JP2009222584A - 沸騰水型原子力プラントの放射線被ばく低減方法及び沸騰水型原子力プラント - Google Patents

沸騰水型原子力プラントの放射線被ばく低減方法及び沸騰水型原子力プラント Download PDF

Info

Publication number
JP2009222584A
JP2009222584A JP2008068047A JP2008068047A JP2009222584A JP 2009222584 A JP2009222584 A JP 2009222584A JP 2008068047 A JP2008068047 A JP 2008068047A JP 2008068047 A JP2008068047 A JP 2008068047A JP 2009222584 A JP2009222584 A JP 2009222584A
Authority
JP
Japan
Prior art keywords
reactor
boiling water
water
inorganic oxide
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008068047A
Other languages
English (en)
Inventor
Kazunari Ishida
一成 石田
Hideyuki Hosokawa
秀幸 細川
Yoichi Wada
陽一 和田
Motohiro Aizawa
元浩 会沢
Makoto Nagase
誠 長瀬
Motomasa Fuse
元正 布施
Naoshi Usui
直志 碓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2008068047A priority Critical patent/JP2009222584A/ja
Publication of JP2009222584A publication Critical patent/JP2009222584A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

【課題】燃料集合体の燃焼度をさらに増大させた場合でも放射線被ばくを低減できる沸騰水型原子力プラントの放射線被ばく低減方法を提供する。
【解決手段】BWRプラント1は、RPV3、給水配管8及び無機酸化物粒子注入装置25を備える。主蒸気配管5がRPV3とタービン6を連絡する。復水フィルタ9が設けられた給水配管8がRPV3と復水器7を連絡する。無機酸化物粒子注入装置25が給水配管8に接続される。復水フィルタ9である中空子フィルタにより、RPV3に供給される給水の鉄酸化物の濃度が1×10-9mol/kg以下に抑制される。無機酸化物粒子注入装置25の無機酸化物粒子タンク19から注入配管21をとおして、アナターゼ型チタン酸化物粒子の懸濁液が給水配管8内の給水に注入される。このチタン酸化物粒子は親水性であり炉水に含まれるコバルトを吸着する。
【選択図】図1

Description

本発明は、沸騰水型原子力プラントの放射線被ばく低減方法及び沸騰水型原子力プラントに関する。
沸騰水型原子力プラント(BWRプラント)において、定期検査時における作業員の放射線被ばくをさらに低減することは、プラント健全性の観点から重要な課題である。定期検査時における作業員の放射線被ばくの放射線源は、主に、再循環系配管及び原子炉水浄化系配管の内面に付着して蓄積したコバルト60である。すなわち、炉水(冷却水)または給水に接する、BWRプラントの金属部材から非放射性コバルトが腐食により溶出する。この非放射性コバルトは、原子炉の炉心に設置された燃料集合体の燃料棒表面に、核沸騰に伴う濃縮効果でコバルト酸化物として析出し付着する。燃料棒表面に付着した非放射性コバルトは、燃料棒内に存在する核燃料の核分裂で発生する中性子の照射を受け、放射化されてコバルト60になる。コバルト60は、コバルト60を含むコバルト酸化物の燃料棒表面からの剥離またはそのコバルト酸化物の溶出によって炉水中に移行する。このコバルト60は、炉水が流れる配管(例えば、再循環系配管及び原子炉水浄化系配管)の内面に付着し蓄積される。コバルト60の蓄積速度は、炉水中のコバルト60の濃度及び配管内面の酸化皮膜成長速度に比例する。したがって、炉水中のコバルト60濃度が低減すれば、配管内面へのコバルト60の蓄積を抑制でき、定期検査時の作業員の放射線被ばくを低減することができる。なお、炉水は、原子炉圧力容器内、及び給水配管及び主蒸気配管以外で原子炉圧力容器に接続された配管内を流れる冷却水である。
特開平10−197672号公報は、炉水中のコバルト60の濃度を低減するために、燃料棒表面にコバルトを固定する方法を記載している。この方法は、予め燃料棒表面に三酸化二鉄(α−Fe23)の層を形成し、燃料棒表面に付着したコバルト酸化物(CoO)をコバルト酸化物より溶解度の小さいコバルトフェライト(CoFe24)に形態変化させるものである。コバルトフェライトは、燃料棒表面に付着したコバルトの溶解を抑制する。燃料棒表面にコバルト60を固定させることによって、炉水中のコバルト60の濃度が低減される。
コバルトイオンは、三酸化二鉄粒子が共存する場合に、燃料棒表面への付着が促進される(Y. Asakura他、Journal of Nuclear Science and Technology, Vol.26, p.1112 (1989)参照)。すなわち、高温の炉水中では、コバルトは三酸化二鉄粒子の表面に吸着され易くなる。三酸化二鉄粒子は炉水中に2×10-7mol/kg程度存在し、BWRプラントの約4年間の運転期間(一つの運転サイクル)において、燃料棒表面には0.1g/m2程度付着する(S. Uchida他、Journal of Nuclear Science and Technology, Vol.24, p.385 (1987)参照)。しかしながら、特開平10−197672号公報のように、燃料棒表面にコバルトフェライトの皮膜を形成することによって炉水中のコバルト60の濃度が低減される。
また、特開平5−264786号公報は、炉水中のコバルト60の濃度を低減する他の方法として、燃料棒表面へのコバルトの付着、蓄積を抑制する技術を記載している。コバルトの燃料棒表面への付着は、炉水中の鉄酸化物濃度に比例して増加する。特開平5−264786号公報は、その現象に着目して給水の鉄濃度を0.05ppb以下に抑制し、原子炉内でコバルトが燃料棒表面に付着することを抑制している。さらに、炉水のpHを弱酸性に制御し、燃料棒表面に付着したコバルト酸化物の溶解を促進する。このような特開平5−264786号公報に記載された方法は、燃料棒表面におけるコバルトの滞在時間を低減し、非放射性コバルトが中性子照射によりコバルト60に放射化されることを抑制する。したがって、炉水中のコバルト60の濃度が低減される。
M. Saito他、"Experience of Ultra−Low−Crud High−Nickel Control in Onagawa Nuclear Power Station", Water Chemistry in Nuclear Reactor Systems, 22-26 April, 2002, Avignon Franceは、炉水中のコバルト60の濃度を低減するために、給水中の鉄を極低濃度にし、ニッケルを高濃度に制御する方法を記載している。
特開2004−205245号公報は、原子力プラントにおいて酸化除染及び還元除染を実施する化学除染に言及している。
特開平10−197672号公報 特開平5−264786号公報 特開2004−205245号公報 Y. Asakura他、Journal of Nuclear Science and Technology, Vol.26, p.1112 (1989) S. Uchida他、Journal of Nuclear Science and Technology, Vol.24, p.385 (1987) M. Saito他、"Experience of Ultra−Low−Crud High−Nickel Control in Onagawa Nuclear Power Station", Water Chemistry in Nuclear Reactor Systems, 22-26 April, 2002, Avignon France
特開平10−197672号公報に記載された方法は、燃料棒表面にコバルトフェライトとして固定させるため、炉水中のコバルト60イオンの濃度を低減できる。しかしながら、その方法は、燃料棒表面のコバルトフェライトが冷却水の流れのせん断力により燃料棒表面から剥離して炉水中に移行する。このため、炉水中のコバルト60を含む酸化物濃度が増加する。また、燃料集合体の高燃焼度化により燃料集合体の炉心滞在期間が増加すると、燃料棒表面に付着した非放射性コバルトが放射化される量が増大し、炉水中のコバルト60イオンの濃度が増加する。
特開平5−264786号公報に記載された方法は、燃料棒表面に付着したコバルト酸化物の溶出を促進する操作を併せて実施しなければ、炉水中のコバルト60イオンの濃度の低減効果が不十分となる(M. Saito他、"Experience of Ultra−Low−Crud High−Nickel Control in Onagawa Nuclear Power Station", Water Chemistry in Nuclear Reactor Systems, 22-26 April, 2002, Avignon France参照)。一方、燃料棒表面に付着したコバルト酸化物を溶出させるために、炉水に炭酸、窒素または一酸化二窒素を注入して炉水のpHを弱酸性に制御することが提案されている。しかしながら、炭酸などは、構造部材の応力腐食割れの感受性を高める可能性がる物質であるため、炉水中に注入することは好ましくない。
本発明の目的は、燃料集合体の燃焼度をさらに増大させた場合においても放射線被ばくをさらに低減できる沸騰水型原子力プラントの放射線被ばく低減方法及び沸騰水型原子炉プラントを提供することにある。
上記した目的を達成する本発明の特徴は、原子炉に供給される給水に含まれる鉄酸化物を除去し、コバルトイオンを吸着する親水性無機酸化物粒子を炉水に注入することにある。
給水に含まれる鉄酸化物を除去することによって、炉心に装荷されている燃料集合体の燃料棒の表面に付着する鉄酸化物(例えば、コバルトイオンが吸着しやすい三酸化二鉄)の量を低減することができる。しかも、コバルトイオンを吸着する親水性無機酸化物粒子を炉水に注入するので、炉水中のコバルトイオンは燃料棒表面に付着しにくい親水性無機酸化物粒子に吸着される。親水性無機酸化物粒子は、炉水の沸騰によって生じる、燃料棒表面に存在するドライアウト面にも付着しにくい。したがって、燃料棒表面で中性子照射を受けて放射化される非放射性コバルトの、燃料棒表面への付着量が著しく低減されるので、燃焼度がさらに増大された燃料集合体を炉心内に装荷した場合でも、炉水中の放射性コバルトの濃度を低減することができる。これにより、沸騰水型原子力プラントの炉水が流れる配管等の表面線量率をさらに低減することができ、燃料集合体の燃焼度をさらに増大させた場合においても作業員の放射線被ばくを低減することができる。
好ましくは、給水に含まれる鉄酸化物の濃度を1×10-9mol/kg以下にすることが望ましい。
本発明によれば、燃料集合体の燃焼度をさらに増大させた場合においても作業員の放射線被ばくをさらに低減することができる。
発明者らは、燃料集合体がさらに高燃焼度化されたときにおいて、定期検査時における作業員の放射線被ばくをより低減できる方法を検討した。この検討の内容を以下に説明する。
前述したように、三酸化二鉄粒子は、炉水中に2×10-8mol/kg程度存在し、一つの運転サイクルにおいて燃料棒表面に0.1g/m2程度付着する。一方、炉水中におけるシリコン酸化物粒子の濃度は、鉄酸化物粒子の濃度よりも2桁から3桁程度高くなっている。しかし、シリコン酸化物粒子は、燃料棒表面にはほとんど付着しない。燃料棒の表面は、ジルコニウム合金(例えば、ジルカロイ)製の被覆管の表面である。前述の付着の違いは、それぞれの粒子と水との親和性の違いによる。三酸化二鉄は疎水性の無機酸化物である。疎水性の無機酸化物粒子は、核沸騰により発生した気泡の界面に移行し析出するため、気泡が脱離する際に、燃料棒表面に存在するドライアウト面に付着する。さらに、再冠水時に水に分散し難いため、疎水性の無機酸化物粒子は燃料棒表面に蓄積すると考えられる。
シリコン酸化物粒子は、親水性の無機酸化物であり、水への分散性が良いので燃料棒表面に付着し難いと考えられる。このため、親水性の無機酸化物粒子は、燃料棒表面に付着することなく炉水中に存在するのである。
前述したように、コバルトイオンは、三酸化二鉄粒子が共存する場合に、燃料棒表面への付着が促進される。炉水中におけるコバルトイオンの濃度は1×10-9mol/kgと希薄である。しかしながら、燃料棒の表面では核沸騰に伴う濃縮が生じるため、三酸化二鉄粒子が燃料棒表面に付着し、この付着した三酸化二鉄粒子表面にコバルトイオンが吸着される。このようにして、コバルトイオンの燃料棒表面への付着が促進されると考えられる。
したがって、コバルトイオンを吸着する作用のある、親水性の無機酸化物粒子を炉水中に注入し、核沸騰による濃縮効果を利用して親水性の無機酸化物粒子にコバルトイオンを吸着させることによって、燃料棒表面へのコバルトの付着を抑制することができる。すなわち、コバルトを炉水中に存在させることによって、中性子照射によるコバルトの放射化を抑制できるため、炉水中のコバルト60の濃度を低減できる。
但し、三酸化二鉄が多量に炉水中に存在すると、三酸化二鉄がコバルトイオンを吸着して燃料棒表面に付着する。三酸化二鉄の燃料棒表面への付着を避けるために、給水中における鉄酸化物粒子の濃度を1×10-9mol/kg以下に抑制する必要がある。
好ましくは、炉水中に水素を注入して原子炉内構造物の腐食を抑制して三酸化二鉄の発生を抑制することが望ましい。さらには、BWRプラントを構成する構造部材の炉水と接する表面に付着した三酸化二鉄の一部又は全部を除去して、その表面に付着した三酸化二鉄の炉水への移行を抑制することが望ましい。構造部材の表面に付着した三酸化二鉄の一部又は全部の除去は、シュウ酸などを利用して化学的に三酸化二鉄を溶解させる化学除染、及び機械的な研磨等によって行うことができる。
炉水中の親水性の無機酸化物粒子の濃度は、1×10-9mol/kgから2×10-7mol/kgの範囲に制御することが望ましい。これは、炉水中における親水性の無機酸化物粒子の濃度が1×10-9mol/kg以上になると、炉水中の三酸化二鉄粒子の濃度よりも高くなり、親水性の無機酸化物粒子へのコバルトの吸着が促進されるためである。無機酸化物粒子は研磨剤となる恐れがある。無機酸化物粒子が炉水中に多量に存在する場合には、無機酸化物粒子が再循環ポンプ、及び炉水浄化系配管に設置された浄化系ポンプ(図示せず)のそれぞれの回転軸と軸受けの間に入り込み、回転軸の表面及び軸受けの内面を傷つける確率が増大する。この確率を抑制するため、炉水中の無機酸化物粒子の濃度は2×10-7mol/kg以下に制御することが望ましい。
炉水に注入する親水性の無機酸化物粒子としては、タングステン酸化物及びアナターゼ型のチタン酸化物がある。チタン酸化物は光照射を受けると親水性になる性質があり、アナターゼ型のチタン酸化物は他の結晶構造のチタン酸化物よりもコバルトの吸着性が高い。このため、親水性の無機酸化物粒子としてアナターゼ型のチタン酸化物を用いることがより好ましい。
親水性の無機酸化物粒子は、粒子表面が親水性であれば良いので、アナターゼ型のチタン酸化物を被覆した無機酸化物粒子でも良い。アナターゼ型のチタン酸化物で被覆される無機酸化物としては、放射化し難い無機酸化物及び放射化しても影響の小さい無機酸化物が望ましい。この無機酸化物として鉄酸化物及びジルコニウム酸化物が挙げられる。チタンより中性子吸収断面積が小さい無機酸化物は、中性子経済の観点からチタン酸化物よりも好ましい。さらに、無機酸化物粒子の替りに放射化されにくい無機粒子の表面に親水性無機酸化物粒子を被覆して構成されたコバルト吸着粒子を用いることも可能である。
親水性の無機酸化物粒子の粒径は2μm以上で100μm以下が望ましい。親水性の無機酸化物粒子の粒径を2μm以上にすることによって、フィルタでのその粒子の捕集、回収性が向上する。炉水から、適時、コバルトを吸着した親水性無機酸化物粒子を除去することにより、炉水の放射性コバルト濃度を低減できる。
以上の検討を行った結果、発明者らは、原子炉内に供給する給水に含まれる鉄酸化物の濃度を1×10-9mol/kg以下に抑制し、コバルトイオンを吸着する親水性の無機酸化物粒子を炉水中に注入すれば、炉水中のコバルト60イオンの濃度を低減することができることを新たに見出した。
以上の検討結果に基づいて成された、本発明の実施例を以下に説明する。
本発明の好適な一実施例である実施例1の沸騰水型原子力プラント(BWRプラント)の放射線被ばく低減方法を、図1を用いて説明する。
本実施例のBWRプラント1は、原子炉2、タービン6、復水器7、給水配管8及び無機酸化物粒子注入装置25を備えている。原子炉2は、原子炉圧力容器(以下、RPVという)3及びRPV3内に配置された炉心4を有する。複数の燃料集合体(図示せず)が炉心4に装荷されている。燃料集合体は、核燃料物質で構成された複数の燃料ペレットをジルコニウム合金製の被覆管内に充填している複数の燃料棒を有する。複数のジェットポンプ(図示せず)がRPV3と炉心4の間に形成された環状のダウンカマ内に配置されている。RPV3に接続された主蒸気配管5はタービン6に接続される。給水配管8は、復水器7とRPV3を連絡している。復水フィルタ9、復水脱塩器10、給水ポンプ11及び給水加熱器12が、この順に上流より給水配管8に設置される。復水フィルタ9は中空子フィルタである。主蒸気配管5に接続される抽気蒸気配管13が給水加熱器12に接続されている。水素注入装置22が、復水脱塩器10と給水ポンプ11の間で給水配管8に接続される。無機酸化物粒子注入装置25が、無機酸化物粒子タンク19、注入ポンプ20及び注入配管21を有する。注入ポンプ20が設置された注入配管21が無機酸化物粒子タンク19と給水配管8を接続する。注入配管21は、水素注入装置22の給水配管8の接続点と給水加熱器12との間で、給水配管8に接続されている。
BWRプラント1に設けられる再循環系は、再循環系配管14及び再循環系配管14に設けられる再循環ポンプ15を有している。再循環系配管14の一端は、RPV3に設けられたノズル(図示せず)に接続され、ダウンカマに連絡される。再循環系配管14の他端は、RPV3のダウンカマ内に配置されてジェットポンプのノズルに接続されるライザ管(図示せず)に接続される。炉水浄化系は、炉水浄化系配管16、炉水浄化装置17及び熱交換器18を有する。炉水浄化系配管16は再循環系配管14と給水配管8に接続される。炉水浄化装置17及び熱交換器18は炉水浄化系配管16に設置される。更に、サンプリング配管23が、水素注入装置22の給水配管8の接続点と復水器7との間で、給水配管8に接続されている。サンプリング配管24が炉水浄化系配管16に接続される。
BWRプラントが運転されているとき、再循環ポンプ15の駆動によりRPV3内のダウンカマから再循環系配管14内に吸引された炉水は、再循環ポンプ15で昇圧され、ライザ管を通ってジェットポンプのノズルら噴出される。ノズルの周囲でダウンカマ内に存在する炉水が、その噴出流によってジェットポンプ内に吸い込まれ、ジェットポンプから吐出される。ジェットポンプから吐出された炉水は、炉心4内に導かれ、燃料集合体内の核燃料物質の核分裂によって発生する熱で加熱され、一部が蒸気になる。この蒸気は、RPV3内の気水分離器(図示せず)及び蒸気乾燥器(図示せず)で水分を除去されて主蒸気配管5を通ってタービン6に導かれ、タービン6を回転させる。タービン6に連結された発電機(図示せず)が回転して電力が発生する。タービン6から排出された蒸気は、復水器7で凝縮される。この凝縮によって発生した水は、給水として、給水ポンプ11で昇圧されて給水配管8を通ってRPV3内のダウンカマに供給される。
給水は、給水配管8内を流れる間に、復水フィルタ9、復水脱塩器10及び給水加熱器12を通過する。復水フィルタ9は、復水器7内で発生し、給水に含まれている腐食生成物(例えば、鉄酸化物)を除去する。復水フィルタ9としては中空子フィルタを用いている。中空子フィルタは除鉄性能が高いので、給水に含まれる鉄酸化物の濃度は、1×10-9mol/kg以下に抑制される。このため、給水と共にRPV3内に持ち込まれる鉄酸化物の濃度が低下する。復水脱塩器10は、復水器7において伝熱管内を流れて蒸気の凝縮に使用される海水が漏洩したとき、海水成分(ナトリウムイオン及び塩化物イオン)がRPV3内に入り込むのを防ぐためにその海水成分を除去する。抽気蒸気配管13は、主蒸気配管5内を流れる蒸気の一部を抽気する。給水加熱器12は、主蒸気配管5によって抽気された蒸気を用いて給水配管8内を流れる給水を加熱する。加熱された給水がRPV3内に供給される。
RPV3内の炉水は、再循環系配管14を経て炉水浄化系配管16内に導かれる。この炉水に含まれた不純物(放射性核種を含む酸化物等)が炉水浄化装置17で除去され、給水配管8を介してRPV3に戻される。炉水は、炉水浄化装置17に供給する際に、熱交換器(再生熱交換器)18及び非再生熱交換器(図示せず)によって冷却される。
BWRプラントの運転中、水素注入装置22から水素が給水配管8内を流れる給水に注入される。注入された水素は給水と共にRPV3内に導かれる。この水素は、RPV3内で炉水中に存在する酸素及び過酸化水素と反応し、水を生成する。このため、炉水に含まれる酸素及び過酸化水素のそれぞれの量が減少される。結果として、RPV3、再循環系配管14及び炉水浄化系配管16内での鉄酸化物の生成が抑制される。
親水性の無機酸化物粒子、例えば、アナターゼ型チタン酸化物粒子の懸濁液が無機酸化物粒子タンク19内に充填されている。その懸濁液に含まれているアナターゼ型チタン酸化物粒子の粒径は2μmである。無機酸化物粒子タンク19内のその懸濁液が注入ポンプ20を駆動することによって注入配管21を通して給水配管8内を流れる給水に注入される。その懸濁液に含まれるアナターゼ型チタン酸化物粒子が、給水配管8を通ってRPV3内に供給される。
アナターゼ型チタン酸化物粒子の懸濁液の注入量調節について、説明する。給水の一部が、給水配管8からサンプリング配管23を通して採取される。採取した給水を分析することによって、給水に含まれる鉄酸化物及び硫酸イオンなどの濃度が測定される。この測定により鉄酸化物濃度が1×10-9mol/kg以下になっていることを確認することができる。測定された硫酸イオン濃度はBWRプラントの運転管理に用いられる。炉水浄化系配管16内を流れる炉水の一部が、サンプリング配管24によって採取される。炉水に含まれる鉄酸化物、親アナターゼ型チタン酸化物粒子及び硫酸イオンなどの濃度が、採取された炉水を分析することによって測定される。
親水性無機酸化物粒子を給水に注入して、炉水中の親水性無機酸化物粒子の濃度を所定濃度に調節する場合、式(1)から求められた懸濁液の設定注入流量Ftank(t/h)に基づいて、親水性無機酸化物粒子の懸濁液の、無機酸化物粒子タンク19から給水配管8内を流れる給水への注入流量を制御する。注入設定流量Ftank(t/h)に基づいた注入流量の制御は、注入ポンプ20の回転速度(または注入配管21に設けられた流量調節弁の開度)を制御することによって行われる。なお、式(1)を用いて設定注入流量Ftankを最初に算出する場合には、ファクターfを1と仮定する。
tank=f×CRWset×FRWCU/Ctank ……(1)
ただし、FRWCUは炉水浄化系配管16内を流れる炉水の流量(t/h)、CRWsetは炉水中の親水性無機酸化物粒子の設定濃度(mol/kg)、及びCtankは無機酸化物粒子タンク19内の懸濁液に含まれる親水性無機酸化物粒子の濃度(mol/kg)である。設定濃度CRWsetは、1×10-9mol/kgから2×10-7mol/kgの範囲に含まれる濃度であり、本実施例では例えば2×10-7mol/kgとする。したがって、炉水中のアナターゼ型チタン酸化物粒子の濃度が2×10-7mol/kgに制御される。
サンプリング配管24を通して炉水浄化系配管16内を流れる炉水の一部を採取して、採取された炉水に含まれる親水性無機酸化物粒子の濃度、すなわち、アナターゼ型チタン酸化物粒子の濃度が分析される。運転員は、その分析によって得られた、炉水に含まれるアナターゼ型チタン酸化物粒子の濃度が設定濃度CRWsetになっていることを確認する。炉水に含まれるアナターゼ型チタン酸化物粒子の濃度が設定濃度CRWsetになっていない場合は、式(2)を用いてファクターfを算出し、このファクターfを式(1)に代入して(1)式により無機酸化物粒子タンク19から給水に注入するアナターゼ型チタン酸化物粒子の懸濁液の設定注入流量Ftankを再度算出する。
f=CRWset/CRWmeas ……(2)
ここで、CRWmeasは分析によって得られた、炉水に含まれる親水性無機酸化物粒子の測定濃度(mol/kg)である。
再度算出された設定注入流量Ftankに基づいて、前述したように、無機酸化物粒子タンク19から給水へのアナターゼ型チタン酸化物粒子の懸濁液の注入流量を制御する。サンプリング配管24により採取された炉水に含まれる中のアナターゼ型チタン酸化物粒子の濃度が設定濃度CRWsetになるまで、式(1)及び式(2)を用いて設定注入流量Ftankを算出し、得られた設定注入流量Ftankに基づいたその懸濁液の注入流量の制御が繰り返される。
本実施例によれば、復水フィルタ9に中空子フィルタを用いているので、給水に含まれる鉄酸化物の濃度を1×10-9mol/kg以下に抑制することができ、RPV3内に給水配管8より持ち込まれる鉄酸化物の濃度を低減することができる。このため、炉水に含まれる三酸化二鉄粒子の濃度が非常に少なくなり、炉心滞在期間が長くなる高燃焼度化された燃料集合体の寿命期間においてこの燃料集合体の燃料棒表面に付着する三酸化二鉄粒子の量が極めて少なくなる。さらに、本実施例は、親水性無機酸化物粒子、すなわち、アナターゼ型チタン酸化物粒子を、給水配管8を介してRPV3内に注入しているので、炉水に含まれる非放射性コバルトが燃料棒表面のドライアウト面に付着し難いアナターゼ型チタン酸化物粒子の表面に付着する。したがって、中空子フィルタによる鉄酸化物の除去及び親水性無機酸化物粒子の注入によって、さらに高燃焼度化された燃料集合体が炉心4に装荷された場合であっても、非放射性コバルトが燃料棒表面、すなわち、その表面のドライアウト面にも付着しないので、非放射性コバルトが放射化される確率が著しく低下する。炉水に含まれる放射性コバルトも、アナターゼ型チタン酸化物粒子の表面に付着する。
以上の理由により、炉水中の放射性コバルトの濃度を低減することができる。したがって、再循環系配管14及び炉水浄化系配管16等の炉水が流れる、BWRプラントの配管の内面、RPV3の内面及びRPV3内に設置された炉内構造物の表面に付着する放射性コバルト(例えば、コバルト60)の量を低減することができる。さらに高燃焼度化された燃料集合体が炉心4に装荷された場合においても、その配管及びRPV3の表面線量率を低減することができ、BWRプラントの運転停止時において定期検査を実施する作業員の放射線被ばくをさらに低減することができる。
本実施例は、炉水に含まれるアナターゼ型チタン酸化物粒子の濃度を、1×10-9mol/kgから2×10-7mol/kgの範囲に含まれる2×10-7mol/kgに制御するので、アナターゼ型チタン酸化物粒子へのコバルトの吸着が促進され、炉水中の放射性コバルトの濃度がより低減される。また、前述したように、アナターゼ型チタン酸化物粒子によって、再循環ポンプ15及び炉水浄化系配管16に設けられた浄化系ポンプ(図示せず)のそれぞれの回転軸表面及び回転軸を支える軸受け内面に傷が付けられる恐れが著しく小さくなる。
復水フィルタ9として、中空子フィルタの替りに、粉末イオン交換樹脂をろ過剤として用いたパウデックスフィルタを用いてもよい。中空子フィルタ及びパウデックスフィルタは、給水に含まれる鉄酸化物の濃度を1×10-9mol/kg以下にする鉄酸化物除去装置である。
本発明の他の実施例である実施例2のBWRプラントの放射線被ばく低減方法を、図2を用いて説明する。本実施例の放射線被ばく低減方法に用いられるBWRプラント1Aは、無機酸化物粒子注入装置25を、給水配管8ではなく炉水浄化系配管16に接続している。無機酸化物粒子注入装置25の注入配管25が炉水浄化系配管16に接続されている。本実施例のBWRプラント1Aにおける他の構成は、実施例1のBWRプラント1の構成と同じである。本実施例におけるアナタ−ゼ型チタン酸化物粒子の給水への注入は、実施例1と同様に制御される。本実施例では、無機酸化物粒子注入装置25が炉水浄化系配管16に接続されているので、アナタ−ゼ型チタン酸化物粒子は炉水浄化系配管16及び給水配管8を経由してRPV3内に導かれる。
本実施例も、実施例1で生じる効果を得ることができる。
本発明の他の実施例である実施例3のBWRプラントの放射線被ばく低減方法を、図3を用いて説明する。本実施例の放射線被ばく低減方法に用いられるBWRプラント1Bは、実施例1のBWRプラント1に、フィルタ26及び分岐配管27を追加した構成を有する。炉水浄化装置17及び熱交換器18をバイパスする分岐配管27は、両端部が炉水浄化系配管16に接続されている。フィルタ26は分岐配管27に設置される。
本実施例は、復水フィルタ9に中空子フィルタを用いているので、給水に含まれる鉄酸化物の濃度を1×10−9mol/kg以下に抑制することができる。このため、RPV3内の炉水に含まれる鉄酸化物の濃度が低減される。本実施例も、BWRプラント1Bの運転中において、無機酸化物粒子注入装置25から給水配管8内にアナターゼ型チタン酸化物粒子が注入され、このアナターゼ型チタン酸化物粒子が給水と共にRPV3内に導かれる。炉水に含まれるコバルト(非放射性コバルト及び放射性コバルト)を吸着したアナターゼ型チタン酸化物粒子が、炉水と共にRPV3内から再循環系配管14及び炉水浄化系配管16を経て分岐配管27内に達する。分岐配管27内に流入したアナターゼ型チタン酸化物粒子は、フィルタ26で除去される。
炉水浄化装置(例えば、脱塩器)17に供給される炉水は、再生熱交換器である熱交換器18、及び炉水浄化系配管16に設けられた非再生熱交換器(図示せず)によって100℃以下に冷却される。炉水浄化装置17から排出された炉水は、熱交換器18で加熱されて温度が上昇する。熱交換器18及び非再生熱交換器による熱交換に伴って原子炉浄化系において熱損失が生じる。しかしながら、フィルタ26として金属焼結体フィルタ等の高温で使用できるフィルタを用いることによって、炉水の一部を高温のまま分岐配管27を通して循環させて、熱損失を少なくして炉水に含まれているアナターゼ型チタン酸化物粒子をフィルタ26で捕集できる。さらに、炉水浄化装置17に供給する炉水の流量を減らし、分岐配管27に導く炉水の流量を増加させれば、より少ない熱損失で炉水中のコバルトイオン濃度を低減できる。
本実施例における親水性無機酸化物粒子の給水への注入制御を、以下に説明する。ファクターfを1と仮定して式(3)を用いて求められた懸濁液の設定注入流量Ftank(t/h)に基づいて、アナターゼ型チタン酸化物粒子の懸濁液の、無機酸化物粒子タンク19から給水配管8内の給水への注入流量を制御する。この制御は、注入ポンプ20の回転速度(または注入配管21に設けられた流量調節弁の開度)を制御することによって行われる。
tank=f×CRWset×(FRWCU+Fbranch)/Ctank ……(3)
ただし、Fbranchは分岐配管27を流れる炉水の流量(t/h)である。
実施例1と同様に、サンプリング配管24から採取された炉水に含まれるアナターゼ型チタン酸化物粒子の濃度が分析される。この分析によって得られた、炉水に含まれる中のアナターゼ型チタン酸化物粒子の濃度が設定濃度CRWsetになっていない場合は、式(2)を用いてファクターfを算出し、このファクターfを式(3)に代入して式(3)により無機酸化物粒子タンク19から給水に注入されるアナターゼ型チタン酸化物粒子の懸濁液の設定注入流量Ftankを再度算出する。再度算出された設定注入流量Ftankに基づいて、無機酸化物粒子タンク19から給水へのアナターゼ型チタン酸化物粒子の懸濁液の注入流量を制御する。
本実施例も、実施例1で生じる効果を得ることができる。本実施例は、コバルトの吸着性能が低下したアナターゼ型チタン酸化物粒子を除去することができる。また、炉水を冷却する前の高温状態でフィルタ26に供給することができるので、少ない熱損失で、炉水中の放射性コバルトの濃度を低減できる。このため、BWRプラントの発電効率を増大させることができる。
本発明の他の実施例である実施例4の沸騰水型原子力プラント(BWRプラント)の放射線被ばく低減方法を、図4を用いて説明する。本実施例の放射線被ばく低減方法に用いられるBWRプラント1Cは、実施例3で用いられるフィルタ26を炉心4の上方に配置されたシュラウドヘッド(図示せず)に設置される。炉心4に装荷された複数の燃料集合体の上端部を保持する上部格子板(図示せず)が、RPV3内に配置され、炉心4を取り囲む炉心シュラウドに取り付けられる。シュラウドヘッドは、上部格子板を覆うように、炉心シュラウドの上端部に設置される。フィルタ26は、上部格子板よりも上方でシュラウドヘッド内に配置されている。フィルタ26は、炉心4で加熱されて上昇する炉水に含まれたコバルトを除去する。
本実施例は、実施例3で生じる効果を得ることができる。フィルタ26は、BWRプラントの運転が停止された後、燃料交換を行うためにRPV3内から取り出されるシュラウドヘッドと共にRPV3の外に取り出すことができる。このため、取り出されたシュラウドヘッドが置かれる機器仮置きプール内で、シュラウドヘッドに取り付けられたフィルタ26を遠隔操作により新しいフィルタ26と交換することができる。機器仮置きプール内には放射線を遮蔽する冷却水が充填されている。
本発明の他の実施例である実施例5のBWRプラントの放射線被ばく低減方法を、図5を用いて説明する。本実施例の放射線被ばく低減方法に用いられるBWRプラントは実施例1で用いられるBWRプラント1である。本実施例では、RPV3内に設置された炉心シュラウド及びジェットポンプ等の炉内構造物の表面及び再循環系配管14の内面の除染を行い、その後に、実施例1で述べた放射線被ばく低減方法を実施する。
本実施例で実行される化学除染方法を以下に説明する。本実施例で実行される化学除染方法に用いられる化学除染装置31は、例えば、特開2004−205245号公報の図1に示された化学除染装置である。BWRプラント1の運転が停止された後、BWRプラント1の定期検査が実施される。この定期検査を実施する際に、RPV3の蓋が取り外され、蒸気乾燥器、及び気水分離器が取り付けられたシュラウドヘッドがRPV3内から取り出される。炉心4内に装荷された全燃料集合体がRPV3の外に取り出され、原子炉建屋内の燃料貯蔵プール(図示せず)に保管される。化学除染装置31の循環配管32の一端が、RPV3の底部に接続されたドレン配管28に、弁29と弁30の間で接続される。弁29,30はドレン配管28に設置されている。その循環配管32の多端はスプレイ33に接続される。このスプレイ33はRPV3内で炉心4の上方に配置される。化学除染装置31は、特開2004−205245号公報の図1に示されているように、循環配管32に、シュウ酸溶液タンク、ヒドラジン溶液タンク、過マンガン酸カリウムタンク及び過酸化水素水タンクに接続している。さらに、ルテニウムを活性炭に添着した触媒が充填された触媒塔が循環配管32に接続される。
上記の構成を有する化学除染装置31を用いて、特開2004−205245号公報の図3に示された工程(1)〜(6)の昇温工程、酸化除染工程、酸化除染剤分解工程、還元除染工程、還元除染剤分解工程及び浄化工程が実施される。工程(1)〜(6)は少なくとも二回実施される。酸化除染工程では、過マンガン酸カリウムタンク内の過マンガン酸カリウム溶液(酸化除染液)が循環配管32を通りスプレイ33からRPV3内に噴射される。このとき、再循環ポンプ15が駆動されているので、過マンガン酸カリウム溶液は、再循環系配管14及びジェットポンプ内を流れる。炉水浄化系配管16の入口は弁(図示せず)で封鎖されており、再循環系配管14内を流れる過マンガン酸カリウム溶液は、炉水浄化系配管16内に流入しない。RPV3内の過マンガン酸カリウム溶液はドレン配管28及び循環配管32を通って化学除染装置31に戻される。このような過マンガン酸カリウム溶液の流動によって、RPV3の内面、RPV3内に配置された炉内構造物の表面及び再循環系配管14の内面等の酸化除染が実施される。このとき、弁29は開いており、弁30は閉じている。
還元除染工程では、シュウ酸溶液タンク内のシュウ酸溶液(還元除染液)が、ヒドラジン溶液タンクから供給されるヒドラジンを含み、循環配管32を通ってスプレイ33からRPV3内に噴射される。再循環ポンプ15が駆動されているので、ヒドラジンを含むシュウ酸溶液が、再循環系配管14内等を流れる。ヒドラジンを含むシュウ酸溶液も、炉水浄化系配管16内に流入しない。RPV3内のヒドラジンを含むシュウ酸溶液はドレン配管28及び循環配管32を通って化学除染装置31に戻される。このようにして、RPV3の内面、RPV3内に配置された炉内構造物の表面及び再循環系配管14の内面等の還元除染が実施される。
還元除染工程の後に、還元除染剤(シュウ酸)分解工程及び浄化工程が実施される。化学除染終了後から燃料集合体の装荷前の間で、RPV3内の水が新しい水と交換される。化学除染の実施後で、BWRプラント1の定期検査が終了したとき、RPV3の炉心4内に燃料集合体が装荷される。その後、シュラウドヘッド及び蒸気乾燥器がRPV3内に設置され、蓋がRPV3に取り付けられる。BWRプラント1の運転が開始され、実施例1で述べた給水からの鉄酸化物の除去及び炉水へのアナターゼ型チタン酸化物粒子の注入が行われる。
本実施例は、給水からの鉄酸化物の除去及び炉水へのアナターゼ型チタン酸化物粒子の注入を行っているので、実施例1で生じる効果を得ることができる。本実施例は、炉水へのアナターゼ型チタン酸化物粒子の注入を行う前に、化学除染を行っているので、RPV3の内面、RPV3内に配置された炉内構造物の表面及び再循環系配管14の内面に付着した鉄酸化物、特に、三酸化二鉄を事前除去することができる。このため、BWRプラントの運転中において、燃料棒表面に付着する鉄酸化物、特に、三酸化二鉄の量が非常に少なくなり、放射性コバルトの生成量が非常に少なくなる。これは、定期検査時において作業員の放射線被ばくを実施例1よりもさらに低減することができる。
本実施例で実施した化学除染は、実施例2ないし4でも実施することが可能である。
本発明の好適な一実施例である実施例1のBWRプラントの構成図である。 本発明の他の実施例である実施例2のBWRプラントの構成図である。 本発明の他の実施例である実施例3のBWRプラントの構成図である。 本発明の他の実施例である実施例4のBWRプラントの構成図である。 本発明の他の実施例である実施例5の沸騰水型原子力プラントの放射線被ばく低減方法における化学除染工程を示す説明図である。
符号の説明
1,1A,1B,1C…沸騰水型原子力プラント、2…原子炉、3…原子炉圧力容器、4…炉心、5…主蒸気配管、6…タ−ビン、7…復水器、8…給水配管、9…復水フィルタ、11…給水ポンプ、14…再循環系配管、15…再循環ポンプ、16…炉水浄化系配管、17…炉水浄化装置、19…無機酸化物粒子タンク、20…注入ポンプ、22…水素注入装置、23,24…サンプリング配管、25…無機酸化物粒子注入装置、26…フィルタ、31…化学除染装置、33…スプレイ。

Claims (17)

  1. 原子炉に供給される給水に含まれる鉄酸化物を除去し、コバルトイオンを吸着する親水性無機酸化物粒子を炉水に注入することを特徴とする沸騰水型原子力プラントの放射線被ばく低減方法。
  2. 前記給水に含まれる鉄酸化物の濃度を1×10-9mol/kg以下にする請求項1に記載の沸騰水型原子力プラントの放射線被ばく低減方法。
  3. 前記炉水に水素を注入する請求項1または2に記載の沸騰水型原子力プラントの放射線被ばく低減方法。
  4. 前記炉水中の前記親水性無機酸化物粒子の濃度が1×10-9mol/kg以上で2×10-7mol/kg以下の範囲になるように、前記親水性無機酸化物粒子の注入量が制御される請求項1ないし3のいずれか1項に記載の沸騰水型原子力プラントの放射線被ばく低減方法。
  5. 前記親水性無機酸化物粒子がアナタ−ゼ型のチタン酸化物粒子またはタングステン酸化物である請求項1ないし4のいずれか1項に記載の沸騰水型原子力プラントの放射線被ばく低減方法。
  6. 前記親水性無機酸化物粒子が無機物粒子の表面をアナタ−ゼ型のチタン酸化物またはタングステン酸化物で被覆して構成されている請求項1ないし4のいずれか1項に記載の沸騰水型原子力プラントの放射線被ばく低減方法。
  7. 前記親水性無機酸化物粒子の粒径が2μm以上で100μm以下である請求項1ないし6のいずれか1項に記載の沸騰水型原子力プラントの放射線被ばく低減方法。
  8. 沸騰水型原子力プラントの運転停止中に、前記沸騰水型原子力プラントを構成する構成部材の前記炉水が接する表面の除染を実施し、前記沸騰水型原子力プラントの運転中に、前記鉄酸化物の除去及び前記親水性無機酸化物粒子の炉水への注入を実施する請求項1ないし7のいずれか1項に記載の沸騰水型原子力プラントの放射線被ばく低減方法。
  9. 前記炉水に注入された前記親水性無機酸化物粒子を除去する請求項1ないし7のいずれか1項に記載の沸騰水型原子力プラントの放射線被ばく低減方法。
  10. 原子炉と、前記原子炉に給水を供給する給水配管と、前記給水配管に設置された鉄酸化物除去装置と、コバルトイオンを吸着する親水性無機酸化物粒子を前記原子炉内に注入する無機酸化物粒子注入装置とを備えたことを特徴とする沸騰水型原子力プラント。
  11. 前記鉄酸化物除去装置は前記給水に含まれる前記鉄酸化物の濃度を1×10-9mol/kg以下に低減する除去装置である請求項10に記載の沸騰水型原子力プラント。
  12. 前記無機酸化物粒子注入装置を前記給水配管に接続した請求項10または11に記載の沸騰水型原子力プラント。
  13. 前記無機酸化物粒子注入装置を、前記原子炉に接続された再循環系配管と前記給水配管を接続する原子炉浄化系配管に接続した請求項10または11に記載の沸騰水型原子力プラント。
  14. 前記原子炉内に水素を注入する水素注入装置を設けた請求項10または11に記載の沸騰水型原子力プラント。
  15. 前記原子炉内に注入された前記親水性無機酸化物粒子を捕集する捕集装置を備えた請求項10に記載の沸騰水型原子力プラント。
  16. 前記捕集装置は、前記原子炉内で炉心より上方に配置され、前記炉心から上昇した冷却材が通過する請求項15に記載の沸騰水型原子力プラント。
  17. 前記捕集装置は、前記原子炉に接続された再循環系配管と前記給水配管を接続する原子炉浄化系配管に接続されて前記原子炉浄化系配管に設置された浄化装置及び冷却装置をバイパスしている配管に設置されている請求項15に記載の沸騰水型原子力プラント。
JP2008068047A 2008-03-17 2008-03-17 沸騰水型原子力プラントの放射線被ばく低減方法及び沸騰水型原子力プラント Pending JP2009222584A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008068047A JP2009222584A (ja) 2008-03-17 2008-03-17 沸騰水型原子力プラントの放射線被ばく低減方法及び沸騰水型原子力プラント

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008068047A JP2009222584A (ja) 2008-03-17 2008-03-17 沸騰水型原子力プラントの放射線被ばく低減方法及び沸騰水型原子力プラント

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011032819A Division JP2011095280A (ja) 2011-02-18 2011-02-18 沸騰水型原子力プラント

Publications (1)

Publication Number Publication Date
JP2009222584A true JP2009222584A (ja) 2009-10-01

Family

ID=41239529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008068047A Pending JP2009222584A (ja) 2008-03-17 2008-03-17 沸騰水型原子力プラントの放射線被ばく低減方法及び沸騰水型原子力プラント

Country Status (1)

Country Link
JP (1) JP2009222584A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089942A (ja) * 2009-10-26 2011-05-06 Hitachi-Ge Nuclear Energy Ltd 沸騰水型原子力プラントの水質制御方法
JP2015179040A (ja) * 2014-03-19 2015-10-08 株式会社東芝 プラント長期停止後の運転方法及び腐食生成物除去装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264786A (ja) * 1992-03-19 1993-10-12 Hitachi Ltd 原子力プラントの水質制御方法及びその装置並びに原子力プラント
WO1999017302A1 (fr) * 1997-10-01 1999-04-08 Hitachi, Ltd. Centrale nucleaire et procede de regulation de la qualite de l'eau dans cette derniere
JP2001004789A (ja) * 1999-06-23 2001-01-12 Toshiba Corp 原子炉構造材及び原子炉構造材の腐食低減方法
JP2001228289A (ja) * 2000-02-15 2001-08-24 Toshiba Corp 原子力発電プラントおよびその運転方法
JP2001235584A (ja) * 2000-02-25 2001-08-31 Hitachi Ltd 原子力プラント及びその運転方法
JP2001276628A (ja) * 2000-03-31 2001-10-09 Toshiba Corp 原子炉構造材料の光触媒付着方法
WO2002090008A1 (fr) * 2001-05-01 2002-11-14 Center For Advanced Science And Technology Incubation, Ltd. Procede de nettoyage d'une structure, procede anticorrosion et structure mettant en oeuvre ceux-ci
JP2005024264A (ja) * 2003-06-30 2005-01-27 Toshiba Corp 原子炉構造部材の腐食抑制方法および装置
JP2007232432A (ja) * 2006-02-28 2007-09-13 Hitachi Ltd 自然循環式沸騰水型原子炉のチムニ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264786A (ja) * 1992-03-19 1993-10-12 Hitachi Ltd 原子力プラントの水質制御方法及びその装置並びに原子力プラント
WO1999017302A1 (fr) * 1997-10-01 1999-04-08 Hitachi, Ltd. Centrale nucleaire et procede de regulation de la qualite de l'eau dans cette derniere
JP2001004789A (ja) * 1999-06-23 2001-01-12 Toshiba Corp 原子炉構造材及び原子炉構造材の腐食低減方法
JP2001228289A (ja) * 2000-02-15 2001-08-24 Toshiba Corp 原子力発電プラントおよびその運転方法
JP2001235584A (ja) * 2000-02-25 2001-08-31 Hitachi Ltd 原子力プラント及びその運転方法
JP2001276628A (ja) * 2000-03-31 2001-10-09 Toshiba Corp 原子炉構造材料の光触媒付着方法
WO2002090008A1 (fr) * 2001-05-01 2002-11-14 Center For Advanced Science And Technology Incubation, Ltd. Procede de nettoyage d'une structure, procede anticorrosion et structure mettant en oeuvre ceux-ci
JP2005024264A (ja) * 2003-06-30 2005-01-27 Toshiba Corp 原子炉構造部材の腐食抑制方法および装置
JP2007232432A (ja) * 2006-02-28 2007-09-13 Hitachi Ltd 自然循環式沸騰水型原子炉のチムニ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089942A (ja) * 2009-10-26 2011-05-06 Hitachi-Ge Nuclear Energy Ltd 沸騰水型原子力プラントの水質制御方法
JP2015179040A (ja) * 2014-03-19 2015-10-08 株式会社東芝 プラント長期停止後の運転方法及び腐食生成物除去装置

Similar Documents

Publication Publication Date Title
US9299463B2 (en) Method of depositing noble metal on structure member of nuclear plant
KR20140111277A (ko) 미립자 제거 시스템
JPH0720277A (ja) Bwrプラントの炉水制御方法,低炉水放射能濃度bwrプラントおよびbwr用燃料被覆管
JP4944542B2 (ja) 構造材からのニッケル及びコバルトの溶出抑制方法
JP2012247322A (ja) プラント構成部材への白金皮膜形成方法
JP2011247651A (ja) プラント構成部材へのフェライト皮膜形成方法
CN1293571C (zh) 原子能发电设备
JP2009222584A (ja) 沸騰水型原子力プラントの放射線被ばく低減方法及び沸騰水型原子力プラント
JP2016080508A (ja) 除染処理システム及び除染廃水の分解方法
EP2940695B1 (en) Systems for reducing surface deposition and contamination
JP2011095280A (ja) 沸騰水型原子力プラント
JP2011089942A (ja) 沸騰水型原子力プラントの水質制御方法
JP6322493B2 (ja) 原子力プラントの炭素鋼部材への放射性核種付着抑制方法
JP2002236191A (ja) 残留熱除去系配管の原子力発電プラント運転中の保管方法
JP2013164269A (ja) 原子力プラント構成部材の線量低減方法及び原子力プラント
JPS6295498A (ja) 原子力発電プラントの製造法
JP2995025B2 (ja) 沸騰水型原子炉用燃料被覆管及び燃料棒並びにその製造方法
JP2007232432A (ja) 自然循環式沸騰水型原子炉のチムニ
JP2009229389A (ja) 原子力プラントの応力腐食割れを抑制する方法
JP5208188B2 (ja) 原子力プラントの放射線被ばく低減方法、原子力プラント及び燃料集合体
JPH0875883A (ja) 燃料集合体、原子力プラント及び原子力プラント運転方法
US8798225B2 (en) Radiation exposure reduction method
JP2009229388A (ja) 原子力プラントの放射線被ばく低減方法、原子力プラント及び燃料集合体
JP4959196B2 (ja) 原子力発電プラント用交換部材及び原子力発電プラント用部材の取扱方法
JP6585553B2 (ja) 原子力プラント構成部材の応力腐食割れ抑制方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110531