin are pressed by the filling resin in a heat cycle. Cracks are likely to occur in them. When the thickness of the insulating substrate exceeds 500 μm, the upper surface of the interlayer resin insulating layer on the through hole for filling resin tends to be concave. The reason is considered to be that the volume of the through hole for the filling resin is large. In addition, voids easily enter the filled resin. Since the upper surface of the interlayer resin insulating layer on the through hole for filling resin is not flat, the conductor layer formed on the interlayer resin insulating layer located immediately above the through hole for filling resin is likely to break. Due to the voids in the filling resin, cracks are likely to occur in the filling resin and the interlayer resin insulation layer.

第1面Fにおけるスルーホール導体用の貫通孔の開口の中心を通り第1面Fに垂直な平面でスルーホール導体を切断することで得られる断面が図7(B)に示されている。スルーホール導体用の貫通孔28の径d1(図7(A))は70μm〜250μmである。第1開口3600aの径H1は50μm〜230μmである。第2開口3600bの径H2は50μm〜230μmである。第3開口3600cの径H3は24μm〜205μmである。図7(B)に示されているように、第3開口3600cの径H3は対向するスルーホール導体間の最短距離と同じある。H3の値は充填樹脂内の無機粒子の径より大きい。H3の値は充填樹脂内の無機粒子の径の3倍以上であることが好ましい。充填樹脂用の貫通孔がボイドなく樹脂で充填される。その上、充填樹脂用の貫通孔上の層間樹脂絶縁層の上面が平坦となる。 FIG. 7B shows a cross section obtained by cutting the through-hole conductor along a plane that passes through the center of the opening of the through-hole for the through-hole conductor on the first surface F and is perpendicular to the first surface F. The diameter d1 (FIG. 7A) of the through hole 28 for the through hole conductor is 70 μm to 250 μm. The diameter H1 of the first opening 3600a is 50 μm to 230 μm. The diameter H2 of the second opening 3600b is 50 μm to 230 μm. The diameter H3 of the third opening 3600c is 24 μm to 205 μm. As shown in FIG. 7B, the diameter H3 of the third opening 3600c is the same as the shortest distance between the opposing through-hole conductors. The value of H3 is larger than the diameter of the inorganic particles in the filled resin. The value of H3 is preferably at least 3 times the diameter of the inorganic particles in the filled resin. The through hole for filling resin is filled with resin without voids. In addition, the upper surface of the interlayer resin insulation layer on the through hole for filling resin becomes flat.

H3をH1で割ることで得られる値(X1)やH3をH2で割ることで得られる値(X2)は0.1以上、0.5以下である。上述のX1やX2が0.1未満であると、第3開口付近で樹脂の詰まりが発生しやすい。そのため、充填樹脂内にボイドが発生する。もしくは、充填樹脂用の貫通孔上の層間樹脂絶縁層の上面の凹凸が大きくなる。第3開口付近の充填樹脂に掛かる応力が大きくなるので、充填樹脂にクラックが発生しやすい。上述のX1やX2が0.5を超えると、充填樹脂用の貫通孔の体積が大きくなる。そのため、充填樹脂用の貫通孔上の層間樹脂絶縁層の上面の凹み量が大きくなる。ヒートサイクルで充填樹脂用の貫通孔直上に位置する層間樹脂絶縁層やソルダーレジスト層にクラックが発生する。X1とX2が上述の範囲であって、H3の値が充填樹脂中の無機粒子の径(平均粒子径)の3倍以上であると、充填樹脂中に無機粒子が均一に分散されやすい。スルーホール導体が屈曲点を有していても、充填樹脂にクラックが発生しがたい。 A value (X1) obtained by dividing H3 by H1 and a value (X2) obtained by dividing H3 by H2 are 0.1 or more and 0.5 or less. If the above-described X1 or X2 is less than 0.1, clogging of the resin is likely to occur near the third opening. Therefore, voids are generated in the filled resin. Or the unevenness | corrugation of the upper surface of the interlayer resin insulation layer on the through-hole for filling resin becomes large. Since the stress applied to the filling resin in the vicinity of the third opening is increased, cracks are likely to occur in the filling resin. When the above-mentioned X1 or X2 exceeds 0.5, the volume of the through hole for the filling resin increases. Therefore, the amount of depression on the upper surface of the interlayer resin insulation layer on the through hole for filling resin is increased. Cracks occur in the interlayer resin insulation layer and the solder resist layer located immediately above the through hole for the filling resin in the heat cycle. When X1 and X2 are in the above-mentioned range and the value of H3 is 3 times or more of the diameter of the inorganic particles (average particle diameter) in the filled resin, the inorganic particles are easily dispersed uniformly in the filled resin. Even if the through-hole conductor has a bending point, it is difficult for the filler resin to crack.

無電解めっき膜31の厚みt1は0.1μm〜3μmである。絶縁性基材の第1面や第2面における電解めっき膜33の厚みt2は10μm〜25μmである。最も厚い部分36aの電解めっき膜33の厚みt3は23μm〜70μmである。 The thickness t1 of the electroless plating film 31 is 0.1 μm to 3 μm. The thickness t2 of the electrolytic plating film 33 on the first surface and the second surface of the insulating substrate is 10 μm to 25 μm. The thickness t3 of the electrolytic plating film 33 in the thickest portion 36a is 23 μm to 70 μm.

第1実施形態のプリント配線板では、充填樹脂用の貫通孔が上述の形状を有している。その形状は概ね砂時計の形である。充填樹脂用の貫通孔の体積が円柱の貫通孔と砂時計の貫通孔で比較されると、後者が小さくなる。これにより、硬化による充填樹脂用の貫通孔内の樹脂の収縮量が小さくなる。そのため、層間樹脂絶縁層50F、50Sの上面を平坦に形成することができる。従って、層間樹脂絶縁層上の導体層58F、58Sが微細に形成されても信頼性が低下し難い。また、充填樹脂にボイドが発生し難くなり、ボイドにより層間樹脂絶縁層にクラックが生じ難くなる。信頼性の低下を防ぐことができる。
また、実施形態では、充填樹脂と層間樹脂絶縁層が同時に形成される。そのため、実施形態は、過剰な充填樹脂を研磨などで除去する工程を必要としない。プリント配線板の製造コストを低減することができる。研磨に起因する応力がプリント配線板に蓄えられないので、プリント配線板の信頼性が高くなる。
In the printed wiring board according to the first embodiment, the through hole for the filling resin has the above-described shape. Its shape is roughly the shape of an hourglass. When the volume of the through hole for filling resin is compared between the cylindrical through hole and the hourglass through hole, the latter becomes smaller. Thereby, the shrinkage | contraction amount of resin in the through-hole for filling resin by hardening becomes small. Therefore, the upper surfaces of the interlayer resin insulation layers 50F and 50S can be formed flat. Therefore, even if the conductor layers 58F and 58S on the interlayer resin insulation layer are finely formed, the reliability is hardly lowered. In addition, voids are less likely to occur in the filled resin, and cracks are less likely to occur in the interlayer resin insulation layer due to voids. A decrease in reliability can be prevented.
In the embodiment, the filling resin and the interlayer resin insulation layer are formed simultaneously. Therefore, the embodiment does not require a step of removing excess filling resin by polishing or the like. The manufacturing cost of the printed wiring board can be reduced. Since stress resulting from polishing is not stored in the printed wiring board, the reliability of the printed wiring board is increased.

プリント配線板10の製造方法が図1〜図6を参照して説明される。
(1)補強材と樹脂とからなる絶縁性基材20とその絶縁性基材20の両面に積層されている金属箔22F、22Sで形成されている両面銅張積層板20zが用意される(図1(A))。絶縁性基材20は第1面Fと第1面と反対側の第2面Sを有する。絶縁性基材20の厚みM1は100μmから500μmであることが好ましい。充填樹脂直上のソルダーレジスト層がC4パッドやBGAパッドから剥がれない。金属箔の厚みは3μmから12μmである。出発材料として、住友ベークライト株式会社製の4785GSシリーズを用いることができる。
A method for manufacturing the printed wiring board 10 will be described with reference to FIGS.
(1) A double-sided copper-clad laminate 20z formed of an insulating base 20 made of a reinforcing material and a resin and metal foils 22F and 22S laminated on both sides of the insulating base 20 is prepared ( FIG. 1 (A)). The insulating base material 20 has a first surface F and a second surface S opposite to the first surface. The thickness M1 of the insulating base material 20 is preferably 100 μm to 500 μm. The solder resist layer just above the filling resin does not peel off from the C4 pad or BGA pad. The thickness of the metal foil is 3 μm to 12 μm. As a starting material, 4785GS series manufactured by Sumitomo Bakelite Co., Ltd. can be used.

補強材としては、例えばガラスクロス、アラミド繊維、ガラス繊維などが挙げられる。ガラスクロスはTガラス(日東紡社製)が好ましい。樹脂としては、エポキシ樹脂、BT(ビスマレイミドトリアジン)樹脂などが挙げられる。さらに、樹脂中にシリカ等からなる無機粒子が含有されている。銅箔22F、22Sの表面に黒化処理が施される(図示せず)。 Examples of the reinforcing material include glass cloth, aramid fiber, and glass fiber. The glass cloth is preferably T glass (manufactured by Nittobo). Examples of the resin include an epoxy resin and a BT (bismaleimide triazine) resin. Further, the resin contains inorganic particles made of silica or the like. A blackening process is performed on the surfaces of the copper foils 22F and 22S (not shown).

(2)両面銅張積層板にドリルにより円柱のスルーホール導体用の貫通孔28が形成される(図1(B))。ここで、ドリルでは無くレーザを用いることもできる。 (2) A through-hole 28 for a cylindrical through-hole conductor is formed in a double-sided copper-clad laminate by a drill (FIG. 1 (B)). Here, a laser can be used instead of a drill.

(3)両面銅張積層板の表面及びスルーホール導体用貫通孔28の内壁に無電解めっき膜31が形成される(図1(C))。無電解めっき膜はシード層として機能する。 (3) The electroless plating film 31 is formed on the surface of the double-sided copper-clad laminate and the inner wall of the through-hole conductor through-hole 28 (FIG. 1C). The electroless plating film functions as a seed layer.

(4)無電解めっき膜31の表面にめっきレジスト32が形成される(図2(A))。 (4) A plating resist 32 is formed on the surface of the electroless plating film 31 (FIG. 2A).

(5)めっきレジストから露出する無電解めっき膜上に電解めっき膜33が形成される(図2(B))。実施形態では、シード層に流す電流が時々逆転される。このような方法を採用することで、スルーホール導体36の断面形状が図3(A)や図7(B)に示される形状となる。スルーホール導体の厚みはスルーホール導体用の貫通孔の中央部で厚く、端で薄い。ここで、中央や端は絶縁性基材の断面方向での位置である。スルーホール導体の内側に充填樹脂用の貫通孔360が形成されている。 (5) An electrolytic plating film 33 is formed on the electroless plating film exposed from the plating resist (FIG. 2B). In embodiments, the current flowing through the seed layer is sometimes reversed. By adopting such a method, the cross-sectional shape of the through-hole conductor 36 becomes the shape shown in FIG. 3 (A) or FIG. 7 (B). The thickness of the through-hole conductor is thick at the center of the through-hole for the through-hole conductor and thin at the end. Here, the center and the end are positions in the cross-sectional direction of the insulating base material. A through hole 360 for filling resin is formed inside the through hole conductor.

(6)めっきレジストが除去される。電解めっき膜間の無電解めっき膜31、銅箔22F、22Sがエッチングで除去される。導体層34F、34Sが形成される(図3(A))。 (6) The plating resist is removed. The electroless plating film 31 and the copper foils 22F and 22S between the electrolytic plating films are removed by etching. Conductive layers 34F and 34S are formed (FIG. 3A).

(7)コア基板30の第1面F上にプリプレグなどの層間樹脂絶縁層用樹脂フィルムが積層される。層間樹脂絶縁層用樹脂フィルムはエポキシなどの樹脂とシリカなどの無機粒子で形成されている。さらに、ガラスクロスなどの補強材が含まれても良い。プリプレグとして、住友ベークライト株式会社製の6785GSシリーズが挙げられる。
真空条件化で加熱プレスが施される。第1面F上に積層されている層間樹脂絶縁層用樹脂フィルムに含まれる樹脂が軟化する。そして、第1面F上の層間樹脂絶縁層用樹脂フィルムから無機粒子を含む樹脂が充填樹脂用の貫通孔にしみ出す。充填樹脂用の貫通孔に樹脂が充填される。
続いて、コア基板の第2面S上にプリプレグなどの層間樹脂絶縁層用樹脂フィルムが積層される。
(7) An interlayer resin insulation layer resin film such as a prepreg is laminated on the first surface F of the core substrate 30. The resin film for interlayer resin insulation layers is formed of a resin such as epoxy and inorganic particles such as silica. Further, a reinforcing material such as a glass cloth may be included. Examples of the prepreg include 6785GS series manufactured by Sumitomo Bakelite Co., Ltd.
A hot press is applied under vacuum conditions. Resin contained in the resin film for interlayer resin insulation layers laminated on the first surface F is softened. Then, the resin containing inorganic particles oozes out from the resin film for the interlayer resin insulation layer on the first surface F into the through hole for the filling resin. The resin is filled into the through hole for the filling resin.
Subsequently, an interlayer resin insulation layer resin film such as a prepreg is laminated on the second surface S of the core substrate.

コア基板の第1面上の層間樹脂絶縁層用樹脂フィルムと第2面上の層間樹脂絶縁層用樹脂フィルムが硬化される。コア基板の第1面上に上側の層間樹脂絶縁層が形成される。コア基板の第2面上に下側の層間樹脂絶縁層が形成される。充填樹脂用の貫通孔内に充填樹脂50が形成される(図3(B))。 The resin film for interlayer resin insulation layers on the first surface of the core substrate and the resin film for interlayer resin insulation layers on the second surface are cured. An upper interlayer resin insulation layer is formed on the first surface of the core substrate. A lower interlayer resin insulation layer is formed on the second surface of the core substrate. Filling resin 50 is formed in the through hole for the filling resin (FIG. 3B).

充填樹脂や層間樹脂絶縁層の別の形成方法が以下に示される。
コア基板の第1面F上にプリプレグなどの層間樹脂絶縁層用樹脂フィルムが積層される。真空条件化で加熱プレスが施される。この時、圧力や真空度、温度が低く設定される。このため、充填樹脂用の貫通孔が完全に充填されない。第1開口部と第2開口部の一部がコア基板の第1面上に積層されている層間樹脂絶縁層用樹脂フィルムに含まれる樹脂と無機粒子で満たされる。第2開口部の空間の少なくとも半分が樹脂と無機粒子で充填されることが好ましい。
Another method for forming the filling resin and the interlayer resin insulating layer is shown below.
A resin film for an interlayer resin insulation layer such as a prepreg is laminated on the first surface F of the core substrate. A hot press is applied under vacuum conditions. At this time, the pressure, the degree of vacuum, and the temperature are set low. For this reason, the through hole for filling resin is not completely filled. Part of the first opening and the second opening is filled with the resin and inorganic particles contained in the resin film for an interlayer resin insulation layer laminated on the first surface of the core substrate. It is preferable that at least half of the space of the second opening is filled with resin and inorganic particles.

続いて、コア基板の第2面S上にプリプレグなどの層間樹脂絶縁層用樹脂フィルムが積層される。真空条件化で加熱プレスが施される。第2面S上に積層されている層間樹脂絶縁層用樹脂フィルムに含まれる樹脂が軟化する。そして、第2面S上の層間樹脂絶縁層用樹脂フィルムから無機粒子を含む樹脂が充填樹脂用の貫通孔を形成している第2開口部にしみ出す。コア基板の第1面F上の層間樹脂絶縁層用樹脂フィルムに由来する樹脂と無機粒子で満たされていない部分の充填樹脂用の貫通孔がコア基板の第2面S上の層間樹脂絶縁層用樹脂フィルムに由来する樹脂と無機粒子で満たされる。充填樹脂用の貫通孔はコア基板の第1面F上の層間樹脂絶縁層用樹脂フィルムに含まれている樹脂と無機粒子及びコア基板の第2面S上の層間樹脂絶縁層用樹脂フィルムに含まれている樹脂と無機粒子で満たされる。 Subsequently, an interlayer resin insulation layer resin film such as a prepreg is laminated on the second surface S of the core substrate. A hot press is applied under vacuum conditions. Resin contained in the resin film for interlayer resin insulation layers laminated on the second surface S is softened. Then, the resin containing inorganic particles oozes out from the resin film for the interlayer resin insulation layer on the second surface S into the second opening where the through holes for the filling resin are formed. The interlayer resin insulation layer on the second surface S of the core substrate has a through hole for filling resin in a portion not filled with resin and inorganic particles derived from the resin film for interlayer resin insulation layer on the first surface F of the core substrate. It is filled with resin and inorganic particles derived from the resin film. The through holes for the filling resin are formed in the resin and the inorganic particles contained in the resin film for interlayer resin insulation layer on the first surface F of the core substrate and the resin film for interlayer resin insulation layer on the second surface S of the core substrate. Filled with contained resin and inorganic particles.

第1面F上の層間樹脂絶縁層用樹脂フィルムと第2面S上の層間樹脂絶縁層用樹脂フィルムと充填樹脂用の貫通孔内の樹脂が硬化される。コア基板の第1面上に上側の層間樹脂絶縁層が形成される。コア基板の第2面上に下側の層間樹脂絶縁層が形成される。充填樹脂用の貫通孔内に充填樹脂が形成される。
第1面F上の層間樹脂絶縁層用樹脂フィルムが先にコア基板に積層されているが、第2面S上の層間樹脂絶縁層用樹脂フィルムが先にコア基板に積層されても良い。また、第1面F上の層間樹脂絶縁層用樹脂フィルムと第2面S上の層間樹脂絶縁層用樹脂が同時に硬化されているが、別々に硬化することも可能である。上側の層間樹脂絶縁層が形成されてからコア基板の第2面上に層間樹脂絶縁層用樹脂フィルムが積層されてもよい。
層間樹脂絶縁層の厚みは20μmから40μmである。
The resin in the interlayer resin insulation layer on the first surface F, the resin film for the interlayer resin insulation layer on the second surface S, and the resin in the through hole for the filling resin are cured. An upper interlayer resin insulation layer is formed on the first surface of the core substrate. A lower interlayer resin insulation layer is formed on the second surface of the core substrate. Filling resin is formed in the through hole for filling resin.
Although the resin film for interlayer resin insulation layers on the first surface F is first laminated on the core substrate, the resin film for interlayer resin insulation layers on the second surface S may be laminated on the core substrate first. Moreover, although the resin film for interlayer resin insulation layers on the 1st surface F and the resin for interlayer resin insulation layers on the 2nd surface S are hardened | cured simultaneously, it can also be hardened | cured separately. The interlayer resin insulation layer resin film may be laminated on the second surface of the core substrate after the upper interlayer resin insulation layer is formed.
The thickness of the interlayer resin insulation layer is 20 μm to 40 μm.

第1実施形態のプリント配線板の製造方法では、充填樹脂用の貫通孔が砂時計の形をしているため、充填樹脂用の貫通孔に充填される樹脂の量が少なくなる。これにより、充填樹脂用の貫通孔内の樹脂が熱で硬化される時、樹脂の収縮量を小さくすることができる。層間樹脂絶縁層50F、50Sの上面に窪みが生じ難い。 In the printed wiring board manufacturing method of the first embodiment, since the through hole for filling resin has the shape of an hourglass, the amount of resin filled in the through hole for filling resin is reduced. Thereby, when the resin in the through hole for filling resin is cured by heat, the shrinkage amount of the resin can be reduced. Indentations are unlikely to form on the upper surfaces of the interlayer resin insulation layers 50F and 50S.

また、第1実施形態のプリント配線板の製造方法は、充填樹脂を研磨する工程を有していない。研磨工程が不要になるので、プリント配線板の製造コストを低減することができる。 Moreover, the manufacturing method of the printed wiring board of 1st Embodiment does not have the process of grind | polishing filling resin. Since the polishing process is not necessary, the manufacturing cost of the printed wiring board can be reduced.

(8)次に、CO2ガスレーザにて層間樹脂絶縁層50F,50Sにそれぞれビア導体用の開口51F,51Sが形成される(図3(C))。 (8) Next, via conductor openings 51F and 51S are formed in the interlayer resin insulation layers 50F and 50S by a CO2 gas laser, respectively (FIG. 3C).

(9)層間樹脂絶縁層50F,50Sの表面とビア導体用の開口51F,51Bの内壁に無電解めっき膜52,52が形成される(図3(D))。 (9) Electroless plated films 52 and 52 are formed on the surfaces of the interlayer resin insulation layers 50F and 50S and the inner walls of the via conductor openings 51F and 51B (FIG. 3D).

(10)無電解めっき膜52上にめっきレジスト54が設けられる(図4(A))。 (10) A plating resist 54 is provided on the electroless plating film 52 (FIG. 4A).

(11)めっきレジスト54から露出する無電解めっき膜52上に、電解めっき膜56が形成される(図4(B))。 (11) An electrolytic plating film 56 is formed on the electroless plating film 52 exposed from the plating resist 54 (FIG. 4B).

(12)めっきレジスト54が除去される。電解めっき膜間の無電解めっき膜がエッチングで除去されることで、複数の導体回路を有する導体層58F,58S及びビア導体60F,60Sが形成される(図4(C))。 (12) The plating resist 54 is removed. By removing the electroless plating film between the electrolytic plating films by etching, conductor layers 58F and 58S and via conductors 60F and 60S having a plurality of conductor circuits are formed (FIG. 4C).

(13)上記図3(B)に示されている工程から図4(C)に示されている工程が繰り返され、層間樹脂絶縁層50F、50S上に最上と最下の層間樹脂絶縁層150F、150Sが形成される。最上と最下の層間樹脂絶縁層150F、150S上に最上と最下の導体層158F、158Sが形成される。最上と最下の層間樹脂絶縁層150F、150Sに最上と最下のビア導体160F、160Sが形成される。導体層58F、58Sと導体層158F、158Sは最上と最下のビア導体160F、160Sで接続される(図15(A))。コア基板の第1面上に上側のビルドアップ層500Fが形成され、コア基板の第2面上に下側のビルドアップ層500Sが形成される。 (13) From the step shown in FIG. 3B to the step shown in FIG. 4C, the uppermost and lowermost interlayer resin insulation layers 150F are formed on the interlayer resin insulation layers 50F and 50S. , 150S is formed. The uppermost and lowermost conductor layers 158F and 158S are formed on the uppermost and lowermost interlayer resin insulation layers 150F and 150S. Uppermost and lowermost via conductors 160F and 160S are formed in the uppermost and lowermost interlayer resin insulation layers 150F and 150S. The conductor layers 58F and 58S and the conductor layers 158F and 158S are connected by the uppermost and lowermost via conductors 160F and 160S (FIG. 15A). Upper buildup layer 500F is formed on the first surface of the core substrate, and lower buildup layer 500S is formed on the second surface of the core substrate.

(13)上側のビルドアップ層500F上に、開口71Fを有するソルダーレジスト層70Fが形成され、下側ビルドアップ層500S上に、開口71Sを有するソルダーレジスト層70Sが形成される(図5(B))。開口71F、71Sから露出する導体層やビア導体の上面はパッドCP、BPとして機能する。 (13) A solder resist layer 70F having an opening 71F is formed on the upper buildup layer 500F, and a solder resist layer 70S having an opening 71S is formed on the lower buildup layer 500S (FIG. 5B). )). The conductor layers exposed from the openings 71F and 71S and the upper surfaces of the via conductors function as pads CP and BP.

(14)パッド上にニッケルめっき層72が形成され、さらにニッケルめっき層72上に金めっき層74が形成される(図5(C))。ニッケル−金層以外にも、ニッケル−パラジウム−金層が形成されてもよい。 (14) A nickel plating layer 72 is formed on the pad, and a gold plating layer 74 is further formed on the nickel plating layer 72 (FIG. 5C). In addition to the nickel-gold layer, a nickel-palladium-gold layer may be formed.

(15)この後、US7475803B2に開示されている方法でパッド上にSn/Agなどの半田ボールが搭載される。その後、パッド上に半田バンプ76F、76Sが形成される。上側のビルドアップ層のパッド上に形成されている半田バンプはC4バンプであって、下側のビルドアップ層のパッド上に形成されている半田バンプはBGAバンプである(図6)。 (15) Thereafter, solder balls such as Sn / Ag are mounted on the pads by the method disclosed in US Pat. No. 7,475,803 B2. Thereafter, solder bumps 76F and 76S are formed on the pads. The solder bump formed on the upper buildup layer pad is a C4 bump, and the solder bump formed on the lower buildup layer pad is a BGA bump (FIG. 6).

(16)半田バンプ76Fを介してプリント配線板10にICチップが実装される。その後、ICチップが実装されている第1実施形態のプリント配線板はリフローでマザーボードに搭載される。 (16) An IC chip is mounted on the printed wiring board 10 via the solder bumps 76F. Thereafter, the printed wiring board of the first embodiment on which the IC chip is mounted is mounted on the mother board by reflow.

[第2実施形態]
第2実施形態のプリント配線板が図8に示されている。
第2実施形態のプリント配線板ではスルーホール導体用の貫通孔の形状が概ね砂時計の形である。このようなスルーホール導体用の貫通孔は、例えば、US2008/257591A1やJP2003/46248Aに開示されている方法で形成される。その後、貫通孔の壁面にDCめっきでめっき膜が形成される。めっき膜の厚みは絶縁基板の厚み方向で略均一である。スルーホール導体が形成される。US2008/257591A1やJP2003/46248Aでは、スルーホール導体用の貫通孔がめっき膜で充填されているが、第2実施形態では、めっき膜の厚みが5μmから15μmであるので、スルーホール導体の内側に充填樹脂用の貫通孔が形成される。これ以降の工程は第1実施形態と第2実施形態で同じである。第1実施形態と第2実施形態は同様な効果を有する。
[Second Embodiment]
A printed wiring board of the second embodiment is shown in FIG.
In the printed wiring board of the second embodiment, the shape of the through-hole for the through-hole conductor is approximately an hourglass shape. Such through-holes for through-hole conductors are formed by a method disclosed in, for example, US2008 / 257591A1 or JP2003 / 46248A. Thereafter, a plating film is formed on the wall surface of the through hole by DC plating. The thickness of the plating film is substantially uniform in the thickness direction of the insulating substrate. A through-hole conductor is formed. In US2008 / 257591A1 and JP2003 / 46248A, through-holes for through-hole conductors are filled with a plating film. In the second embodiment, the thickness of the plating film is 5 μm to 15 μm. A through hole for the filling resin is formed. The subsequent steps are the same in the first embodiment and the second embodiment. The first embodiment and the second embodiment have the same effect.

20 絶縁性基材
28 貫通孔
30 コア基板
31 無電解めっき膜
33 電界めっき膜
34F、34S 導体パターン
36 スルーホール導体
50 充填樹脂
50F、50S 層間樹脂絶縁層
58F、58S 導体層
60F、60S ビア導体
20 Insulating substrate 28 Through hole 30 Core substrate 31 Electroless plating film 33 Electroplating film 34F, 34S Conductor pattern 36 Through-hole conductor 50 Filling resin 50F, 50S Interlayer resin insulation layer 58F, 58S Conductor layer 60F, 60S Via conductor

Claims (6)

第1面と前記第1面と反対側の第2面を有するとともに前記第1面から第2面に至るスルーホール導体用の貫通孔を有する絶縁性基材と、
前記絶縁性基材の第1面上に形成されている第1導体層と、
前記絶縁性基材の第2面上に形成されている第2導体層と、
前記スルーホール導体用の貫通孔の壁面に形成されていて前記第1導体層と前記第2導体層とを接続しているスルーホール導体と、
前記絶縁性基材の第1面から第2面に至り前記スルーホール導体の内側に形成されている充填樹脂用の貫通孔に形成されている充填樹脂と、
前記絶縁性基材の第1面と前記第1導体層上に形成されている上側の層間樹脂絶縁層と前記上側の層間樹脂絶縁層上の上側の導体層と前記上側の層間樹脂絶縁層を貫通し前記上側の導体層と前記第1導体層を接続している上側のビア導体で形成されている上側のビルドアップ層と、
前記絶縁性基材の第2面と前記第2導体層上に形成されている下側の層間樹脂絶縁層と前記下側の層間樹脂絶縁層上の下側の導体層と前記下側の層間樹脂絶縁層を貫通し前記下側の導体層と前記第2導体層を接続している下側のビア導体で形成されている下側のビルドアップ層と、を有するプリント配線板であって、
前記充填樹脂用の貫通孔は前記絶縁性基材の第1面側に形成されている第1開口部と前記絶縁性基材の第2面側に形成されている第2開口部で形成されていて、前記第1開口部は前記絶縁性基材の第1面に第1開口を有し、前記第2開口部は前記絶縁性基材の第2面に第2開口を有し、前記充填樹脂用の貫通孔は前記第1開口部と前記第2開口部が交わる部分に第3開口を有し、前記第3開口の径は前記第1開口の径及び前記第2開口の径より小さく、前記上側の層間樹脂絶縁層に含まれている樹脂が前記充填樹脂用の貫通孔に入りこむことで前記充填樹脂は形成されている。
An insulating substrate having a first surface and a second surface opposite to the first surface and having a through hole for a through-hole conductor extending from the first surface to the second surface;
A first conductor layer formed on the first surface of the insulating substrate;
A second conductor layer formed on the second surface of the insulating substrate;
A through-hole conductor formed on the wall surface of the through-hole for the through-hole conductor and connecting the first conductor layer and the second conductor layer;
A filling resin formed in a through hole for a filling resin that extends from the first surface to the second surface of the insulating base material and is formed inside the through-hole conductor;
An upper interlayer resin insulation layer formed on the first surface of the insulating substrate and the first conductor layer, an upper conductor layer on the upper interlayer resin insulation layer, and the upper interlayer resin insulation layer An upper buildup layer formed of an upper via conductor that passes through and connects the upper conductor layer and the first conductor layer;
The second interlayer resin insulating layer formed on the second surface of the insulating substrate and the second conductor layer, the lower conductor layer on the lower interlayer resin insulating layer, and the lower interlayer A printed wiring board having a lower buildup layer formed of a lower via conductor passing through a resin insulating layer and connecting the lower conductive layer and the second conductive layer,
The through hole for the filling resin is formed by a first opening formed on the first surface side of the insulating base material and a second opening formed on the second surface side of the insulating base material. The first opening has a first opening on the first surface of the insulating substrate, the second opening has a second opening on the second surface of the insulating substrate, and The through hole for filling resin has a third opening at a portion where the first opening and the second opening intersect, and the diameter of the third opening is larger than the diameter of the first opening and the diameter of the second opening. The filling resin is formed by a small resin contained in the upper interlayer resin insulation layer entering the through hole for the filling resin.
請求項1のプリント配線板であって、前記充填樹脂は前記下側の層間樹脂絶縁層に含まれている樹脂が前記充填樹脂用の貫通孔に入りこむことで形成されている。 2. The printed wiring board according to claim 1, wherein the filling resin is formed by a resin contained in the lower interlayer resin insulating layer entering a through hole for the filling resin. 請求項1のプリント配線板であって、前記絶縁性基材の厚みは100μm〜500μmで、X−Y方向の熱膨張係数が3〜13ppm/℃ である。 It is a printed wiring board of Claim 1, Comprising: The thickness of the said insulating base material is 100 micrometers-500 micrometers, and the thermal expansion coefficient of a XY direction is 3-13 ppm / degrees C. 請求項1のプリント配線板であって、前記第3開口の径を前記第1開口の径で割ることで得られる値は0.1以上、0.5以下である。 2. The printed wiring board according to claim 1, wherein a value obtained by dividing the diameter of the third opening by the diameter of the first opening is 0.1 or more and 0.5 or less. 請求項1のプリント配線板であって、前記上側の層間樹脂絶縁層はガラスクロスと無機粒子と樹脂で形成されていて、前記充填樹脂は前記上側の層間樹脂絶縁層に含まれている無機粒子を含む。 2. The printed wiring board according to claim 1, wherein the upper interlayer resin insulation layer is formed of glass cloth, inorganic particles, and resin, and the filling resin is contained in the upper interlayer resin insulation layer. including. 請求項5のプリント配線板であって、前記無機粒子の径は、前記第3の開口の径より小さい。 6. The printed wiring board according to claim 5, wherein the diameter of the inorganic particles is smaller than the diameter of the third opening.
JP2012239200A 2012-10-30 2012-10-30 Printed wiring board Pending JP2014090079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012239200A JP2014090079A (en) 2012-10-30 2012-10-30 Printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012239200A JP2014090079A (en) 2012-10-30 2012-10-30 Printed wiring board

Publications (1)

Publication Number Publication Date
JP2014090079A true JP2014090079A (en) 2014-05-15

Family

ID=50791758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012239200A Pending JP2014090079A (en) 2012-10-30 2012-10-30 Printed wiring board

Country Status (1)

Country Link
JP (1) JP2014090079A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152597A (en) * 2017-01-13 2018-09-27 大日本印刷株式会社 Through electrode substrate and manufacturing method thereof
WO2018193988A1 (en) * 2017-04-18 2018-10-25 株式会社村田製作所 Rfid tag and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102751A (en) * 1999-09-29 2001-04-13 Ibiden Co Ltd Multilayer printed wiring board and manufacturing method thereof
JP2004193292A (en) * 2002-12-11 2004-07-08 Dainippon Printing Co Ltd Through-hole wiring board and its manufacturing method
JP2004207338A (en) * 2002-12-24 2004-07-22 Kyocera Corp Wiring board
JP2008113022A (en) * 2007-12-17 2008-05-15 Ibiden Co Ltd Substrate with through-hole formed and multilayer printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102751A (en) * 1999-09-29 2001-04-13 Ibiden Co Ltd Multilayer printed wiring board and manufacturing method thereof
JP2004193292A (en) * 2002-12-11 2004-07-08 Dainippon Printing Co Ltd Through-hole wiring board and its manufacturing method
JP2004207338A (en) * 2002-12-24 2004-07-22 Kyocera Corp Wiring board
JP2008113022A (en) * 2007-12-17 2008-05-15 Ibiden Co Ltd Substrate with through-hole formed and multilayer printed wiring board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152597A (en) * 2017-01-13 2018-09-27 大日本印刷株式会社 Through electrode substrate and manufacturing method thereof
JP7163069B2 (en) 2017-01-13 2022-10-31 大日本印刷株式会社 Penetration electrode substrate and manufacturing method thereof
WO2018193988A1 (en) * 2017-04-18 2018-10-25 株式会社村田製作所 Rfid tag and method for manufacturing same
JPWO2018193988A1 (en) * 2017-04-18 2019-11-07 株式会社村田製作所 RFID tag and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US9232657B2 (en) Wiring substrate and manufacturing method of wiring substrate
JP5224845B2 (en) Semiconductor device manufacturing method and semiconductor device
US9775237B2 (en) Wiring substrate and method for manufacturing the same
US10745819B2 (en) Printed wiring board, semiconductor package and method for manufacturing printed wiring board
US9578755B2 (en) Printed wiring board having buildup layers and multilayer core substrate with double-sided board
US20100224397A1 (en) Wiring board and method for manufacturing the same
US10098243B2 (en) Printed wiring board and semiconductor package
JP2015106615A (en) Printed wiring board and method for manufacturing printed wiring board
US11152293B2 (en) Wiring board having two insulating films and hole penetrating therethrough
US20120199386A1 (en) Multilayer printed wiring board
US9313894B2 (en) Wiring substrate and manufacturing method of wiring substrate
TWI587764B (en) Wiring substrate and method of manufacturing the same
KR101516072B1 (en) Semiconductor Package and Method of Manufacturing The Same
JP2015185564A (en) Printed wiring board and method for manufacturing printed wiring board
JP2015170770A (en) Printed wiring board
JP2012209553A (en) Printed wiring board
US20130048355A1 (en) Printed wiring board
KR101355732B1 (en) Wiring substrate manufacturing method
US20150257268A1 (en) Printed wiring board and method for manufacturing printed wiring board
JP2010123829A (en) Printed wiring board and manufacturing method thereof
JP5176676B2 (en) Manufacturing method of component-embedded substrate
JP6387712B2 (en) Printed wiring board
JP2014090079A (en) Printed wiring board
JP3674662B2 (en) Wiring board manufacturing method
JP2015060912A (en) Package substrate for mounting semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170131