JP2009256520A - 化学蓄熱材複合物及びその製造方法 - Google Patents

化学蓄熱材複合物及びその製造方法 Download PDF

Info

Publication number
JP2009256520A
JP2009256520A JP2008109387A JP2008109387A JP2009256520A JP 2009256520 A JP2009256520 A JP 2009256520A JP 2008109387 A JP2008109387 A JP 2008109387A JP 2008109387 A JP2008109387 A JP 2008109387A JP 2009256520 A JP2009256520 A JP 2009256520A
Authority
JP
Japan
Prior art keywords
heat storage
storage material
chemical heat
material composite
clay mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008109387A
Other languages
English (en)
Inventor
Hideo Sofugawa
英夫 曽布川
Takashi Shimazu
孝 志満津
Hiroyuki Mitsui
宏之 三井
Yoshiaki Fukushima
喜章 福嶋
Hiroaki Wakayama
博昭 若山
Hiroyuki Itahara
弘幸 板原
Takatsune Fujimura
崇恒 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omi Kogyo Co Ltd
Toyota Central R&D Labs Inc
Omi Mining Co Ltd
Original Assignee
Omi Kogyo Co Ltd
Toyota Central R&D Labs Inc
Omi Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omi Kogyo Co Ltd, Toyota Central R&D Labs Inc, Omi Mining Co Ltd filed Critical Omi Kogyo Co Ltd
Priority to JP2008109387A priority Critical patent/JP2009256520A/ja
Publication of JP2009256520A publication Critical patent/JP2009256520A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

【課題】長期間安定に蓄熱及び放熱を繰り返し行うことができる化学蓄熱材複合物及びその製造方法を提供すること。
【解決手段】混合工程と酸処理工程と焼成工程とを行って得られる化学蓄熱材複合物及びその製造方法である。混合工程においては、粉体の化学蓄熱材11と、成分元素として少なくともAlを含有する粘土鉱物12と、水とを混合することにより混合物M0を得る。酸処理工程においては、混合物M0に酸を混合して酸処理混合物M1を得る。焼成工程においては、酸処理混合物M1(P)を焼成することにより化学蓄熱材複合物1を得る。
【選択図】図2

Description

本発明は、化学蓄熱材を含む化学蓄熱材複合物及びその製造方法に関する。
従来から、化学蓄熱を利用する化学蓄熱材及びそれを用いた化学蓄熱システムが知られている。
例えば、特許文献1では、0.3〜4mmの範囲の結晶性の石灰石を850〜1100℃の範囲で所定時間加熱した後、500〜600℃の範囲で所定時間加熱することにより、多数の気孔を生成した生石灰を得る化学蓄熱材及びその製造方法が開示されている。
また、特許文献2では、多孔性カプセル内に粉体化学蓄熱材を収容した蓄熱装置が開示されている。また、特許文献3では、耐熱性多孔質体の筒状体内に粉体化学蓄熱材を充填してなる化学蓄熱カプセルが開示されている。
特開平1−225686号公報 特公平6−80395号公報 特公平6−80394号公報
しかしながら、特許文献1に示される気孔が形成された生石灰を粉体のまま化学蓄熱材として用いた場合、作動中における水和反応及び脱水反応の繰り返しにより、粉体の化学蓄熱材は、体積の膨張及び収縮を繰り返す。そのため、他の粉体と接触して擦れ合うことにより微粉化してしまい、蓄熱システムとしての反応性が低下するという問題があった。そのため、長期間安定して蓄熱及び放熱を繰り返し行うことができないという問題があった。
また、特許文献2及び特許文献3に示す蓄熱システムでは、粉体の微粉化を抑制することができるものの、カプセル封入又は筒状体封入による熱伝導抵抗の増加や伝熱経路の複雑化により、化学蓄熱材の発熱反応による熱を効率よく取り出すことができず、さらに蓄熱反応による熱を効率よく供給することができないという問題があった。
本発明は、かかる従来の問題点に鑑みてなされたもので、長期間安定に蓄熱及び放熱を繰り返し行うことができる化学蓄熱材複合物及びその製造方法を提供しようとするものである。
第1の発明は、粉体の化学蓄熱材と、成分元素として少なくともAlを含有する粘土鉱物と、水とを混合することにより混合物を得る混合工程と、
上記混合物に酸を混合して酸処理混合物を得る酸処理工程と、
上記酸処理混合物を焼成することにより化学蓄熱材複合物を得る焼成工程とを有することを特徴とする化学蓄熱材複合物の製造方法にある(請求項1)。
また、第2の発明は、上記第1の発明の製造方法によって得られることを特徴とする化学蓄熱材複合物にある(請求項16)。
本発明においては、上記混合工程において、上記化学蓄熱材と上記粘土鉱物と水とを混合して上記混合物を作製し、上記酸処理工程において、上記混合物に酸を混合して上記酸処理混合物を作製し、上記焼成工程において、上記酸処理混合物を焼成して上記化学蓄熱材複合物を作製する。その結果、得られる上記化学蓄熱材複合物(上記第2の発明)は、いわば上記粘土鉱物の骨格中に粉体の上記化学蓄熱材が分散保持されて組織化・構造化されたものとなる。これにより、次のような種々の作用効果が期待できる。
すなわち、上記化学蓄熱材の粉体間には、上記粘土鉱物等の存在によって隙間が形成される。よって、蓄熱・放熱の繰り返しによる上記化学蓄熱材の擦れ合い及びこれに伴う微粉化を抑制することができる。
また、上記隙間により、水蒸気等の蓄熱・放熱に伴う反応物・反応生成物の導入排出経路を充分に確保することができる。よって、蓄熱・放熱に伴う反応物・反応生成物の上記化学蓄熱材複合物内における移動(拡散)阻害を抑制することができる。
また、上記化学蓄熱材複合物は、上記化学蓄熱材を取り囲む上記粘土鉱物により、強度が高く、安定した構造を有する多孔質構造体となる。そのため、上記化学蓄熱材複合物は、蓄熱及び放熱を繰り返し行っても、微粉化が起こり難く、また、導入排出経路を充分に確保することができる。そのため、長期間安定に蓄熱及び放熱を繰り返し行うことができる。
特に、本発明では、上記酸処理工程を行っているため、上記化学蓄熱材及び/又は上記粘土鉱物の少なくとも一部と酸とが反応して、酸化アルミニウム等の生成物が生じうる。この生成物は、上記粘土鉱物により上記化学蓄熱材を取り囲む構造を強固に安定化する、あるいは上記生成物自体が上記粘土鉱物と共に上記化学蓄熱材を取り囲んで強固で安定した構造を形成することにより、上記化学蓄熱材複合物全体の構造強度をより一層高いものとすることができる。
なお、上記生成物の種類は、使用する粘土鉱物、酸、及び化学蓄熱材の種類に依存するが、本発明においては、少なくともAlを含有する上記粘土鉱物を使用しているため、上記生成物として少なくとも酸化アルミニウムが生成することができる。この酸化アルミニウムは上述の構造を強固に安定化させることができる。
このように、本発明によれば、長期間安定に蓄熱及び放熱を繰り返し行うことができる化学蓄熱材複合物及びその製造方法を提供することができる。
次に、本発明の好ましい実施の形態について説明する。
本発明においては、上記混合工程と上記酸処理工程と上記焼成工程とを行うことにより、化学蓄熱材と粘土鉱物とが上述のごとく組織化・構造化された上記化学蓄熱材複合物を製造する。
上記化学蓄熱材は、脱水反応に伴って吸熱し、水和反応に伴って放熱する水和反応系化学蓄熱材であることが好ましい(請求項2)。
また、上記化学蓄熱材は、脱水反応に伴って酸化され、水和反応に伴って水酸化される水和反応系化学蓄熱材であることが好ましい(請求項3)。
いずれの場合にも、上記化学蓄熱材複合物は、水和反応及び脱水(逆水和)反応によって蓄熱・放熱を良好に行うことができ、蓄熱システムとしての性能を高めることができる。なお、水和反応及び脱水反応に伴って上記化学蓄熱材の体積が膨張及び収縮を繰り返すが、上記化学蓄熱材の組織化・構造化によって上記化学蓄熱材の微粉化を充分に抑制することができる。
上記化学蓄熱材が例えばアルカリ土類金属の化合物(酸化物及び水酸化物)である場合には、放熱時の水和反応及び蓄熱時の脱水反応は、下記の式で表すことができる。ただし、Aはアルカリ土類金属元素を示し、Qは発熱量及び蓄熱量を示す。
AO+H2O→A(OH)2+Q(水和反応)
A(OH)2+Q→AO+H2O(脱水反応)
上記の反応式に示すごとく、放熱及び蓄熱時には、水(水蒸気)が化学蓄熱材との反応物及び反応生成物となり、放熱及び蓄熱が起こる。そして、上記の反応式で表される水和反応・脱水反応が可逆的に起こることにより、放熱及び蓄熱を繰り返し行うことができる。
また、上記混合工程における上記化学蓄熱材としては、水酸化物状態の化学蓄熱材を採用することが好ましい(請求項4)。
この場合には、上記化学蓄熱材と上記粘土鉱物とを混合する際に、上記化学蓄熱材として炭酸化合物を用いた場合に混合・増粘用のバインダとして使用することができなかった水を使用することができる。これにより、上記化学蓄熱材複合物の成形性を高めることができる。また、上記化学蓄熱材として炭酸化合物を用いた場合に必要であった脱炭酸工程時における1000℃近辺の高温焼成が不要となる。これにより、焼成温度を低くすることができ、使用材料や工程の自由度を高めることができる。
なお、焼成してなる上記化学蓄熱材複合物においては、上記化学蓄熱材は、酸化物の状態で存在している。
上記化学蓄熱材は、無機化合物であることが好ましい(請求項5)。
この場合には、無機化合物の優れた安定性を生かして、水和・脱水反応等の蓄熱・放熱反応に対する材料安定性に優れた上記化学蓄熱材複合物を製造することができる。該化学蓄熱材複合物は、より長期間安定に蓄熱・放熱を行うことができる。
上記化学蓄熱材は、ニッケル化合物、アルミニウム化合物、コバルト化合物、銅化合物、及びアルカリ土類金属化合物から選ばれる1種以上の化合物であることが好ましく(請求項6)、その中でもアルカリ土類金属化合物がより好ましい。
この場合には、上記化学蓄熱材の蓄熱・放熱反応(水和・脱水反応)に対する材料安定性が高くなる。そのため、上記化学蓄熱材複合物は、長期間に渡って安定した蓄熱効果を得ることができる。また、上記化学蓄熱材として環境負荷の小さい安全な材料を用いることにより、製造、使用、リサイクル等を含めた安全性の確保が容易になる。
また、上記混合工程においては、上記化学蓄熱材として、水酸化ニッケル、水酸化アルミニウム、水酸化コバルト、水酸化銅、及びアルカリ土類金属の水酸化物から選ばれる1種以上の水酸化物を採用することが好ましく(請求項7)、その中でも水酸化カルシウム及び/又は水酸化マグネシウムがより好ましく(請求項8)、水酸化カルシウムがさらに好ましい。
この場合には、上記化学蓄熱材の蓄熱・放熱反応(水和・脱水反応)に対する材料安定性をより一層高めることができ、上記化学蓄熱材複合物の蓄熱効果を長期間に渡って安定して維持することができる。また、水酸化カルシウム及び/又は水酸化マグネシウムを用いた場合には、比較的高い蓄熱密度を発揮できると共に、より優れた安定性を示すことができる。特に水酸化カルシウムを用いた場合には、この傾向が顕著になる。
上記粘土鉱物は、多孔質であることが好ましい(請求項9)。
この場合には、上記化学蓄熱材が多孔質の上記粘土鉱物により取り囲まれた上記化学蓄熱材複合物を製造することができる。そのため、上記化学蓄熱材複合物の蓄熱・放熱時には、水蒸気等の反応物又は反応生成物が上記粘土鉱物の孔を通過することができ、水蒸気(熱媒)の移動が阻害されることがない。それ故、上記化学蓄熱材複合物における上記化学蓄熱材の反応性を向上させることができる。また、この場合には、蓄熱反応停止時に、上記化学蓄熱材複合物内に存在する余剰の水蒸気を多孔質の上記粘土鉱物が吸着することができる。そのため、反応停止時の低温状態等に、液体の水が発生すること(液水化)を防止することができる。その結果、液体状の水と化学蓄熱材との反応によるシンタリングを抑制することができる。
上記粘土鉱物としては、層リボン構造を有する粘土鉱物を採用することが好ましい(請求項10)。
この場合には、上記粘土鉱物は、多孔質で比表面積が大きい繊維状形態を有する。そのため、上記粘土鉱物の繊維質、多孔性、可塑性等の性質により、上記化学蓄熱材を良好に組織化・構造化させることができる。
上記層リボン構造を有する上記粘土鉱物としては、例えば、セピオライト、パリゴルスカイトを用いることができる(請求項11)。
これらの場合には、上記粘土鉱物は、多孔質で比表面積が大きい繊維状形態を有する。そのため、上記粘土鉱物が有する繊維質、多孔性、及び可塑性等という性質により、上記化学蓄熱材複合物中で上記化学蓄熱材を良好に組織化・構造化させることができる。
また、上記粘土鉱物としては、上記の層リボン構造を有するもの以外に、ベントナイトを採用することもできる(請求項12)。
この場合には、上記粘土鉱物の接着力が強くなるため、上記化学蓄熱材を良好に組織化・構造化させることができる。
上記粘土鉱物は、上記化学蓄熱材の粒子径よりも小さい径の繊維状を呈していることが好ましい(請求項13)。
この場合には、上記化学蓄熱材をそれよりも小さい径の繊維状の上記粘土鉱物によって取り囲むため、少量の該粘土鉱物を用いて上記化学蓄熱材の組織化・構造化を実現することが可能になる。そのため、上記化学蓄熱材複合物は、上記化学蓄熱材間に隙間が形成された多孔質構造体を少量の上記粘土鉱物で補強したものとなる。これにより、上記化学蓄熱材複合物における質量当たり及び体積当たりの上記化学蓄熱材の占有率を大きくすることができる。すなわち、蓄熱容量の大きい上記化学蓄熱材複合物となる。さらに、上記化学蓄熱材複合物は、上記化学蓄熱材自体が主要構造を成しているため、伝熱経路が単純であり、蓄熱効率、蓄熱した熱の利用効率が高いものとなる。
上記混合工程における上記化学蓄熱材の酸化物と上記粘土鉱物との混合は、最終的に上記化学蓄熱材複合物100質量%に対する上記粘土鉱物の含有量が0.1〜20質量%となるように行うことが好ましい(請求項14)。
この場合には、上記粘土鉱物により、上記化学蓄熱材複合物の構造強度を充分に向上させることができる。
上記粘土鉱物の含有量が0.1質量%未満の場合には、上記化学蓄熱材複合物の構造強度を充分に向上させることができないおそれがある。一方、20質量%を超える場合には、上記化学蓄熱材複合物における蓄熱システムとしての効果が低下するおそれがある。
また、上記酸処理工程においては、硝酸、リン酸、塩酸、及び硫酸等から選ばれる1種類又は2種以上の無機酸等を使用することができる。
これらの酸の種類と、上記粘土鉱物及び上記化学蓄熱材の種類との組合せにより、酸化アルミニウムの他に、リン酸アルミニウム及び/又はカルシウムリン酸塩等の生成物が生成しうる。これらの生成物は、上述のごとく、上記化学蓄熱材複合物における上記化学蓄熱材と上記粘土鉱物との構造をより強固に安定化させることができる。
上記酸処理工程における酸の添加量は、上記粘土鉱物の重量をモル数に換算し、そのモル数に対して、1/100〜10倍のモル数であることが好ましい。
1/100倍未満の場合には、上記酸処理工程を行うことによる効果が十分に発揮されなくなるおそれがある。一方、10倍を越える場合には、上記酸処理工程において、酸性の度合いが強くなりすぎて、上記化学蓄熱材そのものにまで悪影響を及ぼし、蓄熱・放熱性能を低下させてしまうおそれがある。より好ましくは、酸の添加量は、上記粘土鉱物の重量をモル数に換算し、そのモル数に対して、1/20倍〜5倍のモル数であることがよく、さらにより好ましくは1/10倍〜2倍のモル数であることがよい。
上記焼成工程においては、上記酸処理混合物を温度350〜500℃で焼成することが好ましい(請求項15)。
この場合には、上記粘土鉱物の結晶化と上記化学蓄熱材の脱水反応とを同時に進行させることができる。これにより、多孔質構造体として形成される上記化学蓄熱材複合物において、上記化学蓄熱材の構造化と比表面積の増加とを同時に達成することができる。
なお、上記焼成温度は、上記化学蓄熱材の脱水温度に近いことが好ましく、このような組み合わせとして、例えば、セピオライト(焼成温度:350℃以上)とアルカリ土類金属化合物(脱水温度:400〜450℃)との組み合わせを挙げることができる。
また、上記焼成工程では、例えば、上記混合物を所定の形状に成形して成形体を得た後、その成形体を焼成することができる。
上記第1の発明の製造方法によって得られる上記化学蓄熱材複合物は、上記化学蓄熱材と上記粘土鉱物とを含有し、さらに少なくとも酸化アルミニウムを含有することができる(請求項17)。
上記化学蓄熱材複合物において、酸化アルミニウムは、上記化学蓄熱材と上記粘土鉱物との間や、上記粘土鉱物と共に上記化学蓄熱材を取り囲むようにその周囲に存在していると考えられる。これにより、上記化学蓄熱材複合物の構造強度がより一層強化される。
なお、上記化学蓄熱材複合物は、上記化学蓄熱材及び/又は上記粘土鉱物と酸との反応によって生成する生成物として、酸化アルミニウムの他に、上述のごとくリン酸アルミニウム及び/又はカルシウムリン酸塩等を含有することができる。
また、上記生成物は、上記化学蓄熱材の例えばアルカリ土類金属元素(Ca等)等の成分や上記粘土鉱物の成分(Si等)と部分的に反応し、−Al−O−Ca−、−Al−OSi−等を形成することができる。これにより、上記化学蓄熱材複合物の構造強度をさらに向上させることができる。
(実施例1)
次に、本発明の実施例につき、図1及び図2を用いて説明する。
本発明においては、混合工程と酸処理工程と焼成工程とを行うことにより化学蓄熱材複合物を製造する。図1に、本例の製造方法によって得られる化学蓄熱材複合物1における化学蓄熱材11及び粘土鉱物12の構造上の関係を模式的に示す。
具体的には、同図に示すごとく、化学蓄熱材複合物1は、多数の化学蓄熱材11が組織化・構造化されたものであって、化学蓄熱材11間には隙間(細孔)が形成されている。したがって、本例の化学蓄熱材複合物1は、多孔質構造体(多孔体)として把握されるものである。
また、同図に示すごとく、化学蓄熱材複合物1は、多数の化学蓄熱材11に粘土鉱物12が絡まるように取り囲んでいる。すなわち、化学蓄熱材複合物1は、多孔質の粘土鉱物12の骨格中に化学蓄熱材11が分散保持された構造として把握される。そして、化学蓄熱材複合物1は、多数の化学蓄熱材11間に細孔が形成された多孔質構造体としての構造が粘土鉱物12によって保持(補強)されるようになっている。
また、本例の化学蓄熱材複合物1は、後述の酸処理工程を行うことによって形成される酸化アルミニウム(Al23)等の生成物(図示略)を含有している。この生成物の存在により、化学蓄熱材複合物1においては、化学蓄熱材11と粘土鉱物12との密着性が高くなっている。また、本例においては、後述のごとく、化学蓄熱材複合物の製造時に焼成を行っており、生成物としての酸化アルミニウムは、多孔質の状態になっていると考えられる。
本例では、化学蓄熱材11は、カルシウムの水酸化物(Ca(OH)2)又は酸化物(CaO)であり、脱水に伴って蓄熱(吸熱)し、水和(水酸化カルシウムへの復原)に伴って放熱(発熱)する。すなわち、化学蓄熱材11は、以下に示す反応で蓄熱・放熱を可逆的に繰り返す。
Ca(OH)2⇔CaO+H2
さらに、上記の式に蓄熱量、発熱量Qを併せて示すと、以下のようになる。
Ca(OH)2+Q→CaO+H2
CaO+H2O→Ca(OH)2+Q
なお、図1に示される化学蓄熱材11は、焼成後の状態である。そのため、化学蓄熱材11は、酸化カルシウム(CaO)として存在している。
また、粘土鉱物12は、層リボン構造を有する粘土鉱物であるセピオライトであり、具体的には、輝石に似た単鎖が複数本結合して四面体リボンを形成してなる粘土鉱物の1つである。セピオライトは、例えば、Mg8Si1230(OH)4(OH2)4・8H2Oの化学式で表すことができる含水マグネシウム珪酸塩である。セピオライトは、それ自体が多孔質であり、比表面積が大きい繊維状を呈している。なお、セピオライトとしては、上記化学式で表されるものの変種についても含まれる。セピオライトには、酸化アルミニウムに換算して数%以下ではあるが、アルミニウムも成分元素として含まれている。
次に、混合工程と酸処理工程と焼成工程とを行って化学蓄熱材複合物の製造する方法について説明する。
図2に示すごとく、混合工程においては、粉体の化学蓄熱材11と、成分元素として少なくともAlを含有する粘土鉱物12と、水とを混合することにより混合物M0を得る。酸処理工程においては、混合物M0に酸を混合して酸処理混合物M1を得る。焼成工程においては、この酸処理混合物M1(P)を焼成することにより、図1に示すごとく化学蓄熱材複合物1を得る。
以下、これを詳説する。
まず、化学蓄熱材11として、平均粒子径D=10μm(レーザー回折式測定法、島津製作所製SALD−2000Aによる)の水酸化カルシウム(Ca(OH)2)を準備した。なお、化学蓄熱材11としては、平均粒子径1〜100μm、好ましくは平均粒子径5〜50μmのものを用いることができる。
また、粘土鉱物12として、水に懸濁した場合の繊維径が化学蓄熱材11の平均粒子径Dよりも小さい径の繊維状を呈する粘土鉱物であるセピオライト(Mg8Si1230(OH)4(OH2)4・8H2O)を準備した。具体的には、セピオライトは、その線径(繊維径)が1μm以下、その長さ(繊維長)が200μm以下のものが望ましい。本例では、線径が略0.01μmで長さが略数十μmのトルコ産のセピオライトを準備した。
なお、トルコ産のセピオライトに代えて、例えば、線径が略0.1μmで長さが略100μmのスペイン産のセピオライトを用いることもできる。
また、酸として、硝酸水溶液を準備した。
次いで、混合工程では、図2(a)、(b)に示すごとく、化学蓄熱材11としての水酸化カルシウムと、粘土鉱物12としてのセピオライトとを混合容器21に入れて均一に混合した後、図2(c)に示すごとく、混合したものを混練機22に入れ、バインダとしての水を徐々に加えながら混練し、増粘化させた。これにより、セピオライト12と水酸化アルミニウム13との混練物である混合物M0を得た。
次いで、酸処理工程では、図2(d)に示すごとく、混合物M0の入った混練機22に酸としての硝酸水溶液を徐々に加えながら混練した。硝酸の添加量は、セピオライトのモル数と同じモル数とした。これにより、酸処理混合物M1を得た。
次いで、図2(e)に示すごとく、酸処理混合物M1を押し出し型23に入れ、押出成形した。これにより、酸処理混合物M1を、押し出し型23の形状に応じた所定の形状に成形した。本例では、数mmサイズのペレット(成形体)Pに形成した。このペレットPとしては、例えば、直径略3mm、長さ3〜5mm程度の略円柱状や、同等の大きさの角柱状等に形成することができる。また、必要に応じて、押し出し型23から押し出された混合物M1を切断してペレットPを形成するようにしてもよい。
次いで、焼成工程では、図2(e)及び(f)に示すごとく、ペレットPを焼成炉24に入れ、約450℃で所定時間焼成した。これにより、化学蓄熱材複合物1を得た。
なお、この焼成温度は、水酸化カルシウムの脱水温度以上である。そのため、焼成工程における焼成により、水酸化カルシウムの脱水反応が進行する。よって、製造直後の化学蓄熱材複合物1では、化学蓄熱材11は、酸化物状態(酸化カルシウム)で存在している。
以上のように製造された化学蓄熱材複合物1は、そのまま化学蓄熱材複合物1として蓄熱システムに用いてもよく、さらに大型の蓄熱材を製造するための原料(中間体)として用いてもよく、適用される用途に応じた形状に成形工程において成形してもよい。なお、大型の蓄熱材を製造するための原料(中間体)として成形する際には、焼成温度を水酸化カルシウムの脱水温度未満(例えば、350℃以下)とし、二次成形時に水酸化カルシウムの脱水温度以上の温度で焼成することが好ましい。
次に、本例の化学蓄熱材複合物1における作用効果について説明する。
本例の化学蓄熱材複合物1は、上記混合工程と上記酸処理工程と上記焼成工程とをおこなって得られたものである。そのため、化学蓄熱材複合物1は、いわば粘土鉱物12の骨格中に粉体の化学蓄熱材11を分散保持して組織化・構造化されたものとなる(図1参照)。これにより、次のような種々の作用効果が期待できる。
すなわち、図1に示すごとく、化学蓄熱材11の粉体間には、粘土鉱物12等の存在によって隙間が形成される。よって、蓄熱・放熱の繰り返しによる化学蓄熱材11の擦れ合い及びこれに伴う微粉化を抑制することができる。
また、上記隙間により、水蒸気等の蓄熱・放熱に伴う反応物・反応生成物の導入排出経路を充分に確保することができる。よって、蓄熱・放熱に伴う反応物・反応生成物の化学蓄熱材複合物1内における移動(拡散)阻害を抑制することができる。
また、化学蓄熱材複合物1は、化学蓄熱材11を取り囲む粘土鉱物12により、強度が高く、安定した構造を有する多孔質構造体となる。そのため、化学蓄熱材複合物1は、蓄熱及び放熱を繰り返し行っても、微粉化が起こり難く、また、導入排出経路を充分に確保することができる。そのため、長期間安定に蓄熱及び放熱を繰り返し行うことができる。
特に、本例では、上記酸処理工程を行っているため、少なくとも粘土鉱物(セピオライト)12の成分元素であるAlの一部と酸(硝酸)とが反応して、少なくとも酸化アルミニウム等の生成物(図示略)が生じる。この生成物は、粘土鉱物12が化学蓄熱材11を取り囲む構造を強固に安定化する、あるいは生成物自体が粘土鉱物12と共に化学蓄熱材11を取り囲んで強固で安定した構造を形成することにより、化学蓄熱材複合物1の全体の構造強度をより一層高いものとすることができる。
また、生成物は、化学蓄熱材11のアルカリ土類金属元素(Ca)等の成分や粘土鉱物12の成分(Si等)と部分的に反応し、−Al−O−Ca−、−Al−O−Si−等を形成していると考えられる。これにより、化学蓄熱材複合物1の構造強度をさらに向上させることができる。
また、生成物としての酸化アルミニウムは、焼成後に多孔質となる。そのため、化学蓄熱材複合物1は、粘土鉱物だけでなく酸化アルミニウムの多孔性により、蓄熱・放熱に伴う水蒸気等の反応物・反応生成物の導入排出経路をより一層充分に確保することができる。よって、化学蓄熱材複合物1は、蓄熱・放熱に伴う反応物・反応生成物の化学蓄熱材複合物1内における移動(拡散)阻害をさらに抑制することができ、伝熱性能に優れたものとなる。
また、粘土鉱物12としては、層リボン構造を有する粘土鉱物であるセピオライトを用いている。すなわち、多孔質で比表面積が大きい繊維状形態を有するものを用いている。そのため、粘土鉱物12の繊維質、多孔性、可塑性等の性質により、化学蓄熱材11を良好に組織化、構造化させることができる。
また、多孔質で比表面積が大きい粘土鉱物12の吸着性により、蓄熱・放熱反応時に存在する余剰な水蒸気を粘土鉱物12内に吸着することができる。そのため、例えば、化学蓄熱材複合物1を用いた蓄熱システムが停止されている低温状態の場合に、化学蓄熱材11が吸水して化学蓄熱材複合物1内で液水化することを防止することができる。これにより、化学蓄熱材11と液水との反応によるシンタリングを抑制することができる。
また、粘土鉱物12としては、化学蓄熱材11の粒子径よりも小さい径の繊維状を呈するものを用いている。そのため、化学蓄熱材11をそれよりも小さい径の繊維状の粘土鉱物12によって取り囲むため、少量の粘土鉱物12を用いて化学蓄熱材11の組織化、構造化を実現することが可能である。具体的には、少量の粘土鉱物12で化学蓄熱材11間に細孔が形成された多孔質構造体を補強した化学蓄熱材複合物1となる。これにより、化学蓄熱材複合物1における質量当たり、体積当たりの化学蓄熱材11の占有率を大きくすることができる。すなわち、蓄熱容量の大きい化学蓄熱材複合物1となる。さらに、化学蓄熱材複合物1は、化学蓄熱材11自体が主要構造を成しているため、伝熱経路が単純であり、蓄熱効率、蓄熱した熱の利用効率が高いものとなる。
また、化学蓄熱材11は、脱水反応に伴って吸熱し、水和反応に伴って放熱する水和反応系化学蓄熱材であり、また脱水反応に伴って酸化され、水和反応に伴って水酸化される水和反応系化学蓄熱材である水酸化カルシウムを用いている。そのため、化学蓄熱材複合物1は、水和反応及び脱水(逆水和)反応によって蓄熱・放熱を良好に行うことができ、蓄熱システムとしての性能を高めることができる。
また、化学蓄熱材11としては、水酸化物である水酸化カルシウムを用いている。そのため、混合工程において、粉体の化学蓄熱材11と粘土鉱物12とを混合する際に、化学蓄熱材11として炭酸化合物を用いた場合に混合・増粘用のバインダとして使用することができなかった水を使用することができる。これにより、化学蓄熱材複合物1の成形性を高めることができる。また、化学蓄熱材11として炭酸化合物を用いた場合に必要であった脱炭酸工程時における1000℃近辺の高温焼成が不要となる。これにより、焼成温度を低くすることができ、使用材料や工程の自由度を高めることができる。
また、化学蓄熱材11としては、無機化合物である水酸化カルシウムを用いている。そのため、蓄熱・放熱反応(水和・脱水反応)に対する化学蓄熱材11の材料安定性が高くなる。特に、水酸化カルシウムの可逆性は高いことから、化学蓄熱材複合物1は、長期間に渡って安定した蓄熱効果を得ることができる。
また、化学蓄熱材11として、環境負荷の小さい安全なアルカリ土類金属化合物(CaO、Ca(OH)2)を用いている。そのため、化学蓄熱材複合物1の製造、使用、リサイクル等を含めた安全性の確保が容易になる。
また、混合工程においては、粘土鉱物12の揺変性(チキソトロピ)により、水分と共に撹拌することで増粘効果を得ることができる。そのため、化学蓄熱材11をベースとした構造体をより高精度、高密度な状態で形成することができる。これにより、得られる化学蓄熱材複合物1は、高精度、高密度であり、熱抵抗が低いものとなる。
また、焼成工程では、350〜500℃の温度で焼成する。そのため、粘土鉱物12の結晶化と化学蓄熱材11の脱水反応とを同時に進行させることができる。これにより、多孔質構造体として形成される化学蓄熱材複合物1の化学蓄熱材11の構造化と比表面積の増加とを同時に達成することができる。
このように、本例の化学蓄熱材複合物1によれば、化学蓄熱材11の微粉化を抑制すると共に熱伝導経路を確保し、さらには構造強度の向上を図ることができる。そのため、化学蓄熱材複合物1は、長期間安定に蓄熱及び放熱を繰り返し行うことができる。
なお、本例では、化学蓄熱材11として水酸化カルシウムを用いたが、これを水酸化マグネシウムに代える、あるいは水酸化カルシウムと水酸化マグネシウムとの混合物に代えることもできる。
また、酸として硝酸を用いたが、リン酸等のその他の酸を用いることもできる。
(実施例2)
本例は、本発明の化学蓄熱材複合物の反応率を測定する例である。
本例では、後述の表1に示すごとく、酸処理工程において使用する酸の種類を変えて2種類の化学蓄熱材複合物(本発明品E1及びE2)を作製した。また、比較用として、酸処理工程を行わずに化学蓄熱材複合物(比較品C1)を作製した。なお、本発明品E1、E2、及び比較品C1において、化学蓄熱材(Ca(OH)2)及び粘土鉱物(セピオライト)の組成比(質量%)は一定(91:9)にした。
そして、本発明品E1、E2、及び比較品C1について、反応率を測定した。
ここで、反応率とは、熱重量分析法により、脱水時と水和時との重量変化量を求め、サンプル中の酸化カルシウムから水酸化カルシウムへの変化率として求めた値である。
具体的には、サンプル約20mgを採取し、450℃まで昇温し、温度450℃、窒素ガス流通下でサンプル重量を測定した。このとき、カルシウム成分は、ほとんどが酸化カルシウムとなる。その後、200℃まで降温し、温度200℃、水蒸気を含む窒素ガス中に晒すことにより、水酸化カルシウムへの重量変化量を測定した。この脱水・水和を3回繰り返し、3回目の重量変化量を仕込みの水酸化カルシウムの重量で換算し、反応率とした。その結果を表1に示す。
Figure 2009256520
表1に示されるように、化学蓄熱材と粘土鉱物との混合物に対して酸を混合するという酸処理工程を行って作製した本発明品E1及びE2は、酸処理工程を行わずに作製した比較品C1に比べて反応率が高いことがわかる。
また、表1に示すごとく、本例においては、酸処理工程で使用する酸として、硝酸(本発明品E1)及びリン酸(本発明品E2)を用いた。したがって、本発明品E1においては、硝酸と粘土鉱物(セピオライト)中のAlとが反応し、上述の生成物として酸化アルミニウム(Al23)が生成しており、本発明品E2においては、生成物として、酸化アルミニウム(Al23)の他に、リン酸と粘土鉱物(セピオライト)中のAlとの反応生成物であるリン酸アルミニウムやリン酸と化学蓄熱材(Ca(OH)2)中のCaとの反応生成物であるリン酸カルシウム等が生成している。本発明品E1と本発明品E2との反応率に表1に示すごとく差が生じている原因はこれらの生成物の違いによるものであると考えられる。しかし、いずれの場合においても比較品C1に比べて充分に高い反応率を示している。
このような結果から、本発明の化学蓄熱材複合物は、水和反応及び脱水(逆水和)反応によって蓄熱・放熱を長期間安定して行うことができ、蓄熱システムとしての性能が高くなっていることがわかる。
実施例1における、化学蓄熱材複合物の構造を示す説明図。 実施例1における、化学蓄熱材複合物の製造方法を示す説明図。
符号の説明
1 化学蓄熱材複合物
11 化学蓄熱材
12 粘土鉱物

Claims (17)

  1. 粉体の化学蓄熱材と、成分元素として少なくともAlを含有する粘土鉱物と、水とを混合することにより混合物を得る混合工程と、
    上記混合物に酸を混合して酸処理混合物を得る酸処理工程と、
    上記酸処理混合物を焼成することにより化学蓄熱材複合物を得る焼成工程とを有することを特徴とする化学蓄熱材複合物の製造方法。
  2. 請求項1において、上記化学蓄熱材は、脱水反応に伴って吸熱し、水和反応に伴って放熱する水和反応系化学蓄熱材であることを特徴とする化学蓄熱材複合物の製造方法。
  3. 請求項1又は2において、上記化学蓄熱材は、脱水反応に伴って酸化され、水和反応に伴って水酸化される水和反応系化学蓄熱材であることを特徴とする化学蓄熱材複合物の製造方法。
  4. 請求項3において、上記混合工程における上記化学蓄熱材としては、水酸化物状態の化学蓄熱材を採用することを特徴とする化学蓄熱材複合物の製造方法。
  5. 請求項1〜4のいずれか一項において、上記化学蓄熱材は、無機化合物であることを特徴とする化学蓄熱材複合物の製造方法。
  6. 請求項1〜5のいずれか一項において、上記化学蓄熱材は、ニッケル化合物、アルミニウム化合物、コバルト化合物、銅化合物、及びアルカリ土類金属化合物から選ばれる1種以上の化合物であることを特徴とする化学蓄熱材複合物の製造方法。
  7. 請求項1〜6のいずれか一項において、上記混合工程においては、上記化学蓄熱材として、水酸化ニッケル、水酸化アルミニウム、水酸化コバルト、水酸化銅、及びアルカリ土類金属の水酸化物から選ばれる1種以上の水酸化物を採用することを特徴とする化学蓄熱材複合物の製造方法。
  8. 請求項7において、上記混合工程においては、上記化学蓄熱材として、水酸化カルシウム及び/又は水酸化マグネシウムを採用することを特徴とする化学蓄熱材複合物の製造方法。
  9. 請求項1〜8のいずれか一項において、上記粘土鉱物は、多孔質であることを特徴とする化学蓄熱材複合物の製造方法。
  10. 請求項1〜9のいずれか一項において、上記粘土鉱物としては、層リボン構造を有する粘土鉱物を採用することを特徴とする化学蓄熱材複合物の製造方法。
  11. 請求項10において、上記層リボン構造を有する上記粘土鉱物は、セピオライト及び/又はパリゴルスカイトであることを特徴とする化学蓄熱材複合物の製造方法。
  12. 請求項1〜9のいずれか一項において、上記粘土鉱物としては、ベントナイトを採用することを特徴とする化学蓄熱材複合物の製造方法。
  13. 請求項1〜12のいずれか一項において、上記粘土鉱物は、上記化学蓄熱材の粒子径よりも小さい径の繊維状を呈していることを特徴とする化学蓄熱材複合物の製造方法。
  14. 請求項1〜13のいずれか一項において、上記混合工程における上記化学蓄熱材と上記粘土鉱物との混合は、最終的に上記化学蓄熱材複合物100質量%に対する上記粘土鉱物の含有量が0.1〜20質量%となるように行うことを特徴とする化学蓄熱材複合物の製造方法。
  15. 請求項1〜14のいずれか一項において、上記焼成工程においては、上記酸処理混合物を温度350〜500℃で焼成することを特徴とする化学蓄熱材複合物の製造方法。
  16. 請求項1〜15のいずれか一項に記載の製造方法によって得られることを特徴とする化学蓄熱材複合物。
  17. 請求項16において、上記化学蓄熱材複合物は、少なくとも上記化学蓄熱材と上記粘土鉱物と酸化アルミニウムとを含有することを特徴とする化学蓄熱材複合物。
JP2008109387A 2008-04-18 2008-04-18 化学蓄熱材複合物及びその製造方法 Pending JP2009256520A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008109387A JP2009256520A (ja) 2008-04-18 2008-04-18 化学蓄熱材複合物及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008109387A JP2009256520A (ja) 2008-04-18 2008-04-18 化学蓄熱材複合物及びその製造方法

Publications (1)

Publication Number Publication Date
JP2009256520A true JP2009256520A (ja) 2009-11-05

Family

ID=41384362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008109387A Pending JP2009256520A (ja) 2008-04-18 2008-04-18 化学蓄熱材複合物及びその製造方法

Country Status (1)

Country Link
JP (1) JP2009256520A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118736A1 (ja) * 2010-03-25 2011-09-29 株式会社豊田中央研究所 化学蓄熱材構造体及びその製造方法、並びに化学蓄熱器
JP2011213882A (ja) * 2010-03-31 2011-10-27 Toyota Central R&D Labs Inc 化学蓄熱材構造物の製造方法
JP2012082292A (ja) * 2010-10-08 2012-04-26 Toyota Central R&D Labs Inc 化学蓄熱体およびその製造方法
JP2014024887A (ja) * 2012-07-24 2014-02-06 Denso Corp 化学蓄熱材、反応器および蓄熱装置
US9074827B2 (en) 2007-11-30 2015-07-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat exchanger heat-utilization device and method of manufacturing the same
WO2016158973A1 (ja) * 2015-03-31 2016-10-06 日本ペイントホールディングス株式会社 化学蓄熱材及び化学蓄熱材形成用組成物

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9074827B2 (en) 2007-11-30 2015-07-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat exchanger heat-utilization device and method of manufacturing the same
WO2011118736A1 (ja) * 2010-03-25 2011-09-29 株式会社豊田中央研究所 化学蓄熱材構造体及びその製造方法、並びに化学蓄熱器
US20130075052A1 (en) * 2010-03-25 2013-03-28 Omi Mining Co., Ltd. Chemical thermal energy storage material structure, method of producing the same, and chemical heat accumulator
US9120959B2 (en) 2010-03-25 2015-09-01 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical thermal energy storage material structure, method of producing the same, and chemical heat accumulator
JP5785932B2 (ja) * 2010-03-25 2015-09-30 株式会社豊田中央研究所 化学蓄熱材構造体及びその製造方法、並びに化学蓄熱器
JP2011213882A (ja) * 2010-03-31 2011-10-27 Toyota Central R&D Labs Inc 化学蓄熱材構造物の製造方法
JP2012082292A (ja) * 2010-10-08 2012-04-26 Toyota Central R&D Labs Inc 化学蓄熱体およびその製造方法
JP2014024887A (ja) * 2012-07-24 2014-02-06 Denso Corp 化学蓄熱材、反応器および蓄熱装置
WO2016158973A1 (ja) * 2015-03-31 2016-10-06 日本ペイントホールディングス株式会社 化学蓄熱材及び化学蓄熱材形成用組成物
US10836945B2 (en) 2015-03-31 2020-11-17 Nippon Paint Holdings Co., Ltd. Chemical heat storage material, and composition for forming chemical heat storage material

Similar Documents

Publication Publication Date Title
JP5297669B2 (ja) 化学蓄熱材複合体及びその製造方法
JP4911002B2 (ja) 熱交換型熱利用装置及びその製造方法
JP5223314B2 (ja) 蓄熱装置
JP2009256520A (ja) 化学蓄熱材複合物及びその製造方法
JP5277621B2 (ja) 化学蓄熱材成形体及びその製造方法
JP5374683B2 (ja) 化学蓄熱材成形体及びその製造方法
JP5327729B2 (ja) 化学蓄熱材料、及びその製造方法
JP2009256519A (ja) 化学蓄熱材複合物及びその製造方法
JP5547896B2 (ja) 化学蓄熱反応器及びフィルタ付化学蓄熱材成形体の製造方法
JP5586262B2 (ja) 化学蓄熱材成形体およびその製造方法
JP5232521B2 (ja) 化学蓄熱材複合体の製造方法
JP5232510B2 (ja) 化学蓄熱材成形体の製造方法
JP5300307B2 (ja) 化学蓄熱材成形体及びその製造方法
JP5264263B2 (ja) 化学蓄熱材料、化学蓄熱材成形体、及びそれらの製造方法
JP5521967B2 (ja) 化学蓄熱体およびその製造方法
JP5749049B2 (ja) 化学蓄熱器及びその製造方法
JP5231077B2 (ja) 化学蓄熱材複合体及びその製造方法
JP2005281050A (ja) 化学反応材料
JP5277138B2 (ja) 蓄熱器及びその製造方法
JP5401782B2 (ja) 蓄熱装置及びその製造方法
JP5303159B2 (ja) 化学蓄熱材複合体
Zaki et al. Investigation of Ca12Al14O33 Mayenite for hydration/dehydration thermochemical energy storage
JP5303158B2 (ja) 化学蓄熱材成形体及びその製造方法
KR101867171B1 (ko) 허니컴 구조체의 제조방법
JP2004216245A (ja) 炭酸ガス吸収材及びその製造方法