JP2009235808A - コンクリートスラブとその施工方法 - Google Patents

コンクリートスラブとその施工方法 Download PDF

Info

Publication number
JP2009235808A
JP2009235808A JP2008084386A JP2008084386A JP2009235808A JP 2009235808 A JP2009235808 A JP 2009235808A JP 2008084386 A JP2008084386 A JP 2008084386A JP 2008084386 A JP2008084386 A JP 2008084386A JP 2009235808 A JP2009235808 A JP 2009235808A
Authority
JP
Japan
Prior art keywords
concrete
slab
temperature
concrete slab
pipe line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008084386A
Other languages
English (en)
Inventor
Shigeji Suzuki
重司 鈴木
Daisuke Ozaki
大輔 尾崎
Yoshinori Ota
佳紀 大田
Masahiro Kobayashi
雅博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2008084386A priority Critical patent/JP2009235808A/ja
Publication of JP2009235808A publication Critical patent/JP2009235808A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】マスコンクリートスラブに生じ得る温度ひび割れの幅を効果的に狭めることができ、該温度ひび割れの数を効果的に低減することができるコンクリートスラブの施工方法を提供する。
【解決手段】地下構造物100を構成するコンクリートスラブ10,20の施工方法であって、スラブ用の型枠1内に、複数の直線状の管路2,…を間隔を置いて設置し、型枠1内にコンクリートを打設した後に各管路2,…に冷触媒もしくは温触媒空気を流す方法である。なお、打設されたコンクリートが最高温度となるまで各管路2,…に空気を流し、コンクリートが略最高温度となった際に空気の流れを停止させるのが好ましい。
【選択図】図2

Description

本発明は、コンクリート構造物を構成する床版や頂版などのコンクリートスラブとその施工方法に関するものである。
地下構造物の大深度化に伴い、土水圧や地下水の揚圧力に抗するために、該地下構造物を構成する床版や頂版などのスラブの厚みはおのずと厚くならざるを得ない。この地下構造物がRC造もしくはSRC造の場合には、スラブの厚みが厚くなることでマスコンクリートとなってしまい、フレッシュコンクリートの水和熱に起因する温度ひび割れを如何に抑止できるかが構造物の品質を左右する重要なファクターとなる。この温度ひび割れの発生メカニズムは、セメントの水和熱に伴うコンクリートの温度上昇や温度低下によってコンクリート部材の自由変形が拘束され、コンクリートの内部および外部に拘束応力が生じ、これらの拘束応力によって温度ひび割れが誘発されるものである。この温度ひび割れは、コンクリート打設後数日以内にコンクリート表面の表面ひび割れが生じ易く、コンクリートスラブを貫通する貫通ひび割れにいたっては数日〜2週間程度でその発生が顕著となる。
ここで、マスコンクリートとは、対象部材の厚みや寸法が大きく、セメントの水和熱による温度上昇を考慮した施工を要するコンクリートのことであり、広がりのあるコンクリートスラブにおいては、その厚みが80〜100cm以上のものが対象となる。施工条件が夏期か冬期か等によっても相違するものの、フレッシュコンクリートが硬化する際には部材内部の温度が60℃以上にまで達し、コンクリートが熱膨張し、収縮することによって温度ひび割れが誘発される。
マスコンクリートの温度ひび割れを抑止する方策としては、たとえばダムコンクリートのように粗骨材の寸法を80mm以上と大きくすることでセメント量を低減する方法や、低熱コンクリートを使用する方法、水和熱抑制混和剤を添加する方法、誘発目地を適所に配する方法、フレッシュコンクリートの打設後にコンクリートをクーリングする方法などのいずれか一つ、もしくは複数の組み合わせが一般におこなわれている。
その中でも、通常の普通コンクリートを使用することでコスト増を回避でき、構造的弱部となり得る誘発目地を設けない温度ひび割れ対策として、フレッシュコンクリートをクーリングする方法が好ましい。
このマスコンクリートのクーリング法に関する従来技術として、たとえば特許文献1に開示のマスコンクリートのパイプクーリング方法を挙げることができる。
このクーリング法は、予め型枠内に2本のクーリングパイプを配置しておき、各クーリングパイプに冷却水を送水することで型枠内に打設されたマスコンクリートを冷却するものである。より具体的には、内径が20mm程度のクーリングパイプの配管経路をマスコンクリートの中心部から周縁部に向かって冷却水が送水されるように設定しておくものであり、これにより、高温になるマスコンクリートの中心部に供給直後の冷却水を送水することができ、この冷却水との熱交換によって中心部を効率良く冷却できるというものである。
特開2004−360333号公報
特許文献1に開示のマスコンクリートのパイプクーリング方法によれば、フレッシュコンクリートの水和熱に起因する温度ひび割れを効果的に抑止することができる。しかし、冷触媒(冷媒)に水を適用していることにより、水を供給するための大規模(大出力)なポンプ等の動力源を要し、特に上記するコンクリート構造物の施工においてたとえば冷触媒供給動力源が地上に設置される場合には、その出力性能は極めて大きなものとならざるを得ない。コンクリート構造物(地下構造物)が大深度化するにつれてこの課題はより顕著なものとなる。
さらには、使用されるクーリングパイプが20mm径程度の小径のものであること、これをマスコンクリートの中央から周辺へ複雑に蛇行させて配設するものであること、より、クーリングパイプの製作や設置に手間と時間を要することは必至であり、マスコンクリートの規模が大きくなるにつれて、この課題もまた一層顕著なものとなる。
本発明は上記する問題に鑑みてなされたものであり、コンクリート構造物のスラブの規模、すなわちマスコンクリートの規模が大きくなっても、極めて簡易な構成でかつ容易に打設後のコンクリートの温度上昇を効果的に抑止することのできる、コンクリートスラブの施工方法とコンクリートスラブを提供することを目的とする。また、寒冷条件においては、マスコンクリートの急激な温度低下を抑止することのできるコンクリートスラブの施工方法とコンクリートスラブを提供することを目的とする。
前記目的を達成すべく、本発明によるコンクリートスラブの施工方法は、コンクリート構造物を構成するコンクリートスラブの施工方法であって、スラブ用の型枠内に、複数の直線状の管路を間隔を置いて設置し、前記型枠内にコンクリートを打設し、各管路に冷触媒もしくは温触媒となる空気を流すものである。
本発明の施工方法は、地下道やそのランプ部、地下の駅舎、地下の商業施設、地下貯槽タンク等をその用途とする地下構造物や、マンション、ビル、上下水道施設、廃棄物処分施設などの地上構造物、半地下構造物の床版や頂版などのスラブの施工をその対象とするものであり、特に、マスコンクリートからなるスラブの製造過程で形成され得る温度ひび割れを効果的に抑止できるコンクリートスラブの施工方法に関するものである。ここで、温度ひび割れの抑止とは、温度ひび割れ幅をより狭くすること、温度ひび割れの数を少なくすること、を意味している。
この施工方法では、スラブ用の型枠内に2本以上の直線状の管路をそれぞれ間隔を置いて設置しておき、型枠内にコンクリートを打設するとともに各管路に冷触媒として空気(外気やこれを冷却したものなど)を流すことをその構成としている。冷媒空気の管路への送気のタイミングは、スラブ用のコンクリート打設の前段階であってもよいし、コンクリート打設の途中段階であってもよいし、スラブ用のコンクリートが完全に打設された直後の段階であってもよい。なお、冬期施工や寒冷地における施工など、寒冷条件でのスラブ用のコンクリートの施工に際しては、各管路に温触媒として空気を流すことにより、コンクリート内温度の急激な低下とこれに起因するひびわれの発生を抑止することができる。
ここで、型枠内に配設される管路は、たとえば型枠を構成する対向した2つの側枠間の離間長程度の長さを有し、かつ、直線状に延びた形態となっており、この管路が所定の間隔を置いて複数配設されるものである。
この管路は、フレッシュコンクリートによる圧力に対してその内空を維持できる程度の断面剛性および素材からなるものであり、鋼管は勿論のこと、コンクリート製、樹脂製(炭素繊維強化プラスチック(CFRP)やガラス繊維強化プラスチック(GFRP)を含む)など、その素材は適宜選定される。また、管路の断面形状も円形、楕円形、矩形など、その素材と相俟って所望の断面剛性を有するものであれば特に限定されるものではない。さらに、型枠内に配設される管路の本数はスラブの規模や管径等によって変化するものであるが、2本の場合、3本の場合、もしくは4本以上の場合等、適宜の本数が設定される。
たとえば地上に配置されたエアコンプレッサ等の触媒(冷触媒もしくは温触媒)供給動力源から複数の直線状の管路のそれぞれに触媒空気が送気され、管路を流れ出た空気は地上に通じるホース等を介して排気される。
本発明の施工方法が対象とするコンクリートスラブは、その厚みが1m程度以上で、たとえば2〜4m程度のマスコンクリートであり、したがって、管路の寸法も比較的大きなものとなる。たとえば、管路の高さ(断面円形の管路の場合はその外径)がコンクリートスラブの厚みの1/3〜2/3程度の範囲に設定するのが好ましい。この範囲は、上記する厚み程度のコンクリートスラブに対し、たとえばクーリング効果が十分に得られる範囲であることが本発明者等によって特定されている。
上記する特許文献1に開示の従来技術と比較すると、管路(クーリングパイプ)を直線状としたこと、管路の断面寸法が1000mm程度と極めて大きいこと、より、管路の製作手間が格段に省力化され、より高い冷却効果を期待することができるものである。
さらに、本発明の施工方法はコンクリート構造物のコンクリートスラブをその対象としているが、触媒として水や油等の液体ではなく空気(たとえば外気)を使用することにより、エアコンプレッサ等の触媒供給動力源を可及的に小規模(低出力)なものにでき、施工コストの高騰が抑えられる。
上記する本発明によるコンクリートスラブの施工方法によれば、簡素なクーリング構成で、しかも簡易な方法にて、マスコンクリートスラブのフレッシュコンクリートの温度上昇速度(勾配)を緩やかにでき、もってコンクリート内部の最高温度を可及的に低下させることで温度ひび割れの発生を効果的に抑止することができる。また、寒冷条件では、フレッシュコンクリートの温度低下速度を緩やかにでき、同様にひび割れの発生を効果的に抑止することができる。さらに、管路の体積分だけスラブコンクリート量を低減することができ、コンクリートの打設回数も低減できることから、工費の大幅な削減が期待できる。
また、本発明によるコンクリートスラブの施工方法の好ましい実施の形態において、前記型枠内に打設されたコンクリートが略最高温度となるまで各管路に空気を流し、コンクリートが略最高温度となった際に空気の流れを停止させるものである。
マスコンクリートの規模にもよるが、フレッシュコンクリート打設後にマスコンクリートが最高温度に達するまでの期間は、数日〜1週間程度が一般的である。
そこで、マスコンクリートが略最高温度に達するまでは上記のごとく冷触媒空気を管路に連続的に流すことにより、該管路を介してマスコンクリートを空冷し、最高温度を可及的に低く抑えるものである。なお、ここでいう「略最高温度」とは、最高温度は勿論のこと、それよりも1〜数℃低い温度を含む意味である。
たとえばマスコンクリートが最高温度に達したら、冷触媒空気の送気を停止させる。これは、最高温度到達後で温度低下しているマスコンクリートの温度低下速度が早いと、コンクリートスラブの温度変化に伴う自由な軸変形や曲げ変形が拘束されて引張応力が生じ、場合によっては貫通ひび割れに至るという事実に鑑み、したがって最高温度到達後のマスコンクリートの温度低下速度(勾配)を緩やかにすることでこれを抑止する効果を期待するものである。
本発明者等の検証によれば、外気温が27℃程度の夏期施工条件下(温度ひび割れにとって最も厳しい施工条件)で版厚が4m程度のスラブに関し、従来一般の施工方法によるスラブ中央の最高温度が65℃程度であったのに対して、上記する本発明の施工方法によるスラブ中央の最高温度は56℃程度とおよそ10℃程度も最高温度を低下できることが分かっている。この最高温度の低下により、温度ひび割れにとって最も厳しい施工条件でしかも4m程度という極めて厚いスラブの施工に対し、ひび割れ幅を大幅に狭くでき、ひび割れ指数(ひび割れに対する安全性指標)を大幅に向上できることも同様に特定されている。
また、本発明によるコンクリートスラブの施工方法の他の実施の形態は、前記コンクリート構造物が、コンクリートスラブである底版および頂版と、外側壁と、を有し、さらに仕切壁にて2以上の空間を有する多連構造物の場合に、前記管路がコンクリートスラブ内における前記仕切壁の上方もしくは下方で不連続となるように、型枠内に管路を配設するものである。
仕切壁にて2以上の空間が画成された多連のコンクリート構造物においては、たとえば、スラブの端部間(2つの外側壁間)に延びる管路をその途中の仕切壁上で分断し、隙間を形成する。この隙間は、仕切壁筋の配筋スペースや、あるいは作業員の通路スペースに供される。
たとえば、同一軸方向に延びる管路がその途中で不連続となり、分断された第1、第2の管路からなる場合には、第1、第2の管路それぞれに触媒供給動力源に通じる触媒流入ホースと各管路から空気を排気する触媒排気ホースが取り付けられることになる。
さらに、本発明によるコンクリートスラブは、コンクリート構造物を構成するコンクリートスラブであって、前記コンクリートスラブには、間隔を置いて配設された複数の直線状の管路が埋設されており、該管路は、冷触媒もしくは温触媒となる空気を流してコンクリート打設後のコンクリート温度の低下もしくは低下抑止に供されるものである。
本発明のコンクリートスラブは、既述する触媒空気が流れる直線状で2以上の管路が間隔を置いて埋設されたものである。
高剛性の素材から形成された管路をスラブ内に埋設し、該管路にスラブの具備すべき強度特性、すなわち、せん断抵抗や曲げ抵抗の一部を期待するものであってもよいし、低剛性の素材から形成された管路を使用し、管路には何等の強度特性も期待せず、あくまでも触媒供給管としての用途のみに供されるものであってもよい。
この管路の高さをコンクリートスラブの厚みの1/3〜2/3の範囲に設定しておくことにより、フレッシュなマスコンクリートの冷却効果を十分に期待することができる。
以上の説明から理解できるように、本発明によるコンクリートスラブの施工方法によれば、2以上で直線状の管路を間隔を置いて型枠内に配し、動力源の負荷が少ない空気を冷触媒もしくは温触媒として管路に提供するだけの極めて簡易な方法により、たとえば2m以上の厚みのコンクリートスラブに生じ得る温度ひび割れ幅を効果的に狭めることができ、該温度ひび割れの数を効果的に低減することができる。
以下、図面を参照して本発明の実施の形態を説明する。図1aは本発明のコンクリートスラブを具備する地下構造物を模式的に示した縦断面図であり、図1bはそのb−b矢視図であり、図2はコンクリートスラブを製造するための製造装置の一実施の形態を示した斜視図である。なお、図示例は、管路内に冷触媒である空気を流す実施例を説明したものであるが、寒冷条件下では温触媒である空気が同様に管路に提供されるものである。
図示する鉄筋コンクリート製の地下構造物100は、底版10と、これから立ち上がる外側壁30、対向する外側壁30,30間に配設された仕切壁40と、これら外側壁30、仕切壁40上に位置する頂版20とから大略構成されており、仕切壁40の左右に空間50A,50Bを有する2連構造物となっている。
この底版10と頂版20には、それらの断面の中央位置に、間隔を置いて複数の管路2A,2Bが埋設されている。この管路2A,2Bは、コンクリート打設後にその内部に冷触媒空気を流し、コンクリートの温度上昇を抑えるために供されるものである。なお、底版10と頂版20が本発明でいうコンクリートスラブであり、2m以上の厚みを有するマスコンクリートである。一つの実施例として、図1bで示す管路2Bの管径を1.1m程度とし、管路2B,2B間のピッチを1.9m程度に設定することができる。
この地下構造物100の製造方法を概説すると、まず、不図示の土留壁にて土圧もしくは土水圧を支保しながら地上から所定深度まで地盤の開削をおこない、底版10、外側壁30、頂版20の順に躯体の構築がおこなわれる。なお、必要に応じて揚水処理や地盤改良などの補助工法が併用される。
次に、マスコンクリートである底版10の施工方法を図2〜4に基づいて説明する。なお、図2は仕切壁が存在しない場合のコンクリートスラブの施工方法を説明するものであり、図1に示す地下構造物100の底版10の施工方法は、仕切壁筋が立ち上がる場合を説明した図4に基づくものである。
図2は、コンクリートスラブの施工方法を説明した図であり、より具体的には、型枠内にフレッシュコンクリートを打設する前の状況を説明したものである。
底枠12と、側枠11,…と、から型枠1を組み付け、底枠12上にスペーサにてかぶりを確保した姿勢で2方向に延びるスラブ筋SRを配筋し、さらに、側枠11内に壁筋KRを配筋する。
スラブ筋SR上にこれと間隔を置いて、3本の直線状の管路2,…を相互に間隔を置いて配設する。この管路2の配設レベルは、施工されるスラブの厚みのほぼ中央レベルであり、たとえばスラブ筋SRに不図示のスペーサを支持させ、当該スペーサにて管路2を支持させる。
この管路2は、鋼管、コンクリート製、樹脂製、炭素繊維強化プラスチック(CFRP)、ガラス繊維強化プラスチック(GFRP)など、少なくともフレッシュコンクリートから受ける圧力に対して断面を保持できる適宜の素材から形成されている。また、図示例では、管路2の断面が(中空)円形であるが、そのほかにも中空の楕円形、矩形など、適宜の断面形状が選定できる。
また、管路2の外径はスラブ厚の1/3〜2/3程度の範囲に設定されており、2〜4m程度のスラブ厚の場合には、管路2の外径を0.7〜1.5m程度に設定でき、さらに、管路2の長さは、10m〜18m程度に設定できる。
管路2の両端近傍の側面には、管路内に冷触媒空気を吸気するための吸気口21と、管路内を流れた冷触媒空気を排気するための排気口22が設けてあり、たとえば地上に設置されたコンプレッサ3と吸気口21が吸気ホース4にて連通される。さらに、排気口22には排気ホース5の一端が連通され、各管路2に連通する排気ホース5,…の他端が蛇腹状の集排ホース6に収容されている。
図2にはフレッシュコンクリートは図示されていないが、型枠1内にコンクリートが充填されると、コンプレッサ3に吸気された(図中のX0方向)外気は、吸気ホース4を介し(図中のX1方向)、吸気口21を介して管路2内を流れ(X2方向)、排気口22、排気ホース5および集排ホース6を介して(X3方向)、地上へ排気される(X4方向)。この管路2への外気の送気と管路2からの排気は、所定時間に亘って連続的におこなわれるものである。なお、図示例では各管路2,…の吸気口21,…を手前側に揃えて配設しているが、コンクリート内部温度分布の状況によっては、それらの配設位置が異なる形態であってもよい。
図3は、型枠1内にフレッシュコンクリートが打設され、外気の送気と排気がおこなわれている状況を説明した図である。
具体的には、フレッシュコンクリートが型枠1内に打設されると同時に連続的な外気の送気と排気が実行され、コンクリート内部の温度が最高温度かそれに近い温度となるまで、この外気の連続的な送気が実行され、コンクリート内部の温度上昇が抑制される。
次に、コンクリート内部の温度が最高温度となった段階で外気の送気を停止し、コンクリート内部の温度低下速度を可及的に緩やかにする。
上記する最高温度までのクーリング制御と最高温度以降の緩やかな温度低下制御により、従来のマスコンクリートに比して温度ひび割れ幅を狭くすることができ、温度ひび割れ数を低減することができる。
図4は、図1で示す地下構造物100の底版10を施工する方法を説明している。図示するように、スラブの中央付近で仕切壁筋KR’が立ち上がっていることから、同一軸Lに沿う直線状の管路は仕切壁筋KR’の左右にて分断された管路2A,2Bから構成される。
各管路2A,2Bには吸気口21と排気口22が設けてあり、型枠1内にコンクリートが打設されると、不図示のコンプレッサから吸気ホース4を介して冷触媒空気が送気され、管路内を流れ、排気ホース5を介して排気される。なお、図示例では、スラブの中央側に管路2A,2Bの排気側が位置するようにして、一つの集排ホース6にて各排気ホース5,…の端部が収容されている。
図5で示すように、底版10を構築し、外側壁30、仕切壁40を順次構築し、最後に頂版20を構築することにより、マスコンクリートからなる底版および頂版を具備する地下構造物100が構築される。なお、底版10や頂版20内には、冷触媒空気が送気される複数本の管路2,…が埋設された状態となっており、地下構造物の供用後には、この管路2を排気ダクトや汚水ダクトとして使用することも可能である。
[3次元FEM温度応力解析とその結果]
本発明者等は、図1で示す2連の地下構造物の左右いずれかの1連構造をモデル化し、冷触媒空気が送気される管路を具備する本発明のコンクリートスラブを有する解析モデル(実施例)と、管路を具備しない従来構造の解析モデル(比較例)をコンピュータ内で3次元FEMモデルとしてモデル化し、温度応力解析をおこなった。ここで、解析において、外気温を27℃の夏期施工条件とし、コンクリート打設後の1週間程度を外気送気期間とした。さらに、実施例の解析モデルにおける管路の径は1.1mであり、1.9mピッチで配設した。
実施例、比較例の解析条件に関し、上記以外の条件を以下の表1に、解析モデルと解析結果の温度分布を図6,7に、頂版、外側壁、底版の最高温度、最小ひび割れ指数およびひび割れ幅に関する解析結果を表2に示す。ここで、最小ひび割れ指数とは、コンクリート部材の引張強度特性値と引張主応力の比のことであり、1未満ではひび割れ危険度が高くなることを示すものである。また、開削工法における地下構造物(地下トンネルを含む)の許容ひび割れ幅は一般に0.3mmに設定される。
Figure 2009235808
Figure 2009235808
図6に示す解析モデルM1は、頂版モデルSM1、側壁モデルWMおよび底版モデルSM2から構成され、一つの側壁モデルWMと底版モデルSM2には型枠モデルKHが繋がれている。
一方、図7に示す解析モデルM2は、解析モデルM1とほぼ同様の構成となっているが、さらに、頂版モデルSM1と底版モデルSM2内に管路モデルPMが組み込まれている。
図6には解析結果の一つである温度分布が示されており、底版モデルSM2の温度領域A2は55〜60℃の温度領域であり、その内部の温度領域A1は60〜66℃の温度領域である。また、頂版モデルSM1の温度領域A4は55〜60℃の温度領域であり、その内部の温度領域A3は60〜66℃の温度領域である。側壁は頂版や底版に比してその厚みは薄く、したがってコンクリート温度はスラブよりも低い値を呈している。
これに対し、図7で示す解析結果においては、管路モデルPMを配したことにより、頂版モデルSM1や底版モデルSM2の中央に位置する温度領域A8、A5がそれらの外周に位置する温度領域A9、A6よりも低い温度となっており、温度領域A8、A5は40〜45℃、温度領域A9、A6が45〜50℃となっている。なお、この解析モデルM2では、底版モデルや頂版モデルの外周側の温度領域A10、A7で最高温度を示し、およそ56℃程度となっている。
上記する表2より、比較例に対して実施例の最高温度は10℃程度も低くなり、その結果、許容ひび割れ幅(0.30mm)を満足しない比較例のひび割れ幅(頂版で0.34mm)が、実施例では0.06mmとなり、その20%程度のひび割れ幅にまで狭められることが分かった。
さらに、最小ひび割れ指数に関し、比較例では、頂版で1未満となり、底版ではほぼ1となっており、いずれもひび割れの可能性が高くなっているのに対して、実施例では、頂版で1.60、底版で1.58となり、ひび割れ危険度が極めて小さくなっていることが分かる。
本解析により、マスコンクリートの打設後にその内部に配設された管路に冷媒空気を流すことにより、ひび割れ幅を大幅に狭められることが実証された。
しかも、本発明によるコンクリートスラブの施工方法では、直線状の管路を型枠内に設置するだけの極めて簡易な方法によるものであり、さらには、地上の外気を冷触媒に使用することで触媒供給動力源の負荷を可及的に低くすることができる(よって、小出力動力源の使用が可能)ことより、製造コストを高騰させることなく、品質に優れたマスコンクリートスラブを具備する地下構造物を構築することができる。さらに、管路の体積分だけスラブコンクリート量を低減でき、もってコンクリートの打設回数が低減され、工費の大幅な削減に繋がるものである。
以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。
(a)は本発明のコンクリートスラブを具備する地下構造物を模式的に示した縦断面図であり、(b)はそのb−b矢視図である。 コンクリートスラブの施工方法の一実施の形態を示した斜視図である。 型枠内に打設されたフレッシュコンクリートを冷触媒空気にて冷却している状況を説明した斜視図である。 コンクリートスラブの施工方法の他の実施の形態を示した斜視図である。 側壁の途中レベルまで施工が完了した状態を説明した斜視図である。 3次元FEM温度応力解析で使用された従来のコンクリート構造物の解析モデルと、解析結果を示した模式図である。 3次元FEM温度応力解析で使用された本発明のコンクリートスラブを具備するコンクリート構造物の解析モデルと、解析結果を示した模式図である。
符号の説明
1…型枠、11…側枠、12…底枠、2,2A,2B…管路(クーリングパイプ)、21…吸気口、22…排気口、3…コンプレッサ、4…吸気ホース、5…排気ホース、6…集排ホース、10…底版、20…頂版、30…外側壁、40…仕切壁、50A,50B…空間、100…地下構造物、KR…壁筋、KR’…仕切壁筋、SR…スラブ筋、M1…従来のコンクリート構造物の解析モデル、M2…本発明のコンクリートスラブを具備するコンクリート構造物の解析モデル、PM…管路モデル

Claims (6)

  1. コンクリート構造物を構成するコンクリートスラブの施工方法であって、
    スラブ用の型枠内に、複数の直線状の管路を間隔を置いて設置し、
    前記型枠内にコンクリートを打設し、各管路に冷触媒もしくは温触媒となる空気を流す、コンクリートスラブの施工方法。
  2. 前記型枠内に打設されたコンクリートが略最高温度となるまで各管路に空気を流し、コンクリートが略最高温度となった際に空気の流れを停止させる、請求項1に記載のコンクリートスラブの施工方法。
  3. 前記コンクリート構造物が、コンクリートスラブである底版および頂版と、外側壁と、を有し、さらに仕切壁にて2以上の空間を有する多連構造物の場合に、
    前記管路がコンクリートスラブ内における前記仕切壁の上方もしくは下方で不連続となるように、型枠内に管路を配設する、請求項1または2に記載のコンクリートスラブの施工方法。
  4. 前記管路の高さがコンクリートスラブの厚みの1/3〜2/3の範囲である、請求項1〜3のいずれかに記載のコンクリートスラブの施工方法。
  5. コンクリート構造物を構成するコンクリートスラブであって、
    前記コンクリートスラブには、間隔を置いて配設された複数の直線状の管路が埋設されており、該管路は、冷触媒もしくは温触媒となる空気を流してコンクリート打設後のコンクリート温度の低下もしくは低下抑止に供される、コンクリートスラブ。
  6. 前記管路の高さがコンクリートスラブの厚みの1/3〜2/3の範囲である、請求項5に記載のコンクリートスラブ。
JP2008084386A 2008-03-27 2008-03-27 コンクリートスラブとその施工方法 Pending JP2009235808A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008084386A JP2009235808A (ja) 2008-03-27 2008-03-27 コンクリートスラブとその施工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008084386A JP2009235808A (ja) 2008-03-27 2008-03-27 コンクリートスラブとその施工方法

Publications (1)

Publication Number Publication Date
JP2009235808A true JP2009235808A (ja) 2009-10-15

Family

ID=41250086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008084386A Pending JP2009235808A (ja) 2008-03-27 2008-03-27 コンクリートスラブとその施工方法

Country Status (1)

Country Link
JP (1) JP2009235808A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758534A (zh) * 2012-07-30 2012-10-31 中建商品混凝土有限公司 一种大体积混凝土的降温方法
JP2016142106A (ja) * 2015-02-05 2016-08-08 五洋建設株式会社 コンクリートを冷却する方法および装置
CN106049534A (zh) * 2016-07-28 2016-10-26 江苏开来预应力工程有限公司 一种地下综合管廊减少纵向收缩缝的方法
JP2018031157A (ja) * 2016-08-24 2018-03-01 みらい建設工業株式会社 コンクリートひび割れ制御方法
CN109469064A (zh) * 2018-11-21 2019-03-15 中国电建集团成都勘测设计研究院有限公司 混凝土冷却水管装置
CN111892423A (zh) * 2020-08-26 2020-11-06 浙江省三建建设集团有限公司 一种结合钢筋支架的大体积混凝土冷凝系统
CN112195979A (zh) * 2020-09-18 2021-01-08 中铁十四局集团第二工程有限公司 一种地下侧墙结构混凝土抗裂防水施工方法
CN113774957A (zh) * 2020-06-10 2021-12-10 江苏省建筑科学研究院有限公司 一种明挖现浇隧道主体结构混凝土抗裂施工方法
CN114776011A (zh) * 2022-05-06 2022-07-22 四川川桥工程试验检测有限责任公司 一种浇筑大体积混凝土用降温设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200269A (ja) * 1985-03-04 1986-09-04 株式会社大林組 コンクリ−ト構造物のひび割れ防止工法
JPH07145668A (ja) * 1993-11-24 1995-06-06 Ohbayashi Corp コンクリート打設方法
JPH07243260A (ja) * 1994-03-07 1995-09-19 Mitsui Constr Co Ltd コンクリート養生方法及びコンクリート養生装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200269A (ja) * 1985-03-04 1986-09-04 株式会社大林組 コンクリ−ト構造物のひび割れ防止工法
JPH07145668A (ja) * 1993-11-24 1995-06-06 Ohbayashi Corp コンクリート打設方法
JPH07243260A (ja) * 1994-03-07 1995-09-19 Mitsui Constr Co Ltd コンクリート養生方法及びコンクリート養生装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758534A (zh) * 2012-07-30 2012-10-31 中建商品混凝土有限公司 一种大体积混凝土的降温方法
CN102758534B (zh) * 2012-07-30 2014-06-04 中建商品混凝土有限公司 一种大体积混凝土的降温方法
JP2016142106A (ja) * 2015-02-05 2016-08-08 五洋建設株式会社 コンクリートを冷却する方法および装置
CN106049534A (zh) * 2016-07-28 2016-10-26 江苏开来预应力工程有限公司 一种地下综合管廊减少纵向收缩缝的方法
JP2018031157A (ja) * 2016-08-24 2018-03-01 みらい建設工業株式会社 コンクリートひび割れ制御方法
CN109469064A (zh) * 2018-11-21 2019-03-15 中国电建集团成都勘测设计研究院有限公司 混凝土冷却水管装置
CN113774957A (zh) * 2020-06-10 2021-12-10 江苏省建筑科学研究院有限公司 一种明挖现浇隧道主体结构混凝土抗裂施工方法
CN113774957B (zh) * 2020-06-10 2022-05-31 江苏省建筑科学研究院有限公司 一种明挖现浇隧道主体结构混凝土抗裂施工方法
CN111892423A (zh) * 2020-08-26 2020-11-06 浙江省三建建设集团有限公司 一种结合钢筋支架的大体积混凝土冷凝系统
CN112195979A (zh) * 2020-09-18 2021-01-08 中铁十四局集团第二工程有限公司 一种地下侧墙结构混凝土抗裂防水施工方法
CN114776011A (zh) * 2022-05-06 2022-07-22 四川川桥工程试验检测有限责任公司 一种浇筑大体积混凝土用降温设备
CN114776011B (zh) * 2022-05-06 2024-02-09 四川川桥工程试验检测有限责任公司 一种浇筑大体积混凝土用降温设备

Similar Documents

Publication Publication Date Title
JP2009235808A (ja) コンクリートスラブとその施工方法
CN105888108A (zh) 内置定位预制件钢筋混凝土剪力墙及施工方法
CN103643626A (zh) 一种曲线超高型桥墩墩身温度应力裂缝的控制方法
CN103306463B (zh) 一种金属衬里混凝土风道施工方法
JP6041951B2 (ja) 壁状コンクリート構造物の温度応力ひび割れ抑制方法
JP6261995B2 (ja) コンクリート温度の制御方法
CN103669868B (zh) 超长混凝土楼面结构的递推流水施工方法
CN103174293A (zh) 空心楼板自稳式内模安装方法
CN103572784A (zh) 一种超厚筏板后浇带模板支撑系统及其施工方法
CN105544583B (zh) 一种桥梁承台的施工方法
CN108425685B (zh) 一种基于现浇隧道的混凝土裂缝控制方法
CN102535841A (zh) 一种预制墙板施工工艺
JP5814139B2 (ja) 壁状鉄筋コンクリート構造物の温度応力ひび割れ抑制方法および温度応力ひび割れ抑制壁状鉄筋コンクリート構造物
JP5634932B2 (ja) コンクリート温度制御用パイプ及びこのパイプを用いたコンクリート温度の制御方法
CN202117320U (zh) 循环水管沟内圆模抗浮装置
CN202176111U (zh) 钢管混凝土柱u形管循环水养护系统
JP7116887B2 (ja) コンクリート冷却システム、及びコンクリート冷却方法
CN103334534A (zh) 小康建筑的抗震节能配筋砌体专用砌块及砌筑新技术
JP4351290B2 (ja) 高炉の炉底構造
JP5749096B2 (ja) 鋼製型枠装置
CN211257806U (zh) 一种水冷模板
CN208650387U (zh) 一种预制保温墙板
CN206667289U (zh) 一种多排压力管后背支墩
JP6909581B2 (ja) コンクリート部材の施工方法
CN110924448A (zh) 一种综合管廊施工缝处防水防渗结构及施工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016