JP3674662B2 - Wiring board manufacturing method - Google Patents

Wiring board manufacturing method Download PDF

Info

Publication number
JP3674662B2
JP3674662B2 JP13765198A JP13765198A JP3674662B2 JP 3674662 B2 JP3674662 B2 JP 3674662B2 JP 13765198 A JP13765198 A JP 13765198A JP 13765198 A JP13765198 A JP 13765198A JP 3674662 B2 JP3674662 B2 JP 3674662B2
Authority
JP
Japan
Prior art keywords
resin material
filling
hole
curing
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13765198A
Other languages
Japanese (ja)
Other versions
JPH11317578A (en
Inventor
照久 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP13765198A priority Critical patent/JP3674662B2/en
Publication of JPH11317578A publication Critical patent/JPH11317578A/en
Application granted granted Critical
Publication of JP3674662B2 publication Critical patent/JP3674662B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、配線基板の製造方法に関し、特に、絶縁基板の上下に貫通するスルーホールを有する配線基板の製造方法に関するものである。
【0002】
【従来技術】
電子装置の小型化、高密度化に伴い、電子装置に使用される配線基板も小型化、高密度化が求められている。こうした配線基板としては、例えば、上下両主面に銅等の金属材料からなる配線層が形成されたガラス−エポキシ樹脂等の電気絶縁材料からなる絶縁基板の上下両主面にエポキシ樹脂、ポリイミド樹脂、フッ素樹脂等の樹脂材料からなる樹脂絶縁層と、銅等の金属材料からなる配線層とを交互に積み上げたビルドアップ層を備えたビルドアップ多層配線基板が知られている。
【0003】
このようなビルドアップ多層配線基板は、絶縁基板(いわゆるコア基板)を上下に貫通するスルーホールが形成されているとともに、そのスルーホール内に銅等の金属材料からなるスルーホール導体が被着形成されている。このスルーホール導体は、絶縁基板の上下両主面に形成された配線層を電気的に接続する役割を担っている。
【0004】
このようなスルーホールには、通常、絶縁基板を平坦化し、良好なビルドアップ層を得るために、エポキシ樹脂等の熱硬化性樹脂等のスルーホール充填物が形成される。このようなスルーホール充填物は、絶縁基板に形成されたスルーホール内に、上記スルーホール導体を形成した後、エポキシ樹脂等の熱硬化性樹脂からなる未硬化の樹脂材料を充填し、これを約150℃の温度で熱処理して硬化させることによって形成される。このスルーホール充填物は、前記配線層の表面と同一平面を有し、かつ平坦であることが望ましい。
【0005】
【発明が解決しようとする課題】
しかし、このようなスルーホール充填物は、仮に硬化前に配線層と同一平面とする研磨等の整面処理を施しておいたとしても、硬化時の体積の収縮により減少して、前記配線層の表面よりも凹んだものとなりやすい。その結果、絶縁基板の上下両主面において、スルーホール充填物の表面と配線層の表面とに、大きな段差を有することになる。このような絶縁基板の上下両主面に樹脂絶縁層と配線層とを交互に積み上げてビルドアップ層を形成すると、配線層を正確に形成することが困難であり、断線や短絡などを生じることがあった。
【0006】
【課題を解決するための手段】
このような問題を解決する手法として、本発明の請求項1に記載の配線基板の製造方法は、上下両主面に貫通するスルーホールを有する絶縁基板と、上記絶縁基板の少なくとも一平面に形成された配線層と、上記スルーホールの内周面に形成され、前記配線層と電気的に接続するスルーホール導体と、開口端面において上記配線層の表面と実質的に同一平面になるように前記スルーホール内に充填されたスルーホール充填物と、を備えた配線基板の製造方法であって、上記スルーホールに、第1の樹脂材料を充填する第1充填工程と、上記第1の樹脂材料を硬化させる第1硬化工程と、上記第1硬化工程により生じた凹み部分に、第2の樹脂材料を充填する第2充填工程と、上記第2の樹脂材料を硬化させる第2硬化工程と、を含むことを特徴とする。
【0007】
このような製造方法によれば、スルーホール内に充填した樹脂材料(第1の樹脂材料)を一旦硬化させ、その際に生じた凹み部分に樹脂(第2の樹脂材料)を再度充填するので、絶縁基板とスルーホール充填物を容易に同一平面とすることができる。なお、第1の樹脂材料および第2の樹脂材料は、溶媒を含んだものであっても、溶媒を含まない無溶媒タイプのものよい。溶媒タイプ、無溶媒タイプのいずれであっても、第1の樹脂材料を硬化した後の凹みが生じた箇所に充填される第2の樹脂材料は、第1の樹脂材料と同一の樹脂材料であっても良く、また、性質の異なる樹脂材料であっても良い。
【0008】
また、本発明の請求項2に記載の配線基板の製造方法は、前記第2の樹脂材料は、前記第1の樹脂材料よりも溶媒成分量の少ないことを特徴とする。
上記硬化時の樹脂材料の収縮量は、溶媒成分を含んだ樹脂材料を用いた場合、樹脂材料中に含まれる溶媒成分の量に影響される。上記凹んだ部分に、再度樹脂材料を充填する際に、最初に充填した樹脂材料と比べて、溶媒成分量が多い樹脂材料を用いると、後の硬化工程によって、再度同様の凹みを生じることとなり、あまり効果が得られないことがある。また、予め溶媒成分量の少ない樹脂材料を用いて、硬化時の収縮を少なくすることも考えられるが、溶媒成分量が少ないとスルーホール内への充填性が悪くなるという欠点がある。しかし、本発明によれば、第1と第2の樹脂材料に含まれる溶媒成分の量を変えることで、両方の問題を一挙に解決できる。
【0009】
すなわち、このような配線基板の製造方法によれば、比較的溶媒成分量が多く、スルーホール充填性の良い第1の樹脂材料を用いて、スルーホールを充填して硬化させた後、その硬化時に生じた凹み部分には、第1の樹脂材料よりも溶媒成分量が少なく、硬化収縮量が少ない第2の樹脂材料を充填することにより、再度硬化収縮が生じにくい。したがって、配線層の表面と実質的に同一表面を有するスルーホール充填物を容易に形成できる。このような配線基板は、ビルドアップ層を正確に形成できるので、断線等の欠点を生じない。
また、第1の樹脂材料には、比較的溶媒成分量の多いものを使用するため、スルーホール内への充填性がよい。
なお、ここで用いる溶媒成分量としては、N、N−ジメチルアセトアミドに代表されるアミド系溶媒やエーテル系溶媒等の反応溶媒が挙げられるが、それらに限定されるものではなく、本発明の主旨を逸脱しない範囲で公知の材料を適用適用できる。
【0010】
本発明の請求項3に記載の配線基板の製造方法は、前記スルーホールに、第1の樹脂材料を前記配線層より突出するように充填する第1充填工程と、上記第1の充填材料を、半硬化させた後、上記配線層の表面と同一平面をなすよう整面する第1整面工程と、上記第1整面工程を経た第1の樹脂材料を硬化させる第1硬化工程と、を含むことを特徴とする請求項1または2に記載の配線基板の製造方法ある。
【0011】
第1樹脂材料は、塗布する際から配線層と同一平面をなすように形成しておくことも可能であるが、未硬化の樹脂を硬化させるとその硬化収縮量は大きく、硬化収縮によって生じる凹み部分が大きくなる。この後、充填される第2の樹脂材料も硬化時に収縮し再度凹みを生じる恐れがあるため、凹み部分はできるだけ小さい方がこのましい。そこで、第1の樹脂材料を配線層より突出するように形成し、半硬化する。半硬化とは、樹脂が完全には硬化していないが、硬化作用がある程度進行した状態を指す。完全に硬化させるための熱処理時間よりも、熱処理時間を短くするといった方法により、半硬化状態にすることができる。完全に硬化した場合は、樹脂が硬くなり過ぎて整面工程が困難であるため、整面工程は半硬化状態の第1の樹脂材料に対して行うのが好ましい。ここで樹脂材料の硬化作用がある程度進むので、整面後の第1硬化工程で硬化収縮量を低減できる。
【0012】
本発明の請求項4に記載の配線基板の製造方法は、前記スルーホールに、第2の樹脂材料を前記配線層より突出するように充填する第2充填工程と、上記第2の充填材料を、半硬化させた後、上記配線層の表面と同一平面をなすよう整面する第2整面工程と、上記第2整面工程を経た第2の樹脂材料を硬化させる第2硬化工程とを含むことを特徴とする請求項1乃至3のいずれかに記載の配線基板の製造方法である。
【0013】
第2樹脂材料は、配線層と同一平面をなすように形成した未硬化の樹脂を硬化させるよりも、半硬化した状態で整面しておくことによって、完全に硬化する際の硬化収縮量をさらに低減することができる。また、研磨等の整面工程を経ることにより、配線層と同一平面を有し、極めて平坦度の高いスルーホール充填物を形成することができる。
【0014】
本発明の請求項5に記載の配線基板の製造方法は、前記スルーホール充填物の露出面に金属層を形成するメッキ工程を含むことを特徴とする請求項1乃至4のいずれかに記載の配線基板の製造方法である。請求項1乃至3の配線基板の製造方法によって得られた配線基板は、スルーホール充填物が配線層と実質的に同一平面を有しているので、スルーホール充填物の上面および配線層にメッキを施した際に平坦な金属層を形成することができる。また、スルーホール充填物の上に金属層を形成することで、スルーホールの直上領域にも非貫通孔(ブラインドビア)の形成が可能となる。
【0015】
本発明の請求項6に記載の配線基板の製造方法は、前記第2の樹脂材料が、金属粒子またはメッキ触媒核の少なくともいずれかを含有していることを特徴とする請求項4に記載の配線基板の製造方法である。第2の樹脂材料が、銅粉末などの金属粒子およびパラジウム等のメッキ触媒核の少なくともいずれかを含有していることにより、スルーホール充填物上に施される金属層とスルーホール充填物との密着強度を向上することができる。
【0016】
また、第1の樹脂材料についても、第2の樹脂材料と同じまたは異なる量の金属粒子またはメッキ触媒核の少なくともいずれかを含有させてもよい。
【0017】
【発明の実施の形態】
以下、本発明の図面に従って、更に詳細に説明するが、本発明はこれら図面になんら限定されるものではない。本発明の代表的な配線基板の製造方法を以下に示す。
【0018】
図1は、本発明の配線基板の製造方法の第1の実施形態について説明する。まず、厚さ0.3mmのガラス−エポキシ樹脂複合材料(JIS:FR−4)からなる絶縁基板1の上下両主面に、厚さ12μmの銅箔2が取着された両面銅張絶縁基板10を用意する。次いで、この両面銅張絶縁基板10にドリルによって所定ピッチで貫通孔Hを形成する(図1(a)参照)。
その後、無電解Cuメッキおよび電解Cuメッキ(厚さ15μm)を施して、貫通孔Hの内周面にもCuメッキ層2Hを形成する(図1(b)参照)。
さらに、エッチングレジストとなるドライフィルム(図示せず)を貫通孔Hを塞ぐようにして貼り付け、露光現像して、貫通孔Hの端部周縁に若干掛かるようにしてドライフィルムを残す。次に、不要な銅をエッチングにより除去し、ドライフィルムを剥がして、貫通孔Hの内周面のスルーホール導体3および貫通孔周縁の配線層4を形成する(図1(c)参照)。
【0019】
次に、図2(a)に示すように、前記スルーホールHにエポキシ樹脂等の樹脂材料5(第1の樹脂材料)を充填する。ここでは、配線層4とほぼ同一平面を有するように充填する。
この後、樹脂材料5を150℃で1時間加熱して熱硬化させ、第1の樹脂充填層15を形成する。この硬化により、樹脂材料5は収縮し、凹部7を形成する(図2(b)参照)。
【0020】
ついで、この凹部7にエポキシ樹脂等の樹脂材料8(第2の樹脂材料)を充填する(図2(c)参照)。この第2の樹脂材料8は、第1の樹脂材料5よりも溶媒成分量が少なく、Cu粉末している。Cu粉末を含有させた理由は、後述の金属層12(図6参照)との密着性を高めるためであり、Cu粉末以外の金属粒子またはメッキ触媒核を含有させた樹脂材料を用いても効果が得られる。
【0021】
この後、第2の樹脂材料8を150℃で0.5時間加熱して熱硬化させ、第2の樹脂充填層を形成する。第1の樹脂材料5(第1の樹脂充填層15)はすでに硬化されているので、第2の樹脂材料8を硬化する際には、第1の樹脂材料5(第1の樹脂充填層15)の硬化収縮は生じない。したがって、硬化収縮するのはスルーホールH内のうち開口付近の第2の樹脂材料のみであり、硬化収縮量はごくわずかであるので、わずかに収縮しても、実質的に配線層4と同一平面を維持できる。
【0022】
上記第1の実施形態では、第1の樹脂材料5を充填する際に、配線層4とほぼ面一になるように充填した(図2(a)参照)が、配線層4よりも突出するように充填しておくこともできる。このような方法について、第2の実施形態として、以下に記載する。なお、上記第1の実施形態と同じところは、同一の符号を用いることとする。
【0023】
図1(c)に記載の絶縁基板1のスルーホールHに、エポキシ等の樹脂材料5を、配線層4よりも突出するように充填する(図3(a)参照)。その後、樹脂材料5を150℃で0.5時間加熱して半硬化させる(図3(b)参照)。この半硬化された樹脂材料5は、収縮により凹部7を生じる。ついで、半硬化した樹脂材料5のうち、配線層4より盛り上がった部分を研磨により除去する(図3(c)参照)。このように研磨により整面された半硬化状態の樹脂材料5を硬化させ、凹部17を有する第1の樹脂充填層15を形成する(図4(a)参照)。
【0024】
ここで、樹脂材料5は半硬化されているので、すでに硬化収縮がある程度進行しており、この硬化時の収縮量はそれほど大きくならない。したがって、硬化収縮により形成される凹部17の深さ(凹み量)は、未硬化の樹脂材料5を一挙に硬化させた第1の実施例(図2(b)参照)と比べて、小さくなる。この場合、半硬化状態にするための熱処理時間を変えることにより半硬化の程度を変え、凹部7’の深さ(凹み量)を適宜調節することができる。
【0025】
次に、この凹部7’には、上記第1の実施例と同様に、エポキシ樹脂等の樹脂材料8(第2の樹脂材料)を充填する(図4(b)参照)。この第2の樹脂材料8は、第1の樹脂材料5よりも溶媒成分量が少なく、Cu粉末を含有している。Cu粉末を含有させた理由は、後述の金属層12との密着性を高めるためであり、Cu粉末以外の金属粒子またはメッキ触媒核を含有させた樹脂材料を用いても効果が得られる。
【0026】
この後、第2の樹脂材料8を120℃で0.5時間加熱処理し熱硬化させ、第2の樹脂充填層18を形成する。第1の樹脂材料5はすでに硬化されているので、第2の樹脂材料8を硬化する際には、第1の樹脂材料5の硬化収縮は生じない。したがって、硬化収縮するのはスルーホールH内のうち、凹部17内の第2の樹脂材料8のみであるため、その硬化収縮量はわずかであり、わずかに収縮しても、実質的に配線層4と同一平面を維持できる。
【0027】
上記第1および第2の実施例においては、凹部7および17に第2の樹脂材料8をほぼ配線層4とほぼ面一に充填する例を示したが、以下においては、配線層4より突出するように第2の樹脂材料を充填する方法について、第3の実施形態として説明する。
まず、図4(a)に示したスルーホールHの開口近傍に形成された凹部17に、第2の樹脂材料8を配線層4よりも突出するように形成する(図5(a)参照)。その後、この樹脂材料8を半硬化させる。この半硬化された樹脂材料8’は、僅かに収縮する(図5(b)参照)。ついで、半硬化した樹脂材料8’のうち、配線層4より盛り上がった部分を研磨により除去する(図5(c)参照)。このように研磨により整面された半硬化状態の樹脂材料8’を硬化させ、第2の樹脂充填層18を形成する。半硬化状態の樹脂材料8は、すでに硬化収縮がある程度進行しており、この硬化時の収縮量はほとんど無視できる程度である。したがって、硬化後においても、配線層4と実質的に同一平面を維持できる。
【0028】
さらに、図5(c)に示す樹脂充填層18の上に、無電解Cuメッキおよび/または電解Cuメッキにより、金属層12を形成する(図6参照)。第2の樹脂充填層18を粒子およびメッキ触媒核の少なくともいずれかを含有している樹脂材料により形成した場合には、金属層12と樹脂充填層18との密着性が極めて良好になる。
なお、上記実施例では、溶媒成分を含んだ樹脂材料を用いた例を示したが、第1および第2の樹脂材料のうちの両方、または、いずれか一方に無溶剤タイプの樹脂材料を用いてもよい。いずれの場合であっても、一旦第1の樹脂材料を硬化させた凹部に再度第2の樹脂材料を充填・硬化するため、最終的な凹みはほぼ皆無であり、配線層(4)と同一平面を有する樹脂充填物を形成することが可能となる。
【0029】
本発明で用いる絶縁基板1の材料は特に制限されず、公知の材質、構造を有するものが制限なく使用することができる。例えば、紙基材−フェノール樹脂積層基板、紙基材−エポキシ樹脂積層基板、紙基材−ポリエステル樹脂積層基板、ガラス基材−エポキシ樹脂積層基板、紙基材−テフロン樹脂積層基板、ガラス基材−ポリイミド樹脂積層基板、ガラス基材−BT(ビスマレイミド−トリアジン)レジン樹脂積層基板、コンポジット樹脂基板等の合成樹脂基板や、アルミニウム、鉄、ステンレス等の金属をエポキシ樹脂等で被覆して絶縁処理した金属系絶縁基板、あるいはセラミック等の絶縁基板等が挙げられる。
【0030】
本発明の配線基板の製造方法において複数の絶縁基板の積層体を用いる場合は、その積層体の形成方法は、特に限定されない。通常、必要に応じて配線層が施された絶縁基板を積層する方法が採用され、一般的には絶縁基板間にプリプレグを挟み積層されるピンラミネート方式およびマスラミネート方式が好適に用いられる。また、絶縁基板の層数は、パターンの必要に応じて決定される。配線層は、この積層体の両表面、或いは一表面と該複数の絶縁基板間に形成される。これに対し、本発明の配線基板は、絶縁基板が1枚の場合には、その両面に配線層を有しいる。上記の配線層としては、通常の回路パターン、ランド部、パッド部等の公知のパターンが必要に応じて形成される。また、形成される配線層の材質は特に限定されないが、銅、ニッケル等が挙げられる。
【0031】
上記スルーホールの形成方法としては、ドリル加工、パンチング加工、レーザ加工等の通常の配線基板の製法と同様の公知の手法が特に限定されずに用いられる。
上記整面工程の手法としては、バフ研磨、スクラブ研磨、ベルト研磨、スラリー研磨等の通常の配線基板の研磨に用いられる手法が好適に用いられる。
【0032】
さらに、上記実施形態に記載の製造方法で得られた配線基板は、さらに従来公知の手法により、さらに上層にビルドアップ層を形成し、多層配線基板を形成するとよい。
【図面の簡単な説明】
【図1】第1の実施形態にかかる配線基板の製造方法のうち、スルーホール導体3を形成する過程の説明図である。
【図2】第1の実施形態にかかる配線基板の製造方法のうち、スルーホール充填物を形成する過程の説明図である。
【図3】第2の実施形態にかかる配線基板の製造方法のうち、スルーホール充填物を形成する過程の説明図である。
【図4】第2の実施形態にかかる配線基板の製造方法のうち、スルーホール充填物を形成する過程の説明図である。
【図5】第3の実施形態にかかる配線基板の製造方法のうち、スルーホール充填物を形成する過程の説明図である。
【図6】スルーホール充填物の上に金属層を形成した状態を示す断面図である。
【符号の説明】
1:絶縁基板
2:銅箔
3:スルーホール導体
4:配線層
5:第1の樹脂材料
7、7’、17:凹部
8:第2の樹脂材料
H:スルーホール
2H:Cuメッキ層
10:両面銅張基板
12:金属層
15:第1樹脂充填層
18:第2樹脂充填層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a wiring substrate, and more particularly to a method for manufacturing a wiring substrate having through holes penetrating vertically on an insulating substrate.
[0002]
[Prior art]
As electronic devices are miniaturized and densified, wiring boards used in electronic devices are also required to be miniaturized and densified. Examples of such wiring boards include, for example, epoxy resin and polyimide resin on both upper and lower main surfaces of an insulating substrate made of an electrically insulating material such as glass-epoxy resin in which wiring layers made of a metal material such as copper are formed on both upper and lower main surfaces. A build-up multilayer wiring board having a build-up layer in which a resin insulating layer made of a resin material such as fluororesin and a wiring layer made of a metal material such as copper are alternately stacked is known.
[0003]
In such a build-up multilayer wiring board, a through-hole penetrating up and down an insulating substrate (so-called core substrate) is formed, and a through-hole conductor made of a metal material such as copper is deposited in the through-hole. Has been. The through-hole conductor plays a role of electrically connecting the wiring layers formed on the upper and lower main surfaces of the insulating substrate.
[0004]
In such a through hole, in order to flatten the insulating substrate and obtain a good buildup layer, a through hole filling such as a thermosetting resin such as an epoxy resin is formed. Such a through-hole filler is formed by filling an uncured resin material made of a thermosetting resin such as an epoxy resin after forming the through-hole conductor in a through-hole formed in an insulating substrate. It is formed by heat treatment at a temperature of about 150 ° C. and curing. It is desirable that the through-hole filling has the same plane as the surface of the wiring layer and is flat.
[0005]
[Problems to be solved by the invention]
However, even if such through-hole filling has been subjected to surface treatment such as polishing to make it flush with the wiring layer before curing, the wiring layer is reduced by shrinkage of the volume during curing. It tends to be recessed rather than the surface. As a result, the upper and lower main surfaces of the insulating substrate have large steps between the surface of the through-hole filling and the surface of the wiring layer. When a build-up layer is formed by alternately stacking resin insulation layers and wiring layers on both upper and lower main surfaces of such an insulating substrate, it is difficult to accurately form the wiring layer, resulting in disconnection or short circuit. was there.
[0006]
[Means for Solving the Problems]
As a technique for solving such a problem, the wiring board manufacturing method according to claim 1 of the present invention is formed on at least one plane of the insulating substrate having through holes penetrating the upper and lower main surfaces and the insulating substrate. A wiring layer formed on the inner peripheral surface of the through hole and electrically connected to the wiring layer, and the opening end face is substantially flush with the surface of the wiring layer. A method of manufacturing a wiring board comprising a through hole filling material filled in a through hole, the first filling step of filling the through hole with a first resin material, and the first resin material A first curing step for curing the second resin material, a second filling step for filling the second resin material into the recessed portion produced by the first curing step, and a second curing step for curing the second resin material, Specially including To.
[0007]
According to such a manufacturing method, the resin material (first resin material) filled in the through hole is once cured, and the resin (second resin material) is filled again in the recessed portion generated at that time. In addition, the insulating substrate and the through-hole filling can be easily set on the same plane. In addition, even if the 1st resin material and the 2nd resin material contain a solvent, the thing of a solventless type which does not contain a solvent is good. Regardless of the solvent type or the solventless type, the second resin material filled in the portion where the dent is generated after the first resin material is cured is the same resin material as the first resin material. It may also be a resin material having different properties.
[0008]
In the wiring board manufacturing method according to claim 2 of the present invention, the second resin material has a smaller amount of solvent component than the first resin material.
The shrinkage amount of the resin material at the time of curing is affected by the amount of the solvent component contained in the resin material when a resin material containing a solvent component is used. When the resin material is filled in the recessed portion again, if a resin material with a larger amount of solvent component is used than the resin material initially filled, a similar dent will be generated again in the subsequent curing step. , May not be very effective. In addition, it is conceivable to reduce the shrinkage at the time of curing by using a resin material having a small amount of solvent component in advance, but if the amount of the solvent component is small, there is a disadvantage that the filling property into the through hole is deteriorated. However, according to the present invention, both problems can be solved at once by changing the amount of the solvent component contained in the first and second resin materials.
[0009]
That is, according to such a method of manufacturing a wiring board, the first resin material having a relatively large amount of solvent component and good through-hole filling property is used to fill and cure the through-hole, and then cure the resin. By filling the second resin material having a smaller amount of solvent component and a smaller amount of curing shrinkage than the first resin material into the recessed portion that is sometimes generated, it is difficult for the shrinkage to occur again. Therefore, a through-hole filling having substantially the same surface as that of the wiring layer can be easily formed. Since such a wiring board can form a buildup layer correctly, it does not cause defects such as disconnection.
Further, since the first resin material having a relatively large amount of solvent component is used, the filling property into the through hole is good.
In addition, examples of the amount of the solvent component used here include reaction solvents such as amide solvents and ether solvents typified by N, N-dimethylacetamide, but the present invention is not limited thereto. A known material can be applied and applied without departing from the above.
[0010]
According to a third aspect of the present invention, there is provided a wiring board manufacturing method comprising: a first filling step of filling the through hole with a first resin material so as to protrude from the wiring layer; and the first filling material. A first leveling step of leveling so as to be flush with the surface of the wiring layer after being semi-cured, and a first curing step of curing the first resin material that has undergone the first leveling step; The method of manufacturing a wiring board according to claim 1, wherein:
[0011]
The first resin material can be formed so as to be flush with the wiring layer from the time of application. However, when the uncured resin is cured, the amount of cure shrinkage is large, and the dent caused by the cure shrinkage. The part becomes larger. Thereafter, the second resin material to be filled also shrinks at the time of curing and may cause dents again. Therefore, it is preferable that the dent portion is as small as possible. Therefore, the first resin material is formed so as to protrude from the wiring layer and semi-cured. Semi-cured refers to a state where the resin is not completely cured but the curing action has progressed to some extent. A semi-cured state can be achieved by a method in which the heat treatment time is made shorter than the heat treatment time for complete curing. When completely cured, the resin becomes too hard and the leveling process is difficult. Therefore, the leveling process is preferably performed on the first resin material in a semi-cured state. Here, since the curing action of the resin material proceeds to some extent, it is possible to reduce the amount of curing shrinkage in the first curing step after leveling.
[0012]
According to a fourth aspect of the present invention, there is provided a method for manufacturing a wiring board, comprising: a second filling step of filling the through hole with a second resin material so as to protrude from the wiring layer; and the second filling material. Then, after semi-curing, a second leveling step for leveling the surface of the wiring layer to be flush with the surface of the wiring layer and a second curing step for curing the second resin material that has undergone the second leveling step It is a manufacturing method of the wiring board in any one of Claim 1 thru | or 3 characterized by the above-mentioned.
[0013]
Rather than curing the uncured resin formed so as to be flush with the wiring layer, the second resin material can be cured in a semi-cured state so that the amount of curing shrinkage when completely cured is reduced. Further reduction can be achieved. Further, through a surface-conditioning process such as polishing, a through-hole filling having the same plane as the wiring layer and having extremely high flatness can be formed.
[0014]
The method for manufacturing a wiring board according to claim 5 of the present invention includes a plating step of forming a metal layer on an exposed surface of the through-hole filling. It is a manufacturing method of a wiring board. In the wiring board obtained by the method for manufacturing a wiring board according to claims 1 to 3, since the through-hole filling has substantially the same plane as the wiring layer, the upper surface of the through-hole filling and the wiring layer are plated. A flat metal layer can be formed when applied. Further, by forming a metal layer on the through-hole filling, it is possible to form a non-through hole (blind via) also in a region immediately above the through-hole.
[0015]
The method for manufacturing a wiring board according to claim 6 of the present invention is characterized in that the second resin material contains at least one of metal particles and a plating catalyst nucleus. It is a manufacturing method of a wiring board. When the second resin material contains at least one of metal particles such as copper powder and a plating catalyst nucleus such as palladium, the metal layer applied on the through-hole filling and the through-hole filling The adhesion strength can be improved.
[0016]
The first resin material may also contain at least one of metal particles and plating catalyst nuclei in the same or different amount as the second resin material.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited to these drawings. A typical method for manufacturing a wiring board according to the present invention will be described below.
[0018]
FIG. 1 explains a first embodiment of a method of manufacturing a wiring board according to the present invention. First, a double-sided copper-clad insulating substrate in which a copper foil 2 having a thickness of 12 μm is attached to both upper and lower main surfaces of an insulating substrate 1 made of a glass-epoxy resin composite material (JIS: FR-4) having a thickness of 0.3 mm. 10 is prepared. Next, through holes H are formed in the double-sided copper-clad insulating substrate 10 at a predetermined pitch with a drill (see FIG. 1A).
Thereafter, electroless Cu plating and electrolytic Cu plating (thickness 15 μm) are applied to form a Cu plating layer 2H on the inner peripheral surface of the through hole H (see FIG. 1B).
Further, a dry film (not shown) serving as an etching resist is pasted so as to close the through-hole H, exposed and developed, and the dry film is left so as to slightly cover the edge of the through-hole H. Next, unnecessary copper is removed by etching, and the dry film is peeled off to form the through-hole conductor 3 on the inner peripheral surface of the through-hole H and the wiring layer 4 on the periphery of the through-hole (see FIG. 1C).
[0019]
Next, as shown in FIG. 2A, the through hole H is filled with a resin material 5 (first resin material) such as an epoxy resin. Here, the wiring layer 4 is filled so as to have substantially the same plane.
Thereafter, the resin material 5 is heated and cured at 150 ° C. for 1 hour to form the first resin filled layer 15. By this curing, the resin material 5 contracts to form the recesses 7 (see FIG. 2B).
[0020]
Next, the concave portion 7 is filled with a resin material 8 (second resin material) such as an epoxy resin (see FIG. 2C). The second resin material 8 has less solvent component than the first resin material 5 and is Cu powder. The reason why the Cu powder is contained is to improve the adhesion to the metal layer 12 (see FIG. 6) described later, and it is effective even if a resin material containing metal particles other than Cu powder or a plating catalyst nucleus is used. Is obtained.
[0021]
Thereafter, the second resin material 8 is heated and cured at 150 ° C. for 0.5 hour to form a second resin filled layer. Since the first resin material 5 (first resin filling layer 15) has already been cured, when the second resin material 8 is cured, the first resin material 5 (first resin filling layer 15) is cured. ) Curing shrinkage does not occur. Therefore, only the second resin material in the vicinity of the opening in the through hole H is cured and shrunk, and the amount of curing shrinkage is very small, so even if it shrinks slightly, it is substantially the same as the wiring layer 4. You can maintain a flat surface.
[0022]
In the first embodiment, the first resin material 5 is filled so as to be substantially flush with the wiring layer 4 (see FIG. 2A), but protrudes from the wiring layer 4. It can also be filled as follows. Such a method will be described below as a second embodiment. The same reference numerals are used for the same parts as in the first embodiment.
[0023]
The through hole H of the insulating substrate 1 shown in FIG. 1C is filled with a resin material 5 such as epoxy so as to protrude from the wiring layer 4 (see FIG. 3A). Thereafter, the resin material 5 is semi-cured by heating at 150 ° C. for 0.5 hour (see FIG. 3B). The semi-cured resin material 5 has a recess 7 due to shrinkage. Next, a portion of the semi-cured resin material 5 that is raised from the wiring layer 4 is removed by polishing (see FIG. 3C). In this way, the semi-cured resin material 5 that has been flattened by polishing is cured to form the first resin-filled layer 15 having the recesses 17 (see FIG. 4A).
[0024]
Here, since the resin material 5 is semi-cured, the curing shrinkage has already progressed to some extent, and the shrinkage amount at the time of curing does not become so large. Therefore, the depth (dent amount) of the concave portion 17 formed by curing shrinkage is smaller than that of the first embodiment (see FIG. 2B) in which the uncured resin material 5 is cured at once. . In this case, the degree of semi-curing can be changed by changing the heat treatment time for making the semi-cured state, and the depth (the amount of dents) of the recesses 7 'can be adjusted as appropriate.
[0025]
Next, the concave portion 7 ′ is filled with a resin material 8 (second resin material) such as an epoxy resin as in the first embodiment (see FIG. 4B). The second resin material 8 has a smaller amount of solvent component than the first resin material 5 and contains Cu powder. The reason why the Cu powder is contained is to improve the adhesion to the metal layer 12 described later, and the effect can be obtained even if a resin material containing metal particles other than the Cu powder or a plating catalyst nucleus is used.
[0026]
Thereafter, the second resin material 8 is heat-treated at 120 ° C. for 0.5 hours to be thermally cured, thereby forming the second resin filled layer 18. Since the first resin material 5 has already been cured, the curing shrinkage of the first resin material 5 does not occur when the second resin material 8 is cured. Therefore, since only the second resin material 8 in the recess 17 in the through hole H is cured and shrunk, the amount of cure shrinkage is small, and even if it shrinks slightly, the wiring layer is substantially reduced. 4 can be maintained in the same plane.
[0027]
In the first and second embodiments, an example is shown in which the recesses 7 and 17 are filled with the second resin material 8 substantially flush with the wiring layer 4, but in the following, it protrudes from the wiring layer 4. A method of filling the second resin material as described above will be described as a third embodiment.
First, the second resin material 8 is formed so as to protrude from the wiring layer 4 in the recess 17 formed in the vicinity of the opening of the through hole H shown in FIG. 4A (see FIG. 5A). . Thereafter, the resin material 8 is semi-cured. The semi-cured resin material 8 ′ slightly contracts (see FIG. 5B). Next, a portion raised from the wiring layer 4 in the semi-cured resin material 8 ′ is removed by polishing (see FIG. 5C). The semi-cured resin material 8 ′ thus surface-adjusted by polishing is cured to form the second resin filling layer 18. The semi-cured resin material 8 has already undergone curing shrinkage to some extent, and the amount of shrinkage at the time of curing is almost negligible. Therefore, substantially the same plane as the wiring layer 4 can be maintained even after curing.
[0028]
Furthermore, the metal layer 12 is formed on the resin filling layer 18 shown in FIG. 5C by electroless Cu plating and / or electrolytic Cu plating (see FIG. 6). When the second resin filled layer 18 is formed of a resin material containing at least one of particles and plating catalyst nuclei, the adhesion between the metal layer 12 and the resin filled layer 18 becomes extremely good.
In addition, although the example using the resin material containing the solvent component was shown in the above embodiment, a solvent-free resin material is used for both or one of the first and second resin materials. May be. In any case, since the second resin material is filled and cured again in the concave portion once cured with the first resin material, there is almost no final recess and is the same as the wiring layer (4). A resin filling having a flat surface can be formed.
[0029]
The material of the insulating substrate 1 used in the present invention is not particularly limited, and those having known materials and structures can be used without limitation. For example, paper base material-phenolic resin multilayer substrate, paper base material-epoxy resin multilayer substrate, paper base material-polyester resin multilayer substrate, glass base material-epoxy resin multilayer substrate, paper base material-Teflon resin multilayer substrate, glass base material -Polyimide resin laminated substrate, glass substrate-BT (bismaleimide-triazine) resin resin laminated substrate, synthetic resin substrate such as composite resin substrate, and metal such as aluminum, iron and stainless steel are covered with epoxy resin etc. for insulation treatment Examples thereof include a metal-based insulating substrate or an insulating substrate such as ceramic.
[0030]
When using the laminated body of the some insulated substrate in the manufacturing method of the wiring board of this invention, the formation method of the laminated body is not specifically limited. Usually, a method of laminating an insulating substrate provided with a wiring layer is adopted as necessary, and generally a pin laminating method and a mass laminating method in which a prepreg is laminated between insulating substrates are suitably used. Further, the number of layers of the insulating substrate is determined according to the necessity of the pattern. The wiring layer is formed between both surfaces or one surface of the laminate and the plurality of insulating substrates. On the other hand, the wiring board of this invention has a wiring layer on both surfaces, when there is one insulating board. As the wiring layer, a known pattern such as a normal circuit pattern, a land portion, or a pad portion is formed as necessary. Moreover, the material of the wiring layer to be formed is not particularly limited, and examples thereof include copper and nickel.
[0031]
As a method for forming the through hole, a known method similar to a normal method for manufacturing a wiring board such as drilling, punching, or laser processing is not particularly limited.
As a method for the surface-adjusting step, a method used for normal wiring substrate polishing such as buff polishing, scrub polishing, belt polishing, and slurry polishing is preferably used.
[0032]
Furthermore, the wiring board obtained by the manufacturing method described in the above embodiment may be further formed by forming a build-up layer as an upper layer by a conventionally known method to form a multilayer wiring board.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a process of forming a through-hole conductor 3 in a method for manufacturing a wiring board according to a first embodiment.
FIG. 2 is an explanatory diagram of a process of forming a through-hole filling in the wiring board manufacturing method according to the first embodiment.
FIG. 3 is an explanatory diagram of a process of forming a through-hole filling in the wiring board manufacturing method according to the second embodiment.
FIG. 4 is an explanatory diagram of a process of forming a through-hole filling in the wiring board manufacturing method according to the second embodiment.
FIG. 5 is an explanatory diagram of a process of forming a through-hole filling in a wiring board manufacturing method according to a third embodiment.
FIG. 6 is a cross-sectional view showing a state in which a metal layer is formed on the through-hole filling.
[Explanation of symbols]
1: Insulating substrate 2: Copper foil 3: Through-hole conductor 4: Wiring layer 5: First resin material 7, 7 ', 17: Recess 8: Second resin material H: Through hole 2H: Cu plating layer 10: Double-sided copper-clad substrate 12: metal layer 15: first resin filling layer 18: second resin filling layer

Claims (6)

上下両主面に貫通するスルーホールを有する絶縁基板と、
上記絶縁基板の少なくとも一平面に形成された配線層と、
上記スルーホールの内周面に形成され、前記配線層と電気的に接続するスルーホール導体と、
開口端面において上記配線層の表面と実質的に同一平面になるように前記スルーホール内に充填されたスルーホール充填物と、
を備えた配線基板の製造方法であって、
上記スルーホールに、第1の樹脂材料を充填する第1充填工程と、
上記第1の樹脂材料を硬化させる第1硬化工程と、
上記第1硬化工程により生じた凹み部分に、第2の樹脂材料を充填する第2充填工程と、
上記第2の樹脂材料を硬化させる第2硬化工程と、
を含むことを特徴とする配線基板の製造方法。
An insulating substrate having through holes penetrating both upper and lower main surfaces;
A wiring layer formed on at least one plane of the insulating substrate;
A through hole conductor formed on the inner peripheral surface of the through hole and electrically connected to the wiring layer;
A through hole filling material filled in the through hole so as to be substantially flush with the surface of the wiring layer at the opening end surface;
A method of manufacturing a wiring board comprising:
A first filling step of filling the through hole with a first resin material;
A first curing step for curing the first resin material;
A second filling step of filling the second resin material into the recessed portion generated by the first curing step;
A second curing step for curing the second resin material;
The manufacturing method of the wiring board characterized by including.
前記第2の樹脂材料は、前記第1の樹脂材料よりも溶媒成分量の少ないことを特徴とする請求項1に記載の配線基板の製造方法。The method for manufacturing a wiring board according to claim 1, wherein the second resin material has a smaller amount of solvent component than the first resin material. 前記スルーホールに、第1の樹脂材料を前記配線層より突出するように充填する第1充填工程と、
上記第1の充填材料を、半硬化させた後、上記配線層の表面と同一平面をなすよう整面する第1整面工程と、
上記第1整面工程を経た第1の樹脂材料を硬化させる第1硬化工程と、
を含むことを特徴とする請求項1または2に記載の配線基板の製造方法。
A first filling step of filling the through hole with a first resin material so as to protrude from the wiring layer;
A first leveling step in which the first filling material is semi-cured and then leveled so as to be flush with the surface of the wiring layer;
A first curing step of curing the first resin material that has undergone the first leveling step;
The method for manufacturing a wiring board according to claim 1, wherein:
前記スルーホールに、第2の樹脂材料を前記配線層より突出するように充填する第2充填工程と、
上記第2の充填材料を、半硬化させた後、上記配線層の表面と同一平面をなすよう整面する第2整面工程と、
上記第2整面工程を経た第2の樹脂材料を硬化させる第2硬化工程と
を含むことを特徴とする請求項1乃至3のいずれかに記載の配線基板の製造方法。
A second filling step of filling the through hole with a second resin material so as to protrude from the wiring layer;
A second leveling step of leveling the second filling material so as to be flush with the surface of the wiring layer after semi-curing the second filling material;
4. The method for manufacturing a wiring board according to claim 1, further comprising a second curing step of curing the second resin material that has undergone the second leveling step. 5.
前記スルーホール充填物の露出面に金属層を形成するメッキ工程を含むことを特徴とする請求項1乃至4のいずれかに記載の配線基板の製造方法。5. The method of manufacturing a wiring board according to claim 1, further comprising a plating step of forming a metal layer on the exposed surface of the through-hole filling. 前記第2の樹脂材料は、金属粒子またはメッキ触媒核のいずれかを含有していることを特徴とする請求項1乃至5のいずれかに記載の配線基板の製造方法。6. The method of manufacturing a wiring board according to claim 1, wherein the second resin material contains either metal particles or a plating catalyst nucleus.
JP13765198A 1998-04-30 1998-04-30 Wiring board manufacturing method Expired - Lifetime JP3674662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13765198A JP3674662B2 (en) 1998-04-30 1998-04-30 Wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13765198A JP3674662B2 (en) 1998-04-30 1998-04-30 Wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JPH11317578A JPH11317578A (en) 1999-11-16
JP3674662B2 true JP3674662B2 (en) 2005-07-20

Family

ID=15203633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13765198A Expired - Lifetime JP3674662B2 (en) 1998-04-30 1998-04-30 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP3674662B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307946A (en) * 2000-04-24 2001-11-02 Hitachi Aic Inc Chip type capacitor
JP2006310789A (en) * 2005-03-29 2006-11-09 San Nopco Ltd Method of manufacturing resin-filled substrate
JP2008235655A (en) * 2007-03-22 2008-10-02 Hitachi Aic Inc Substrate and method for manufacturing substrate
KR101153492B1 (en) * 2010-08-24 2012-06-11 삼성전기주식회사 Manufacturing method for ceramic substrate for probe card and ceramic substrate for probe card
CN103391681B (en) * 2013-08-06 2016-12-28 上海美维电子有限公司 Printed substrate and manufacture method thereof
CN105517370B (en) * 2015-11-27 2018-06-22 广州兴森快捷电路科技有限公司 Board pads processing method
JP2020037306A (en) * 2018-09-03 2020-03-12 トヨタ自動車株式会社 Method of manufacturing vehicle body member and seal structure of connection part of vehicle body member
JP6851100B1 (en) * 2020-04-13 2021-03-31 株式会社野田スクリーン Printed circuit board manufacturing method

Also Published As

Publication number Publication date
JPH11317578A (en) 1999-11-16

Similar Documents

Publication Publication Date Title
US6426011B1 (en) Method of making a printed circuit board
JP2007027683A (en) Wiring board and method for manufacturing the same
JP2003174265A (en) Multilayer wiring circuit substrate
KR20070029052A (en) Method for forming wiring on insulating resin layer
JP5598212B2 (en) Hybrid core substrate and manufacturing method thereof, semiconductor integrated circuit package, build-up substrate and manufacturing method thereof
US6599617B2 (en) Adhesion strength between conductive paste and lands of printed wiring board, and manufacturing method thereof
JP2005072328A (en) Multilayer wiring board
US20090289030A1 (en) Method of fabricating printed wiring board
JPH11186698A (en) Manufacture of circuit board, and circuit board
JP3441368B2 (en) Multilayer wiring board and manufacturing method thereof
JP3674662B2 (en) Wiring board manufacturing method
JP3037662B2 (en) Multilayer wiring board and method of manufacturing the same
JP6444651B2 (en) Multilayer printed wiring board
KR100704920B1 (en) Pcb and it's manufacturing method used bump board
US10779408B2 (en) Printed wiring board
JP3085658B2 (en) Wiring board and manufacturing method thereof
JP2005093556A (en) Printed-circuit board and method of manufacturing same
JP2005238520A (en) Prepreg and multilayered printed wiring board
KR100797669B1 (en) Printed Circuit Board and Fabricating Method of the same
JP5493463B2 (en) Build-up multilayer substrate and manufacturing method thereof
JP3588888B2 (en) Method for manufacturing multilayer printed wiring board
JP2002204043A (en) Circuit board and its manufacturing method
JP2008124124A (en) Core board manufacturing method, and wiring board manufacturing method
JP4632514B2 (en) Wiring board and manufacturing method thereof
JP2000022330A (en) Multilayer interconnection board and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term