JP2009228977A - Blasting construction method - Google Patents

Blasting construction method Download PDF

Info

Publication number
JP2009228977A
JP2009228977A JP2008074854A JP2008074854A JP2009228977A JP 2009228977 A JP2009228977 A JP 2009228977A JP 2008074854 A JP2008074854 A JP 2008074854A JP 2008074854 A JP2008074854 A JP 2008074854A JP 2009228977 A JP2009228977 A JP 2009228977A
Authority
JP
Japan
Prior art keywords
hole
blasting
charge
explosive
explosives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008074854A
Other languages
Japanese (ja)
Inventor
Mitsumasa Okamura
光政 岡村
Masashi Naito
将史 内藤
Junichi Tsukada
純一 塚田
Satoru Kimura
哲 木村
Koji Ishiyama
宏二 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Toda Corp
Original Assignee
Nishimatsu Construction Co Ltd
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd, Toda Corp filed Critical Nishimatsu Construction Co Ltd
Priority to JP2008074854A priority Critical patent/JP2009228977A/en
Publication of JP2009228977A publication Critical patent/JP2009228977A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the cost of an explosive by reducing the explosive amount while reducing excess excavation and preventing damage to peripheral rock masses by controlling the fragmented form of the rock masses by using a guide hole (air hole) without adopting a smooth blasting method in a blasting construction method of a cutting face outer most peripheral part, in particular. <P>SOLUTION: In the blasting construction method for excavating using explosives filled in charge holes formed in a tunnel cutting face, blasting at the outer most periphery of the cutting face 1 is performed by drilling the charge holes 2, 2, ... at prescribed intervals along the circumferential direction in a prescribed circumferential section, and drilling an air hole 3 in which charging is not performed in the middle between the charge holes 2, 2, installing the explosives in the charge holes 2, 2, ..., and performing the blasting. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、特に切羽最外周部分の発破工法に係り、詳しくはガイドホール(空孔)を活用した制御発破工法に関する。   The present invention particularly relates to a blasting method for the outermost peripheral portion of the face, and more particularly to a controlled blasting method utilizing a guide hole (hole).

従来より山岳トンネルの掘削に当たっては、爆薬を用いた発破工法が効率性及び経済性の点で最も優れていることから広く採用されている。発破工法では、発破効果を増大させるために、自由面の数を多くする程良好な結果が得られるが、トンネル内においては、切羽面が唯一の自由面を形成した状態にある。従って、一般的には、先ず芯抜き発破により自由面を形成させ、次に芯抜きによって形成された自由面に対して払い発破をかけ、順次周囲に拡大していく発破手順が採られる。そして最後に切羽最外周の近傍に残った岩石を斉発させるようにしている。   Conventionally, when excavating a mountain tunnel, a blasting method using explosives has been widely adopted because it is the most efficient and economical. In the blasting method, in order to increase the blasting effect, a better result can be obtained as the number of free surfaces is increased. However, the face surface is the only free surface in the tunnel. Therefore, generally, a blasting procedure is adopted in which a free surface is first formed by core blasting, and then the free surface formed by core blasting is paid and blasted and then sequentially expanded to the periphery. Finally, the rocks remaining in the vicinity of the outermost periphery of the face are fired together.

しかしながら、切羽最外周部を最後に斉発させる方法の場合は、掘削部分が多くなって余掘が多くなる、周辺岩盤の損傷が大きくなる、掘削面が粗く仕上げられるといった問題が発生していた。   However, in the case of the method in which the outermost peripheral part of the face is simultaneously fired, there are problems that the excavation part increases, the excessive excavation increases, the damage to the surrounding rock mass increases, and the excavated surface is finished rough. .

そこで、上記欠点を解消するために、従来よりスムースブラスティング工法(以下、SB工法ともいう。)が採用されている。この工法は、図3に示されるように、最外周孔に通常よりも密に配置した装薬孔5,5…を配置し、小孔径の爆薬(SB爆薬)を装填する弱装薬によって、発破孔内壁と爆薬包間に空間を設け、岩盤に作用する衝撃や圧力を緩和することにより、爆発による岩盤への圧縮破壊を抑制して引張破壊を主体に掘削するというものである。前記SB工法による装薬では、一般的には比較的比重が高く高感度の爆薬を15〜20mmの細い爆薬包径にして、デカップリング係数(発破孔径/爆薬包径)2以上で使用するようにしている。   Therefore, in order to eliminate the above drawbacks, a smooth blasting method (hereinafter also referred to as SB method) has been conventionally employed. As shown in FIG. 3, this construction method arranges the charge holes 5, 5... Arranged more densely than usual in the outermost peripheral hole, and uses a weak charge loaded with a small-bore explosive (SB explosive). A space is provided between the inner wall of the blast hole and the explosive envelope, and the impact and pressure acting on the rock mass are alleviated to suppress the compressive fracture of the rock mass due to the explosion and excavation mainly for tensile fracture. In the charge by the SB method, a high-explosive with a relatively high specific gravity is generally used with a small explosive envelope diameter of 15 to 20 mm and a decoupling factor (blasting hole diameter / explosive envelope diameter) of 2 or more. I have to.

また近年は、スムースブラスティング効果を確実に得るために、下記特許文献1に示されるように、SB孔の起爆に通常のDS雷管に代わって爆破秒時精度に優れる電子遅延式電気雷管(EDD雷管)が採用されることもある。
特開平6−323797号公報
In recent years, in order to reliably obtain a smooth blasting effect, an electronic delay type electric detonator (EDD) having excellent blast time accuracy in place of a normal DS detonator for detonation of an SB hole, as shown in Patent Document 1 below. Detonators) may be used.
JP-A-6-323797

前述したスムースブラスティング工法は、岩盤の破壊形態の制御と、損傷防止に必要な爆破エネルギーの抑制のために、爆速の調整された専用の小口径SB爆薬を使用する。従って、高価なSB爆薬を必要とすることで火薬費が増加する、爆破エネルギーを抑制するものの引張り破壊による亀裂方向制御が不安定であり、特に亀裂質の岩盤では壁面の平滑化に効果が上がらないなどの問題があった。この解決策として、爆破斉発性(爆破秒時のバラツキを抑制)を向上させるために、前記EDD雷管を使用する場合は、さらに雷管費用が増大するといった問題が生じていた。   The smooth blasting method described above uses a dedicated small-bore SB explosive with an adjusted blast speed in order to control the fracture mode of the rock mass and to suppress the blasting energy necessary for preventing damage. Therefore, the cost of explosives increases due to the need for expensive SB explosives, but the crack direction control by tensile fracture is unstable although the blasting energy is suppressed, and the effect of smoothing the wall surface is particularly improved in cracked rocks. There was no problem. As a solution to this problem, when the EDD detonator is used in order to improve the blasting simultaneity (suppressing the variation in the explosion seconds), there has been a problem that the detonator cost is further increased.

そこで本発明の主たる課題は、特に切羽最外周部の発破工法に係り、スムースブラスティング工法を採用することなく、ガイドホール(空孔)を活用して岩盤の破砕形態を制御することにより、余掘の低減と周辺岩盤の損傷防止を図りながら、爆薬量の削減によって火薬コストの低減を図った発破工法を提案することにある。   Therefore, the main problem of the present invention relates particularly to the blasting method of the outermost peripheral portion of the face, and without adopting the smooth blasting method, by utilizing the guide hole (hole) to control the crushing form of the rock mass, The aim is to propose a blasting method that reduces explosives costs by reducing explosives while reducing digging and preventing damage to surrounding rock mass.

前記課題を解決するために請求項1に係る本発明として、トンネル切羽に装薬孔を穿孔し、この装薬孔内に装填した爆薬によって掘削を行う発破工法において、
切羽の最外周発破は、所定の周方向区間において、周方向に沿って所定の間隔で装薬孔を穿孔するとともに、これら各装薬孔の中間に装薬を行わない空孔を穿孔し、前記装薬孔に爆薬を設置し発破を行うようにすることを特徴とする発破工法が提供される。
In order to solve the above-mentioned problem, as the present invention according to claim 1, in the blasting method of drilling a charge hole in the tunnel face, and excavating with the explosive loaded in the charge hole,
The outermost blasting of the face pierces a charge hole at a predetermined interval along the circumferential direction in a predetermined circumferential direction section, and a hole that does not charge in the middle of each of the charge holes, A blasting method is provided in which an explosive is installed in the charge hole to perform blasting.

上記請求項1記載の発明では、切羽の最外周に沿って形成される穿孔は、周方向に沿って所定の間隔で形成される装薬孔と、これら各装薬孔の中間に形成される装薬を行わない空孔とするものである。そして、前記装薬孔に爆薬を設置し発破を行うようにする。   In the first aspect of the present invention, the perforations formed along the outermost periphery of the face are formed between the charge holes formed at predetermined intervals along the circumferential direction, and between these charge holes. The holes are not charged. Then, an explosive is placed in the charge hole to perform blasting.

装薬孔の中間に空孔を形成した場合の破断面プロセスは、発破孔からの応力波により空孔周囲に応力集中が生じて空孔壁から亀裂が進展し、これが発破孔から進展した亀裂と連結して破断面が形成される。つまり、装薬孔と空孔とを結んだ線に沿って亀裂が発生するため、余掘が低減されるとともに、亀裂が周方向に伝達するため、周辺岩盤の損傷を防止することができる、また、平滑な破断面が形成されるようになる。更には、SB爆薬以外の通常使用されているダイナマイト、AN−FO、スラリー爆薬(別名:含水爆薬)などの使用で十分であるとともに、爆薬装填数が少なくなるため、火薬コストを低減し得るようになる。   In the fracture surface process when a hole is formed in the middle of the charge hole, a stress concentration occurs around the hole due to the stress wave from the blast hole, and the crack propagates from the hole wall, and this crack propagates from the blast hole. And a fracture surface is formed. In other words, because cracks occur along the line connecting the charge holes and holes, overburden is reduced and the cracks are transmitted in the circumferential direction, so that damage to the surrounding rock mass can be prevented. In addition, a smooth fracture surface is formed. In addition, the use of dynamite, AN-FO, slurry explosives (also known as hydrous explosives), etc. that are normally used other than SB explosives is sufficient, and the number of explosives loaded decreases, so that the cost of explosives can be reduced. become.

請求項2に係る本発明として、前記装薬孔は35〜50mmφの孔径とし、前記空孔は100〜120mmφの孔径に設定してある請求項1記載の発破工法が提供される。   According to a second aspect of the present invention, there is provided the blasting method according to the first aspect, wherein the charge hole has a hole diameter of 35 to 50 mmφ, and the hole has a hole diameter of 100 to 120 mmφ.

上記請求項2記載の発明は、装薬孔と空孔の孔径を規定したものである。装薬孔については、一般的に採用されている35〜50mmφの孔径とし、空孔については、発破孔(装薬孔)からの応力波によって空孔周囲に応力集中が生じ亀裂を発生し易くするため、装薬孔よりも大径とし100〜120mmφの孔径とするものである。   The invention according to claim 2 defines the hole diameters of the charge holes and the holes. The charge hole has a diameter of 35 to 50 mmφ which is generally adopted, and the hole tends to generate cracks due to stress concentration around the hole due to the stress wave from the blast hole (charge hole). Therefore, the diameter is larger than the charge hole and the hole diameter is 100 to 120 mmφ.

請求項3に係る本発明として、前記装薬孔と前記空孔との間隔は400〜500mmに設定してある請求項1,2いずれかに記載の発破工法が提供される。   As a third aspect of the present invention, there is provided the blasting method according to any one of the first and second aspects, wherein an interval between the charge hole and the hole is set to 400 to 500 mm.

上記請求項3記載の発明は、装薬孔と空孔との間隔を規定したものである。従来のスムースブラスティング工法では、装薬孔間隔は一般的に700〜800mm程度とされるが、本方法では発破孔(装薬孔)から進展した亀裂と、空孔から進展した亀裂とが結合し易くするために、比較的小間隔とし400〜500mmの間隔に設定するものである。   The invention according to claim 3 defines the interval between the charge hole and the hole. In the conventional smooth blasting method, the charge hole interval is generally set to about 700 to 800 mm. However, in this method, the crack that has progressed from the blast hole (charge hole) and the crack that has progressed from the hole are combined. In order to facilitate this, a relatively small interval is set to 400 to 500 mm.

以上詳説のとおり本発明によれば、特に切羽最外周部の発破工法に係り、スムースブラスティング工法を採用することなく、ガイドホール(空孔)を活用して岩盤の破砕形態を制御することにより、余掘の低減と周辺岩盤の損傷防止を図りながら、爆薬量の削減によって火薬コストを低減し得るようになる。   As described in detail above, according to the present invention, in particular, the blasting method of the outermost peripheral face of the face is employed, and the crushing form of the rock mass is controlled by utilizing the guide hole (hole) without adopting the smooth blasting method. It is possible to reduce the cost of explosives by reducing the amount of explosives, while reducing overexcavation and preventing damage to the surrounding rock mass.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明に係る空孔及び装薬孔配置パターンを示す切羽正面図であり、図2は本発明による破断面形成プロセスを示す図である。   FIG. 1 is a front view of a face showing a hole and charge hole arrangement pattern according to the present invention, and FIG. 2 is a diagram showing a fracture surface forming process according to the present invention.

図1に示されるように、本発明では、穿孔パターンとして、切羽1の最外周の穿孔群の内、本発明適用範囲と示された所定の周方向区間においては、周方向に沿って所定の間隔で装薬孔2,2…を穿孔するとともに、これら各装薬孔2,2の中間に装薬を行わない空孔3を穿孔する。   As shown in FIG. 1, in the present invention, as a drilling pattern, a predetermined circumferential direction section indicated as the scope of the present invention in the outermost perforated group of the face 1 has a predetermined length along the circumferential direction. The charging holes 2, 2... Are drilled at intervals, and a hole 3 that is not charged is drilled between these charging holes 2, 2.

また、最外周穿孔よりも内側領域においては、発破パターンで○付数字の1〜10で記された箇所にそれぞれ、所定のパターンで装薬孔2,2…を穿孔する。   Further, in the inner region from the outermost peripheral perforation, the charge holes 2, 2... Are perforated in a predetermined pattern at locations indicated by 1 to 10 with ◯ in the blasting pattern.

前記最外周部においては、前記装薬孔2,2…は35〜50mmφの孔径とし、前記空孔3,3…は100〜120mmφの孔径に設定するのが望ましい。すなわち、装薬孔2は通常使用されているダイナマイト、粒状の硝安を主体としたAN−FO、更には硝安のような硝酸塩を主体とし、金属粉などのほか10%の水分と、無数の気泡を含むスラリー爆薬(別名:含水爆薬)などの爆薬を装填する孔として穿孔し、前記空孔3については、発破孔(装薬孔2)からの応力波によって空孔周囲に応力集中が生じ亀裂を発生し易くするため、相対的に大径とし、装薬孔2の孔径に対して2〜3倍程度に大きい100〜120mmφの孔径で穿孔する。前記空孔3は、発破孔(装薬孔2)から進展する亀裂の誘導制御孔として穿孔するものである。   In the outermost peripheral part, it is desirable that the charge holes 2, 2... Have a hole diameter of 35 to 50 mm.phi., And the holes 3, 3,. In other words, the charge hole 2 is mainly composed of dynamite, AN-FO mainly composed of granular ammonium nitrate, and nitrate mainly such as ammonium nitrate, 10% moisture other than metal powder, and countless bubbles. The hole 3 is drilled as a hole for loading an explosive such as a slurry explosive (also known as a hydrous explosive), and the hole 3 has a stress concentration around the hole due to the stress wave from the blast hole (charge hole 2). In order to make it easy to generate, it is perforated with a relatively large diameter and a hole diameter of 100 to 120 mmφ which is about 2 to 3 times larger than the hole diameter of the charge hole 2. The hole 3 is drilled as a crack induction control hole extending from the blast hole (charge hole 2).

一方、前記装薬孔2と前記空孔3との間隔Pは400〜500mmに設定するのが望ましい。すなわち、岩盤強度にもよるが、従来のSB工法の場合と比較すると、相対的に小さい間隔設定とするのがよい。また、最外周部の内側に隣接する内側発破孔との離間距離S(抵抗線長)についても500〜700mm程度とし、従来のSB工法よりも小さい間隔設定とするのが望ましい。すなわち、本方法では発破孔(装薬孔2)から進展した亀裂と、空孔3から進展した亀裂とが結合し易くするために、SB工法よりも相対的に小間隔で形成するのが望ましい。   On the other hand, the distance P between the charge hole 2 and the hole 3 is preferably set to 400 to 500 mm. That is, although it depends on the rock mass strength, it is preferable to set a relatively small interval as compared with the case of the conventional SB method. Further, the separation distance S (resistance wire length) from the inner blasting hole adjacent to the inner side of the outermost peripheral portion is also set to about 500 to 700 mm, and it is desirable to set a smaller interval than the conventional SB method. That is, in this method, it is desirable to form the cracks that have propagated from the blast holes (charge holes 2) and the cracks that have propagated from the holes 3 at relatively smaller intervals than the SB method. .

前記最外周よりも内側領域の装薬孔2も、通常の爆薬装填孔であり、35〜50mmφ程度の孔径で形成される。装薬孔2に装填される爆薬は、最外周の装薬孔2と同様に、ダイナマイト、粒状の硝安を主体としたAN−FO、更には硝安のような硝酸塩を主体とし、金属粉などのほか10%の水分と、無数の気泡を含むスラリー爆薬(別名:含水爆薬)などが使用される。   The charge hole 2 in the inner region from the outermost periphery is also a normal explosive loading hole and is formed with a hole diameter of about 35 to 50 mmφ. The explosive charged in the charge hole 2 is similar to the outermost charge hole 2 and is mainly composed of dynamite, AN-FO mainly composed of granular ammonium nitrate, and nitrate such as ammonium nitrate. In addition, slurry explosives (also known as hydrous explosives) containing 10% moisture and countless bubbles are used.

雷管については、一般的に使用されている雷管を使用することができる。具体的には、遅発時間の間隔を0.1〜1.0秒(デシセコンド)間隔とした普通段発電気雷管(DS雷管)や、0.01〜0.1秒(ミリセコンド)間隔のミリセコンド段発電気雷管(MS雷管)などを使用し、特にSB工法で用いられている電子遅延式電気雷管(EDD雷管)などは使用する必要がない。   As for the detonator, a generally used detonator can be used. Specifically, normal-stage electric detonators (DS detonators) with a delay time interval of 0.1 to 1.0 seconds (deciseseconds), and millisecond-stage electric detonators (MS with an interval of 0.01 to 0.1 seconds (milliseconds)) It is not necessary to use an electronic delay type electric detonator (EDD detonator) used in the SB method.

発破手順は、例えば上部半断面に述べると、先ずパターン番号1〜2の発破によって、芯抜きが行われ、自由面を形成した後、両側に向けてパターン番号3〜6の順で段発させ、更にパターン番号7、8の順で段発させ、最後に最外周部のパターン番号9の発破の順で行われる。   For example, the blasting procedure is described in the upper half cross section. First, centering is performed by blasting pattern numbers 1 and 2 to form a free surface, and then the pattern numbers 3 to 6 are stepped in order toward both sides. Further, the pattern numbers 7 and 8 are stepped in order, and finally the pattern number 9 in the outermost peripheral part is blasted in order.

特に最外周の発破では、本発明に従って、周方向に沿って所定の間隔で形成される装薬孔と、これら各装薬孔の中間に形成される装薬を行わない空孔とが形成されているため、図2(A)(B)に示されるように、先ず発破孔(装薬孔2)からの衝撃によって亀裂が周囲に進展する。次いで、前記発破孔(装薬孔2)での爆発に若干遅れて、図2(C)に示されるように、発破孔(装薬孔2)からの応力波により空孔3の周囲(発破孔2と空孔3とを結んだ線上)に応力集中が生じて空孔3の内壁から亀裂が進展する。そして、図2(D)に示されるように、発破孔(装薬孔2)から進展した亀裂と連結して破断面が形成される。   Particularly in the outermost blasting, according to the present invention, a charge hole formed at a predetermined interval along the circumferential direction and a hole that does not perform a charge formed between these charge holes are formed. Therefore, as shown in FIGS. 2 (A) and 2 (B), the crack first propagates to the surroundings by the impact from the blast hole (the charge hole 2). Next, with a slight delay in the explosion at the blasting hole (charge hole 2), as shown in FIG. 2 (C), around the hole 3 (blasting) by the stress wave from the blast hole (charge hole 2). Stress concentration occurs on the line connecting the hole 2 and the hole 3, and a crack develops from the inner wall of the hole 3. And as shown in Drawing 2 (D), it is connected with the crack progressed from the blasting hole (charge hole 2), and a fracture surface is formed.

従って、破断面が周方向に沿って形成されることにより余掘が低減されるとともに、発破孔(装薬孔2)が地山方向に進展しないため周辺岩盤の損傷を防止することができるようになる。さらに、発破孔(装薬孔2)から進展した亀裂と空孔3から進展した亀裂とが結合するように破断されることにより平滑な破断面が形成され易くなる。   Therefore, since the fracture surface is formed along the circumferential direction, the excavation is reduced, and the blast hole (the charge hole 2) does not advance in the ground direction so that the surrounding rock mass can be prevented from being damaged. become. Furthermore, a smooth fracture surface is easily formed by breaking so that the crack that has developed from the blast hole (charge hole 2) and the crack that has developed from the hole 3 are combined.

〔他の形態例〕
(1)上記形態例では、切羽の最外周の穿孔群の内、図1に本発明適用範囲として示された範囲に本方法を適用したが、最外周のほぼ全周に亘って適用しても良いし、図示された範囲よりも狭めた範囲に限定して適用するようにしてもよい。
[Other examples]
(1) In the above embodiment, the present method is applied to the range shown in FIG. 1 as the scope of application of the present invention in the outermost perforated group of the face. Alternatively, the present invention may be applied by limiting to a range narrower than the illustrated range.

本発明に係る空孔及び装薬孔配置パターン例を示す切羽正面図である。It is a face front view which shows the example of the hole and charge hole arrangement pattern which concern on this invention. (A)〜(D)は本発明による破断面形成プロセスを説明するための図である。(A)-(D) is a figure for demonstrating the fracture surface formation process by this invention. 従来のSB工法における装薬孔配置パターン例を示す切羽正面図である。It is a face front view which shows the example of the charge hole arrangement pattern in the conventional SB construction method.

符号の説明Explanation of symbols

1…切羽、2…装薬孔、3…空孔   1 ... face, 2 ... charge hole, 3 ... hole

Claims (3)

トンネル切羽に装薬孔を穿孔し、この装薬孔内に装填した爆薬によって掘削を行う発破工法において、
切羽の最外周発破は、所定の周方向区間において、周方向に沿って所定の間隔で装薬孔を穿孔するとともに、これら各装薬孔の中間に装薬を行わない空孔を穿孔し、前記装薬孔に爆薬を設置し発破を行うようにすることを特徴とする発破工法。
In the blasting method in which a hole is drilled in the tunnel face and excavated with the explosive loaded in this hole,
The outermost blasting of the face pierces a charge hole at a predetermined interval along the circumferential direction in a predetermined circumferential direction section, and a hole that does not charge in the middle of each of the charge holes, A blasting method characterized in that an explosive is placed in the charge hole for blasting.
前記装薬孔は35〜50mmφの孔径とし、前記空孔は100〜120mmφの孔径に設定してある請求項1記載の発破工法。   The blasting method according to claim 1, wherein the charge hole has a hole diameter of 35 to 50 mm and the hole has a hole diameter of 100 to 120 mm. 前記装薬孔と前記空孔との間隔は400〜500mmに設定してある請求項1,2いずれかに記載の発破工法。   The blasting method according to any one of claims 1 and 2, wherein an interval between the charge hole and the hole is set to 400 to 500 mm.
JP2008074854A 2008-03-24 2008-03-24 Blasting construction method Withdrawn JP2009228977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008074854A JP2009228977A (en) 2008-03-24 2008-03-24 Blasting construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008074854A JP2009228977A (en) 2008-03-24 2008-03-24 Blasting construction method

Publications (1)

Publication Number Publication Date
JP2009228977A true JP2009228977A (en) 2009-10-08

Family

ID=41244586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008074854A Withdrawn JP2009228977A (en) 2008-03-24 2008-03-24 Blasting construction method

Country Status (1)

Country Link
JP (1) JP2009228977A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338601A (en) * 2011-11-02 2012-02-01 中铁隧道集团有限公司 Shot hole single-shot shock-absorbing blast construction method applied to tunnel wedge cut
JP2013092274A (en) * 2011-10-24 2013-05-16 Kayaku Japan Co Ltd Control blasting system
CN103175451A (en) * 2013-03-13 2013-06-26 中国建筑土木建设有限公司 Construction method of tunnel shock relieve hole controlling blasting
CN103344154A (en) * 2013-07-05 2013-10-09 武汉科技大学 Carbonaceous schist tunnel blasting method and construction method
CN103868419A (en) * 2014-03-18 2014-06-18 北京工业大学 Smooth surface blasting construction method used in tunnel excavation process in hydraulic engineering
CN104695963A (en) * 2015-02-11 2015-06-10 山东科技大学 Construction method for subway tunnel penetrating through building in fractured rock stratum
CN104819670A (en) * 2015-05-19 2015-08-05 重庆交通建设(集团)有限责任公司 Pre-drilling mesopore shaft excavation blasting method
CN105157491A (en) * 2015-08-07 2015-12-16 杨龙龙 Blasting method for forming dome through tunnel large section
JP2016044901A (en) * 2014-08-25 2016-04-04 株式会社フジタ Blasting method
CN107503756A (en) * 2017-09-27 2017-12-22 贵州安凯达实业股份有限公司 A kind of drilling construction method for photoface exploision
CN107842368A (en) * 2017-10-30 2018-03-27 重庆城建控股(集团)有限责任公司 The non-quick-fried excavation technology of city tunnel Drilling milling mechanical combination
CN108871119A (en) * 2018-07-23 2018-11-23 中铁十九局集团第六工程有限公司 Tunnel cloth hole blasting method
JP2019044331A (en) * 2017-08-29 2019-03-22 株式会社竹中工務店 Method of manufacturing material by collecting excavation object from excavation site of bedrock as material
CN111442701A (en) * 2020-03-25 2020-07-24 中铁十八局集团有限公司 Refined blasting construction method for narrow deep foundation pit under complex geological condition
CN112161532A (en) * 2020-09-25 2021-01-01 中铁二十局集团有限公司 Tunnel smooth blasting method based on axial length uncoupled spaced charging
CN112240207A (en) * 2020-09-18 2021-01-19 中铁隧道集团一处有限公司 Jumbo-span cave depot lattice jumping excavation and rapid bottom turning method
CN112880497A (en) * 2021-03-12 2021-06-01 中铁二十局集团有限公司 Tunnel smooth blasting method
CN113188392A (en) * 2021-06-10 2021-07-30 嵩县金牛有限责任公司 Well type medium-length hole perforation sectional blasting method
JP2021139613A (en) * 2020-03-02 2021-09-16 中鉄十八局集団有限公司China Railway Eighteen Bureau Group Co., Ltd. High performance vibration reduction, smooth surface and blast method of bottom of duplex peripheral hole and tunnel
CN113669071A (en) * 2021-08-27 2021-11-19 中钢集团马鞍山矿山研究总院股份有限公司 Top-controlled blasting tunneling method suitable for underground mine ramp construction
CN113932666A (en) * 2021-09-02 2022-01-14 中铁十八局集团有限公司 Mountain tunnel accurate construction method and structure
CN114001605A (en) * 2021-11-24 2022-02-01 昆明理工大学 Smooth blasting method for tunneling
CN114704268A (en) * 2022-03-15 2022-07-05 中铁广州工程局集团第三工程有限公司 Single-track railway tunnel full-section primary support rapid ring forming construction method
WO2022198842A1 (en) * 2021-03-24 2022-09-29 山东科技大学 Hollow-hole burn cut three-time blasting method
CN115388723A (en) * 2021-05-21 2022-11-25 核工业南京建设集团有限公司 Large-section cave blasting structure and blasting method

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092274A (en) * 2011-10-24 2013-05-16 Kayaku Japan Co Ltd Control blasting system
CN102338601A (en) * 2011-11-02 2012-02-01 中铁隧道集团有限公司 Shot hole single-shot shock-absorbing blast construction method applied to tunnel wedge cut
CN103175451A (en) * 2013-03-13 2013-06-26 中国建筑土木建设有限公司 Construction method of tunnel shock relieve hole controlling blasting
CN103175451B (en) * 2013-03-13 2015-08-05 中国建筑土木建设有限公司 A kind of construction method of tunnel shock-absorbing hole controlled blasting
CN103344154A (en) * 2013-07-05 2013-10-09 武汉科技大学 Carbonaceous schist tunnel blasting method and construction method
CN103868419A (en) * 2014-03-18 2014-06-18 北京工业大学 Smooth surface blasting construction method used in tunnel excavation process in hydraulic engineering
JP2016044901A (en) * 2014-08-25 2016-04-04 株式会社フジタ Blasting method
CN104695963A (en) * 2015-02-11 2015-06-10 山东科技大学 Construction method for subway tunnel penetrating through building in fractured rock stratum
CN104819670A (en) * 2015-05-19 2015-08-05 重庆交通建设(集团)有限责任公司 Pre-drilling mesopore shaft excavation blasting method
CN105157491A (en) * 2015-08-07 2015-12-16 杨龙龙 Blasting method for forming dome through tunnel large section
JP2019044331A (en) * 2017-08-29 2019-03-22 株式会社竹中工務店 Method of manufacturing material by collecting excavation object from excavation site of bedrock as material
JP7061853B2 (en) 2017-08-29 2022-05-02 株式会社竹中工務店 A method of manufacturing materials by collecting excavated materials from excavated parts of rocks as materials.
CN107503756A (en) * 2017-09-27 2017-12-22 贵州安凯达实业股份有限公司 A kind of drilling construction method for photoface exploision
CN107503756B (en) * 2017-09-27 2018-11-02 贵州安凯达实业股份有限公司 A kind of drilling construction method for photoface exploision
CN107842368A (en) * 2017-10-30 2018-03-27 重庆城建控股(集团)有限责任公司 The non-quick-fried excavation technology of city tunnel Drilling milling mechanical combination
CN108871119A (en) * 2018-07-23 2018-11-23 中铁十九局集团第六工程有限公司 Tunnel cloth hole blasting method
JP7102669B2 (en) 2020-03-02 2022-07-20 中鉄十八局集団有限公司 High-efficiency vibration reduction of double peripheral holes and tunnels and smooth surface and bottom blasting methods
JP2021139613A (en) * 2020-03-02 2021-09-16 中鉄十八局集団有限公司China Railway Eighteen Bureau Group Co., Ltd. High performance vibration reduction, smooth surface and blast method of bottom of duplex peripheral hole and tunnel
CN111442701A (en) * 2020-03-25 2020-07-24 中铁十八局集团有限公司 Refined blasting construction method for narrow deep foundation pit under complex geological condition
CN111442701B (en) * 2020-03-25 2023-02-14 中铁十八局集团有限公司 Refined blasting construction method for narrow deep foundation pit under complex geological condition
CN112240207B (en) * 2020-09-18 2022-02-08 中铁隧道集团一处有限公司 Jumbo-span cave depot lattice jumping excavation and rapid bottom turning method
CN112240207A (en) * 2020-09-18 2021-01-19 中铁隧道集团一处有限公司 Jumbo-span cave depot lattice jumping excavation and rapid bottom turning method
CN112161532A (en) * 2020-09-25 2021-01-01 中铁二十局集团有限公司 Tunnel smooth blasting method based on axial length uncoupled spaced charging
CN112880497A (en) * 2021-03-12 2021-06-01 中铁二十局集团有限公司 Tunnel smooth blasting method
WO2022198842A1 (en) * 2021-03-24 2022-09-29 山东科技大学 Hollow-hole burn cut three-time blasting method
CN115388723A (en) * 2021-05-21 2022-11-25 核工业南京建设集团有限公司 Large-section cave blasting structure and blasting method
CN113188392A (en) * 2021-06-10 2021-07-30 嵩县金牛有限责任公司 Well type medium-length hole perforation sectional blasting method
CN113669071A (en) * 2021-08-27 2021-11-19 中钢集团马鞍山矿山研究总院股份有限公司 Top-controlled blasting tunneling method suitable for underground mine ramp construction
CN113932666A (en) * 2021-09-02 2022-01-14 中铁十八局集团有限公司 Mountain tunnel accurate construction method and structure
CN114001605A (en) * 2021-11-24 2022-02-01 昆明理工大学 Smooth blasting method for tunneling
CN114704268A (en) * 2022-03-15 2022-07-05 中铁广州工程局集团第三工程有限公司 Single-track railway tunnel full-section primary support rapid ring forming construction method
CN114704268B (en) * 2022-03-15 2024-01-05 中铁广州工程局集团第三工程有限公司 Quick looping construction method for full-section primary support of single-track railway tunnel

Similar Documents

Publication Publication Date Title
JP2009228977A (en) Blasting construction method
JP2017503993A (en) Explosive tube tube with air gap and bedrock blasting method using the same
CN102758633A (en) Construction method for large- cross section tunnel with better condition of surrounding rock
KR101551905B1 (en) Tunnel blasting pattern using large hole and small hole, and method for blasting of tunnel using this same
CN108278939A (en) A kind of blasting method for reducing rock convergence measure and reducing blasting vibration
Eades et al. Understanding the connection between blasting and highwall stability
JP2019113309A (en) Blast construction method
CN103557756B (en) Pilot heading hole-specifically delayed ignition network in Tunnel Blasting
KR100923323B1 (en) Blasting method of contour holes in two parts with time delay of 20~25MS
US20120017792A1 (en) Method of blasting
CN108050902B (en) Tunnel blasting excavation method
JP6342749B2 (en) Blasting method
JP2020020139A (en) Blasting and drilling method depending on pre-splitting
CN113513954A (en) Boundary control blasting method for underground mine deep hole stope
CN204594356U (en) The quick spacing charge constitution of a kind of novel tunnel light blast hole
WO2016205935A1 (en) Controlled directional blasting
KR100852960B1 (en) method for blasting center-cut of tunnel
AU784685B2 (en) A method of blasting
CN213543367U (en) Raise descending section blasting structure
CN109900175A (en) The low damage blasting method of underground mine tunnelling
KR100852961B1 (en) method for blasting expand part of tunnel
CN207797897U (en) The soft or hard blast hole loading structure for being mingled with beded rock mass Long-hole Bench Blasting
KR100787204B1 (en) Blasting pattern and blasting method using thereof tunnel and excavation work
Gupta Emerging explosives and initiation devices for increased safety, reliability, and performance for excavation in weak rocks, mining and close to surface structures
KR100852959B1 (en) Method for Manufacturing Tunneling

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607