JP2009230955A - Manufacturing method of organic electroluminescent element - Google Patents

Manufacturing method of organic electroluminescent element Download PDF

Info

Publication number
JP2009230955A
JP2009230955A JP2008072943A JP2008072943A JP2009230955A JP 2009230955 A JP2009230955 A JP 2009230955A JP 2008072943 A JP2008072943 A JP 2008072943A JP 2008072943 A JP2008072943 A JP 2008072943A JP 2009230955 A JP2009230955 A JP 2009230955A
Authority
JP
Japan
Prior art keywords
insulating layer
layer
substrate
organic
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008072943A
Other languages
Japanese (ja)
Other versions
JP5002502B2 (en
Inventor
Shingo Hibino
真吾 日比野
Yuzo Takao
裕三 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2008072943A priority Critical patent/JP5002502B2/en
Publication of JP2009230955A publication Critical patent/JP2009230955A/en
Application granted granted Critical
Publication of JP5002502B2 publication Critical patent/JP5002502B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an organic EL element having an organic layer and a pattern-like insulating layer formed between electrodes, wherein patterning of the insulating layer is easy, and there is no risk of exerting a bad influence on the organic layer when forming the insulating layer. <P>SOLUTION: A positive electrode substrate 11 in which an organic layer 13 containing a positive electrode 3 and a luminescent layer 5, and a negative electrode substrate 8 in which a negative electrode 7 is formed are prepared, the pattern-like insulating layer 6 is provided by transferring the transfer layer of an insulating layer transfer film to the surface of the organic layer 13 of the positive electrode substrate 11, and the negative electrode substrate 11 on which the pattern-like insulating layer 6 is formed is pasted to the negative electrode substrate 12 to manufacture the organic EL element 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、一対の電極の間に有機物の発光層が挟持された有機エレクトロルミネッセンス素子を、陰極基板と陽極基板との貼り合わせにより製造する方法に関するものである。   The present invention relates to a method of manufacturing an organic electroluminescent element in which an organic light emitting layer is sandwiched between a pair of electrodes by bonding a cathode substrate and an anode substrate.

有機エレクトロルミネッセンス素子(以下、有機EL素子という)は、陰極が設けられた陰極基板と陽極が設けられた陽極基板との間に、発光性を有する有機材料を含む薄膜(発光層)が挟持された構造を有している。有機EL素子は、両電極間に低電圧を印加して電流を流すと、発光層の内部に陽極から正孔が注入され陰極から電子が注入され、発光層の内部で正孔と電子が再結合し励起状態となり、それが基底状態に戻る際に放出される光(蛍光や燐光等)を利用した自発光素子である。   In an organic electroluminescence element (hereinafter referred to as an organic EL element), a thin film (light emitting layer) containing a light emitting organic material is sandwiched between a cathode substrate provided with a cathode and an anode substrate provided with an anode. Have a structure. In an organic EL element, when a low voltage is applied between both electrodes and a current flows, holes are injected from the anode into the light emitting layer and electrons are injected from the cathode, and the holes and electrons are regenerated inside the light emitting layer. It is a self-luminous element that utilizes light (fluorescence, phosphorescence, etc.) that is emitted when it is coupled to an excited state and returns to the ground state.

有機EL素子の発光面を所定のパターンに発光させる手段として、例えば、発光させたくない部分の電極間に絶縁層を挿入して、該絶縁層により電極からのキャリア注入及びキャリア再結合を不可能とし、前記絶縁層の部分が非発光部であり絶縁層が設けられていない部分が発光部となる有機EL素子が公知である(特許文献1参照)。特許文献1には、絶縁層をパターン状に形成する手段として、絶縁性フォトレジストを用いたフォトリソグラフィー技術によってパターンを形成し、真空蒸着、スパッタ、塗布等の薄膜形成方法により、パターン状の絶縁層を形成することが記載されている。   As a means for causing the light emitting surface of the organic EL element to emit light in a predetermined pattern, for example, an insulating layer is inserted between the electrodes where it is not desired to emit light, and carrier injection and carrier recombination from the electrodes are impossible due to the insulating layer In addition, an organic EL element in which a portion of the insulating layer is a non-light emitting portion and a portion where no insulating layer is provided is a light emitting portion is known (see Patent Document 1). In Patent Document 1, as a means for forming an insulating layer in a pattern, a pattern is formed by a photolithography technique using an insulating photoresist, and a pattern-like insulation is formed by a thin film forming method such as vacuum deposition, sputtering, or coating. The formation of a layer is described.

また絶縁層をパターン状に形成する手段として、電極層の表面に絶縁層を全面ベタに形成した後、インクジェット装置を用いて所定のパターンに発光層の組成物を絶縁層の表面に塗工すると、発光層が塗工された部分で絶縁層と発光層が混ざり合って発光層が所定のパターンに形成される、いわゆる自己整合法が公知である。   Also, as a means for forming the insulating layer in a pattern, after the insulating layer is formed on the entire surface of the electrode layer, the composition of the light emitting layer is applied to the surface of the insulating layer in a predetermined pattern using an inkjet device. A so-called self-alignment method is known in which a light emitting layer is formed in a predetermined pattern by mixing an insulating layer and a light emitting layer at a portion where the light emitting layer is applied.

また絶縁層をパターン状に形成する手段として、電極上に設けた発光層等の有機物層の表面に、直接、スクリーン印刷やグラビア印刷などの印刷法により、絶縁層を所定のパターンに形成する、印刷法が公知である。   Further, as a means for forming the insulating layer in a pattern, the insulating layer is formed in a predetermined pattern directly on the surface of an organic layer such as a light emitting layer provided on the electrode by a printing method such as screen printing or gravure printing. Printing methods are known.

特開平10−270173号公報Japanese Patent Laid-Open No. 10-270173

上記特許文献1に記載のフォトリソグラフィー法を用いて絶縁層を所定のパターンに形成する方法は、高精細なパターニングが可能であるが、処理工程が多く非常に手間がかかるという問題があった。また有機EL素子の基板にガラス板を用いる場合は、処理が可能であるが、基板として樹脂フィルムを用いる場合には、変形し易いことから、正確なパターン形成が困難であるという問題があった。   The method of forming an insulating layer in a predetermined pattern using the photolithography method described in Patent Document 1 described above is capable of high-definition patterning, but has a problem that it requires a lot of processing steps and is very troublesome. In addition, when a glass plate is used for the substrate of the organic EL element, processing is possible, but when a resin film is used as the substrate, there is a problem that it is difficult to form an accurate pattern because it is easily deformed. .

また、上記自己整合法により絶縁層をパターン状に形成する方法は、発光層に絶縁層の成分が混入し易く、発光特性が低下しやすいという問題があった。   Further, the method of forming the insulating layer in a pattern by the self-alignment method has a problem that the components of the insulating layer are easily mixed in the light emitting layer, and the light emission characteristics are likely to be deteriorated.

また、印刷法により絶縁層をパターン状に形成する方法は、絶縁層の形成の際に有機溶媒を含む絶縁層組成物が有機物層の表面に塗工されるため、絶縁層組成物中に含まれる溶媒により有機物層が変質や変形したり、乾燥時の熱により有機物層が熱劣化や変形するという問題があった。   In addition, the method of forming the insulating layer in a pattern by a printing method is included in the insulating layer composition because the insulating layer composition containing an organic solvent is applied to the surface of the organic layer when forming the insulating layer. There is a problem that the organic material layer is altered or deformed by the solvent used, or the organic material layer is thermally deteriorated or deformed by heat during drying.

本発明が解決しようとする課題は、上記問題点を解決しようとするものであり、絶縁層が所定のパターンに形成された有機EL素子の製造方法において、絶縁層のパターニングが容易であり、絶縁層を形成する際に発光層等の有機物層に対する悪影響を与える虞がない、有機EL素子の製造方法を提供することにある。   The problem to be solved by the present invention is to solve the above-mentioned problems, and in the method of manufacturing an organic EL element in which the insulating layer is formed in a predetermined pattern, the patterning of the insulating layer is easy and the insulating layer is insulated. An object of the present invention is to provide a method for producing an organic EL element, which does not have an adverse effect on an organic layer such as a light emitting layer when forming a layer.

上記課題を解決するため、本発明に係る有機EL素子の製造方法は、陰極と陽極との間に少なくとも発光層を含む有機物層と非発光部の形状に形成されたパターン状絶縁層とが挟持されるように、陽極が形成された陽極基板と陰極が形成された陰極基板とを貼り合わせることで、前記発光層が非発光部を除く所定の発光パターンに発光する有機エレクトロルミネッセンス素子を製造する方法であって、前記有機物層と一方の電極が形成されている第1の基板と、他方の電極が形成されている第2の基板を準備して、前記第1の基板又は前記第2の基板に前記パターン状絶縁層を転写により設ける絶縁層形成工程と、前記第1の基板と前記第2の基板とを貼り合わせる貼り合わせ工程とを備えることを要旨とするものである。   In order to solve the above-described problems, an organic EL device manufacturing method according to the present invention includes an organic material layer including at least a light-emitting layer and a patterned insulating layer formed in the shape of a non-light-emitting portion between a cathode and an anode. As described above, an organic electroluminescence device in which the light emitting layer emits light in a predetermined light emission pattern excluding a non-light emitting portion is manufactured by bonding an anode substrate on which an anode is formed and a cathode substrate on which a cathode is formed. A method of preparing a first substrate on which the organic layer and one electrode are formed, and a second substrate on which the other electrode is formed, and preparing the first substrate or the second substrate The gist of the present invention is to include an insulating layer forming step of providing the patterned insulating layer on a substrate by transfer, and a bonding step of bonding the first substrate and the second substrate together.

上記製造方法において、前記絶縁層形成工程が、陽極及び有機物層が形成された陽極基板に前記パターン状絶縁層を設けることや、陰極が形成された陰極基板に前記パターン状絶縁層を設けることが好ましい。   In the manufacturing method, the insulating layer forming step includes providing the patterned insulating layer on an anode substrate on which an anode and an organic material layer are formed, or providing the patterned insulating layer on a cathode substrate on which a cathode is formed. preferable.

上記製造方法において、前記絶縁層形成工程が、転写基材に前記パターン状絶縁層が転写層として設けられた絶縁層転写フィルムを用いて、パターン状絶縁層を転写するものであることが好ましい。   In the manufacturing method, the insulating layer forming step preferably transfers the patterned insulating layer using an insulating layer transfer film in which the patterned insulating layer is provided as a transfer layer on a transfer substrate.

上記製造方法において、前記絶縁層転写フィルムが、発光部の形状を打ち抜いて除去することにより、パターン状絶縁層が所定の非発光部の形状に形成されたものであることが好ましい。   In the above manufacturing method, it is preferable that the insulating layer transfer film is formed by punching and removing the shape of the light emitting portion to form the patterned insulating layer in the shape of a predetermined non-light emitting portion.

本発明に係る有機EL素子の製造方法によれば、前記有機物層と一方の電極が形成されている第1の基板と、他方の電極が形成されている第2の基板を準備して、前記第1の基板又は前記第2の基板に前記パターン状絶縁層を転写により設ける絶縁層形成工程と、前記第1の基板と前記第2の基板とを貼り合わせる貼り合わせ工程とから構成されているので、有機EL素子の製造の際に、絶縁層のパターンニングが容易であり、絶縁層を形成する際に発光層等の有機物層に対して悪影響を与える虞がなく、陽極基板と陰極基板とを貼り合わせるだけの簡単な操作で有機EL素子を製造することができる。   According to the method of manufacturing an organic EL element according to the present invention, a first substrate on which the organic layer and one electrode are formed, and a second substrate on which the other electrode is formed are prepared, An insulating layer forming step of transferring the patterned insulating layer on the first substrate or the second substrate by transfer, and a bonding step of bonding the first substrate and the second substrate together. Therefore, the patterning of the insulating layer is easy at the time of manufacturing the organic EL element, and there is no possibility of adversely affecting the organic layer such as the light emitting layer when forming the insulating layer. An organic EL element can be manufactured by a simple operation by simply bonding the two.

従来のフォトリソグラフィー法により絶縁層をパターン状に形成する方法では、高精細なパターンを形成することが可能であるが、有機EL素子の電極を形成するための電極基材(陽極基材及び陰極基材)にガラス基板のような堅い材料を用いる必要があった。そのため電極基材として例えば樹脂フィルムのような変形し易い材料を用いることができなかった。これに対し、本発明によれば、電極基材に樹脂フィルムのような柔軟な材料を用いて、パターン状絶縁層を所定の形状にパターニングすることが可能であり、柔軟なフィルム状の有機EL素子を容易に製造することができる。   In the conventional method of forming an insulating layer in a pattern by a photolithography method, a high-definition pattern can be formed. However, an electrode substrate (an anode substrate and a cathode for forming an electrode of an organic EL element) can be formed. It was necessary to use a hard material such as a glass substrate for the base material. For this reason, it is impossible to use an easily deformable material such as a resin film as the electrode base material. On the other hand, according to the present invention, it is possible to pattern the patterned insulating layer into a predetermined shape using a flexible material such as a resin film for the electrode substrate, and the flexible film-shaped organic EL The device can be easily manufactured.

また、従来の自己整合法のように絶縁層をベタ一面に形成し、インクジェット法等により発光層を所定のパターンに形成し、絶縁層をパターン状に形成する方法では、発光層内に絶縁層の成分が混入し易く、絶縁層の成分が混入すると発光層の発光特性が低下してしまうものであった。これに対し本発明の方法によれば、絶縁層は転写フィルムの転写基材の表面で成膜、形成されるので、発光層に絶縁層が混入する虞がなく、発光層の発光特性を低下させず、優れた発光特性の有機EL素子が得られる。   Further, in a method in which an insulating layer is formed over the entire surface as in the conventional self-alignment method, a light emitting layer is formed in a predetermined pattern by an ink jet method or the like, and the insulating layer is formed in a pattern, the insulating layer is formed in the light emitting layer. These components are easily mixed, and when the components of the insulating layer are mixed, the light emitting characteristics of the light emitting layer are deteriorated. On the other hand, according to the method of the present invention, since the insulating layer is formed and formed on the surface of the transfer substrate of the transfer film, there is no possibility that the insulating layer is mixed into the light emitting layer, and the light emitting characteristics of the light emitting layer are deteriorated. Thus, an organic EL element having excellent light emission characteristics can be obtained.

本発明によれば、パターン状絶縁層は、例えば絶縁層転写フィルムの転写基材の表面等のように他の基材上に成膜されるので、発光層を含む有機物層の表面に直接、形成する必要がない。そのため、従来の有機物層の表面に直接印刷することで絶縁層をパターン状に形成する方法と比較して、絶縁層組成物の有機溶媒により有機EL素子の有機物層が変質や変形したり、乾燥時の熱により有機物層が熱劣化や変形することを防止できる。   According to the present invention, since the patterned insulating layer is formed on another substrate such as the surface of the transfer substrate of the insulating layer transfer film, for example, directly on the surface of the organic layer including the light emitting layer, There is no need to form. Therefore, compared with the conventional method of forming the insulating layer in a pattern by directly printing on the surface of the organic layer, the organic layer of the organic EL element is altered or deformed by the organic solvent of the insulating layer composition, or dried. It is possible to prevent the organic layer from being thermally deteriorated or deformed by the heat of time.

以下、図面を用いて本発明の有機EL素子の製造方法について詳細に説明する。図1は、本発明の製造方法により製造される有機EL素子の一例を示す外観斜視図であり、図2は図1のB−B断面図である。図1及び図2に示す有機EL素子は、陽極基材2の表面に、陽極3と、正孔輸送層4と、発光層5と、パターン状絶縁層6と、陰極7と、陰極基材8とが設けられて構成されている。陽極3、正孔輸送層4、発光層5、陰極7は、いずれもベタ一面に形成され、パターン状絶縁層6のみが所定のパターンに形成されている。この態様の有機EL素子1では、有機物層13が正孔輸送層4と発光層5から構成されている。   Hereinafter, the manufacturing method of the organic EL element of this invention is demonstrated in detail using drawing. FIG. 1 is an external perspective view showing an example of an organic EL element manufactured by the manufacturing method of the present invention, and FIG. 2 is a sectional view taken along line BB in FIG. The organic EL device shown in FIGS. 1 and 2 includes an anode 3, a hole transport layer 4, a light emitting layer 5, a patterned insulating layer 6, a cathode 7, and a cathode substrate on the surface of the anode substrate 2. 8 is provided. The anode 3, the hole transport layer 4, the light emitting layer 5, and the cathode 7 are all formed on the same surface, and only the patterned insulating layer 6 is formed in a predetermined pattern. In the organic EL element 1 of this embodiment, the organic material layer 13 is composed of the hole transport layer 4 and the light emitting layer 5.

図1に示す有機EL素子1は、発光部9がアルファベットのT字状に形成されている。図3は図1の有機EL素子の絶縁層を示す斜視図である。図3に示すように、有機EL素子1のパターン状絶縁層6は、T字状の発光部9の部分が打ち抜かれて、発光部9以外の部分を覆う形状に形成され、非発光部10のパターンに形成されている。有機EL素子1において、パターン状絶縁層6が形成された部分は、パターン状絶縁層6により電極(陽極3及び陰極7)から発光層5へのキャリア注入あるいはキャリア再結合が阻止される非発光部10として構成される。その結果、有機EL素子1は、発光部9のT字状のパターンに発光する。   In the organic EL element 1 shown in FIG. 1, the light emitting portion 9 is formed in an alphabetic T shape. FIG. 3 is a perspective view showing an insulating layer of the organic EL element of FIG. As shown in FIG. 3, the patterned insulating layer 6 of the organic EL element 1 is formed in a shape that covers a portion other than the light emitting portion 9 by punching a portion of the T-shaped light emitting portion 9, and the non-light emitting portion 10. The pattern is formed. In the organic EL element 1, the portion where the patterned insulating layer 6 is formed is a non-light emitting element in which carrier injection or carrier recombination is prevented by the patterned insulating layer 6 from the electrodes (the anode 3 and the cathode 7) to the light emitting layer 5. The unit 10 is configured. As a result, the organic EL element 1 emits light in a T-shaped pattern of the light emitting unit 9.

陽極基材2及び陰極基材8は、ガラス基板等のセラミック基板、樹脂板、樹脂フィルム等を用いることができる。陽極基材2及び陰極基材8は、樹脂フィルムを用いることが好ましい。樹脂フィルムの樹脂としては、例えば、ポリエチレンナフタレート、ポリエチレンテレフタレート等のポリエステル、ポリカーボネート、ポリイミド、ポリエーテルスルフォン、ポリエーテルイミド、ポリフェニレンサルファイド、ポリスルホン、ポリエーテルエーテルケトン、ポリアミド、ポリメタクリル酸メチル、ポリアリレート、シクロオレフィンポリマー等が挙げられる。陽極基材2及び陰極基材8の厚みは、通常、3〜1000μmであり、10〜500μmが好ましく、更に好ましくは10〜300μmである。尚、通常、有機EL素子1の発光層5に対して発光面側に位置する、陽極基材2、陽極3、正孔輸送層4等には、透明な材料が用いられる。   As the anode substrate 2 and the cathode substrate 8, a ceramic substrate such as a glass substrate, a resin plate, a resin film, or the like can be used. The anode substrate 2 and the cathode substrate 8 are preferably resin films. Examples of the resin for the resin film include polyesters such as polyethylene naphthalate and polyethylene terephthalate, polycarbonate, polyimide, polyether sulfone, polyether imide, polyphenylene sulfide, polysulfone, polyether ether ketone, polyamide, polymethyl methacrylate, and polyarylate. And cycloolefin polymers. The thickness of the anode substrate 2 and the cathode substrate 8 is usually 3 to 1000 μm, preferably 10 to 500 μm, more preferably 10 to 300 μm. In addition, a transparent material is normally used for the anode base material 2, the anode 3, the hole transport layer 4, and the like that are located on the light emitting surface side with respect to the light emitting layer 5 of the organic EL element 1.

陽極基材2及び陰極基材8は、表面にバリア層を形成する等の防湿処理を施すことが好ましい。バリア層としては、例えば酸化シリコン(SiO)、窒化シリコン(SiN)、窒化酸化シリコン(SiO、SiN)等の薄膜又は金属膜が挙げられる。金属膜を用いる場合には、発光層にて発生した光を有機EL素子の外部に取り出すことが可能な厚みに形成される。バリア層の厚みは10nm〜1μmであるのが好ましい。バリア層が10nm未満ではバリア性効果が小さく、1μmを超えると、フィルム基材では曲げたときにクラックが入りやすくなる。   The anode substrate 2 and the cathode substrate 8 are preferably subjected to moisture-proof treatment such as forming a barrier layer on the surface. Examples of the barrier layer include thin films or metal films such as silicon oxide (SiO), silicon nitride (SiN), and silicon nitride oxide (SiO, SiN). In the case of using a metal film, it is formed to a thickness that allows the light generated in the light emitting layer to be taken out of the organic EL element. The thickness of the barrier layer is preferably 10 nm to 1 μm. If the barrier layer is less than 10 nm, the barrier effect is small, and if it exceeds 1 μm, the film base material tends to crack when bent.

陽極3は、仕事関数の大きい(4eV以上)金属、導電性化合物、又はこれらの混合物等から形成される。陽極の材料としては、ITO(錫ドープ酸化インジウム)及びIZO(インジウム亜鉛酸化物)等が挙げられる。陽極3の厚みは、通常、1μm以下であり、200nm以下が好ましい。また陽極3の抵抗は、数百Ω/sq.以下が好ましい。陽極3は、真空蒸着法、スパッタ法、スピンコート法、キャスト法、LB法、パイロゾル法、およびスプレー法等により形成することができる。   The anode 3 is formed from a metal having a high work function (4 eV or more), a conductive compound, or a mixture thereof. Examples of the material for the anode include ITO (tin-doped indium oxide) and IZO (indium zinc oxide). The thickness of the anode 3 is usually 1 μm or less and preferably 200 nm or less. The resistance of the anode 3 is several hundred Ω / sq. The following is preferred. The anode 3 can be formed by a vacuum deposition method, a sputtering method, a spin coating method, a casting method, an LB method, a pyrosol method, a spray method, or the like.

正孔輸送層4は、例えば、フタロシアニン、ポリアニリン、オリゴチオフェン、ベンジジン誘導体、トリフェニルアミン、ピラゾリン誘導体、トリフェニレン誘導体等が挙げられる。正孔輸送層4は、真空蒸着法、スピンコート法、キャスト法、LB法、印刷法等を用いて形成することができる。正孔輸送層4の厚みは、2〜200nmが好ましい。正孔輸送層4の材料として、水溶性のPEDOT:PSS(ポリスチレンスルフォン酸ドープポリエチレンジオキシチオフェン)は、好ましい材料の一つである。PEDOT:PSSを、イソプロピルアルコール等のアルコール系溶媒に希釈し、スピンコート等で塗工し、加熱して乾燥することで正孔輸送層4を形成することができる。   Examples of the hole transport layer 4 include phthalocyanine, polyaniline, oligothiophene, benzidine derivatives, triphenylamine, pyrazoline derivatives, and triphenylene derivatives. The hole transport layer 4 can be formed using a vacuum deposition method, a spin coating method, a casting method, an LB method, a printing method, or the like. The thickness of the hole transport layer 4 is preferably 2 to 200 nm. As a material for the hole transport layer 4, water-soluble PEDOT: PSS (polystyrene sulfonic acid-doped polyethylene dioxythiophene) is one of preferable materials. The hole transport layer 4 can be formed by diluting PEDOT: PSS in an alcohol solvent such as isopropyl alcohol, applying the solution by spin coating, and drying by heating.

発光層5は、有機発光材料から形成するか、キャリア輸送性(正孔輸送性、電子輸送性、または両性輸送性)を示す有機材料(以下、ホスト材料と記載する)に少量の有機発光材料を添加した材料から形成することができる。発光層5に用いる有機発光材料の選択により、有機EL素子1の発光色を設定することができる。発光層5の厚みは、実用的な発光輝度を得るために、200nm以下が好ましい。   The light-emitting layer 5 is formed from an organic light-emitting material, or a small amount of organic light-emitting material in an organic material (hereinafter referred to as a host material) exhibiting carrier transport properties (hole transport property, electron transport property, or amphoteric transport property) It can form from the material which added. The light emission color of the organic EL element 1 can be set by selecting an organic light emitting material used for the light emitting layer 5. The thickness of the light emitting layer 5 is preferably 200 nm or less in order to obtain practical light emission luminance.

発光層5を有機発光材料から形成する場合、有機発光材料としては、成膜性に優れ、膜の安定性に優れた材料が用いられる。このような有機発光材料としては、Alq3 (トリス−(8−ヒドロキシキノリナト)アルミニウム)に代表される金属錯体、ポリフェニレンビニレン(PPV)誘導体、ポリフルオレン誘導体などが用いられる。ホスト材料と共に用いる有機発光材料としては、添加量が少ないために、前記の有機発光材料の他に、単独では安定な薄膜を形成し難い蛍光色素なども用いることができる。蛍光色素の例としては、クマリン、DCM誘導体、キナクリドン、ペリレン、およびルブレンなどが挙げられる。ホスト材料の例としては、前記のAlq3 、TPD(トリフェニルジアミン)、電子輸送性のオキサジアゾール誘導体(PBD)、ポリカーボネート系共重合体、およびポリビニルカルバゾールなどが挙げられる。なお、上記のように発光層5を有機発光材料から形成する場合にも、発光色を調節するために、蛍光色素などの有機発光材料を少量添加することもできる。 When the light emitting layer 5 is formed from an organic light emitting material, a material having excellent film forming properties and excellent film stability is used as the organic light emitting material. As such an organic light-emitting material, a metal complex represented by Alq 3 (tris- (8-hydroxyquinolinato) aluminum), a polyphenylene vinylene (PPV) derivative, a polyfluorene derivative, or the like is used. As the organic light-emitting material used together with the host material, since the addition amount is small, in addition to the organic light-emitting material, a fluorescent dye that is difficult to form a stable thin film by itself can be used. Examples of fluorescent dyes include coumarin, DCM derivatives, quinacridone, perylene, and rubrene. Examples of the host material include Alq 3 , TPD (triphenyldiamine), an electron transporting oxadiazole derivative (PBD), a polycarbonate-based copolymer, and polyvinyl carbazole. Even when the light emitting layer 5 is formed of an organic light emitting material as described above, a small amount of an organic light emitting material such as a fluorescent dye can be added in order to adjust the light emission color.

パターン状絶縁層6は、電極から発光層へのキャリア注入を阻止することが可能な絶縁性を有する材料が用いられ、例えば、エポキシ樹脂とポリアミドからなる熱硬化性樹脂接着剤、柔軟化成分として熱可塑性樹脂を含んだ熱硬化性樹脂接着剤等を用いることができる。パターン状絶縁層6の厚みは、10nm〜2μmに形成され、好ましくは100nm〜500nmである。パターン状絶縁層6の厚みが10nm未満では密着性が低下する虞があり、2μmを超えると段差が大きくなり密着(発光)面積が小さくなる虞がある。   The patterned insulating layer 6 is made of an insulating material capable of preventing carrier injection from the electrode to the light emitting layer. For example, a thermosetting resin adhesive made of epoxy resin and polyamide, as a softening component A thermosetting resin adhesive containing a thermoplastic resin can be used. The thickness of the patterned insulating layer 6 is 10 nm to 2 μm, preferably 100 nm to 500 nm. If the thickness of the patterned insulating layer 6 is less than 10 nm, the adhesion may be reduced. If the thickness exceeds 2 μm, the step becomes large and the adhesion (light emission) area may be reduced.

陰極7は、仕事関数の小さい(4eV以下)金属、合金組成物、導電性化合物、又はこれらの混合物等から形成される。陰極の材料としては、Al、Ti、In、Na、K、Mg、Li、Cs、Rb及び希土類金属等の金属、Na−K合金、Mg−Ag合金、Mg−Cu合金、およびAl−Li合金等の合金組成物が挙げられる。陰極の厚みは、通常、1μm以下であり、200nm以下が好ましい。また陰極7の抵抗は、数百Ω/sq.以下が好ましい。陰極7は真空蒸着法等により形成することができる。   The cathode 7 is formed from a metal having a low work function (4 eV or less), an alloy composition, a conductive compound, or a mixture thereof. Cathode materials include metals such as Al, Ti, In, Na, K, Mg, Li, Cs, Rb, and rare earth metals, Na—K alloys, Mg—Ag alloys, Mg—Cu alloys, and Al—Li alloys. And alloy compositions such as The thickness of the cathode is usually 1 μm or less, preferably 200 nm or less. The resistance of the cathode 7 is several hundred Ω / sq. The following is preferred. The cathode 7 can be formed by a vacuum evaporation method or the like.

本発明の有機EL素子1は、陽極3と陰極7との間に、有機物層13として少なくとも発光層5が形成されていればよいが、発光素子の発光特性等を改良するために、発光層5以外に、上記の正孔輸送層4、或いはその他の層として、電子輸送層、正孔注入層、電子注入層等の層を所定の位置に設けて、有機物層13を構成することができる。   In the organic EL device 1 of the present invention, it is sufficient that at least the light emitting layer 5 is formed as the organic layer 13 between the anode 3 and the cathode 7. In order to improve the light emitting characteristics of the light emitting device, the light emitting layer In addition to 5, the organic material layer 13 can be configured by providing layers such as an electron transport layer, a hole injection layer, and an electron injection layer at predetermined positions as the hole transport layer 4 or other layers. .

以下、図1に示す有機EL素子の製造方法について説明する。図4は図1の有機EL素子の貼り合わせ工程の一例を示す断面図である。有機EL素子1の製造方法は、まず樹脂フィルムからなる陽極基材2に陽極3及び発光層5を含む有機物層が設けられている陽極基板11(第1の基板)と、樹脂フィルムからなる陰極基材8に、陰極7が設けられている陰極基板12(第2の基板)とを準備する。次に陽極基板11にパターン状絶縁層6を転写により形成する。そして、陽極基板11と陰極基板12とを、陽極3及び陰極7が対向するように貼り合わせて有機EL素子1とする。   Hereinafter, the manufacturing method of the organic EL element shown in FIG. 1 will be described. FIG. 4 is a cross-sectional view showing an example of a bonding process of the organic EL element of FIG. The organic EL element 1 is manufactured by firstly forming an anode substrate 11 (first substrate) in which an anode substrate 2 made of a resin film is provided with an organic material layer including an anode 3 and a light emitting layer 5, and a cathode made of a resin film. A cathode substrate 12 (second substrate) provided with a cathode 7 is prepared on a base material 8. Next, the patterned insulating layer 6 is formed on the anode substrate 11 by transfer. Then, the anode substrate 11 and the cathode substrate 12 are bonded together so that the anode 3 and the cathode 7 face each other to form the organic EL element 1.

パターン状絶縁層6は、陽極基板11に転写により形成される。パターン状絶縁層6は、陽極基板11の発光層5を含む有機物層13の表面に形成されている。ここではパターン状絶縁層6を形成するのに、予め非発光部10のパターンに形成されたパターン状絶縁層6を有する絶縁層転写フィルム20〔図5(d)参照〕を用いて、パターン状絶縁層6を転写して形成している。絶縁層転写フィルム20を用いることで、確実にパターン状絶縁層6を形成することができる。以下、絶縁層転写フィルムを用いてパターン状絶縁層を転写形成する方法について説明する。   The patterned insulating layer 6 is formed on the anode substrate 11 by transfer. The patterned insulating layer 6 is formed on the surface of the organic layer 13 including the light emitting layer 5 of the anode substrate 11. Here, in order to form the patterned insulating layer 6, the insulating layer transfer film 20 (see FIG. 5D) having the patterned insulating layer 6 formed in advance in the pattern of the non-light emitting portion 10 is used to form the patterned insulating layer 6. The insulating layer 6 is formed by transferring. By using the insulating layer transfer film 20, the patterned insulating layer 6 can be reliably formed. Hereinafter, a method for transferring and forming a patterned insulating layer using an insulating layer transfer film will be described.

図5(a)〜(d)は絶縁層転写フィルムの製造方法を示し、各工程の断面図である。絶縁層転写フィルム20を製造するには、まず同図(a)に示すように、転写層に対して離型性を有する転写基材21を準備する。次いで、転写基材21の表面に、パターン状絶縁層6の材料から成る転写層組成物をグラビア印刷等でベタ一面に塗工し、乾燥させ、転写層22を形成する〔同図(b)〕。次に転写層22の表面に、転写基材21よりも転写層22に対する離型性の高い剥離シート23を積層する〔同図(c)〕。この積層体を、トムソン金型等で発光部9の形状に対応する部分を打ち抜いて除去し、パターニングする。このときの打ち抜き方法としては、上記トムソン金型を用いる方法以外に、ダイスによるパンチングで打ち抜く方法や、より複雑な打ち抜きが可能な上型と下型に打抜刃が付いている雄雌金型を用いる方法等が挙げられる。パターン状絶縁層6を形成するのに、発光部の形状を打ち抜いて除去する方法は、パターン形成手段として、きわめて単純な作業で良く、パターン形成が容易である。またパターン状絶縁層6は、転写用フィルムにグラビア印刷等であらかじめパターニングしてもよい。   5A to 5D show a method for producing an insulating layer transfer film, and are cross-sectional views of each step. In order to manufacture the insulating layer transfer film 20, first, as shown in FIG. 1A, a transfer base material 21 having releasability with respect to the transfer layer is prepared. Next, a transfer layer composition made of the material of the patterned insulating layer 6 is applied to the entire surface of the transfer base material 21 by gravure printing or the like, and dried to form the transfer layer 22 [FIG. ]. Next, on the surface of the transfer layer 22, a release sheet 23 having a higher releasability with respect to the transfer layer 22 than the transfer base material 21 is laminated [FIG. The laminated body is removed by punching and removing a portion corresponding to the shape of the light emitting portion 9 with a Thomson mold or the like. As a punching method at this time, in addition to the method using the above-mentioned Thomson die, a method of punching with a die, a male and female die having a punching blade on the upper die and the lower die capable of more complicated punching And the like. A method of punching and removing the shape of the light emitting portion to form the patterned insulating layer 6 may be an extremely simple operation as pattern forming means, and pattern formation is easy. The patterned insulating layer 6 may be previously patterned on the transfer film by gravure printing or the like.

打ち抜き後の積層体は、同図(d)に示すように、転写基材21、転写層22及び剥離シート23が、非発光部10のパターンに形成され、転写層22がパターン状絶縁層6の形状に形成された絶縁層転写フィルム20が得られる。   As shown in FIG. 4D, the laminated body after punching is formed with the transfer base material 21, the transfer layer 22, and the release sheet 23 in the pattern of the non-light emitting portion 10, and the transfer layer 22 is the patterned insulating layer 6. The insulating layer transfer film 20 formed in the shape is obtained.

転写基材21及び剥離シート23は、転写層22に対する離型性を有する樹脂フィルムが用いられる。樹脂フィルムは、例えば、厚みが3〜1000μm程度の、ポリエチレテレフタレートフィルム等のポリエステルフィルムを用いることができる。樹脂フィルムの表面には、転写層に対する離型性を調節するために、適宜、離型処理を施すことができる。   As the transfer base material 21 and the release sheet 23, a resin film having releasability with respect to the transfer layer 22 is used. For example, a polyester film such as a polyethylene terephthalate film having a thickness of about 3 to 1000 μm can be used as the resin film. The surface of the resin film can be appropriately subjected to a release treatment in order to adjust the release property with respect to the transfer layer.

このようにパターン状絶縁層6を転写フィルム20に形成することで以下の利点がある。従来、陰極の表面に絶縁層をパターニングする場合には、陰極は電子注入性の良い活性材料が使用されることが多いため、真空下で陰極層形成の際にパターニングを行う必要がある。しかし、このように真空中でパターニングを行おうとすると、製造方法がマスク法等に限定されてしまう。これに対し転写基材にパターン状絶縁層を形成する場合は、真空下で形成する必要がなく、パターン状絶縁層の形成は、大気圧で行うことができるので、パターニングを容易に行うことができる。   The formation of the patterned insulating layer 6 on the transfer film 20 as described above has the following advantages. Conventionally, when an insulating layer is patterned on the surface of the cathode, an active material having a good electron-injecting property is often used for the cathode. Therefore, it is necessary to perform patterning when forming the cathode layer under vacuum. However, when patterning is performed in a vacuum in this way, the manufacturing method is limited to the mask method or the like. On the other hand, when the patterned insulating layer is formed on the transfer substrate, it is not necessary to form it under vacuum, and since the patterned insulating layer can be formed at atmospheric pressure, patterning can be easily performed. it can.

図6(a)〜(c)は、陽極基板の形成方法を示す各工程の要部断面図である。以下、陽極基板11の形成方法について説明する。先ず同図(a)に示すように、陽極を形成するための樹脂フィルム等からなる陽極基材2を準備する。そして、陽極基材2の表面に、陽極3を形成し、該陽極3の表面に正孔輸送層4及び発光層5等の有機物層を形成する。このとき陽極3、正孔輸送層4及び発光層5の各層は、ベタ一面に形成する。   FIGS. 6A to 6C are cross-sectional views of a main part of each step showing a method for forming an anode substrate. Hereinafter, a method for forming the anode substrate 11 will be described. First, as shown in FIG. 1A, an anode substrate 2 made of a resin film or the like for forming an anode is prepared. Then, the anode 3 is formed on the surface of the anode substrate 2, and organic layers such as the hole transport layer 4 and the light emitting layer 5 are formed on the surface of the anode 3. At this time, each layer of the anode 3, the hole transport layer 4 and the light emitting layer 5 is formed over the entire surface.

次に、絶縁層形成工程では、絶縁層転写フィルム20を用いて、陽極基板の発光層5の表面にパターン状絶縁層6を転写形成する。絶縁層形成工程は、図6(b)に示すように、絶縁層転写フィルム20[図5(d)参照]の剥離シート23を剥離して、上記陽極基板11の発光層5の表面に、転写層22と発光層5が接するように積層する。そして、同図(c)に示すように転写基材21を剥離して、転写層22を転写することで、図4に示すようにパターン状絶縁層6が表面に形成された陽極基板11が得られる。   Next, in the insulating layer forming step, the patterned insulating layer 6 is transferred and formed on the surface of the light emitting layer 5 of the anode substrate using the insulating layer transfer film 20. In the insulating layer forming step, as shown in FIG. 6B, the release sheet 23 of the insulating layer transfer film 20 [see FIG. 5D] is peeled off, and the surface of the light emitting layer 5 of the anode substrate 11 is peeled off. The transfer layer 22 and the light emitting layer 5 are laminated so as to be in contact with each other. Then, as shown in FIG. 4C, the transfer substrate 21 is peeled off and the transfer layer 22 is transferred, so that the anode substrate 11 having the patterned insulating layer 6 formed on the surface thereof as shown in FIG. can get.

図7は陽極基板と陰極基板を重ねて加熱ロールで加熱・加圧する状態を示す説明図である。以下、貼り合わせ工程を説明する。図7に示すように陽極基板と11と陰極基板12を、パターン状絶縁層6と陰極7が接するように重ね合わせて積層体とする。この積層体を、一対の加熱ローラー31、32を通過させ、積層体を加熱・加圧する。積層体はパターン絶縁層6を構成している熱硬化性接着剤が加熱により軟化し、加圧により発光層に密着して、陽極基板11と陰極基板12とが接合一体化して有機EL素子1が得られる。貼り合わせ工程における陽極基板と陰極基板の加熱・加圧方法としては、上記の一対のローラーを用いる方法に限定されず、例えば一対以上の加熱ローラーを用いる方法、一対以上の熱盤を用いる方法、加熱ローラーと熱盤を組み合わせる方法等を用いることができる。   FIG. 7 is an explanatory view showing a state in which an anode substrate and a cathode substrate are stacked and heated and pressurized with a heating roll. Hereinafter, the bonding process will be described. As shown in FIG. 7, the anode substrate 11, the cathode substrate 12, and the patterned insulating layer 6 and the cathode 7 are overlapped to form a laminated body. The laminate is passed through a pair of heating rollers 31, 32, and the laminate is heated and pressurized. In the laminated body, the thermosetting adhesive constituting the pattern insulating layer 6 is softened by heating, and is closely attached to the light emitting layer by pressurization, whereby the anode substrate 11 and the cathode substrate 12 are joined and integrated to form the organic EL element 1. Is obtained. The heating / pressing method of the anode substrate and the cathode substrate in the bonding step is not limited to the method using the pair of rollers described above, for example, a method using a pair of heating rollers, a method using a pair of heating plates, A method of combining a heating roller and a heating plate can be used.

尚、図面では、図中上下方向となる縦方向(厚さ方向)を図中左右方向となる横方向に対して1000倍以上に拡大したスケールで示している。そのため、加圧前の陽極基板11と陰極基板12の積層体は、パターン状絶縁層6の打ち抜き部分(発光部9に該当する部分)が、空隙として形成されているように見えるが、発光層5と陰極7との間隔は僅かであり、陽極基板11と陰極基板12の積層体を加熱・加圧すると、発光層5と陰極7は直ぐに密着する。   In the drawings, the vertical direction (thickness direction) which is the vertical direction in the figure is shown by a scale enlarged 1000 times or more with respect to the horizontal direction which is the horizontal direction in the figure. For this reason, in the laminate of the anode substrate 11 and the cathode substrate 12 before pressurization, the punched portion of the patterned insulating layer 6 (the portion corresponding to the light emitting portion 9) appears to be formed as a gap, but the light emitting layer The distance between 5 and the cathode 7 is small, and when the laminate of the anode substrate 11 and the cathode substrate 12 is heated and pressurized, the light emitting layer 5 and the cathode 7 are immediately adhered.

上記の有機EL素子の製造方法の説明は、絶縁層形成工程で陽極基板側にパターン状絶縁層を設けた場合について述べたが、本発明の有機EL素子の製造方法は、絶縁層形成工程において、陰極基板12側にパターン状絶縁層6を形成しても良い。図8は図1の有機EL素子の製造方法の他の例を示し、陰極基板側にパターン状絶縁層を設ける場合の例を示す工程図であり、図9は図8の製造方法の貼り合わせ工程を示す断面図である。   In the above description of the method for manufacturing an organic EL element, the case where a patterned insulating layer is provided on the anode substrate side in the insulating layer forming step has been described. The patterned insulating layer 6 may be formed on the cathode substrate 12 side. FIG. 8 shows another example of the method for manufacturing the organic EL element of FIG. 1, and is a process diagram showing an example in the case where a patterned insulating layer is provided on the cathode substrate side. FIG. 9 shows the bonding of the manufacturing method of FIG. It is sectional drawing which shows a process.

陰極基板12側にパターン状絶縁層6を設ける場合、先ず図8(a)に示すように陰極基材8の表面に、陰極7を形成する〔同図(b)参照〕。そして、絶縁層転写フィルム20を用いて、上記図6(c)の場合と同様に、陰極7の表面にパターン状絶縁層6を転写する。同図(c)に示すように、陰極7の表面にパターン状絶縁層6が形成された陰極基板12が得られる。   When the patterned insulating layer 6 is provided on the cathode substrate 12 side, first, the cathode 7 is formed on the surface of the cathode base 8 as shown in FIG. 8A (see FIG. 8B). Then, using the insulating layer transfer film 20, the patterned insulating layer 6 is transferred to the surface of the cathode 7 as in the case of FIG. As shown in FIG. 2C, the cathode substrate 12 having the patterned insulating layer 6 formed on the surface of the cathode 7 is obtained.

次いで貼り合わせ工程では、図9に示すように、陽極基材2の表面に、陽極3、正孔輸送層4、発光層5を順次ベタ一面に形成した陽極基板11を準備する。そして陽極基板11と上記のパターン状絶縁層6が形成された陰極基板12を、発光層5とパターン状絶縁層6が接するように重ね合わせて積層体とする。そして上記図7と同様に、陽極基板11と陰極基板12の積層体を加熱ロール31、32の間を通過させて加熱・加圧して、発光層5とパターン状絶縁層6を接合して、図2に示す有機EL素子1が得られる。   Next, in the bonding step, as shown in FIG. 9, an anode substrate 11 is prepared in which the anode 3, the hole transport layer 4, and the light emitting layer 5 are sequentially formed on the surface of the anode base 2. Then, the anode substrate 11 and the cathode substrate 12 on which the patterned insulating layer 6 is formed are stacked so that the light emitting layer 5 and the patterned insulating layer 6 are in contact with each other to form a laminated body. Then, similarly to FIG. 7, the laminated body of the anode substrate 11 and the cathode substrate 12 is heated and pressurized by passing between the heating rolls 31 and 32, and the light emitting layer 5 and the patterned insulating layer 6 are joined. The organic EL element 1 shown in FIG. 2 is obtained.

また上記の有機EL素子の製造方法は、陽極側に発光層を含む有機物層を形成した陽極基板を用いる方法について説明したが、本発明の有機EL素子の製造方法は、陰極側に発光層を含む有機物層を形成した陰極基板(第1の基板)と、有機物層を形成せず陽極のみが形成された陽極基板(第2の基板)とを準備して、上記陰極基板又は上記陽極基板のいずれか一方の基板にパターン状絶縁層を転写により設け、上記陰極基板と上記陽極基板とを貼り合わせて有機EL素子を製造してもよい。   Moreover, although the manufacturing method of said organic EL element demonstrated the method of using the anode substrate which formed the organic substance layer containing the light emitting layer on the anode side, the manufacturing method of the organic EL element of this invention has a light emitting layer on the cathode side. A cathode substrate (first substrate) on which an organic material layer is formed and an anode substrate (second substrate) on which only an anode is formed without forming an organic material layer are prepared, and the cathode substrate or the anode substrate is prepared. A patterned insulating layer may be provided on one of the substrates by transfer, and the cathode substrate and the anode substrate may be bonded to produce an organic EL element.

以下、本発明の実施例を示す。
実施例1
(1−1)絶縁層転写フィルムの作製
転写基材として離型処理したポリエチレンテレフタレート(PET)フィルムの表面に、転写層形成用塗工液(ポリアミド系樹脂とエポキシ樹脂をトルエン、メタノールで希釈したもの)をグラビア印刷した後、0.1MPa、80℃、5分間、真空乾燥し、厚み250nmの転写層をベタ一面に形成した。更に上記転写層の表面に、剥離シートとして上記転写基材のPETフィルムよりも転写層に対する離型性が高いPETフィルムを積層して、転写基材/転写層/剥離フィルムからなる積層体を形成した。この積層体をトムソン金型でT字状の発光部に対応する部分を打ち抜いて、転写層が非発光部のパターン状に形成された絶縁層転写フィルムとした。
Examples of the present invention will be described below.
Example 1
(1-1) Production of Insulating Layer Transfer Film On the surface of a polyethylene terephthalate (PET) film subjected to release treatment as a transfer substrate, a transfer layer forming coating solution (polyamide resin and epoxy resin diluted with toluene and methanol) The product was subjected to gravure printing and then vacuum-dried at 0.1 MPa and 80 ° C. for 5 minutes to form a transfer layer having a thickness of 250 nm on the entire surface. Further, a laminate of transfer substrate / transfer layer / release film is formed on the surface of the transfer layer by laminating a PET film having a higher release property to the transfer layer than the PET film of the transfer substrate as a release sheet. did. This laminated body was punched out with a Thomson die at a portion corresponding to the T-shaped light emitting portion to obtain an insulating layer transfer film in which a transfer layer was formed in a pattern of a non-light emitting portion.

(1−2)陽極基板の作製
基材フィルムとして厚み200μmのポリエチレンナフタレート(PEN)フィルムの両面に、バリア層としてSiO、SiNを成膜し、更に片面に陽極としてインジウム錫酸化物(ITO)を150nmの厚みに成膜して陽極基板とした。
(1-2) Production of Anode Substrate As a base film, a polyethylene naphthalate (PEN) film having a thickness of 200 μm is formed on both sides with SiO 2 and SiN as barrier layers, and on one side with indium tin oxide (ITO as an anode) ) To a thickness of 150 nm to form an anode substrate.

(1−3)洗浄
上記陽極基板を純水、有機アルカリ洗浄液(フルウチ化学社製:セミコクリーン)、純水、アセトン溶液の順に各5分間、超音波洗浄を行った。その後、UVオゾン洗浄器で30分間処理した。
(1-3) Cleaning The anode substrate was subjected to ultrasonic cleaning for 5 minutes each in the order of pure water, organic alkali cleaning liquid (Furuuchi Chemical Co., Ltd .: Semico Clean), pure water, and acetone solution. Then, it processed for 30 minutes with the UV ozone cleaner.

(1−4)正孔輸送層の形成
上記の洗浄した陽極基板の陽極の表面に、正孔輸送層形成用の塗布液〔PEDOT:PSS水溶液(スタルク社製)をIPAで希釈したもの〕をスピンコートにより回転数2000rpm×60秒の条件で塗工し、120℃のオーブンで30分間乾燥し、厚み100nmの正孔輸送層を形成した。
(1-4) Formation of hole transport layer On the surface of the anode of the cleaned anode substrate, a coating liquid for forming a hole transport layer [PEDOT: PSS aqueous solution (manufactured by Starck) diluted with IPA] The coating was carried out by spin coating under the condition of a rotational speed of 2000 rpm × 60 seconds and dried in an oven at 120 ° C. for 30 minutes to form a hole transport layer having a thickness of 100 nm.

(1−5)発光層の形成
上記陽極基板の正孔輸送層の表面に、発光層材料としてポリフルオレン系発光材料(ガラス転移温度:116℃、DSC法)を厚み80nmになるようにスピンコート法で塗布し、乾燥させ、発光層をベタ一面に形成した。
(1-5) Formation of Light-Emitting Layer The surface of the hole transport layer of the anode substrate is spin-coated with a polyfluorene-based light-emitting material (glass transition temperature: 116 ° C., DSC method) as the light-emitting layer material to a thickness of 80 nm. It was applied by the method and dried to form a light emitting layer on the entire surface.

(1−6)絶縁層の形成
上記絶縁層転写フィルムの剥離フィルムを剥がして、上記発光層を設けた陽極基板の表面に、転写層が発光層と接するように積層した後、転写基材を剥離して、陽極基板の発光層の表面にパターン状絶縁層を設けた。
(1-6) Formation of Insulating Layer After peeling off the release film of the insulating layer transfer film and laminating the surface of the anode substrate provided with the light emitting layer so that the transfer layer is in contact with the light emitting layer, the transfer base material is After peeling, a patterned insulating layer was provided on the surface of the light emitting layer of the anode substrate.

(1−7)陰極基板の作製
基材フィルムとして厚み100μmのPENフィルムの両面に、バリア層としてSiO、SiNを成膜し、更に片面に陰極としてMg−Agを真空成膜装置で200nmの厚みに成膜して陰極基板とした。
(1-7) Production of Cathode Substrate SiO 2 and SiN are formed as barrier layers on both sides of a 100 μm thick PEN film as a base film, and Mg—Ag is used as a cathode on one side with a vacuum film forming apparatus of 200 nm. A film was formed to a thickness to obtain a cathode substrate.

(1−8)有機EL素子の作製
上記のパターン状絶縁層を設けた陽極基板と、陰極を設けた陰極基板とを、パターン状絶縁層と陰極とが接するように重ね合わせ、温度が140℃に設定された2本の加熱ロールの間を通過させ、ロール圧力が2MPaとなるように重ね合わせた陽極基板と陰極基板とを加圧して、発光層と絶縁層を軟化させることで、両者を接合して実施例1の有機EL素子を得た。
(1-8) Production of Organic EL Element The anode substrate provided with the above patterned insulating layer and the cathode substrate provided with the cathode are overlapped so that the patterned insulating layer and the cathode are in contact with each other, and the temperature is 140 ° C. By passing between the two heating rolls set to, and pressurizing the anode substrate and the cathode substrate so that the roll pressure is 2 MPa, the light emitting layer and the insulating layer are softened, The organic EL element of Example 1 was obtained by bonding.

実施例2
(2−1)絶縁層転写フィルムの作製
実施例1の(1−1)の絶縁層転写フィルムを用いた。
(2−2)陽極基板の作製
実施例1の(1−2)の陽極基板を用いた。
(2−3)洗浄
実施例1の(1−3)と同様に陽極基板の洗浄を行った
(2−4)正孔輸送層の形成
実施例1の(1−4)と同様に陽極基板に正孔輸送層を形成した。
(2−5)発光層の形成
実施例1の(1−5)と同様に陽極基板に発光層を形成した。
(2−6)陰極基板の作製
実施例1の(1−7)と同様に陰極基板を形成した。
(2−7)絶縁層の形成
上記絶縁層転写フィルムの剥離フィルムを剥がして、上記(2−6)の陰極基板の表面に、転写層が電極と接するように積層した後、転写基材を剥離して、陰極基板の陰極表面にパターン状絶縁層を設けた。
(2−8)有機EL素子の作製
上記(2−5)の発光層を設けた陽極基板と、上記(2−7)のパターン状絶縁層を設けた陰極基板とを、発光層とパターン状絶縁層とが接するように重ね合わせ、温度が140℃に設定された2本の加熱ロールの間を通過させ、ロール圧力が2MPaとなるように重ね合わせた陽極基板と陰極基板とを加圧して、発光層と絶縁層を軟化させることで、両者を接合して実施例2の有機EL素子を得た。
Example 2
(2-1) Production of Insulating Layer Transfer Film The insulating layer transfer film of (1-1) of Example 1 was used.
(2-2) Production of anode substrate The anode substrate of (1-2) of Example 1 was used.
(2-3) Cleaning The anode substrate was cleaned in the same manner as (1-3) in Example 1. (2-4) Formation of hole transport layer Anode substrate in the same manner as (1-4) in Example 1. A hole transport layer was formed on the substrate.
(2-5) Formation of light emitting layer The light emitting layer was formed in the anode board | substrate similarly to (1-5) of Example 1. FIG.
(2-6) Production of Cathode Substrate A cathode substrate was formed in the same manner as in Example 1 (1-7).
(2-7) Formation of insulating layer The release film of the insulating layer transfer film is peeled off and laminated on the surface of the cathode substrate of (2-6) so that the transfer layer is in contact with the electrode. After peeling, a patterned insulating layer was provided on the cathode surface of the cathode substrate.
(2-8) Fabrication of organic EL element A light emitting layer and a pattern-like structure comprising an anode substrate provided with the light-emitting layer of (2-5) and a cathode substrate provided with the patterned insulating layer of (2-7). The stacked anode plates and cathode substrates are stacked so as to be in contact with the insulating layer, passed between two heating rolls set at a temperature of 140 ° C., and pressed so that the roll pressure is 2 MPa. The organic EL element of Example 2 was obtained by softening the light emitting layer and the insulating layer to join them together.

本発明の製造方法により製造される有機EL素子の一例を示す外観斜視図である。It is an external appearance perspective view which shows an example of the organic EL element manufactured by the manufacturing method of this invention. 図1のB−B断面図である。It is BB sectional drawing of FIG. 図1の有機EL素子の絶縁層を示す斜視図である。It is a perspective view which shows the insulating layer of the organic EL element of FIG. 図1の有機EL素子の製造方法の一例の貼り合わせ工程を示す断面図である。It is sectional drawing which shows the bonding process of an example of the manufacturing method of the organic EL element of FIG. (a)〜(d)は絶縁層転写フィルムの製造方法を示し、各工程の断面図である。(A)-(d) shows the manufacturing method of an insulating layer transfer film, and is sectional drawing of each process. (a)〜(c)は、陽極基板にパターン状絶縁層を転写により形成する方法を示す、各工程の断面図である。(A)-(c) is sectional drawing of each process which shows the method of forming a pattern-like insulating layer in an anode substrate by transcription | transfer. 陽極基板と陰極基板重ねて加熱ロールで加熱・加圧する状態を示す説明図である。It is explanatory drawing which shows the state which heats and pressurizes an anode substrate and a cathode substrate on a heating roll. 図1の有機EL素子の製造方法の他の例を示し、陰極基板側にパターン状絶縁層を設ける場合の例を示す工程図である。It is process drawing which shows the other example of the manufacturing method of the organic EL element of FIG. 1, and shows the example in the case of providing a patterned insulating layer in the cathode substrate side. 図8の製造方法の貼り合わせ工程を示す断面図である。It is sectional drawing which shows the bonding process of the manufacturing method of FIG.

符号の説明Explanation of symbols

1 有機エレクトロルミネッセンス(EL)素子
2 陽極基材
3 陽極
4 正孔輸送層
5 発光層
6 パターン状絶縁層
7 陰極
8 陰極基材
9 発光部
10 非発光部
11 陽極基板
12 陰極基板
13 有機物層
20 絶縁層転写フィルム
21 転写基材
22 転写層
23 剥離シート
31、32 加熱ロール
DESCRIPTION OF SYMBOLS 1 Organic electroluminescent (EL) element 2 Anode base material 3 Anode 4 Hole transport layer 5 Light emitting layer 6 Patterned insulating layer 7 Cathode 8 Cathode base material 9 Light emitting part 10 Non-light emitting part 11 Anode substrate 12 Cathode substrate 13 Organic substance layer 20 Insulating layer transfer film 21 Transfer base material 22 Transfer layer 23 Release sheets 31, 32 Heating roll

Claims (5)

陰極と陽極との間に少なくとも発光層を含む有機物層と非発光部の形状に形成されたパターン状絶縁層とが挟持されるように、陽極が形成された陽極基板と陰極が形成された陰極基板とを貼り合わせることで、前記発光層が非発光部を除く所定の発光パターンに発光する有機エレクトロルミネッセンス素子を製造する方法であって、前記有機物層と一方の電極が形成されている第1の基板と、他方の電極が形成されている第2の基板を準備して、前記第1の基板又は前記第2の基板に前記パターン状絶縁層を転写により設ける絶縁層形成工程と、前記第1の基板と前記第2の基板とを貼り合わせる貼り合わせ工程とを備えることを特徴とする有機エレクトロルミネッセンス素子の製造方法。   An anode substrate on which an anode is formed and a cathode on which a cathode is formed so that an organic layer including at least a light emitting layer and a patterned insulating layer formed in the shape of a non-light emitting portion are sandwiched between the cathode and the anode A method of manufacturing an organic electroluminescent element in which a light emitting layer emits light in a predetermined light emitting pattern excluding a non-light emitting portion by bonding to a substrate, wherein the organic material layer and one electrode are formed. And a second substrate on which the other electrode is formed, and an insulating layer forming step of providing the patterned insulating layer on the first substrate or the second substrate by transfer, A method for manufacturing an organic electroluminescence element, comprising: a bonding step of bonding one substrate and the second substrate. 前記絶縁層形成工程が、陽極及び有機物層が形成された陽極基板に前記パターン状絶縁層を設けることを特徴とする請求項1記載の有機エレクトロルミネッセンス素子の製造方法。   2. The method of manufacturing an organic electroluminescence element according to claim 1, wherein the insulating layer forming step provides the patterned insulating layer on an anode substrate on which an anode and an organic material layer are formed. 前記絶縁層形成工程が、陰極が形成された陰極基板に前記パターン状絶縁層を設けることを特徴とする請求項1記載の有機エレクトロルミネッセンス素子の製造方法。   2. The method of manufacturing an organic electroluminescence element according to claim 1, wherein the insulating layer forming step provides the patterned insulating layer on a cathode substrate on which a cathode is formed. 前記絶縁層形成工程が、転写基材に前記パターン状絶縁層が転写層として設けられた絶縁層転写フィルムを用いて、パターン状絶縁層を転写するものであることを特徴とする請求項1〜3のいずれか1に記載の有機エレクトロルミネッセンス素子の製造方法。   The insulating layer forming step transfers the patterned insulating layer using an insulating layer transfer film in which the patterned insulating layer is provided as a transfer layer on a transfer substrate. 4. The method for producing an organic electroluminescent element according to any one of 3 above. 前記絶縁層転写フィルムが、発光部の形状を打ち抜いて除去することにより、パターン状絶縁層が所定の非発光部の形状に形成されたものであることを特徴とする請求項4に記載の有機エレクトロルミネッセンッス素子の製造方法。   5. The organic material according to claim 4, wherein the insulating layer transfer film is formed by punching and removing the shape of the light emitting portion to form the patterned insulating layer in the shape of a predetermined non-light emitting portion. A method for manufacturing an electroluminescent element.
JP2008072943A 2008-03-21 2008-03-21 Method for manufacturing organic electroluminescence device Expired - Fee Related JP5002502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008072943A JP5002502B2 (en) 2008-03-21 2008-03-21 Method for manufacturing organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008072943A JP5002502B2 (en) 2008-03-21 2008-03-21 Method for manufacturing organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2009230955A true JP2009230955A (en) 2009-10-08
JP5002502B2 JP5002502B2 (en) 2012-08-15

Family

ID=41246136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008072943A Expired - Fee Related JP5002502B2 (en) 2008-03-21 2008-03-21 Method for manufacturing organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP5002502B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8461592B2 (en) 2010-02-03 2013-06-11 Samsung Display Co., Ltd. Organic light emitting display device
CN113707769A (en) * 2021-08-24 2021-11-26 福州大学 High-precision patterned LED leakage current blocking layer based on transfer printing insulation Langmuir single layer and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050481A (en) * 1996-07-31 1998-02-20 Pioneer Electron Corp Organic electroluminescent element
JP2001130141A (en) * 1999-10-29 2001-05-15 Three M Innovative Properties Co Donor sheet, color filter, organic el element and method for manufacturing them
JP2005166445A (en) * 2003-12-02 2005-06-23 Morio Taniguchi Manufacturing method of organic electroluminescent element
JP2006237521A (en) * 2005-02-28 2006-09-07 Seiko Epson Corp Manufacturing process of semiconductor device and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050481A (en) * 1996-07-31 1998-02-20 Pioneer Electron Corp Organic electroluminescent element
JP2001130141A (en) * 1999-10-29 2001-05-15 Three M Innovative Properties Co Donor sheet, color filter, organic el element and method for manufacturing them
JP2005166445A (en) * 2003-12-02 2005-06-23 Morio Taniguchi Manufacturing method of organic electroluminescent element
JP2006237521A (en) * 2005-02-28 2006-09-07 Seiko Epson Corp Manufacturing process of semiconductor device and electronic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8461592B2 (en) 2010-02-03 2013-06-11 Samsung Display Co., Ltd. Organic light emitting display device
CN113707769A (en) * 2021-08-24 2021-11-26 福州大学 High-precision patterned LED leakage current blocking layer based on transfer printing insulation Langmuir single layer and preparation method thereof
CN113707769B (en) * 2021-08-24 2023-10-17 福州大学 High-precision patterned LED leakage current blocking layer based on transfer printing insulating Langmuir monolayer and preparation method thereof

Also Published As

Publication number Publication date
JP5002502B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP4904063B2 (en) Method for manufacturing organic electroluminescent device
US6432741B1 (en) Organic opto-electronic devices and method for making the same
JPH11260549A (en) Manufacture of organic el display device
JP2007095343A (en) Method of manufacturing printed material, and printed material
JP2006236626A (en) Manufacturing method for flexible resin film with electrode layer
JP2008269964A (en) Method for manufacturing electroluminescent element
JP5072674B2 (en) Organic electroluminescence device
JP5002502B2 (en) Method for manufacturing organic electroluminescence device
JP4004254B2 (en) Manufacturing method of organic EL element
JP4922977B2 (en) Organic electroluminescence device
JP2010073678A (en) Organic electroluminescent element
JP2007242816A (en) Organic electroluminescent device and its manufacturing method
JP4265170B2 (en) Method for producing polymer EL element
JPWO2013179873A1 (en) ORGANIC ELECTROLUMINESCENT DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP2002270368A (en) Transfer film and manufacturing method of organic electroluminescence element using it
JP2010045337A (en) Light-emitting body
JP2008210615A (en) Manufacturing method of organic electroluminescent element, and organic electroluminescent element
JP2004247161A (en) Manufacturing method of organic electroluminescent element
JP7040006B2 (en) Manufacturing method of image display member and image display member
JP2009129567A (en) Method of manufacturing organic electroluminescent element and organic electroluminescent element
JP6781606B2 (en) Manufacturing method of organic EL element
JP2003347054A (en) Film for thin film transfer, its manufacturing method, and organic el element using same
JP4538948B2 (en) Method for manufacturing organic electroluminescence display element
JP6064619B2 (en) Method for manufacturing organic electroluminescence element
JP2011175889A (en) Organic semiconductor device, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees